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Generic initial ideals and exterior algebraic
shifting of the join of simplicial complexes

Satoshi Murai

Abstract. In this paper, the relation between algebraic shifting and join which was conjec-

tured by Eran Nevo will be proved. Let σ and τ be simplicial complexes and σ∗τ be their join. Let

Jσ be the exterior face ideal of σ and ∆(σ) the exterior algebraic shifted complex of σ. Assume

that σ∗τ is a simplicial complex on [n]={1, 2, ..., n}. For any d-subset S⊂[n], let m�revS(σ) de-

note the number of d-subsets R∈σ which are equal to or smaller than S with respect to the reverse

lexicographic order. We will prove that m�revS(∆(σ∗τ ))≥m�revS(∆(∆(σ)∗∆(τ))) for all S⊂[n].

To prove this fact, we also prove that m�revS(∆(σ))≥m�revS(∆(∆ϕ(σ))) for all S⊂[n] and for

all nonsingular matrices ϕ, where ∆ϕ(σ) is the simplicial complex defined by J∆ϕ(σ)=in(ϕ(Jσ)).

Introduction

Algebraic shifting, which was introduced by Kalai, is a map which associates
with each simplicial complex σ another simplicial complex ∆(σ) with special con-
ditions. Nevo [9] studied some properties of algebraic shifting with respect to basic
constructions of simplicial complexes, such as union, cone and join. With respect
to union and cone, algebraic shifting behaves nicely. However, with respect to join,
Nevo found that algebraic shifting does not behave nicely contrary to a conjecture
by Kalai [7].

First, we will recall Kalai’s conjecture and Nevo’s counterexample. Let σ be
a simplicial complex on {1, 2, ..., k}, τ a simplicial complex on {k+1, k+2, ..., n},
and let σ∗τ denote their join, in other words,

σ∗τ = {S∪R :S ∈σ and R∈ τ}.

Kalai conjectured that ∆(σ∗τ)=∆(∆(σ)∗∆(τ)), where ∆(σ) is the exterior alge-
braic shifted complex of σ. However, Nevo [9] found a counterexample. We quote
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his example. Let Σ(σ) denote the suspension of σ, i.e., the join of σ with two
points. Nevo showed that if σ is the simplicial complex generated by {1, 2} and
{3, 4} then the 2-skeleton of ∆(Σ(σ)) is {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}} and
that of ∆(Σ(∆(σ))) is {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}}.

Next, we will recall Nevo’s conjecture. Let σ and τ be simplicial complexes on
[n]={1, 2, ..., n} and ≺rev denote the reverse lexicographic order induced by 1<2<
...<n. In other words, for S⊂[n] and R⊂[n] with S �=R, define S≺revR if (i) |S|<|R|
or (ii) |S|=|R| and the minimal integer in the symmetric difference (S\R)∪(R\S)
belongs to S. For an integer d≥0, we write σd={S∈σ :|S|=d+1}. Define σ≤Revτ

if the smallest element with respect to ≺rev in the symmetric difference between σd
and τd belongs to σd for all d≥0, i.e., min≺rev{S :S∈(σd\τd)∪(τd\σd)}∈σ for all
d≥0.

Nevo conjectured that ([9, Conjecture 6.1]), for any simplicial complex σ, one
has

∆(Σ(σ))≤Rev ∆(Σ(∆(σ))).

(In the previous example, the symmetric difference is {{1, 2, 6}, {1, 3, 4}} and
{1, 2, 6}∈∆(Σ(σ)).) In this paper, we will prove a stronger result. For any sub-
set S⊂[n], let

m�revS(σ)= |{R∈σ : |R|= |S| and R	rev S}|.

We will prove the following result. (The definition of ∆ϕ(σ) will be given in Sec-
tion 3.)

Theorem 3.1. Let σ be a simplicial complex on [n] and ϕ∈GLn(K). Then,
for any S⊂[n], one has

m�revS(∆(σ))≥m�revS(∆(∆ϕ(σ))).

By using Theorem 3.1, we can easily prove the next corollary which implies
Nevo’s conjecture.

Corollary 3.2. Let σ be a simplicial complex on {1, 2, ..., k} and τ be a sim-
plicial complex on {k+1, k+2, ..., n}. Then, for any S⊂[n], one has

m�revS(∆(σ∗τ))≥m�revS(∆(∆(σ)∗∆(τ))).

Now, we will explain why Corollary 3.2 implies Nevo’s conjecture. Let d≥0 be
a positive integer, and let L⊂(

[n]
d

)
and R⊂(

[n]
d

)
be families of d-subsets of [n] which
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satisfy m�revS(L)≥m�revS(R) for all S∈(
[n]
d

)
. Set

T = min≺rev
{S :S ∈ (L\R)∪(R\L)}.

Then m�revT (L) must be strictly larger than m�revT (R) since {S∈L:S≺revT }=
{S∈R:S≺revT }. Thus we have T∈L. This fact together with Corollary 3.2 implies
that ∆(σ∗τ)≤Rev∆(∆(σ)∗∆(τ))) for all simplicial complexes σ and τ , and Nevo’s
conjecture is the special case when τ consists of two points.

To prove Theorem 3.1, we need some techniques of generic initial ideals which
have a close connection with algebraic shifting. Let K be an infinite field, V a
K-vector space with basis e1, e2, ..., en and E=

⊕n
d=0

∧d V be the exterior algebra
of V . For a graded ideal J⊂E, we write Gin≺(J) for the generic initial ideal of J
with respect to a term order ≺. For every monomial eS=es1∧es2∧...∧esd

∈E and
for every term order ≺, we write

m�eS (J)= |{eR ∈J : |R|= |S| and eR� eS}|.
We will use the following proposition to prove Theorem 3.1.

Proposition 2.4. Let J⊂E be a graded ideal and ≺ and ≺′ be term orders.
Then, for any monomial eS∈E, one has

m�eS (Gin≺(J))≥m�eS (Gin≺(in≺′(J))).

Note that the same property as in Proposition 2.4 for generic initial ideals over
the polynomial ring was proved by Conca [3].

This paper is organized as follows: In Section 1, we will give the definition of
generic initial ideals and recall some basic properties. In Section 2, we will prove
Proposition 2.4, and in Section 3, we will prove Theorem 3.1 and Corollary 3.2.

1. Generic initial ideals in the exterior algebra

Let K be an infinite field, V be a K-vector space with basis e1, e2, ..., en and
E=

⊕n
d=0

∧d
V be the exterior algebra of V . For an integer d≥0, let

(
[n]
d

)
denote

the family of d-subsets of [n]. If S={s1, s2, ..., sd}∈
(
[n]
d

)
with s1<s2<...<sd, then

the element eS=es1∧es2∧...∧esd
will be called a monomial of E of degree d. We

refer the reader to [1] for foundations of the Gröbner basis theory over the exterior
algebra. Let ≺ be a term order. In this paper, for f=

∑
S⊂[n] αSeS∈E with each

αS∈K, we write in≺(f)=max≺{eS :αS �=0}.
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Let GLn(K) denote the general linear group with coefficients in K. For ϕ=
(aij)∈GLn(K) and for f(e1, ..., en)∈E, we define

ϕ(f(e1, ..., en))= f

( n∑

i=1

ai1ei, ...,

n∑

i=1

ainei

)
.

Also, for a graded ideal J⊂E and for ϕ∈GLn(K), define ϕ(J)={ϕ(f):f∈J}. A fun-
damental theorem of generic initial ideals is the following result.

Theorem 1.1. ([1, Theorem 1.6]) Fix a term order ≺. Then, for each graded
ideal J⊂E, there exists a nonempty Zariski open subset U⊂GLn(K) such that
in≺(ϕ(J)) is constant for all ϕ∈U .

This monomial ideal in≺(ϕ(J)) with ϕ∈U is called the generic initial ideal of
J with respect to the term order ≺, and will be denoted Gin≺(J).

Definition 1.2. Fix a term order ≺. Given an arbitrary graded ideal J=⊕n
d=0 Jd of E with each Jd⊂

∧d
V . Fix ϕ∈GLn(K) for which in≺(ϕ(J)) is the

generic initial ideal Gin≺(J) of J . Recall that the subspace
∧d

V is of dimension(
n
d

)
with a canonical K-basis {eS :S∈(

[n]
d

)}. Choose an arbitrary K-basis f1, ..., fm
of Jd, where m=dimK Jd. Write each ϕ(fi), 1≤i≤m, in the form

ϕ(fi)=
∑

S∈([n]
d )
αSi eS

with each αSi ∈K. Let M(J, d) denote the m×(
n
d

)
matrix

M(J, d)= (αSi )
1≤i≤m, S∈([n]

d )

whose columns are indexed by S∈(
[n]
d

)
. For each S∈(

[n]
d

)
, write M�S(J, d) for the

submatrix of M(J, d) which consists of the columns of M(J, d) indexed by those
R∈(

[n]
d

)
with R�S, and write M�S(J, d) for the submatrix of M�S(J, d) which is

obtained by removing the column of M�S(J, d) indexed by S.

It is not hard to see that the generic initial ideals can be found by using the
rank of these matrices. Indeed, the following properties are known.

Lemma 1.3. ([8, Lemma 2.1]) Let eS∈
∧d

V with S∈(
[n]
d

)
. Then one has

eS∈(Gin≺(J))d if and only if rank(M�S(J, d))<rank(M�S(J, d)).

Lemma 1.4. ([8, Corollary 2.2]) The rank of a matrix M�S(J, d), S∈(
[n]
d

)
, is

independent of the choice of ϕ∈GLn(K) for which Gin≺(J)=in≺(ϕ(J)) and inde-
pendent of the choice of the K-basis f1, ..., fm of Jd.
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Lemma 1.5. ([8, Corollary 2.3]) Let J⊂E be a graded ideal and ψ∈GLn(K).
Then one has rank(M�S(J, d))=rank(M�S(ψ(J), d)) for all S∈(

[n]
d

)
.

Also, the next lemma immediately follows from Lemma 1.3.

Lemma 1.6. Let J⊂E be a graded ideal. For every S∈(
[n]
d

)
, one has

m�eS (Gin≺(J))= rank(M�S(J, d)).

2. Proof of Proposition 2.4

We will follow the basic technique developed in [5]. (See also [4, Chapter 15].)

Lemma 2.1. ([5, Corollary 1.7]) For any term order ≺ and for any finite set
of monomials M⊂E, there exist positive integers d1, d2, ..., dn such that for any
eS , eR∈M with |S|=|R|, one has eS≺eR if and only if

∑
k∈S dk>

∑
k∈R dk.

For every ideal J⊂E, a subset G={g1, ..., gm}⊂J is called a Gröbner basis of
J with respect to ≺ if {in≺(g1), ..., in≺(gm)} generates in≺(J). A Gröbner basis
always exists and is actually a generating set of J ([1, Theorem 1.4]).

Lemma 2.2. Let K[t] be the polynomial ring. Fix a term order ≺. For every
graded ideal J⊂E, there is a subset G(t)={g1(t), ..., gm(t)}⊂E⊗K[t] which satisfies
the following conditions :

(i) One has gi(0)=in≺(gi(t0)) for all t0∈K;
(ii) Let J(t0) with t0∈K be the ideal generated by G(t0). If t0 �=0, then there

exists ϕt0∈GLn(K) such that ϕt0(J)=J(t0);
(iii) For all t0∈K, G(t0) is a Gröbner basis of J(t0) with respect to ≺ and

in≺(J(t0))=in≺(J).

Proof. Let G={g1, g2, ..., gm} be a Gröbner basis of J with respect to ≺, where
each gj is homogeneous. Let M⊂E be the set of monomials. Since M is a finite
set, Lemma 2.1 says that there exist positive integers d1, d2, ..., dn such that, for
any eS , eR∈M with |S|=|R|,

eS ≺ eR if and only if
∑

k∈S
dk >

∑

k∈R
dk.(1)

Let eSi =in≺(gi). For each R⊂[n], write d(R)=
∑
k∈R dk. Set

gi(e1, ..., en)(t)= t−d(Si)gi(td1e1, ..., tdnen)

and G(t)={g1(t), ..., gm(t)}. We will show that this set G(t) satisfies conditions (i),
(ii) and (iii).
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First, we will show (i). Each gi(t) can be written in the form

gi(t)=αSieSi +
∑

R≺Si

αR ·td(R)−d(Si) ·eR,

where αSi∈K\{0} and each αR∈K. Then (1) says that d(R)−d(Si)>0 for all R
with αR �=0. Thus we have gi(0)=in≺(gi)=in≺(gi(t0)) for all t0∈K as desired.

Second, for each t0∈K\{0}, define a matrix ϕt0∈GLn(K) by

ϕt0(ei)= t0
diei for i= 1, 2, ..., n.

Then the construction of gi(t) says that ϕt0(gi)=t
d(Si)
0 gi(t0), and therefore we have

ϕt0(J)=J(t0) for all t0∈K\{0}. Thus (ii) is satisfied.
Finally, we will show (iii). Since we already proved in≺(gi(t0))=in≺(gi) for all

t0∈K, what we must prove is in≺(J(t0))=in≺(J). The inclusion in≺(J(t0))⊃in≺(J)
follows from in≺(gi(t0))=in≺(gi). Recall that J and in≺(J) have the same Hilbert
function, i.e., we have dimK(Jd)=dimK(in≺(J)d) for all d>0. Then we have

dimK(in≺(J(t0))d)= dimK(J(t0)d)= dimK(Jd)= dimK(in≺(J)d).

Hence we have in≺(J(t0))=in≺(J). Thus G(t0) is a Gröbner basis of J(t0) for all
t0∈K. �

Lemma 2.3. Let J⊂E be a graded ideal. For every t0∈K, let J(t0)⊂E be the
ideal given in Lemma 2.2. Then, for all d>0, there exists a subset Gd(t)⊂E⊗K[t]
such that Gd(t0) is a K-basis of J(t0)d for all t0∈K.

Proof. Let G(t)={g1(t), ..., gm(t)}⊂E⊗K[t] be as given by Lemma 2.2. Let

G̃d(t)= {eS∧gi(t) : deg(eS∧gi(0))= d and eS∧gi(0) �= 0}.

For every t0∈K, since G(t0) is a Gröbner basis of J(t0) and gi(0)=in≺(gi(t0)), the
set {in≺(h(t0)):h(t0)∈G̃d(t0)} spans in≺(J(t0))d=in≺(J)d. Also, Lemma 2.2 (i)
says that h(0)=in≺(h(t0)) for all t0∈K. Thus there is a subset Gd(t)⊂G̃d(t) such
that Gd(0) is a K-basis of in≺(J)d. On the other hand, for any t0∈K, since each
h(t0)∈Gd(t0) has a different initial monomial, the setGd(t0) is linearly independent.
Thus we have

dimK(span(Gd(t0)))= dimK(span(Gd(0)))= dimK(in≺(J)d)= dimK(J(t0)d),

where span(A) denotes the K-vector space spanned by a finite set A⊂E. Hence
Gd(t0) is a K-basis of J(t0)d for all t0∈K. �
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Proposition 2.4. Let J⊂E be a graded ideal and ≺ and ≺′ be term orders.
Then, for any monomial eS∈E, one has

m�eS (Gin≺(J))≥m�eS (Gin≺(in≺′(J))).

Proof. First, by Lemma 1.6, we have

m�eS (Gin≺(J))= rank(M�S(J, d))

and

m�eS (Gin≺(in≺′(J)))= rank(M�S(in≺′(J), d)).

Thus what we must prove is that rank(M�S(J, d))≥rank(M�S(in≺′(J), d)).
Let m=dimK(Jd), Gd(t)={g1(t), ..., gm(t)}⊂E⊗K[t] be a subset given by

Lemma 2.3 with respect to the term order ≺′ and J(t0), where t0∈K, be the ideal
given in Lemma 2.2. Then, for each t0∈K\{0}, there exists ϕt0∈GLn(K) such that
ϕt0(J)=J(t0). Thus Lemma 1.5 says that we have

rank(M�S(J, d))= rank(M�S(J(t0), d)) for all t0 ∈K\{0}.(2)

Let A⊂K be a finite set with 0∈A and |A|�0. Then Theorem 1.1 says that,
for each a∈A, there exists a nonempty Zariski open subset Ua⊂GLn(K) such that
Gin(J(a))=in≺(ϕ(J(a))) for all ϕ∈Ua. As U=

⋂
a∈A Ua is also a nonempty Zariski

open subset of GLn(K), we have Gin≺(J(a))=in≺(ϕ(J(a))) for all ϕ∈U and all
a∈A.

Fix ϕ∈U . Each ϕ(gi(t)), where 1≤i≤m, can be written in the form

ϕ(gi(t))=
∑

S∈([n]
d )
αSi (t)eS ,

where αSi (t)∈K[t]. Define the matrix M̃�S(J, d, t)=(αRi (t))1≤i≤m,R�S in the same
way as in Definition 1.2. Recall that Lemma 2.3 says that Gd(a) is a K-basis of
J(a)d for all a∈A. Since Lemma 1.4 says that rank(M�S(J(a), d)) is independent
of the choice of a K-basis and independent of the choice of ϕ∈Ua, it follows that

rank(M̃�S(J, d, a))= rank(M�S(J(a), d)) for all a∈A.(3)

Let l=max{deg(αSi (t)):1≤i≤m and S∈(
[n]
d

)}. Recall that the rank of matrices
is equal to the maximal size of the nonzero minors. In this case, each minor of
M̃�S(J, d, t) is a polynomial of K[t] and has at most degree lm. Furthermore,
the number of nonzero minors of M̃�S(J, d, t) is finite. Since the integers l and
m do not depend on A and |A| is sufficiently large, there exists a0 �=0∈A such
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that f(a0) �=0 for all nonzero minors f(t) of M̃�S(J, d, t). In particular, we have
rank(M̃�S(J, d, a0))≥rank(M̃�S(J, d, t0)) for all t0∈K. Recall that Lemma 2.2 (i)
and (iii) say that J(0)=in≺′(J). Then, by (2) and (3), we have

rank(M�S(J, d))= rank(M�S(J(a0), d))= rank(M̃�S(J, d, a0))

≥ rank(M̃�S(J, d, 0))= rank(M�S(in≺′(J), d)),

as desired. �

3. Exterior shifting of the join of simplicial complexes

Let σ be a simplicial complex on [n]. The exterior face ideal Jσ of σ is the
ideal of E generated by all monomials eS with S /∈σ. For every ϕ∈GLn(K) and
for every simplicial complex σ, the simplicial complex ∆ϕ(σ) is defined by J∆ϕ(σ)=
in≺rev(ϕ(Jσ)). The exterior algebraic shifted complex ∆(σ) of σ is the simplicial
complex defined by J∆(σ)=Gin≺rev(Jσ).

Theorem 3.1. Let σ be a simplicial complex on [n] and ϕ∈GLn(K). Then,
for any S⊂[n], one has

m�revS(∆(σ))≥m�revS(∆(∆ϕ(σ))).

Proof. By the definition of exterior face ideals, for any d-subset S∈(
[n]
d

)
and

for any simplicial complex τ , we have

m�revS(τ) = |τd−1|−|{R∈ τd−1 :R�rev S}|
= |τd−1|−

∣
∣{R∈ (

[n]
d

)
:R�rev S

}∣
∣+|{eR ∈ Iτ :R�rev S}|.(4)

On the other hand, Proposition 2.4 says that, for any S⊂[n], one has

m�reveS (Gin≺rev(ϕ(Jσ)))≥m�reveS (Gin≺rev(in≺rev(ϕ(Jσ)))).(5)

Also, Lemma 1.5 says that

J∆(σ) = Gin≺rev(Jσ)= Gin≺rev(ϕ(Jσ))(6)

and

J∆(∆ϕ(σ)) = Gin≺rev(in≺rev(ϕ(Jσ))).(7)

Then, equalities (4), (5), (6) and (7) say that

m�revS(∆(σ))≥m�revS(∆(∆ϕ(σ))),

as desired. �
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Corollary 3.2. Let σ be a simplicial complex on {1, 2, ..., k} and τ be a sim-
plicial complex on {k+1, k+2, ..., n}. Then, for any S⊂[n], one has

m�revS(∆(σ∗τ))≥m�revS(∆(∆(σ)∗∆(τ))).

Proof. Let l=|{k+1, k+2, ..., n}|.Then there exist ϕ∈GLk(K) and ψ∈GLl(K)
such that ∆ϕ(σ)=∆(σ) and ∆ψ(τ)=∆(τ). For ϕ∈GLk(K), we define �ϕ∈GLn(K)
by

�ϕ(ei)=

{
ϕ(ei), if i∈{1, 2, ..., k},
ei, otherwise.

Also, for any ψ∈GLl(K), define ψ̄∈GLn(K) in the same way. Then we have

∆
�ϕ(∆ψ̄(σ∗τ))= ∆

�ϕ(σ∗∆(τ))= ∆(σ)∗∆(τ).

Theorem 3.1 now says that

m�revS(∆(σ∗τ))≥m�revS(∆(∆
�ϕ(∆ψ̄(σ∗τ))))=m�revS(∆(∆(σ)∗∆(τ))),

as desired. �

Remark. Proposition 2.4 holds for an arbitrary term order. However, The-
orem 3.1 and Corollary 3.2 only hold for the reverse lexicographic order. Recall
that Nevo’s example says that

∆(Σ(σ))= {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}}
and

∆(Σ(∆(σ)))= {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}},
where σ is the simplicial complex generated by {1, 2} and {3, 4}. In this case,
{1, 2, 5} and {1, 2, 6} are larger than {1, 3, 4} with respect to the lexicographic
order ≺lex induced by 1<2<...<n. This implies that m�lex{1,3,4}(∆(Σ(σ)))=2 but
m�lex{1,3,4}(∆(Σ(∆(σ))))=3.
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