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On the computational complexity
of the Riemann mapping

Ilia Binder, Mark Braverman and Michael Yampolsky

Abstract. In this paper we consider the computational complexity of uniformizing a domain
with a given computable boundary. We give nontrivial upper and lower bounds in two settings:
when the approximation of the boundary is given either as a list of pixels, or by a Turing machine.

1. Introduction

1.1. Foreword

Computational conformal mapping is prominently featured in problems of ap-
plied analysis and mathematical physics, as well as in engineering disciplines, such
as image processing. In this paper we address the theoretical foundations of nu-
merically approximating the conformal mapping between two planar domains. We
obtain a lower bound on the computational complexity of an algorithm solving this
problem, and show that this bound is almost sharp. To achieve the latter, we present
a very space-efficient probabilistic algorithm for constructing such a mapping.

Acknowledgements. The second author would like to thank Ker-I Ko for bring-
ing the problem to his attention during CCA’04.

The authors are grateful to Stephen Cook for his numerous helpful suggestions
during the preparation of the paper.

1.2. Background in computational complexity theory

We present here some basic definitions and results from the computational
complexity theory. More comprehensive discussions can be found in [Si] and [Pa].

The first and third authors were partially supported by NSERC Discovery grant, and the
second author by an NSERC Postgraduate scholarship.
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The primary goal of the computational complexity theory is to classify different
computational problems into complezity classes according to their computational
hardness. The basic abstract object here is a Turing machine which for most
purposes can be thought of as a program in any programming language.

The complexity class P includes problems that are computable in time poly-
nomial in the length of the input. Those are thought of as the “relatively easy”
problems. Examples of problems in P include arithmetic operations, finding a short-
est path in a graph and primality testing. “Difficult” problems, such as factoring
integers or computing the optimal strategy for playing Go on an nxn board, are
generally thought not to be in P. Whether a problem is in P or not is usually
a good criterion in assessing its true hardness. By an analogy with P one can define
the class EXP of problems solvable in time 2", for some ¢, on input length n. Fac-
toring integers is in EXP via an obvious exhaustive search. Playing Go optimally
is also in EXP, since we can easily enumerate all possible games and compute an
optimal path in time 20(n?), Using a diagonalization argument, it is not hard to
see that PCEXP (see e.g. [Si]).

The complexity class NP contains problems that are easy to verify, but may
be hard to guess. More precisely, a predicate Q(z) is in NP, if there is a poly-time
computable predicate R(x,y), where y has length polynomial in the length of x,
such that Q(x)=3y R(x,y). By an exhaustive search for y one sees that NPCEXP.
There is a subclass of NP called the NP-complete problems, or NPC. Problems
in NPC have the property of being the “hardest” in NP: if one could solve any
problem in NPC in polynomial time, then one could solve all NP problems in
polynomial time.

One of the most famous NP-complete problems is the satisfiability problem
SAT. The problem is the following: given a propositional formula ¢(y) does it have
a truth assignment yr such that ¢(yr)=1. An example of a problem in NP that
is thought to be hard but not to be NP-complete is the following: Given a pair
of numbers m<n, determine whether n has a divisor between 2 and m. This
problem can be used to factor integers. It is in NP since it can be formulated as
Ik (1<k<m)Ak|n. It is one of the Clay $1,000,000 questions whether P=NP.

A bigger class of problems is the class #P. It is the class of problems which
are equivalent to counting the number of satisfying assignments for a given proposi-
tional formula — this naturally complete problem for this class is denoted by #SAT.
Obviously NP C#P, since to solve SAT we only need to know whether the number
of its satisfying assignments is bigger than 0 or not, which is easier than actually
determining this number.

The next class of problems is the class PSPACE — the class of problems
solvable in space polynomial in the input size. It is easy to see that all the classes
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mentioned above are in PSPACE. On the other hand, PSPACECEXP, since
a machine with p(n) memory bits can have at most 2P(") different configurations,
and can run for at most 2P(") steps without getting into an infinite loop.

The class of problems solvable in logarithmic space is a class of problems that
are solvable in space O(logn) for input size n. Here the input and the output are
read-only and write-only, respectively. This class is denoted by L. By the same
reasoning as PSPACECEXP, we have LCP. A randomized version of L are the
problems that can be solved correctly with error probability <1/n in space O(logn)
and time poly(n). This class is called BPL.

Overall, we have the following chain of inclusions:

LCBPLCPCNPC#PCPSPACE CEXP.

By diagonalization, BPL#PSPACE, and P#ZEXP. No other separations are
known.

In recent years, some progress has been made in derandomizing BPL, that
is in showing that there is a deterministic algorithm that does not require a lot
of additional computational resources. We will need the following recent result on
derandomization.

Theorem 1.1. ([N]) There exists a deterministic algorithm for the following
problem:

Input: An nxn transition probability matriz M, an integert, and a rational €.

Output: A matriz A such that |A—M"||<e.

The algorithm runs in time poly(N) and space O(log® N), where N=n+t+e.

We will also use a circuit complezity class. A circuit consists of inputs, logical
gates, and an output. The gates are usually NOT (one input, one output), AND,
and OR. The latter gates can either have two, or unboundedly many inputs. In
the discussion below, any number of inputs is allowed. The size of a circuit is
the number of gates used. The depth of a circuit is the number of gates on the
longest path from an input to the output. It is known that any boolean function
f:{0,1}"—={0,1} can be computed by a circuit of size O(2"/n). It is not hard to
see that functions in P are computable by polynomial size circuits. The class ACP is
the class of functions that are computable by a family of circuits (one for each input
size), that have constant depth and polynomial size. This is one of the very few
complexity classes for which non-diagonalization lower bounds exist. In particular
it has been shown that computing the parity of the number of 1’s in a string cannot
be done in AC? (see, for example, [FSS]). A more general problem that cannot be
done in AC" is the majority problem MAJ,: given a string z€{0,1}", MAJ, (z) is
1 if and only if the majority of the entries in z are 1.
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1.3. Computational complexity of sets

We review the definition and the basic properties of computable sets. We refer
the reader to [BW], [W], [RW] and [B] for a more comprehensive exposition.
Intuitively, we say the time complexity of a set S is t(n) if it takes time t(n)

n

to decide whether to draw a pixel of size 27" in the picture of S. Mathematically,

the definition is as follows:

Definition 1.2. A set T is said to be a 27™-picture of a bounded set .S if:
(1) SCT, and
(2) TCB(S,27")={zeR?:|x—s|<2" for some s€S}.

Definition 1.2 means that 7" is a 2~ "-approximation of S with respect to the
Hausdorff metric, given by

du(S,T):=inf{r:SC B(T,r) and T C B(S,r)}.

Suppose we are trying to generate a picture of a set S using a union of round
pixels of radius 27" with centers at all the points of the form (j/2",k/2"), with j
and k integers. In order to draw the picture, we have to decide for each pair (j, k)
whether to draw the pixel centered at (j/2",k/2™) or not. We want to draw the
pixel if it intersects S and to omit it if some neighborhood of the pixel does not
intersect S. Formally, we want to compute a function

L, B((/2" k/2"),27")NS#2,
(1.1) fs(n,3/2" k/2") =4 0, B((3/2",k/2"),2-27")NS =2,

0 or 1, in all other cases.
The time complexity of S is defined as follows.

Definition 1.3. A bounded set S is said to be computable in time ¢(n) if there
is a function f(n, -) satisfying (1.1) which runs in time ¢(n). We say that S is poly-
time computable if there is a polynomial p, such that S is computable in time p(n).

Computability of sets in bounded space is defined in a similar manner. There,
the amount of memory the machine is allowed to use is restricted.

To see why this is the “right” definition, suppose we are trying to draw a set
S on a computer screen which has a 1000 x 1000 pixel resolution. A 27"-zoomed in
picture of S has O(22") pixels of size 27", and thus would take time O(22"t(n)) to
compute. This quantity is exponential in n, even if ¢(n) is bounded by a polynomial.
But we are drawing S on a finite-resolution display, and we will only need to draw
1000-1000=106 pixels. Hence the running time would be O(10%¢(n))=0(t(n)). This
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running time is polynomial in n if and only if ¢(n) is polynomial. Hence ¢(n) reflects
the ‘true’ cost of zooming in.

1.4. Background in complex analysis

To make the paper self-contained, we list here a few results from complex anal-
ysis that will be used later. We refer to [A], [D] and [Po] for a more comprehensive
discussion.

Let QG C be a simply-connected planar domain with weQ. The Riemann
uniformization theorem states that there is unique conformal map v of €2 onto the
unit disk D with ¢(w)=0 and ¢'(w)>0. The number r(Q, w)=1/v’(w) is called the
conformal radius of Q. Roughly speaking, (€, w) measures the size of Q as viewed
from w.

Proposition 1.4. (Koebe’s theorem) In this notation we have

dist(w, 0Q) > @

We note the following basic monotonicity property of the conformal radius.
Lemma 1.5. If Q1CQs and weQq, then r(Qq, w)<r(Qs,w).

By a theorem of Carathéodory (see e.g. [Po]), if the boundary 09 is a Jordan
curve, then the map 1 can be extended to a homeomorphism between the closure
of Q and the closed unit disk cl(D).

Let z*=1/% be the inversion of z with respect to the unit circle {z:]|z|=1}. We
will make use of the following particular case of the reflection principle.

Lemma 1.6. If JC{z:|z|=1} is an open arc, and ¢ is a continuous map on
DUJ which is analytic on D, and ¢(J)C{z:|z|=1}, then the map P defined by

(1.2) ‘b(z):{ ?(2), |z] <1 and z€J,

97 (z7),  |z[>1,
is analytic on the domain DU{z:|z|>1}UJ.

In particular, if ¢ is a conformal map of D onto a domain QCD with Jordan
boundary, and K is an open arc, K COQN{z:|z|=1}, then ® is a conformal map
of DU{z:|2|>1}UJ, where J=¢1(K) (¢ is extendable to cl(D) by Carathéodory’s
theorem).
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Let now @ be a domain with the boundary 0 consisting of finitely many
Jordan curves. Let f be a continuous function on 9. A function u: cl(Q)—C is
a solution for the Dirichlet problem with the boundary data f, if

(1) w is continuous in cl(§2),

(2) w is harmonic on Q (i.e. Au=09,u+0dy,u=0), and

(3) u(z)=f(2) for z€Of.

For any f such a solution exists and is unique. Moreover, there exists a unique
family of measures wy, o on 02 such that for any feC(09),

u(w) = (2) dww,0(2).
o0

The measure w,, o is called a harmonic measure. If one fixes K C 92, the function
wrwy o(K) is harmonic in Q.
If © is simply-connected, then for a set K C0f), we have

) = o length (4 (K),

where v is the Riemann map of Q onto D with ) (w)=0.

The Dirichlet problem can be solved probabilistically. Namely, for wefQ, let
B,,(t) be the two-dimensional Brownian motion starting at w, and the exit time be
defined by

T =inf{t: B,(t) ¢ Q}.

Then the solution of the Dirichlet problem is given by the following formula of
Kakutani (see e.g. [GM]):

Note that the harmonic measure for a set K C9f2 is now given by
ww,0(K)=P[B,(T) € K].
We will make use of the mazimum principle for harmonic functions (see [A]).

Lemma 1.7. If u1(z) and uz(z) are two functions which are harmonic in €,
continuous on the whole cl(Y), and ui(z)>ua(z) for z€0Q, then ui(z)>usa(z) for
all z€).

An easy consequence is the monotonicity property of the harmonic measure
(see [Po]).
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Corollary 1.8. If weQ CQs and K CON1NONs, then
Wuw, 0y (K) < Wu,Qp (K)
We will also make use of a distortion theorem for conformal maps(see [D]).

Theorem 1.9. If ¢ is conformal in the disk {z:|z—w|<r}, then

)|y b)) < 1 () L
(18) I e S o) < @l
and

21 ) =T o <21 2L
(14) LS ) R S A o o

1.5. Results

In Section 2 we propose a new algorithm for computing the Riemann map. We
use the random walks solution to the general Dirichlet problem to produce a solution
to the uniformization problem. This gives an extremely space-efficient algorithm.

The formulation of the theorem will depend on how the boundary of the uni-
formized domain €2 is specified for our algorithm. Since the domain 2 we con-
sider is computable, there exists a Turing machine M (n) which for a given n com-
putes a function (1.1). Our algorithm may then query M (n) for different values of
(j/2™, k/2™) to ascertain whether this particular dyadic rational point lies within
one-pixel distance of 9Q2. A formal way of saying this is that our algorithm will
have an access to an oracle for a function given by (1.1).

Theorem 1.10. There is an algorithm A that computes the uniformizing map
in the following sense.

Let  be a bounded simply-connected domain, and wo€Q. 0 is provided to
A by an oracle representing it in the sense of equation (1.1). Then A computes
the absolute values of the uniformizing map ¢: (2, wo)— (D, 0) with precision 27™
in space bounded by Cn?, and time 29" where C' depends only on the diameter
of Q and d(wg, Q). Furthermore, the algorithm computes the value of ¢(w) with
precision 27" as long as |p(w)|<1—2"". Moreover, A queries 92 with precision of
at most 279",

In particular, if O is polynomial space computable in space n® for some con-
stant a>1 and time T(n)<20(”a), then A can be used to compute the uniformizing
map in space Cn™(@2) qnd time 2000,

In the scale where the entire boundary is given to us explicitly, and not by an
oracle for it, we have the following result.
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Theorem 1.11. There is an algorithm A’ that computes the uniformizing map
in the following sense.

Let © be a bounded simply-connected domain, and wyo€S). Suppose that for
some n=2F 08 is given to A’ with precision 1/n by O(n?) pivels. Then A’ computes
the absolute values of the uniformizing map ¢: (Q,wo)— (D, 0) within an error of
O(1/n) in randomized space bounded by O(k) and time polynomial in n=2% (that
is, by a BPL(n)-machine). Furthermore, the algorithm computes the value of ¢(w)
with precision 1/n as long as |p(w)|<1—1/n.

In Section 3, we show that even if the domain we are uniformizing is very simple
computationally, the complexity of the uniformization can be quite high. Moreover,
it might be difficult to compute the conformal radius of the domain.

More specifically, the following theorems are established in Section 3.

Theorem 1.12. Suppose there is an algorithm A that given a simply-con-
nected domain 0 with a linear-time computable boundary and an inner radius >%
and a number n computes the first 20n digits of the conformal radius r(£2,0), then
we can use one call to A to solve any instance of #SAT(n) with a linear time
overhead.

In other words, #P is poly-time reducible to computing the conformal radius
of a set.

Theorem 1.13. Consider the problem of computing the conformal radius of
a simply-connected domain Q, where the boundary of Q is given with precision 1/n
by an explicit collection of O(n?) pizels.

Denote the problem of computing the conformal radius with precision 1/n¢ by
CONF(n,n®). Then MAJ, is AC® reducible to CONF(n,n®) for any 0<c<4%.

1.6. Comparison with known results

The first constructive proof of the Riemann uniformization theorem is due to
Koebe [K], and dates to the early 1900s. Formal proofs of the constructive nature of
the theorem which follow Koebe’s argument under various computability conditions
on the boundary of the domain are numerous in the literature (see e.g. [Chel, [BB],
[Z] and [H]). In particular, Zhou [Z] and Hertling [H] give constructive proofs under
computability conditions on the boundary similar to those used by us. The question
of complexity bounds on the construction was raised, in particular, in most of the
works quoted above. However, the only result known to us was announced by Chou
in [Cho]. He states that in the case when the boundary is poly(n) computable, the
problem of computation of the mapping is in EXPSPACE(n).
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From the practical (that is, applied) point of view, the most computationally
efficient algorithm used nowadays to calculate the conformal map is the “Zipper”,
invented by Marshall (see [M]). The effectiveness of this algorithm was recently
studied by Marshall and Rohde in [MR]. The “Zipper”, however, falls beyond the
theoretical upper bound on the complexity of this problem, which we establish in
Section 2: in the settings of Theorem 1.10, it computes the uniformizing map in
space 2°(™") and time 2°(™") | and thus belongs to the complexity class EXP. It is
reasonable to expect then, that an algorithm can be found in the class PSPACE
which is more practically efficient than “Zipper”.

2. Computing the uniformization in polynomial space

Let Q be a bounded simply-connected planar domain, let K C() be a fixed
compact set with smooth boundary with dist(K,9Q)>10-27". First we discuss
a probabilistic algorithm for solving the Dirichlet problem in the domain Q\ K with
precision 27",

2.1. General Dirichlet problem

The discrete analogue of the Dirichlet problem can be defined as follows. For
HcChZ? (h>0), the interior of H is defined by Int(H)={a€H:a+h,a+ih€H}.
The boundary of H is defined by dH=hZ?\ (Int(H)UInt(hZ?\ H)). We say that
a function u defined on H ChZ? is discrete harmonic if for any a€Int(H) we have

u(a) =1 (u(a+h)+u(a—h)+u(a+ih)+u(a—ih)).

Let BY be the standard random walk (cf. [Sp]) on hZ? starting at we H, where H
is closed (OH C H). Let the exit time N be defined as N=min{n:BY¢H}—1. Let
f be a function on 0H. It is almost obvious that the function

w(w) =E[f(By)]

is discrete harmonic on H. This function is called the solution of the Dirichlet
problem with boundary data f (cf. the continuous case discussion in Subsection 1.4).

Let © be a domain with boundary 02 and feC(992). For h>0 define Hp=
QNhZ?. For wedHy, let fr(w)=f(z), where z is one of the points on 9 closest
to w. The solution wj, of the corresponding discrete Dirichlet problem, is called the
h-discrete solution of the original continuous Dirichlet problem.

We need the following easy case of the approximating property of the h-discrete
solutions (see [Sp] and [L]).
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Lemma 2.1. Let Q be a domain. Let f be a continuous and locally constant
function on 9Q taking only 0 and 1 values, and u be the solution of the corresponding
Dirichlet problem. Let h<1073 be such that for any z1, 2z €0Q with |z — 2| <Vh
we have f(z1)=f(z2). Let uy, be the h-discrete solution. Then if dist(w,dQ)>v/h,
then |u(w)—up(w)| <2vVh.

Since the exit probabilities of a random walk can be computed by a BPL(h 1)
machine; if the values of f and the boundary OHj are given by an oracle, then
u can be computed in the randomized space O(—logh) and time O(h~2). Thus
Lemma 2.1 immediately implies the following statement about the solution of the
general Dirichlet problem.

Lemma 2.2. There is a randomized algorithm D that computes a solution of
the Dirichlet problem in the following sense.

Let Q be a bounded planar domain and KCS be a fixzed compact set with
smooth boundary and dist(K,00Q)>10-27". Suppose that f is the function which is
equal to 0 on O and 1 on K. Then D computes the solution of the corresponding
Dirichlet problem with precision 27", 27" -away from QUK in space O(n), and
time 2° . The computation is done probabilistically, and outputs the correct value
within an error of 27" with probability >%.

In particular, if both K and 02 are computable in space n® for some constant
a>1 and time T(n)<2°™"). Then we can compute the solution of the Dirichlet
problem for any point, which is at least 27" away from 9Q and K in space O(n®),
and time 29T (n).

2.2. The conformal radius

Let wg €, and let ¢ be the conformal mapping of €2 onto the unit disk D with
¥(wo)=0 and 9’'(wp) >0. Assume that 0 is given to us within an error of 27" in
Hausdorff metric and that d(wg, 92)>1. As a first application of Lemma 2.2 let us
give an algorithm for calculating |¢'(wp)| with precision 27" in space O(n?), and
time 20T (n). Let

wy=wo+e " and K= B(wo, 672’”).

Lemma 2.3. Let hy be the solution of the Dirichlet problem

) |w_w0|:672n;

1
=0, we I,
Ahi(w)=0, weQ\K;.
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Then
1 —2h1(w1)

n————=| <5ne ".
1 —hl(wl)

log [¢(wo)|—

Proof. By the first statement of Theorem 1.9,

e 2™’ (wp) e’ (wo)
(2.1) B(O,W) Cw(KﬂCB(O,W)-
Let

Byr=14""(B(0,e*"(1-3¢7")¢)' (wy)))
and

By =11 (B(0,e " (143e ")y’ (wo))).

Since 1/(1+e72")2>(1-3e¢ ") and (1+3e72")>1/(1—e"2")2, (2.1) implies

(2.2) Brc R B
The functions
log |¥(w)]
H =
1(w) —2n-+log(1—3e-2")+log )’ (wo)
and
lo w
Hal) = g [¢(w)]

~ —2n+log(1+3e2m)+log ' (wp)

are harmonic in 2\ By and Q\ Bs, respectively, equal to 0 on 92, and equal to 1 on
the boundaries of By and Bs, respectively. By the maximum principle, H; <h; < Hs,
or, more explicitly,

(2.3)
log [¢(w)]

log |4 (w)|
—2n+log(1—3e27)+log ¢’ (wp) < fa(w) <

~ —2n+log(1+3e2")+log ! (wp)

Another application of the same distortion theorem yields
(2.4) e " (1=3e )Y (wo) < [th(wr)| < e " (1+3e™™)y (wo).

Evaluating both sides of the inequality (2.3) at the point w; using (2.4) completes
the proof of the lemma. [J

It now follows from Lemma 2.2 that we can compute ¢'(wg) with the same
complexity constraints as in Lemma 2.2.
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2.3. The Riemann map

Let hy and K; be as in the previous section.

Lemma 2.4. Let |lw—wo|>e ™. Then
log [4(w)| B (1) (l0g (i) —2)| < 32"
Proof. By equation (2.3),
hi(w)log(1—3e™2") <log |)(w)|—hy(w)(log ¥’ (wo) —2n) < hi(w) log(1+3e2™).
To prove the lemma it suffices to notice that hi(w)<1 and |log(1+z)|<|z|. O

Using Lemmas 2.3 and 2.2, we see that |¢)(w)| is computable with the same
restrictions as in Lemma 2.2, provided that dist(w,0Q)>e ™ and |w—wg|>e ™.

Now we have to compute arg(w). To achieve this, we introduce another
Dirichlet problem. Let Ko=B(wo+e 2", e *"), and let hy be the solution of the

Dirichlet problem

( ) |w_w0_e—2n|:e—4n

w)=1
(w)=0, we N,
Ahg(w):(), wGQ\KQ.

)

ho
ho

Define
L b))
= e (o)

which is also a Riemann map from Q onto D. Let wo:=t¢1(0)=1"1(e 2"’ (wp)).
By distortion Theorem 1.9,

|w2 —wp —e‘Qn‘ <94,
As in Lemma 2.4,
|log [¢h(w)|—ha(w) (log ¢ (wy) —4n)| < 3e™*".
Another application of the distortion Theorem 1.9 yields
log [/ (w2) | —log | (wo+e~2")]| < 247,
So, finally,

[log [(w)] — ha(w) (log]| (wo +¢2") | —4m) | < 5",
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Now we use a standard formula from hyperbolic trigonometry (see [T])

~ cosh C'—cosh A cosh B

cos arg (w) = sinh A sinh B ’
where
L+ (w)] 1+e2"9'(0) 1+ [ (w)|
A=log ———=, B=log———+7+, and C=log—=—",
1—[p(w)] 1—e=2n9/(0) 1=y (w)]

see Figure 1.

Figure 1. Computing arg ¢ (w).

Note that sinh B~e 2" sinh A>e ™™ when |w|>e ", and cosh B—1~e 2", Us-
ing the error estimate in Lemma 2.4, we obtain that the formula allows us to
compute cosargy(w) up to e ™, provided that | (w)|<1l—e™™.

Using the same argument for computing cosarg(u(w)/i), we can completely
determine the value of arg ¢(w).

Now we can give an algorithm which satisfies the conditions of Theorems 1.10
and 1.11.

Proof of Theorems 1.10 and 1.11. We can create a poly(n)x poly(n) matrix
M representing the transition probabilities between the poly(n) possible states of
the random walk. Simulating the random walk for t=poly(n) steps amounts to
approximating M?. The required precision is also inverse polynomial in n. By
Theorem 1.1, this can be done in time polynomial in n, and space O(log® n), which
implies Theorem 1.11. By changing the scale, and replacing n with 2™, we obtain
Theorem 1.10. O
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3. Lower bounds on the complexity of uniformization

In this section we establish Theorems 1.12 and 1.13.

Let us first remark that by the distortion Theorem 1.9, any algorithm comput-
ing values of the uniformization map will also compute the conformal radius with
the same precision.

Let A, be the domain D\ {z:|z—1|<a} — the unit disk with a small bump of
radius a removed (see Figure 2).

Aa \(.z
1

Figure 2. A,

Fix a large n€N. Let now 0<[<2", and let ;=€2"*/2" Ay_10. be the rotated
domain Ag-10n. For a set L={ly,ls,...,x} with all 0<l;<la<... <l <2, let Q=
Q;, Ny, N...NQYy, . Thus Q is the unit disk with k relatively “spread out” bumps
removed.

Theorem 3.1. For large enough n,
Ir(Qp,0)—14+k2720" 1| < L2720m,

To prove Theorem 3.1, we estimate the conformal radius of A, for an arbi-
trary a.

Lemma 3.2. The conformal radius of A, is equal to (2—2a)/(2—2a+a?).
As a consequence we get that for large n,
(3.1) |[r(Ag—10n) —142720n7 1| < 2730042,

Proof. Let P=C\{z:Im2=0 and Re 2<0} be the complex plane with the neg-
ative real axis removed.
The function
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maps D conformally onto P, with x(0)=1. It also maps A, onto Aj=P\{z:|z|<b},
where b=(a/(2—a))?.
Observe also that
z+b%/2—2b
h(z) = ——F"—
(2) 1=0)2

maps A} conformally onto P, with h(1)=1, and

- 1+b _ 2—2a+a?
T1-b 2—-2a

W (1)

Thus the map ¢o(z)=x"toh tox(z) maps D conformally onto A,, and the
conformal radius of A, is equal to

1 2—2a

) = T o 2arar

For a set L, let ¢ be the conformal map of D onto 2 with ¢1(0)=0 and
@7 (0)>0 (¢, is the inverse of the uniformization map). Let L'=(la,ls, ...,I;;) be the
set L with the first element removed. Let g(z)=¢s°¢L(z) be the conformal map
of D onto

F:D\¢Z/1({Z |Z| <1 and |Z—627ril1/27L < 2—10n}).

Let us also introduce two domains

I, =D\{z:|w—z| <2719 (1-272")}
and

I =D\{z:|w—2z| <2710"(14272")},

where w=¢;; (1).
We will use the following property of T'.

Lemma 3.3. T'_CI'cT,.

Let us first show how to derive Theorem 3.1 from Lemma 3.3.
By Lemma 3.3 and Lemma 1.5 (monotonicity of conformal radius),

r(I)<g'(0)=r(D) <r(T,).
Now Lemma 3.2 implies that for large n

|r(T_)=14+2720""1 < 272272 and  |r([,)— 142720071 | < 2722042
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and thus
|g/(0)_1+2720n71| < 2722n+2.

Note now that ¢ (2)=¢rcg(2), so r(Qr)=g'(0)r(L/). The theorem easily follows
from this relation by induction on the size of L.
So to establish Theorem 3.1, it is enough to prove Lemma 3.3.

Figure 3. The map ¢/ and domain Y.

Proof of Lemma 3.3. Without loss of generality we can assume that [ =0.

Let Y=DN{z:[z—2"™*1|<1-2""™}. Note that YCQyz/, since 0¢L’. Let ¢ be
the conformal map of D onto Y with ¢(0)=0 and ¢’(0)>0.

Let K be the arc [1,e™2 "], Note that K COYNINL.. Let K'=¢;}(K). The
normalized length of K’, |K’|, is the harmonic measure of K in Q. evaluated at
zero. By monotonicity of harmonic measure (Lemma 1.8) it is bounded above by

2-™~1=|K| and below by the harmonic measure of K in T evaluated at zero.
So

(3.2) 2T K 2 |y () 227 (1-27),

The same estimate applies to K”z(bz,l([e””'TM, 1]).
Using these estimates we see that the arc

_ 9= Tn(q1_o—5n c5—Tn (1 _o—5n
[6 T2 (1-2 ) 67”2 (1-2 )]

)

is mapped by ¢ inside K’UK"” CdD. Thus we can use the reflection principle,
Lemma 1.6, to extend the map ¢/ to a map G of the whole disk {z:|z—w|<
2-™m-1(1-2-"")} with G(w)=1.

Let J. be the arc [e~*, e%]. Using the fact that Y CQr, and the monotonicity
of harmonic measure, we obtain

(3.3) |G (o) =lopr (o) =wo.q,, (Jo) >wor(Je) =0t (Jo)| > [J|(1—27°").
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o,

Figure 4. ¢ in the neighborhood of w.

Letting e —0, we obtain

(3.4) |G’ (w)| = lim || >1-275",

Now we can use the distortion Theorem 1.9 applied to the disk
{z:]z—w| <27 ™(1-27"")}
to see that
G{z:|lw—z <2701 -272")) C {z:|z—1] <2710}
and
{z:]2—-1| <27y c G({z: |Jw—2| <271 (14272")})
But this is precisely the statement of the lemma. [J
Now we are in the position to prove Theorems 1.12 and 1.13.

Proof of Theorem 1.12. For a propositional formula ® with n variables, let
Lc{0,1,...,2"—1} be the set of numbers corresponding to its satisfying instances.
Then the boundary of 7 is computable in linear time, given the access to ®.
Theorem 3.1 now implies that using r(Q2r,0) we can evaluate |L|=Fk, and solve the
#SAT problem on ®, which is exactly Theorem 1.12. [J

Proof of Theorem 1.13. Suppose that we are given a string s of n=2* zeros and
ones. We can view it as a set LC{0,1,...,2"—1}. Q7 can be obtained from L by
a trivial one-layered circuit with just NOT gates. Theorem 3.1 implies that using
7(Qr,0) with 2-9%) precision, we can evaluate |L| and solve the MAJ,, problem on
s, which is exactly Theorem 1.13. O
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