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1. Introduction

This work is concerned with the dynamics of one-frequency SL(2) cocycles, and has
two distinct aspects: the analysis, from a new point of view, of the dependence of the
Lyapunov exponent with respect to parameters, and the study of the boundary of non-
uniform hyperbolicity. But our underlying motivation is to build a global theory of
one-frequency Schrodinger operators with general analytic potentials, so we will start
from there.

1.1. One-frequency Schrédinger operators

A one-dimensional quasiperiodic Schrodinger operator with one-frequency analytic po-
tential H=H, ,: (*(Z)—(?(Z) is given by

(Hu)p = tUnt1+un—1+0(na)uy,, (1)

where v: R/Z—R is an analytic function (the potential), and «€R\Q is the frequency.
We denote by ¥=%, , the spectrum of H. Despite many recent advances ([BG], [GS1],
[B], [BJ1], [BJ2], [AK1], [GS2], [GS3], [AJ], [AFK], [A2]) key aspects of an authentic

global theory of such operators have been missing. Namely, progress has been made
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mainly into the understanding of the behavior in regions of the spectrum belonging to
two regimes with (at least some of the) behavior caracteristic, respectively, of “large” and
“small” potentials. But the transition between the two regimes has been considerably

harder to understand.

1.1.1. The almost Mathieu operator

Until now, there has been only one case where the analysis has genuinely been carried
out at a global level. The almost Mathieu operator, v(z)=2\cos 2w (0+z), is a highly
symmetric model for which coupling strengths A and A~! can be related through the
Fourier transform (Aubry duality). Due to this unique feature, it has been possible to
establish that the transition happens precisely at the (self-dual) critical coupling [A|=1.
In the subcritical regime |A|<1 all energies in the spectrum behave as for small potentials,
while in the supercritical regime |A|>1 all energies in the spectrum behave as for large
potentials. Hence typical almost Mathieu operators fall entirely in one regime or the
other. Related to this simple phase transition picture is the fundamental spectral result
of [J], which implies that the spectral measure of a typical almost Mathieu operator has
no singular continuous components (it is either typically atomic for |A|>1 or typically
absolutely continuous for |A|<1).

One precise way to distinguish the subcritical and the supercritical regime for the
almost Mathieu operator is by means of the Lyapunov exponent. Recall that for E€R, a
formal solution u€C? of Hu=FEu can be reconstructed from its values at two consecutive

points by application of n-step transfer matrices:

()-()

The A,:R/Z—SL(2,R), n€Z, are analytic functions defined on the same band of ana-

lyticity as v and are given in terms of
Ao ( E-v -1 >
1 0

An('):A('+(n—1)a)...A(-) and Afn('):An<'—’nOz>_1. (3)

by Ao(-)=id and, for n>1, by

The Lyapunov exponent at energy F is denoted by L(FE) and given by

lim 1 / log || A, (2)]| dz > 0. (4)
R/Z

n—oo N
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It follows from the Aubry—André formula (proved by Bourgain—Jitomirskaya [BJ1]) that
L(F)=max{0,log|\|} for E€X, ,. Thus the supercritical regime can be distinguished
by the positivity of the Lyapunov exponent: supercritical just means non-uniformly
hyperbolic in dynamical systems terminology. (')

How to distinguish subcritical energies from critical ones (since both have zero Lya-
punov exponent)? One way could be in terms of their stability: critical energies are
in the boundary of the supercritical regime, while subcritical ones are far away. An-
other, more intrinsic way, consists of looking at the complex extensions of the A,: it
can be shown (by a combination of [J] and [JKS]) that for subcritical energies we have a
uniform subexponential bound log || A4, (2)||=0(n) through a band |Im z|<d()\), while for
critical energies this is not the case (this follows from [H]). (See also Appendix A for a

rederivation of both facts in the spirit of this paper.)

1.1.2. The general case

This work is not concerned with the almost Mathieu operator, whose global theory was
constructed around duality and many remarkable exact computations. Still, what we
know about it provides a powerful hint about what one can expect from the general
theory. By analogy, we can always classify energies in the spectrum of an operator
H, , as supercritical, subcritical or critical in terms of the growth behavior of (complex
extensions of) the corresponding transfer matrices A,,. More precisely, E€X%, , is said
to be

(1) supercritical if sup,eg/z || An(z)| grows exponentially,

(2) subcritical if there is a uniform subexponential bound on the growth of || A, (z)]]
through some band |Im z|<e, and

(3) critical otherwise.
That large potentials fall into the supercritical regime then follows from [SS] and that
small potentials fall into the subcritical one is a consequence of [BJ1] and [BJ2]. However,
differently from the almost Mathieu case the coexistence of regimes is known to be
possible [Bjl]. Thus subcriticality, criticality and supercriticality are not, in general, a
property of a whole operator, but of individual energies.

Beyond the local problems of describing precisely the behavior at the supercritical
and subcritical regimes, a proper global theory should certainly explain how the phase
transition between them occurs, and how this critical set of energies affects the spectral

analysis of H.

(1) Recalling that uniform hyperbolicity is well known to characterize the complement of the
spectrum.
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It was deliberately implied in the discussion above that the non-critical regimes
are stable (with respect to perturbations of the energy, potential or frequency), but
the critical one is not. Stability of non-uniform hyperbolicity was known (continuity
of the Lyapunov exponent [BJ1]), while the stability of the subcritical regime and the
instability of the critical regime are obtained here. The stability of the subcritical regime
implies that the critical set contains the boundary of the supercritical regime. By a more
delicate argument, we will show that any critical energy can be made supercritical under
an arbitrarily small perturbation of the potential, and thus identifying the critical set
with the boundary of non-uniform hyperbolicity (see Theorem 15).(?)

While a given potential may display both subcritical and supercritical energies (and
such coexistence is clearly robust under perturbations of both the potential and the
frequency), in order to go from one regime to the other it may not be necessary to pass
through the critical regime. This is because the spectrum may be a Cantor set (this is
actually what one usually expects), and the transition could thus happen through a gap.
In this paper we show that this is the prevalent behavior. Let us say that H is acritical
if no energy F€X is critical.

MAIN THEOREM. Let « be irrational. Then for a (measure-theoretically) typical
veC¥(R/Z,R), the operator H, ,, is acritical.

The main theorem yields a precise description of the basic structure of the spectrum
of typical operators with respect to the behavior of the Lyapunov exponent. Indeed the
stability of the non-critical regimes immediately yields:

(1) Acriticality is stable with respect to perturbations of both the frequency and
the potential, that is, the set of (o, v)€(R\Q)x C*(R/Z,R) such that H, , is acritical is
open. Moreover, the supercritical and subcritical parts of the spectrum define compact
sets that depend continuously (in the Hausdorff topology) on (o, v).

(2) As a consequence, acritical operators have the nicest behavior from the point of
view of bifurcations: There is at most a finite number of alternances of regime as one
moves through the spectrum Y in the following sense: there are k>1 and points a1 <
b1 <...<ayp<by in the spectrum such that ECULl [a;, b;] and energies alternate between
supercritical and subcritical along the sequence {SN[a;, b;]}r_ ;.

(3) Another consequence is spectral uniformity through both subcritical and super-
critical regimes: There exists £>0 such that whenever E is supercritical we have L(FE) >¢
(by continuity of the Lyapunov exponent [BJ1]), and when FE is subcritical we have uni-

form subexponential growth of || A, (z)|| through the band |[Im z|<e (again by continuity

(?) We should note that our work leaves open the question of whether the critical set coincides
with the boundary of the subcritical regime as well.
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of the Lyapunov exponent, together with a key result obtained here, the quantization of

the acceleration).

As we will show in Appendix B, the number of phase transitions can be arbitrarily
large.

In developing the work presented here, we were guided by the hope that typical
one-frequency operators have nice spectral properties. Particularly, we conjectured early
on that typically the spectral measures should have no singular continuous component
(which, if present, would be responsible for the most exotic behavior from the point of
view of quantum dynamics). We will next describe how our main theorem relates to the

goal of establishing a more precise version of this conjecture.

1.2. The spectral dichotomy program

The main theorem reduces the spectral theory of a typical one-frequency Schrodinger
operator H to the separate local theories of (uniform) supercriticality and subcriticality.
It is thus a key step in our program to establish the spectral dichotomy, the decomposition
of a typical operator as a direct sum of operators with the spectral type of large-like and

small-like operators. Below we comment briefly on the current state of the local theories.

The supercritical theory has been intensively developed in [BG] and [GS1]-[GS3].
As far as the spectral type is concerned, perhaps the key result is that, up to a typical
perturbation of the frequency, Anderson localization (pure point spectrum with exponen-
tially decaying eigenfunctions) holds through the supercritical regime. It is important to
emphasize that these developments superseded several early results depending on suit-
able largeness conditions on the potentials, and that the change of focus towards the

Lyapunov exponent can be in large part attributed to [J].

The concept of subcriticality has evolved more recently. The development of the cor-
responding local theory originally centered on the concept of almost reducibility, which by
definition generalizes the scope of applicability of the theory of small potentials (which is
well understood by Kolmogorov—Arnold—Moser theory and localization-duality methods).
In particular, it was shown ([AJ], [A1], [A2]) that almost reducibility implies absolute
continuity of spectral measures. In [AJ] the vanishing of the Lyapunov exponent in a
band was suggested to be the sought after mirror condition to positivity of the Lyapunov
exponent. More specifically, it was conjectured to be equivalent to almost reducibility
(in the spectrum). Proving this almost reducibility conjecture would at once provide an
almost complete understanding of subcriticality, and partial results were obtained in [A1]
and [A2].
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We have recently proved the almost reduciblity conjecture (for all frequencies) [A3].
Together with this work, it implies in particular that typical one-frequency operators have
only point spectrum in the supercritical region, and absolutely continuous spectrum in
the subecritical region.(*) See §2.1.1 and [A3] for a more detailed account of spectral

consequences.

1.3. Prevalence

Let us explain in more detail the notion of typical that appears in the main theorem. Since
in infinite-dimensional settings one lacks a translation-invariant measure, it is common
to replace the notion of almost every by prevalence: one fixes some probability measure
w of compact support (a set of admissible perturbations w), and declare a property to be
typical if it is satisfied for almost every perturbation v+w of every starting condition v.
In finite-dimensional vector spaces, prevalence implies full Lebesgue measure.

In our case, we have quite a bit of flexibility for the choice of p. For instance, though
we do want to be able to perturb all Fourier coefficients, we may impose arbitrarily strong
restrictions on high Fourier mode perturbations. For definiteness, we will set A=DV
endowed with the probability measure p given by the product of normalized Lebesgue
measure. Given an arbitrary function e:N—R, which decays exponentially fast (the
particular choice is quite irrelevant for us), we associate a probability measure p. with

compact support on C¥(R/Z,R) by push forward of u under the map

{tm}men— Z g(m)2 Re[tmeQTrim,:z;].
m>=1

In other words, we will establish the main theorem by showing that, for any «€R\Q
and every veC¥(R/Z,R), the operator H, 4, is acritical for p.-almost every w.

Remark 1. (1) The notion of prevalence is usually formulated for separable Banach
spaces (see [HSY]). Our result does imply prevalence of acriticality in any Banach space
of analytic potentials which is continuously and densely embedded in C¥.

(2) The notion of prevalence (or rather, the corresponding smallness notion called
shyness in [HSY]) was first introduced in [C], i.e., the complement of a prevalent set in
a Banach space is what is called a Haar-null set. There is a stronger notion of smallness
(and thus a corresponding stronger notion of typical) which is induced by the family

of non-degenerate Gauss measures in a Banach space: Gauss-null sets.(*) In a Banach

(3) Let us emphasize that here typical refers to the entire parameter space, including both the
potential and the frequency. Indeed it is known that for frequencies that are very well approximated by
rational numbers the supercritical regime can only support singular continuous spectrum.

(%) The author learned this notion from Assaf Naor.
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space, a Borel set which has zero probability with respect to any affine embedding of the
Hilbert cube (endowed with the natural product measure) which is non-degenerate (i.e.,
not contained in a proper closed affine subspace) is Gauss-null, see [BL, §6.2]. While we
have considered in the description above a particular family of embeddings of DV, it is
transparent from the proof that an arbitrary non-degenerate embedding of the Hilbert
cube would work equally well, so acritical potentials are also typical in this stronger

sense.

1.4. Main structure of the proof

The proof of the main theorem breaks into two rather distinctive parts (originally pre-
sented separately in two preprints which have been merged in this version) corresponding
to §2 and §3. The second part uses the concepts and results developed in the first part,
so it cannot be read independently.

The main goal of the first part is to establish the following result. Let C§' (R/Z,R) be
the real Banach space of analytic functions R/Z—R admitting a holomorphic extension

to |Im z|< ¢ which is continuous up to the boundary.

THEOREM 1. For any a€R\Q, the set of potentials and energies (v, E) such that

E is a critical energy for H,, is contained in a countable union of codimension-one
analytic submanifolds of C¢ (R/Z,R)xR.(°)

Note that this immediately implies that a typical operator H will have at most
countably many critical energies. It also shows the instability of the critical regime.

The second part of the proof consists of studying how large the (fractal) critical set is
within the subvarieties provided by Theorem 1. We consider finite-dimensional families
of pairs (v, E) depending on a large number of parameters, intersecting transversally
the subvariety(%) and show that, within such families, the critical set has zero Lebesgue
measure inside the subvarieties.

It is perhaps helpful to make a parallel with the almost Mathieu operator, whose
potential depends (essentially) on a single parameter, the coupling constant A>0 (the
so-called phase parameter is inessential for the discussion here). For definiteness, let us
fix the frequency a€R\Q, so that the parameter space becomes the (A, E) half-plane.
Then the critical set lies in the subvariety given by the equation A=1. The fact that

the critical set has zero Lebesgue measure within this locus corresponds precisely to the

(®) A codimension-1 analytic submanifold is a (not-necessarily closed) set X given locally (near
any point of X) as the zero set of an analytic submersion Cy (R/Z,R)—R.

(6) The large number of parameters is necessary to check this transversality condition and another
more delicate one that we will discuss in a moment.
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Hofstadter conjecture that the spectrum of the critical almost Mathieu operator has zero
Lebesgue measure.

For the almost Mathieu operator the equation A=1 is of course given by Aubry
duality (it is the self-duality condition). The corresponding equations implied in the
statement of Theorem 1 have a very different nature: ultimately, we want to define it
simply as the boundary of the set {E:L(F)>0}, which seems at first somewhat foolish
given the known irregularity of the Lyapunov exponent L (this will be discussed exten-
sively in §2). What has made this approach at all reasonable was our discovery that the
restrictions of L to appropriate (fractal) sets admit nice analytic extensions.

As for the Hofstadter conjecture, there had been many earlier advances based on
exact computations for the almost Mathieu operator. It was eventually fully solved in
[AK1] by a more abstract approach, based on renormalization. It is this approach that
we are able to generalize here. Given our previous work [AK1], [AK?2], the main difficulty
involves the verification of an appropriate transversality condition for the subvarieties in
question. This transversality is necessary to verify a certain monotonicity condition with
respect to an appropriate parameter (for the almost Mathieu operator, the monotonicity

with respect to the parameter F within the curve A=1 is elementary).

2. Part I: Stratified analyticity of the Lyapunov exponent

As discussed above, the Lyapunov exponent L is fundamental in the understanding of the
spectral properties of H. It is also closely connected with another important quantity, the
integrated density of states (i.d.s.), denoted by N. As the Lyapunov exponent, the i.d.s. is
a function of the energy. While the Lyapunov exponent measures the asymptotic average
growth/decay of solutions (not necessary in ¢2) of the equation Hu=FEu, the integrated
density of states gives the asymptotic distribution of eigenvalues of H restricted to large

boxes. The two are related by the Thouless formula:
L(E):/log\E/—E\dN(E'). (5)

Much work has been dedicated to the regularity properties of L and N. For quite
general reasons, the integrated density of states is a continuous non-decreasing function
onto [0,1], which is constant outside the spectrum. Notice that this is not enough to
conclude continuity of the Lyapunov exponent from the Thouless formula. Other regu-
larity properties (such as Holder) do pass from N to L and vice-versa. This being said,

our focus here is primarily on the Lyapunov exponent on its own.
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It is easy to see that the Lyapunov exponent is real-analytic outside the spectrum.
Beyond that, however, there are obvious limitations to its regularity. For a constant
potential, say v=0, the Lyapunov exponent is given by max{O,log %(E+ \/W)}, SO
it is only %—H'dlder continuous. With Diophantine frequencies and small potentials, the
generic situation is to have Cantor spectrum with countably many square root singu-
larities at the endpoints of gaps [E]. For small potential and generic frequencies, it is
possible to show that the Lyapunov exponent escapes any fixed continuity modulus (such
as Holder), and also it is not of bounded variation. More delicately, Bourgain [B] has
observed that in the case of the critical almost Mathieu operator the Lyapunov exponent
need not be Holder continuous even for Diophantine frequencies (another instance of com-
plications arising at the boundary of non-uniform hyperbolicity). Though a surprising
result, analytic regularity was obtained in a related but non-Schréodinger context [AK?2].
However, the negative results described above seemed to impose serious limitations on
the amount of regularity one should even try to look for in the Schrédinger case.

As for positive results, a key development was the proof by Goldstein—Schlag [GS1]
that the Lyapunov exponent is Holder continuous for Diophantine frequencies in the
regime where the Lyapunov exponent is positive. Later Bourgain—Jitomirskaya [BJ1]
proved that the Lyapunov exponent is continuous for all irrational frequencies, and this
result played a fundamental role in the recent theory of the almost Mathieu operator.
More delicate estimates on the Holder regularity for Diophantine frequencies remained

an important topic of the local theories (see [GS2] and [AJ]).

There is however one important case where, in a different sense, much stronger
regularity holds. For small analytic potentials, it follows from the work of Bourgain-
Jitomirskaya ([BJ1], [BJ2]; see also [AJ]) that the Lyapunov exponent is zero (and hence
constant) in the spectrum. In general, however, the Lyapunov exponent need not be
constant in the spectrum. In fact, there are examples where the Lyapunov exponent
vanishes in part of the spectrum and is positive in some other part [Bj2]. Particularly in
the positive Lyapunov exponent regime it would seem unreasonable, given the negative
results outlined above, to expect much more regularity. In fact, from a dynamical systems
perspective, it would be natural to expect bad behavior in this setting, since when the
Lyapunov exponent is positive, the associated dynamical system in the two-torus presents
strange attractors with very complicated dependence of the parameters [Bj1].

In this respect, the almost Mathieu operator would seem to behave quite oddly. As
we have seen, by the Aubry—André formula, the Lyapunov exponent is always constant
in the spectrum. Moreover, this constant is just a simple expression of the coupling
max{0,log A} (in particular, it is positive in the supercritical regime A>1). It remains

true that the Lyapunov exponent displays wild oscillations just outside the spectrum, so
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this is not inconsistent with the negative results discussed above.

However, for a long time, the general feeling has been that this just reinforces the
special status of the almost Mathieu operator (and its remarkable but specific symme-
try, Aubry duality, relating the supercritical and the subcritical regimes), and such a
phenomenon would seem to have little to do with the case of general potentials. This

general feeling is wrong, as the following sample result shows.

EXAMPLE THEOREM. Let A>1 and let w be any real-analytic function. For e€R, let
v(x)=2Xcos2nx+ew(x). Then, for e small enough and for every a €R\Q, the Lyapunov

exponent restricted to the spectrum is a positive real-analytic function.

Of course by a real-analytic function on a set we just mean the restriction of some
real-analytic function defined on an open neighborhood.

For an arbitrary real-analytic potential, the situation is just slightly lengthier to
describe. Let X be a topological space. A stratification of X is a strictly decreasing
finite or countable sequence of closed sets X =X, >X;D... such that [, X;=@. We call
X;\Xi+1 the ith stratum of the stratification.

Let now X be a subset of a real-analytic manifold, and let f: X —R be a continuous
function. We say that f is C"-stratified if there exists a stratification such that the

restriction of f to each stratum is C”.

THEOREM 2. (Stratified analyticity in the energy) Let a€R\Q and v be any real-

analytic function. Then the Lyapunov exponent is a C¥-stratified function of the energy.

We will see that in this theorem the stratification starts with X;=3, ,, which is
compact, so the stratification is finite.

Nothing restricts us to look only at the energy as a parameter. For instance, in the
case of the almost Mathieu operator, the Lyapunov exponent (restricted to the spectrum)

is real-analytic also in the coupling constant, except at A=1.

THEOREM 3. (Stratified analyticity in the potential) Let a€R\Q and X be a real-
analytic manifold. Also let vy, A€ X, be a real-analytic family of real-analytic potentials.

Then the Lyapunov exponent is a C*-stratified function of both A\ and E.

It is quite clear how this result opens up for the analysis of the boundary of non-
uniform hyperbolicity, since parameters corresponding to the vanishing of the Lyapunov
exponent are contained in the set of solutions of equations (in infinitely many variables)
with analytic coefficients. Of course, one still has to analyze the nature of the equations
one gets, guaranteeing the non-vanishing of the coefficients. Indeed, in the subcritical

regime, the coefficients do vanish. In what follows, we will work out suitable expressions
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for the Lyapunov exponent, restricted to strata, which will allow us to show the non-
vanishing outside the subcritical regime.

In the case of the almost Mathieu operator, there is no dependence of the Lyapunov
exponent on the frequency parameter. In general, Bourgain—Jitomirskaya [BJ1] proved
that the Lyapunov exponent is a continuous function of «€R\Q. This is a very subtle
result, as the continuity is not in general uniform in ae. We will show that the Lyapunov

exponent is in fact C*°-stratified as a function of a€R\Q.

THEOREM 4. Let X be a real-analytic manifold, and vy, A€ X, be a real-analytic
family of real-analytic potentials. Then the Lyapunov exponent is a C°-stratified func-
tion of (a, A\, E)€(R\Q)x X xR.

With v as in the example theorem, the Lyapunov exponent is actually C*° as a

function of o and F in the spectrum.

2.1. Lyapunov exponents of SL(2,C) cocycles

In the dynamical systems approach, which we follow here, the understanding of the
Schrédinger operator is obtained through the detailed description of a certain family of
dynamical systems.

A (one-frequency, analytic) quasiperiodic SL(2,C) cocycle is a pair (o, A), where
a€R and A:R/Z—SL(2,C) is analytic, understood as defining a linear skew-product
acting on R/ZxC? by (x,w)— (x+a, A(z)-w). The iterates of the cocycle have the form
(na, A,,) where A, is given by (3). The Lyapunov exponent L(«, A) of the cocycle («, A)
is given by the left hand side of (4). We say that («, A) is uniformly hyperbolic if there
exist analytic functions u,s:R/Z—PC?, called the unstable and stable directions, and
n>1 such that

(i) for every x€R/Z we have A(x)-u(x)=u(x+a) and A(z)-s(z)=s(z+a),

(ii) for every unit vector wes(x) we have |4, (z) w| <1,

(iii) for every unit vector weu(x) we have || A, (x)-w|>1.(")

The unstable and stable directions are uniquely characterized by these properties, and
clearly u(z)#s(x) for every x €R/Z. It is also clear that, if («, A) is uniformly hyperbolic,
then L(a, A)>0.

If L(a, A)>0 but (e, A) is not uniformly hyperbolic, we will say that («, A) is non-
uniformly hyperbolic.

(7) This is one of several equivalent definitions of uniform hyperbolicity in this context, for instance
the unstable and stable directions could have been assumed to be merely continuous (since analyticity
is automatic).
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Uniform hyperbolicity is a stable property: the set UHCRxC*(R/Z,SL(2,C)) of
uniformly hyperbolic cocycles is open. Moreover, it implies that the Lyapunov exponent
is well behaved, in the sense that the restriction of (a, A)—L(a, A) to UH is a C™
function of both variables,(®) and it is a pluriharmonic function of the second variable.(?)
In fact regularity properties of the Lyapunov exponent are a consequence of the regularity
of the unstable and stable directions, which depend smoothly on both variables (by
normally hyperbolic theory [HPS]) and holomorphically on the second variable (by a
simple normality argument).

On the other hand, a variation of [BJ1] (see [JKS]) gives that («, A)—L(«, A) is
continuous as a function on (R\Q)xC“(R/Z,SL(2,C)). It is important to notice (and
in fact, fundamental in what follows) that the Lyapunov exponent is not continuous on
RxC¥(R/Z,SL(2,C)). In the remainder of this section we will restrict our attention
(except otherwise noted) to cocycles with irrational frequencies.

The most important examples are Schrodinger cocycles A, determined by a real-

A<v>=<“ _1>.
1 0

In this notation, the Lyapunov exponent at energy I for the operator H,, becomes

analytic function v by

L(E)=L(a, AZ=v)). One of the most basic aspects of the connection between spectral
and dynamical properties is that E¢Y,, , if and only if (o, AZ=)) is uniformly hyper-
bolic. Thus the analyticity of F+ L(E) outside of the spectrum just translates a general
property of uniformly hyperbolic cocycles.

If AeC¥(R/Z,SL(2,C)) admits a holomorphic extension to |Imz|<¢, then for
le|]<é we can define A.eC*(R/Z,SL(2,C)) by A.(x)=A(z+ie). The Lyapunov expo-

nent L(c, A.) is easily seen to be a convex function of e. Thus we may define a function

w(a, A)= lim i(L(oz,AE)—L(oz,A)), (6)

=0+ 27e
called acceleration. By the convexity and the continuity of the Lyapunov exponent, the
acceleration is an upper semicontinuous function in (R\Q)x C*(R/Z, SL(2,C)).

Our starting point is the following result.

THEOREM 5. (Acceleration is quantized) The acceleration of an SL(2,C) cocycle

with irrational frequency is always an integer.

(®) Since UH is not a Banach manifold, it might seem important to be precise about what notion of
smoothness is used here. This issue can be avoided by enlarging the setting to include C'*° non-analytic
cocycles (say by considering a Gevrey condition), so that we end up with a Banach manifold.

(°) This means that, in addition to being continuous, given any family A=A elUfH, AeD, which is
holomorphic (in the sense that it is continuous and for every z €R/Z the map A— A (z) is holomorphic),
the map A~ L(a, AM)) is harmonic.
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Remark 2. 1t is easy to see that quantization does not extend to rational frequencies,

see Remark 7.

This result allows us to break the parameter space into suitable pieces restricted to
which we can study the behavior of the Lyapunov exponent.
Quantization implies that e— L(a, A.) is a piecewise affine function of e. Knowing

this, it makes sense to introduce the following definition.

Definition 3. We say that («, A)€(R\Q)x C¥(R/Z,SL(2,C)) is regular if L(a, Ac)

is affine for ¢ in a neighborhood of 0.

Remark 4. If A takes values in SL(2,R) then e— L(«, A¢) is an even function. By
convexity, we have w(a, A)>0. Further, if a€R\Q, then (a, A) is regular if and only if
w(a, A)=0.

Clearly regularity is an open condition in (R\Q)xC*(R/Z,SL(2,C)).
It is natural to assume that regularity has important consequences for the dynamics.
Indeed, we have been able to completely characterize the dynamics of regular cocycles

with positive Lyapunov exponent, which is the other cornerstone of this section.

THEOREM 6. Let (o, A) e (R\Q)xC¥(R/Z,SL(2,C)). Assume that L(«, A)>0. Then
(a, A) is regular if and only if (a, A) is uniformly hyperbolic.

One striking consequence is the following result.

COROLLARY 7. For any (o, A)€(R\Q)xC¥(R/Z,SL(2,C)), there exists €9>0 such
that either

(1) L(a, Ac)=0 (and w(a, A)=0) for every 0<e<eq, or

(2) («a, A:) is uniformly hyperbolic for every 0<e<eg.

Proof. Since e— L(w, Ac) is piecewise affine, it must be affine on (0,eq) for £9>0
sufficiently small, and thus («, A;) is regular for every 0<e<eg.
Since the Lyapunov exponent is non-negative, if L(«, A.)>0 for some 0<e<gg, then

L(a, A)>0 for every 0<e<eg. The result follows from the previous theorem. O

This result plays an important role in §3 (and also in [A3]), since it allows us to
consider the dynamics of non-regular SL(2, R)-cocycles as a non-tangential limit of better

behaved (uniformly hyperbolic) cocycles.

2.1.1. Almost reducibility

The case of regular cocycles with zero Lyapunov exponent is the topic of the almost
reducibility conjecture, which we already discussed in the introduction. For completeness,

let us state it precisely here.
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Conjecture 1. (Almost reducibility conjecture) Let the frequency « be irrational
and let AcC¥(R/Z,SL(2,R)). If (o, A) is regular and L(a, A)=0 then («, A) is almost
reducible: There exist >0, a constant A,€SL(2,R) and a sequence of analytic maps
B,eC¥(R/Z,PSL(2,R)) such that A and the maps B,, extend holomorphically to the
band [Im z[<d and suppy, ;<o | Bo(z+a)A(z) B, (z) "t — Ay || =0 as n—oo.

This conjecture was first made in [AJ], and it can be generalized to SL(2, C)-valued
cocycles in the obvious way. What makes it so central is that almost reducibility was
analyzed in much detail in recent works, see [AJ], [A1], [AFK] and [A2], so a proof would
immediately give a very fine picture of the subcritical regime. In particular, coupled
with the results of this paper concerning the critical regime and the results of Bourgain,
Goldstein and Schlag in the supercritical regime, the almost reducibility conjecture allows
one to conclude the typical absence of singular continuous spectrum:

(1) The almost reducibility conjecture implies that the subcritical regime can only
support absolutely continuous spectrum [A2];

(2) [BG] implies that pure point spectrum is typical throughout the supercritical
regime;(10)

(3) The main theorem implies that typically the critical regime does not appear at
all.(11)

Previous to this work (see [A2]), we had already established the almost reducibility
conjecture when « is exponentially well approximated by rational numbers (so that if
Dn/qn are the continued fraction approximants, we have limsup,,_, . (10g ¢n+1)/qn>0).
Coupled with [AJ] and [A1], this proved the almost reducibility conjecture in the case of
the almost Mathieu operator. A complete proof of the almost reducibility conjecture was
obtained after this work was completed (see [A3]), and the results obtained here about

regular cocycles with positive Lyapunov exponent play an important role.

2.1.2. Stratified regularity: proof of Theorems 2—4

We now turn to the deduction of regularity properties of the Lyapunov exponent from
Theorems 5 and 6.

(19) More precisely, for every fixed potential, and for almost every frequency, the spectrum is
pure point with exponentially decaying eigenfunctions throughout the region of the spectrum where the
Lyapunov exponent is positive.

(1) In fact, here it is enough to use Theorem 1. We just sketch the argument. For fixed frequency,
Theorem 1 implies that a typical potential admits at most countably many critical energies. Considering
phase changes vg(z)=v(x+0), which do not change the critical set, we see that for almost every 6 the
critical set, being a fixed countable set, cannot carry any spectral weight (otherwise the average over 0
of the spectral measures would have atoms, but this average has a continuous distribution, namely the
integrated density of states [AS]).
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For >0, denote by Cy' (R/Z,SL(2,C)) the set of all AcC¥(R/Z, SL(2, C)) which ad-
mit a bounded holomorphic extension to |Im z| <4 that is continuous up to the boundary.
This set is naturally endowed with a complex Banach manifold structure.

For j#0, let Qs ; be the set of all (a, A)eRxC¥(R/Z,SL(2,C)) such that there
exists 0<¢’ <6 such that (o, As') eUH and w(a, As:)=j. Also, let Ls ;: Qs ;—R be given
by

Ls (o, A) = L(av, Agr) =256 (7)
If 0<¢'<0” <4, then w(a, As)=w(a, As»)=j implies that
L(a, As') = L(a, A ) =275 (6" =6,
and thus we see that L ; is well defined.

PROPOSITION 5. The set $s; is open and (o, A)—Ls (o, A) is a C™ function,
pluriharmonic in the second variable. Moreover, if (a, A)e(R\Q)xC¥(R/Z,SL(2,C))
has acceleration j, then (a, A)€Qs; and L(co, A)=Ls ;(a, A).

Proof. The first part follows from the openness of UH and the regularity of the
Lyapunov exponent restricted to UH. For the second part, we use Corollary 7 and
upper semicontinuity of the Lyapunov exponent to conclude that w(c, A)=j implies
that (a, As')EUH and has acceleration j for every §' sufficiently small, which also gives
L(a, A)=L(a, As ) —2mjd’". O

We can now explain the proofs of Theorems 2—4. For definiteness, we will consider
Theorem 3, the argument is exactly the same for the other theorems. Define a stratifica-
tion of the parameter space X=Rx X: let Xo=X, X; CXq be the set of (F, A) such that
(o, AE=v2)Y is not uniformly hyperbolic, and X, Xy, for j>2, be the set of (E, \) such
that w(a, AF="))>5-1.

Since uniform hyperbolicity is open and the acceleration is upper semicontinuous,
each X; is closed, so this is indeed a stratification. Since the 0-th stratum Xo\X; corre-
sponds to uniformly hyperbolic cocycles, the Lyapunov exponent is analytic there.

By quantization, the jth stratum, for j>2, corresponds to cocycles which are not
uniformly hyperbolic and have acceleration j—1. For each (E, Ag) in such a stratum,
choose 6>0 such that A—A(®*) is an analytic function in a neighborhood of Ay, taking
values in C§ (R/Z,SL(2,R)). The analyticity of the Lyapunov exponent restricted to the
stratum is then a consequence of Proposition 5.

As for a parameter (E,\) in the first stratum X;\Xs, quantization implies that
(o, AE=v2)) has non-positive acceleration, so by Remark 4, (a, AF="*)) must be reg-
ular with zero acceleration. Since it is not uniformly hyperbolic, Theorem 6 implies
that L(a, A(P=v»))=0. Thus the Lyapunov exponent is in fact identically 0 in the first

stratum.
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2.1.3. Codimensionality of critical cocycles

Non-regular cocycles split into two groups, the ones with positive Lyapunov exponent
(non-uniformly hyperbolic cocycles), and the ones with zero Lyapunov exponent, which
we call critical cocycles.(1?)

As discussed before, the first group has recently been extensively studied ([BG],
[GS1]-[GS3]). However, very little is known about the second one.

Though our methods provide no new information on the dynamics of critical cocy-
cles, they are perfectly adapted to show that critical cocycles are rare. This is somewhat
surprising, since in dynamical systems it is rarely the case that the success of parameter
exclusion precedes a detailed control of the dynamics.

Of course, for SL(2, C) cocycles, our previous results already show that critical cocy-
cles are rare in certain one-parameter families, since for every (a, A) and any 07#0 small
enough, (a, As) is regular, and hence not critical. But for our applications we are mostly
concerned with SL(2,R)-valued cocycles, and even more specifically with Schrédinger
cocycles.

If (o, A) e (R\Q) x C¥ (R/Z, SL(2, C)) is critical with acceleration j, then (c, A)€Q;s ;
and Ls ;=0. Moreover, if A is SL(2,R)-valued, criticality implies that the acceleration is
positive (see Remark 4). So the locus of critical SL(2,R)-valued cocycles is covered by
countably many analytic sets L(g; (0). Thus the main remaining issue is to show that the

functions L; ; are non-degenerate.

THEOREM 8. Let a€R\Q, §>0 and j>0. If v.€C¥(R/Z,R) and w(a, AW))=j,

then v Ls (o, A)) is a submersion in a neighborhood of v..

This theorem immediately implies Theorem 1.
We are also able to show non-degeneracy in the case of non-Schrodinger cocycles,
see Remark 13. Although the derivative of Ls; may vanish, this forces the dynamics to

be particularly nice, and it can be shown that the second derivative is non-vanishing.

2.1.4. Further comments

As mentioned before, it follows from the combination of [BJ1] and [BJ2] that the Lya-
punov exponent is zero in the spectrum, provided the potential is sufficiently small,
independently of the frequency. This is a very surprising result from the dynamical point

of view.

(12) As explained before, this terminology is consistent with the almost Mathieu operator termi-
nology. It turns out that if v(z)=2XAcos 2m(0+x), AER, then (o, AE=)) is critical if and only if A=1
and E€Xq v.
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For instance, fix some non-constant small v and consider « close to 0. Then the
spectrum is close, in the Hausdorff topology, to the interval [inf v—2, sup v+2]|. However,
if E¢[supv—2,infv+2], we have

Tim Tim [ oA @t e A @) >0 (8)
At first it might seem that as a—0 the dynamics of (a, AXP=?)) become increasingly
complicated and we should expect the behavior of large potentials (with positive Lya-
punov exponents by [SS]).(**) Somehow, delicate cancellation between expansion and
contraction takes place precisely at the spectrum and kills the Lyapunov exponent.

Bourgain’s and Jitomirskya’s result that the Lyapunov exponent must be zero on
the spectrum in this situation involves duality and localization arguments which are far
from the dynamical point of view. Our work provides a different explanation for it, and
extends it from SL(2, R)-cocycles to SL(2, C)-cocycles. Indeed, quantization implies that
all cocycles near constant have zero acceleration. Thus they are all regular. Thus if A is
close to constant and («, A) has a positive Lyapunov exponent then it must be uniformly
hyperbolic.

We stress that while this argument explains why constant cocycles are far from
non-uniform hyperbolicity, localization methods remain crucial to the understanding of
several aspects of the dynamics of cocycles close to a constant one, at least in the Dio-
phantine regime.

Let us finally make a few remarks and pose questions about the actual values taken
by the acceleration.

(1) If the coefficients of A are trigonometric polynomials of degree at most n, then
|w(a, A)[<n by convexity (since L(a, Ac) <sup,cp,z log || A(z+¢i)||<2mne+0(1)).

(2) On the other hand, if «€R\Q, |A|>1 and neN, then for v(x)=2Acos 2mnz we
have that w(a, AF~")=n for every E€Y,,. In the case n=1 (the almost Mathieu
operator), this is shown in Appendix A. The general case reduces to the case n=1, since
for any AeC¥(R/Z,SL(2,C)) and neN we have that L(na, A(x))=L(«, A(nzx)), which
implies that nw(na, A(z))=w(a, A(nx)).

(3) If R\ Q and A takes values in SO(2,R), the acceleration is easily seen to be
the norm of the topological degree of A. The results of [AK2] imply that this also holds
for premonotonic cocycles which include small SL(2,R) perturbations of SO(2, R)-valued

cocycles with non-zero topological degree.

(13) In fact, the Lyapunov exponent function converges in the L-sense, as a—0, to a continuous
function, which is positive outside [supv—2,infv+2] (see the argument of [AD]). This is compatible
with the fact that the edges of the spectrum (located in two small intervals of size sup v—inf v) become
increasingly thinner (in measure) as a—0.
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(4) It seems plausible that the norm of the topological degree is always a lower
bound for the acceleration of SL(2,R) cocycles. In case of non-zero degree, is this bound
achieved precisely by premonotonic cocycles?

(5) Consider a typical perturbation of the potential 2\ cos 2rnz, A>1. Do energies
with any fixed acceleration 1<k<n form a set of positive measure? It seems promising
to use the Benedicks—Carleson method of Young [Y] to address aspects of this question
(k=n and large A, allowing exclusion of a small set of frequencies). One is also tempted
to relate the acceleration to the number of critical points for the dynamics (which can
be identified when her method works). Collisions between a few critical points might

provide a mechanism for the appearance of energies with intermediate acceleration.

2.1.5. Outline of the remaining of this section

The outstanding issues are the proofs of Theorems 5, 6 and 8 (besides the proof of the
example theorem, which will be left for Appendix A).

We first address quantization (Theorem 5) in §2.2. The proof uses periodic approxi-
mation. A Fourier series estimate shows that, as the denominators of the approximations
grow, the quantization becomes more and more pronounced. The result then follows by
continuity of the Lyapunov exponent [JKS].

Next we show, in §2.3, that regularity with positive Lyapunov exponent implies
uniform hyperbolicity (the hard part of Theorem 6). The proof again proceeds by periodic
approximation. We first notice that the Fourier series estimate implies that periodic
approximants are uniformly hyperbolic, and hence have unstable and stable directions.
If we can show that we can take an analytic limit of those directions, then the uniform
hyperbolicity of (a, A) will follow. A simple normality argument shows that we only need
to prove that the invariant directions do not get too close as the denominators grow. We
show (by direct computation) that if they would get too close, then the derivative of
the Lyapunov exponent would be relatively large with respect to perturbations of some
Fourier modes of the potential. This contradicts a macroscopic bound on the derivative
which comes from pluriharmonicity.

We then show, in §2.4, the non-vanishing of the derivative of the canonical ana-
lytic extension of the Lyapunov exponent Ls; (Theorem 8). Under the hypothesis that
w(a, A))=4>0, we get that (a,Agtj*))GL{H for 0<d’<dp (0<dp<d small), so we can
define holomorphic invariant directions v and s, over 0<Im z<dy. Using the explicit
expressions for the derivative of the Lyapunov exponent in terms of the unstable and
stable directions u and s, derived in §2.3, we conclude that the vanishing of the deriva-

tive would imply a symmetry of Fourier coefficients (of a suitable expression involving u
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and s), which is enough to conclude that u and s can be analytically continued through
Im z=0. This implies that (c, A(”*)) is conjugate to a cocycle of rotations, which implies

that its acceleration is zero, contradicting the hypothesis.

Remark 6. We should point out that, after this work was completed, a different
approach to some of the results in this section was developed in [AJS]. While their
approach is more readily generalizable to higher-dimensional cocycles, the route taken
here gives some extra information which will be crucial in the proof of the main theorem

(and also in the proof of the almost reducibility conjecture given in [A3]).

2.2. Quantization of acceleration: proof of Theorem 5

We will use the continuity properties of the Lyapunov exponent (particularly, with respect
to the frequency) obtained in [BJ1] and [JKS].(14)

THEOREM 9. ([JKS]) The map (o, A)—L(c, A), (o, A)eRXC¥(R/Z,SL(2,C)), is
continuous at every (a, A) with a€R\Q.

This result is very delicate, since the restriction of a— L(a, A) to R\Q is not, in
general, uniformly continuous.
Notice that if p/q is a rational number, then there exists a simple expression for the

Lyapunov exponent L(p/q, A):

p 1
L(,A) 1 / log o( Ay (@) e, 9)
q q Jr/zZ

where A(,/q)(2)=A(x+(g—1)p/q) ... A(z) and o(B) is the spectral radius of an SL(2,C)
matrix o(B)=lim, . |B"||'/". A key observation is that if p and ¢ are coprime, then

the trace trA,/q) () is a 1/g-periodic function of x. This follows from the relation

A(@)Apq) () = Agp/q) <I+Z>A($)7 (10)

expressing the fact that A, q) (z) and Ag,/q) (z+p/q) are conjugate in SL(2,C), and
hence A(,/q) (z) is conjugate to A,/ q) (z+kp/q) for any kcZ.

Fix aeR\Q and AeC¥(R/Z,SL(2,C)) and let p,/q, be a sequence of rational
numbers (p, and ¢, coprime) approaching a (not necessarily continued fraction approx-

imants).

(**) Bourgain and Jitomirskaya actually restricted considerations to the case of Schrédinger (in
particular SL(2, R)-valued) cocycles. Their result was generalized to the SL(2,C) case in the work of
Jitomirskaya, Koslover and Schulteis [JKS].
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Let £e>0 and C>0 be such that A admits a bounded extension to |Im z|<e with
SUD|1m 2| <& |A(2)||<C. Since trA,, /q.) is (1/qn)-periodic,

trA(pn/qn)(x) :Zak,ne%rikqna:’ (11)
keZ

with ay, , <20 e=2mkane,

Fix 0<e’<e. Choosing kg sufficiently large, we get

tI‘A(p”/qn)(x) = Z akme?ﬂikq"m—f—O(G_q"), |IH1.]3| <€/, (12)
[k|<ko

for n large. Since max{1, §|tr|} <o<max{1,|tr|}, it follows that

L(m,A(;) = max max{lOgak’n'—Qﬂk&O}—i—o(l), d<e. (13)
n k<|kol dn

Thus, for large n, the function d— L(p,,/qn, As) is close, for |6]<e’, to a convex piecewise
linear function with slopes in {—27ky, ..., 2k }. By Theorem 9, these functions converge
uniformly on compact subsets of |§|<e to 0+ L(a, As). It follows that 0+ L(a, As)
is a convex piecewise linear function of |0|<e’, with slopes in {—27ko,...,27ko}, so
w(a, A)€Z. This completes the proof of Theorem 5.

Remark 7. Consider say

eM@) 0
aw=(77 5

with A(z)=e?™0% for some qo>0. Then L(«a, A.)=(2/m)e 2™%¢ if a=p/q for some q
dividing qo, and L(a, A.)=0 otherwise. This gives an example of both the discontinuity
of the Lyapunov exponent and the lack of quantization of acceleration at rationals.

If we had chosen A as a more typical function of zero average, we would get disconti-
nuity of the Lyapunov exponent and lack of quantization at all rationals, both becoming

increasingly less pronounced as the denominators grow.

2.3. Characterization of uniform hyperbolicity: proof of Theorem 6

Since the Lyapunov exponent is a C'* function in UH, the “if” part of the proof is obvious
from quantization. In order to prove the “only if” direction, we will first show the uniform
hyperbolicity of periodic approximants and then show that uniform hyperbolicity persists
in the limit. To do this last part, we will use an explicit formula for the derivative of the

Lyapunov exponent (at a fixed frequency) in UH.
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2.3.1. Uniform hyperbolicity of approximants

LEMMA 8. Let (o, A)€(R\Q) xC¥(R/Z,SL(2,R)) and assume that (c, A) is regular
with positive Lyapunov exponent. If p/q is close to o and A is close to A then (p/q, A)

s uniformly hyperbolic.

Proof. Let us show that if p, /¢, —« and A — A then there exists £” >0 such that
1 n
—10g o(A(}) . (2)) = L0 Aim ) ol1), [Tma| <", (1)

which implies the result. In fact this estimate is just a slight adaptation of what we did
in §2.2.

Since A — A and (a, A) is regular, we may choose £>0 such that («, As) is regular
for || <e, and a sequence A, € C¥(R/Z,SL(2,C)) such that A, — A uniformly in |[Im z|<e
as n—oo.

Choose " <e’<e. We have seen in §2.2 that there exists kg such that

trAEZZ/qm(f): D a0, [Tm x| <€, (15)
[k|<ko
n n 1 n
L p—,Ag )) = max max log |ar.n| |—27rk(5,0 +o(1), || <€ (16)
n k<|k0| dn

By Theorem 9, L(py/¢n, A((Sn))—>L(a, As) uniformly on compact subsets of |§| <g, so

we may rewrite (16) as

n 1 n
L(oz,A((s )): max max M—ana,o +o(1), 0] <e. (17)
k<|kol an

Since the left-hand side in (17) is an affine positive function over |d|<e, with slope
2rw(a, A), it follows that |w(a, A)|<ko and

log ‘afw(a,A),n|

L(Oz,Atg) = q

+271w(a, A)d+o(1), 0] <e”. (18)

Morever, if |j|<kg is such that j#£—w(«, A), we have

MfQﬂ'j5+27T(€I*5H)gL(avA5)+0(1)v |5|<€H' (19)

n

Together, (15), (18) and (19) imply (14), as desired. O
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2.3.2. Derivative of the Lyapunov exponent at uniformly hyperbolic cocycles

Fix (o, A)€EUH and let u,s:R/Z—PC? be the unstable and stable directions. Also let
B:R/Z—SL(2,C) be analytic with column vectors in the directions of u(z) and s(z).
Then

B(z+a) 'A(z)B(z) = ( ) =D(x). (20)

Obviously L(a, A)=L(«, D):f]R/Z Relog A(x) dz.(17)
Write
(") 40,
c(z) d(x)
We note that, although the definition of B involves arbitrary choices, it is clear that
¢1(z) =a(z)d(x)+b(z)c(x), qa(x)=c(x)d(z) and g3(x)=—-b(z)a(x)

depend only on (a, A). We will call ¢;, i=1,2,3, the coefficients of the derivative of the

Lyapunov exponent, for reasons that will be clear in a moment.

LEMMA 9. Let (o, A)eUH and let q1,q2,q3:R/Z—C be the coefficients of the de-
rivative of the Lyapunov exponent. Let w:R/Z—sl(2,C) be analytic, and write

w1 wo
w = .
w3 —wWi

3
iL(Oz,Aet“’)zRe/ Zqz(x)wz(aj) dx, att=0. (21)

dt R/Z i—1

Then

Proof. Write B(z+p/q)~ ' A(x)et® B(z)=D*(x). We notice that

D(;U)_l%Dt(:r)=B(:v)_1w(x)B(:v)7 at t=0, (22)

and s
Z ¢i(z)w;(z) =ulc. of B(z) tw(z)B(z), (23)

i=1

where u.l.c. stands for the upper left coefficient.
Suppose first that « is a rational number p/q. Then

d P 1d
— L%, Aetv ) === 1 D? 24
dt (q’ ‘ > gdt /R/Z 08 0Dy (7)) 29

(1) Notice that the quantization of the acceleration in the uniformly hyperbolic case follows im-
mediately from this expression (the integer arising being the number of turns A(z) does around 0).
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so it is enough to show that

d qg—1 3 D
j=0i=1

Since D(;/4)(z) is diagonal and its u.l.c. has norm bigger than 1,

d . d
pr log ,Q(Dfp/q) (z)) =Re u.l.c. of D, /q) () liD’(fp/q)(az:)7 at t=0. (26)

Writing Dy;i(z)=D(z+(j—1)p/q) ... D(z), and using (22), we see that

L d
Dp/q) ()" 2 Dipyg) (@)

q-1 -1 » (27)
=> Dij(z)” 1B(m+] ) w(:c—i—jq)B(x—qu)D[J]( ), att=0.
j=0
Since the D[;) are diagonal,
-1
ul.c. of Dy (x)_lB(x—i—jp) w<x+jp>B<x+jp>Dm (z)
q q q (28)

-1
=u.l.c. ofB(J:—i—jp) w<$+jp>3($+jp>-
q q q

Putting together (23), (26), (27) and (28), we get (25).
Since the Lyapunov exponent is C*° in U'H, the validity of the formula in the rational

case yields the irrational case by approximation. O

2.3.3. Proof of Theorem 6

Let (o, A)€(R\Q) x C¥(R/Z,SL(2,C)) be such that («, A) is regular. Then there exists
£>0 such that L(a, As) is regular for |0]<e.

Fix 0<e&’<e and choose a sequence of rationals p,, /¢, —«. By Lemma 8, if n is large
then (pn/qn, As) is uniformly hyperbolic for §<e’. So one can define functions u, (x) and
(pn/an) () With the

largest and smallest eigenvalues. Our strategy will be to show that the sequences u,, ()

sp(x), with values in PC2, corresponding to the eigendirections of A

and s, (z) converge uniformly (in a band) to functions u(z) and s(z).
The coeflicients of the derivative of L(py /qn, A) will be denoted by ¢, i=1,2,3. The
basic idea now is that if ¢J(z) and ¢§(x) are bounded, then it follows directly from the

definitions that the angle between w,(x) and s, () is not too small, and this is enough
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to guarantee convergence. On the other hand, the derivative of the Lyapunov exponent
is under control by pluriharmonicity, which yields the desired bound on the coefficients.

There are various ways to proceed here, and we will just estimate the Fourier coef-
ficients of the ¢}, j=2,3. Write

Cn,k,j :/ qy(ll?)€727rikx dz. (29)
R/Z
LEMMA 10. There exist C>0 and v>0 such that, for every n sufficiently large,
|Cn,k,j|<067w‘kl, 1=2,3, keZ. (30)

Proof. Choose 0<~vy<2me’. Then, for each fixed large n, we have \Cn7k7j|<6’ne’”"k|
(since ¢} extend to |Im z|<e’). If the result was false, then there would exist sequences
n €N, k €Z and j,€{2,3} such that n;— o0 and, for each [, |§m,kl7jl|>le*7|kl‘. We may
assume that j; is a constant and that either k; >0 for all [ or k; <0 for all [.

For simplicity, we will assume that j;=2 and k; <0 for all [. Let

|<’ﬂl Ky 2| . (0 e—27rikzac>
wyy(r) = —""—¢ 31
o) G k2 0 0 (81)
and choose y<~/<27e’. Setting A(z)=A(z+iv'/27) and wy(z)=w) (z+iy'/27), we
get
d Prny 7 ot
(e detso ) =G sl . (32)

since the coefficients of the derivative at (p,, /qn,, A) are ¢;' (v)=q}" (v +ivy'/27).

Note that w(;) admits a holomorphic extension bounded by 1 on [Im z| < (y'—~)/27.
Since (o, A) is regular with positive Lyapunov exponent, it follows from Lemma 8 that
there exists >0 such that, for every large I, (pn,/qn,, Aet™0) is uniformly hyperbolic for
complex t with |t|<r. In particular, the functions t+ L(pn, /qn,, Ae!®®) are harmonic on
|t| <r for large I. These functions are also clearly uniformly bounded. Harmonicity gives
then that the derivative at t=0 is uniformly bounded as well. This contradicts (32). O

LEMMA 11. For every C'>0 there exists €>0 such that, if a,b,c,deC are such that

ad—bc=1 and the angle between the complex lines through (‘Z) and (Z) is less than ¢,
then max{|ab|, |cd|}>C.

Proof. This is a straightforward computation. O

Lemma 10 implies that there exists v>0 such that ¢5 and ¢% are uniformly bounded,
as n—00, on |Imz|<~. By Lemma 11, this implies that there exists >0 such that the
angle between u, (z) and s, (x) is at least 1, whenever n is large and |Im x| <~. We are

in position to apply a normality argument.



GLOBAL THEORY OF ONE-FREQUENCY SCHRODINGER OPERATORS 25

LEMMA 12. Let u,(z) and s,(x) be holomorphic functions defined in some complex
manifold, with values in PC2. If the angle between wu,(x) and s,(z) is bounded away
from 0 uniformly in x and n, then u,(z) and s,(x) form normal families. Moreover,
the limits of w, and s, (taken along the same subsequence) are holomorphic functions

such that u(x)#s(x) for every x.
Proof. We may identify PC? with the Riemann sphere. Write ¢,,(z)=u,(z)/sn ().

Then ¢, (x) avoids a neighborhood of 1, and hence it forms a normal family. Let us
now take a sequence along which ¢,, converges, and let us show that w,(z) and s, (z)
form normal families. This is a local problem, so we may work in a neighborhood of a
point z. If lim, o ¢n(2)#00 then, for every large n, ¢, must be uniformly bounded
in a neighborhood of z, so u, and 1/s, must also be bounded. If lim,, s ¢,(z)=00
then, for every large n, 1/¢, must be uniformly bounded in a neighborhood of z, so s,
and 1/u, must be bounded. In either case we conclude that s, and w,, are normal in a
neighborhood of z.

The last statement is obvious by pointwise convergence. O

Let u(z) and s(x) be limits of u,(z) and s,(z) over [Imz|<~, taken along the
same subsequence. Then A(x)-u(x)=u(x+«), A(z) s(z)=s(z+a) and u(z)#s(z). Since
acR\Q and L(a, A)>0, this implies that (o, A)€UH, which completes the proof of
Theorem 6.

2.4. Local non-triviality of the Lyapunov function in strata: Proof of

Theorem 8

Let 0, j and v, be as in the statement of Theorem 8. Notice that (o, A("*))¢UH, since
otherwise we would have j=w(a, A("*))=0.

Let 0<egp<d be such that (a,Ag)*))GUH and w(a,Agv*)):j for 0<e<eg. By defi-
nition, for every 0<e<ey we have Ls j(a, AV))=L(a, Agu))f%rje for veCg (R/Z,R) in
a neighborhood of v,.

Let u,s: {x:0<Imx<eg}—PC? be such that z+—u(x+ic) and z+>s(x+ic) are the
unstable and stable directions of (a,AS*)). Also, let q1,¢2,g3: {z:0<Imz<ep}—C be
such that x+>¢;(xz+1ie) is the jth coefficient of the derivative of (a, Aé”*)).

Notice that AW=T®) = A@W-)e®  where

i) = (—u?@ )

Thus the derivative of wes Lg ; (a, A=) at =0 is

—Re/ w(z+ie)gs(z+ie) dx. (33)
R/Z
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If the result is false, then (33) must vanish for every weCy (R/Z,R). Testing this
with w of the form acos2nwkx+bsin2nkz, with a,b€R and k€Z, we see that the kth
Fourier coefficient of g3 must be minus the complex conjugate of the (—k)-th Fourier
coefficient of g3 for every k€Z. Since the Fourier series converges when 0<Imx<egq,
this implies that it actually converges when |Im x| <eg, and over R/Z it defines a purely

imaginary function. Thus g3(x) extends analytically through |Im 2|=0, and hence
¢2(z) =c(z)d(x) =a(z—a)b(z—a) = —qz(z—a)

(the middle equality holding due to the Schrédinger form) also does.

Identifying PC? with the Riemann sphere in the usual way (the line through ( z )
corresponding to z/w), we get go=1/(u—s) and —gs=us/(u—s). These formulas allow
us to analytically continue u and s through Imz=0.('%) Since ¢o and g3 are purely
imaginary when Im =0, we conclude that v and s are complex conjugate directions in
PC? when Imz=0.(!7) Note that if u(z)=s(z) for some = then u(x+na)=s(z+na)
for every n and thus, by analytic continuation, u=s everywhere, which is impossible. So
when Im =0, v and s are in fact distinct complex conjugate directions, and in particular
they are not real.

Let B(x)€eSL(2,R) be the unique upper triangular matrix with positive diagonal
coefficients taking u(x) to i (and hence s(x) to Fi). Then B:R/Z—SL(2,R) is analytic.
Define A(z)=B(z+a)A")(z)B(x)~". Since A)(z) takes u(x) and s(zx) to u(z+a)
and s(z+a), we conclude that B(z+a)A®+)(z)B(x)~'€SO(2,R). As z— A () is
homotopic to a constant as a function R/Z—SL(2,R), z+— B(z+a)A®) (z)B(z) e
SL(2,R) is homotopic to a constant as a function R/Z—SL(2,R), and thus also as a
function R/Z—SO(2,R). It follows that there exists an analytic function ¢: R/Z—R such
that B(z+a)AW-) (2)B(z)~'=A(x), where A(z) is the rotation by the angle 27¢(x).

(16) Indeed, if g2 is identically vanishing then we set either u=o00 and s=—gq3, or s=00 and u=qs
(to match the previous definition when Im 2>0). If g2 is not identically vanishing but 1—4g2g3 vanishes
identically, then we can take u=—s=1/2¢2. Assume now that there exists z€R/Z such that g2(z)#0
and 1—4¢2(z)g3(x)#0. Then we can define u(z) and —s(z) in a small open square Q of side 2r centered
at z (with sides parallel to the coordinate axis) as the distinct solutions of the equation

1
w2——w+q—3:0

q2 q2

(to match the previous definition when Imz>0). We then spread it using the dynamics to |Im z|<r
in order to have Ag(z) -u(z)=u(z+ka) and Ag(z)-s(z)=s(z+ka) for every z€@Q and k€Z. This gives
well-defined analytic functions because whenever z and z+na€Q we have Ay, (z)-u(z)=u(z+na) and
An(z)-s(z)=s(z+na) (this is clear when Im z>0 and holds in general by analytic continuation).

(17) In principle, Re go=Re g3 =0 is also compatible with values of u and s such that Reu=Re s=0
(where we set Re co=0 for simplicity). But if Reu=0 then Re(A-u)=Re v, so if u#3 somewhere, then
vx« must be identically vanishing. This contradicts w(c, A(®*))=£0.
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Obviously this relation implies that L(a, Ag”*)):L(a, A¢) for €>0 small. If we show
that L(a, A.)=0 for £>0 small, we can conclude that w(a, A("+))=0, which contradicts
the hypothesis.

To see that L(«, A.)=0, we notice that, for n>1, A, (z) is the rotation by the angle

n—1

Z d(x+ka).
k=0
Thus

n—1

Z Im ¢(x+ka+ie)| dx. (34)
k=0

1 1
7/ logHAn(x—He)Hda::27r/ =
n R/Z R/Z n

Since x—x+« is uniquely ergodic with respect to Lebesgue measure, the integrand of

the right-hand side converges uniformly, as n— o0, to

/ Im ¢(x) dx
R/Z

Thus the limit of the right-hand side, which is L(«, A.) by definition, is zero as well.

=0.

/ Im ¢(z+ie) dx
R/Z

Remark 13. The analysis of the function A— L; ;(«, A) from the real Banach man-
ifold C¥(R/Z,SL(2,R)) (of maps in C¥(R/Z,SL(2,C)) taking values in SL(2,R)) to R,
with o€ R\Q and near some A with w(a, A)>0, can be carried out as above with one
important difference.

The argument above allows one to establish that, if Ls ; is not a local submersion,
then the coefficients of the derivative go and g3 extend from some half band 0<Im z<eg to
a full band |Im z|<eo.(*®) This again leads to the conclusion that there exists B: R/Z—
SL(2,R) analytic such that A(z)=B(z+a)A(z)B(z)~" takes values in SO(2,R). But
now there are two cases:

(1) 2 A(z) is homotopic to a constant. In this case, the above argument goes
through and one concludes that w(c, 121):0, yielding a contradiction.

(2) 2+ A(z) is not homotopic to a constant. In this case, there is no contradiction,
and the reader is invited to check that, if fl(x) is the rotation by the angle 27z, then
indeed the derivative of Ls ; vanishes, but w(c, [1):1.

The analysis of the second case has been carried out by different means in [AK2],
where it is shown that the Lyapunov exponent is real-analytic near cocycles with values
in SO(2,R) provided they are not homotopic to a constant. We should emphasize that
this result is obtained for any number of frequencies, which is certainly beyond the scope

of the techniques we develop in this paper.

(*®) Though one lacks the symmetry between g2 and g3 exploited above, we just separately evaluate
the extensions of g2 and g3, as we are not constrained to consider just perturbations of a specific form.
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Interpreting their results (in the one-frequency case) from our new point of view,
[AK2] shows that all real perturbations of (a, A) have the same acceleration, namely the
absolute value of the topological degree of A as a map R/Z—SL(2,R). Real analyticity
implies that the derivative of the Lyapunov exponent then is forced to vanish whenever
the Lyapunov exponent is zero. In [AK2] it is shown that the second derivative is non-
zero. The locus of zero exponents can be shown to intersect a neighborhood of A in
C¢(R/Z,SL(2,R)) in an analytic submanifold of codimension 4|w(a, A)|.

Thus our result implies that among cocycles which are not homotopic to constants
(and with a given irrational frequency), the locus of zero exponents is contained in a

countable union of positive codimension submanifolds of Cy'(R/Z, SL(2,R)).

3. Part II: Acriticality for typical operators

The main goal of this section is to prove the main theorem. As we have done so far, our
analysis of the operator H, , will be based on the dynamics of the associated family of

Schrodinger cocycles.

Given H, ., we define the acceleration w at energy EF€R by w(EF)=w(«, A), where
A=AF=v)_ Then E is critical if and only if L(E)=0 and w(E)>0 (see Remark 4). If E

is critical with acceleration k, we call it a critical point of degree k.

Our basic plan is to show that critical points of maximal degree k>1 can be destroyed
by a small typical perturbation by trigonometric polynomials of some large degree. This
may give rise to many critical points of degree <k—1, but by iterating this process we
will eventually get rid of all of them.

More formally, let Ay, k>0, be the set of all («a,v)€(R\Q)xC¥(R/Z,R) such that
H, , has only critical points of degree at most k. Hence Ay, forms an increasing sequence
of open sets with [ J; 5, Ax=(R\Q) x C*(R/Z,R) and Ay is the set of all (c,v) such that
H,, is acritical.('?) Let P"CC¥(R/Z,R) be the space of trigonometric polynomials
with degree at most n, and let PJ' CP™ be the subspace of zero-average functions. Also,
for £>0, let P™(e)CP™ and Pg(e) CPE be the corresponding e-balls with respect to the

C° norm.

Our main estimate is the following.

(1?) Note that A\ Ap_1 is actually non-empty for every k>1, as it contains (a,v) with v(z)=
2 cos 2rkx for every a €R\Q (see (2) in §2.1.4).
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PROPOSITION 14. For every (o,v)€Ay there exist n>1 and >0 such that for
almost every wePY (e) we have (a, v+w) € Amaxfo,k—1}-(*)

The main theorem follows immediately from this estimate.

The proof of Proposition 14 will take the remainder of this section. In §3.1 we
apply the renormalization and the generalized Kotani theory developed in [AK1] and
[AK2] to study the critical set within the subvarieties obtained in Theorem 1. This
shows that Proposition 14 can be concluded if we can locally subfoliate the subvarieties
by premonotonic curves. The existence of such a local subfoliation can be deduced by
locating, for any critical cocycle, an appropriate signed vector tangent to the subvariety.
This is obtained in Theorem 10. The proof, by contradiction, is given in §3.3. We
concentrate on studying the dynamics when the derivative of the Lyapunov exponent
behaves as a measure. (If this is not the case, a special kind of signed vector, a so-called
directed vector, can be constructed right away.) We show in Theorem 16, proved in §3.4,
that this is very constraining of the dynamics, and can be broken by a small conjugacy
of the cocycle (the directed vectors are not conjugacy invariant), which implies the result
since signed vectors are conjugacy invariant. Actually the conjugacy initially produces
a cocycle which is not in Schrodinger form, so we must produce an additional conjugacy
to put it into Schrédinger form. This is achieved by Theorem 17, proved in §3.5.

We note that another application of Theorem 10 is that the critical regime is the
boundary of the supercritical regime. This is proved in §3.2 (which may be skipped in a

first reading, since its content is not needed for the proof of the main theorem).

3.1. Parameter exclusion argument

From now on, a€R\Q is fixed.

In §2 we proved that critical cocycles have codimension one among all cocycles.
Earlier, in [AK1] and [AK2], we had shown that almost every cocycle in certain one-
parameter families has either a positive Lyapunov exponent or admits a sequence of
renormalizations converging to a good normal form. The techniques in those works are
quite distinct, and our aim is to combine them to show that critical cocycles in fact have
zero measure inside a codimension-one subspace. The key difficulty we will face is in
establishing an indefiniteness result for the derivative of the Lyapunov exponent, which
will enable us to construct appropriate one-parameter families inside the locus where

criticality might appear.

(?9) A slightly stronger statement follows from our proof: if (a,v)€(R\Q)xC§¢(R/Z,R) then
n=n(a,v) and e=¢e(a,v,d) may be chosen so that for every (o/,v")e(R\Q)xCy (R/Z,R) such that
la—a’|<e and [lv—v||s<e and for almost every we Py (¢) we have (o, v +w)EAmax{o,k—1}-
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In this strategy, Proposition 14 is obtained as a consequence of the following. For
all k=1 let C* be the set of all v€C¥(R/Z, R) such that L(c, A®))=0 and w(a, A®)=k.
Note that |J >k C; is closed by upper-semicontinuity of the acceleration and continuity

of the Lyapunov exponent.

PROPOSITION 15. For every vy EC’“, there exist n>1 and €>0 such that
{weP™(e):vo+weCk}

has 2n-dimensional Hausdorff measure zero. Moreover, n and € can be chosen uniformly

over compact subsets of CF.

Proposition 15 implies Theorem 14 by projecting in the direction of the energy, using
that the set of critical points of maximal degree for H, , is compact. Indeed, suppose that
(a,v) €A, with k>1 (if k=0 the result follows from the fact that Ay is open), and let n
and € be obtained by applying Proposition 15 to the set K of all vg=FE—v with E being
a critical point of degree k for v. Shrinking ¢ if necessary, we may assume it satisfies the
extra property that (o, v+w)eA; for every weP§ () (since Ay, is open), and moreover
that, if F€R is such that E—v—w&CF, then there exists E’ such that E'—veCF and
|E—FE'|<%e (here we use that Ujsr C7 is closed). Choose a finite e-dense subset & of the
set of critical points of degree k for H, ,. The conclusion of Proposition 15 gives that, for
almost every we’P&‘(%E) and every Ey€&, we have E—v—wgCF provided ‘E—E0|<%E
(here we use that the projection from P™ to Py takes a set of 2n-dimensional Hausdorff
measure zero to a set of zero Lebesgue measure). Thus (a,v+w)€A,_1 by the extra
property above.

Through the remainder of the paper, vo€CF is also fized.

Fix &' >¢>0 such that vg eCg (R/Z,R). The hypothesis vo€C* implies that vo€ Q¢ .
Then there exists a neighborhood VC C¢’ (R/Z, R) of vg and 0<§o <& such that (a, Ag)) €
UH and w(a, Ag)):k‘ for every veV. We fix such & and note that L¢ 4 (a, A)), veV,
is given by L(«, Ag))—ka:{o. For simplicity, we will denote this function by L¢ ;. As
before, for every v€V such that w(a, A®"))=k we have L¢ x(v)=L(a, A®™), and thus
CFNVC L (0).

Let UCR"™ be an open neighborhood of 0 and let vy €V, A€U, be an analytic defor-
mation of vg. For any Ag€U, let Dy ux: R"—C¢ (R/Z,R) be the derivative

d
Dy,vn-w= a7 Pho+tw
=0

The reader should keep in mind the family vy=vo+ P, A, AER?™*1 where

P R* — P
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is some fixed isomorphism (in this case Im Dovy=P™).

We say that acC“(R/Z,s((2,R)) is signed if det a(z)>0 for every z€R/Z. Given
AeC¥(R/Z,SL(2,R)), we say that acC¥(R/Z,SL(2,R)) is A-signed if there exists be
C“(R/Z,s1(2,R)) such that

z— A(z) " o(z+a) A(x) —b(z)+a(z) (35)
is signed.

Given vy, we C¥(R/Z,R), we say that w is vg-signed if

(5 0)
—w 0
is A(vo)_signed. Note that the set of (a, A) such that a is A-signed is clearly open, so the

set of (v,w) such that w is v-signed is open as well.

Remark 16. Tt is easy to see that if +w(x)>0 for every x€R/Z then w is v-signed
- < 0 0)
Fe O

Remark 17. (Interpretation of signedness) Recall that an analytic one-parameter
family A*€C*(R/Z,SL(2,R)) is said to be monotonic (in the sense of [AK2]) if for each

r€R/Z and each unit vector m in R? the derivative, with respect to A, of the argument

(independently of v), just choose

with sufficiently small >0 in (35).

of A*(x)-m is non-zero. It is easy to see that this condition is equivalent to positivity of

det a*, where p
A -1 A
a*=(A%) ﬁA .
Monotonicity is a powerful concept that allows one to efficiently use complexification
techniques in the analysis of the parameter space (generalizing Kotani theory).

It turns out that monotonicity is not invariant under coordinate changes. Indeed, let
us consider a one-parameter analytic family of coordinate changes B*€C“(R/Z, SL(2,R))
giving rise to the family A*(x)=B*(z+a)A*(z)B*(z)~!. Also define b* and @ analo-
gously to a*. Then

i (z) = BN(2)(AMNx) 10Nz +a) AN @) — b (2) +a () BN (2) T, (36)
so that the determinant of @*(x) is the same as that of
AMNz) TNz a) AN ) = b (@) +a ().

Thus a family A* can be made monotonic by a coordinate change near some param-

eter \o if and only if a) is AQ-signed.
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PRrROPOSITION 18. Let vy, AU, be an analytic family as above such that there exists
a vo-signed vector w in the image of Dovx with DL¢ 1 (vo)-w=0, but DL¢ 1(vo) does not
vanish over Dgvy. Then there exists €>0 such that the set of all A which are e-close

to 0 and such that vy €C® has (n—1)-dimensional Hausdorff measure zero.

Theorem 8 shows that the linear functional DLg x(vg) has rank 1 (as voeCF), so
Proposition 18 reduces (see below) the proof of Proposition 15, and hence also the proof
of the main theorem, to the following indefiniteness estimate for the derivative of the

Lyapunov exponent.

THEOREM 10. (Indefiniteness of the derivative) There exists a vg-signed trigono-

metrical polynomial w such that DLg¢ j(vo)-w=0.

This result is the technical core of this paper, and will be proved in §3.3. In the
remainder of this subsection, we will focus on the proof of Proposition 18. But first,
let us show in more detail how it combines with Proposition 10 to yield a proof of

Proposition 15.

Proof of Proposition 15 (assuming Propositions 18 and 10). We say that n is good
for vy if there exist woeP™ such that DLg¢ k(vo)-wp#0 and a vg-signed vector w,eP"
such that DL¢ 1 (vg)-ws=0. Using Theorem 8 and Proposition 10, we see that any large
n is good for vy. For such n, Proposition 18 yields directly that for >0 small enough,
the set of all weP™(g) such that vo+weCk has 2n-dimensional Hausdorff measure zero.

It remains to check the uniformity over any compact set K CC*. Note that if n is
good for vy, then it is also good for any v in a neighborhood of vg. Indeed DL¢ i (v)-wy
depends continuously on v, so it remains non-zero, and hence there exists a unique small
t such that DL¢ 1 (v)- (ws+twy)=0. Since signedness is open, we still have that ws+twg
will be v-signed.

Thus we can choose n which is good for all v in a neighborhood W of K. Take >0
small enough so that v+P"(e)CW for every v€K. For such v and any v’ €v+P"(¢g),
if v/ €C* then Proposition 18 provides ¢’>0 such that v'+w’¢C* for almost every w'e
Pn(g"). This implies that v+w&C* for almost every weP"(e), as desired. O

Proof of Proposition 18. Let us say that (o, A) is L2-conjugate to rotations if there
exists a measurable B:R/Z—SL(2,R) such that B(z+a)A(z)B(z)~t€SO(2,R) for al-
most every x and fR/Z | B(x)||?dz<oo. It is clear that if (o, A) is L?-conjugate to rota-
tions then L(a, A)=O0.

The following is a convenient restatement of a result of [AK?2].
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THEOREM 11. Let vy€C¥(R/Z,R) be an analytic family defined for AeéR near 0
such that
d

w = a?]k o

s vo-signed. Then for almost every A near 0, (a,A(“X)) is L%-conjugate to rotations.

Proof. Let b be such that (35) is signed, and let A*(z)=e 0(@+) A2 (z)e= (@),
Then A\— A* is a monotonic family (in the sense of [AK2]), for A near 0. By the gen-
eralized Kotani theory of [AK2] (see Theorem 1.7 therein), for almost every A near 0,
(o, AY), and hence (o, A®"*), is L2-conjugate to rotations. O

COROLLARY 12. If 0 is vg-signed then A(*0) is L2-conjugate to rotations.
Proof. Apply the previous theorem to the constant family vy =uvg. O

Let pn/qn be the sequence of continued fraction approximations of a. Let f,=
(=1)™(gna—pn) >0 and o, =p5,/Bn-1. For AcC¥(R/Z,SL(2,R)), we say that (o, A")
is an nth renormalization of (a, A) if &'=a,, A’'€eC¥(R/Z,SL(2,R)) and there exist
20€R/Z and N:R—SL(2,R) analytic such that

N+ A 1yrsgy s (204 Bar2)N(z) ™ =id, (37
N(z+an)A1yng, (o+Bn12)N(z) " = A'(2). (38)

Here A_p(2)=Ap(x—ka)~! for k>1.(%1)

THEOREM 13. ([AK2, Theorem 4.3]) Let AcC¥(R/Z,SL(2,R)) be homotopic to a
constant. If (a, A) is L?-conjugate to rotations then for every >0 there exists n and
R such that («, A) has an n-th renormalization (!, A") with ||A'— Rp||.-1 <e.

COROLLARY 14. If (a, A) is homotopic to a constant and L?-conjugate to rotations
then w(a, A)=0.

Proof. Recall that 8,-1=1/(¢n+angn—1). Let (¢, A’) be an nth renormalization
of (o, A) and let N:R—SL(2,R) be an analytic map satisfying (37) and (38). It follows
that

Ap(—1)rgnti(—1)n—1gn_ (To+Pn17) = N(z+ka'+1)" Al (x)N(z) (39)

for k,1€Z (naturally we define A (z)=A'(x+(k—1)c/) ... A’(z) using translations by o
and not by a).

(?!) Heuristically, the nth renormalization is obtained by inducing to [z, z+B,—1] the cocycle dy-
namics and then rescaling the interval to unit length. However, this does not output a one-frequency
cocycle, since an appropriate gluing must be made (37). This gluing is not canonical, so the nth renor-
malization (38) is only defined up to conjugation. See [AK1] and [AK2].
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Let €9>0 be such that A’€C¢ (R/Z,SL(2,R)) and N admits an analytic extension
to an open neighborhood of R containing Q=10, 2] x [—eq, go]. Let Co=sup_q [N (2)]*.
If k is an arbitrary integer, {=I(k) is the unique integer such that 0<ka’+I<1 and
t=t(k)=k(-1)"¢,+1(—1)""1g,_1, then we have
Cil< HAt(y"'ﬂn—?Ei)”
| A} (z+ed)|
where z,y€C/Z are related by y=x9+5,—12 and we assume that |Im(z+ei)|<ep. It
follows that

/ log || A (z+-¢1)|| dxf/ log [|A(—1yn¢(z+Bp-15i)| dz
R/Z R/Z

< Co, (40)

(41)

‘/ log||A§C(x+€i)||dac—/ log || A¢(x+ Bn—1€i)| dz| <log Cp.
R/Z R/Z
Notice that, when k is large, ¢ satisfies
t l 1
IV =—=q, ——q,_1 = _ 1) = 1).
(=1)" L =dn =7 n-1=ntandn-1+0(1) ﬂn_1+0( )

It follows that, for large k,

1 . 1+o0(1 1 )
[ oglanrear= T2 [ g A (ot Baiei) e, (42
k Jr/z Brn-1 (=1)"t Jrsz
and taking the limit we get
1
L(O/v A/e) = L(O‘vAﬁnfw)v (43)
ﬁn—l

from which it follows that w(a, A)=w(a’, A").
If (o, A) is L?-conjugate to rotations, then by the previous theorem we can take
||A"—Rgl|l1<1. This easily implies that L(o/, AL)<log2 for 0<e<1, so

log 2
AN <1
wla!, A) <2

by convexity. Hence w(a’, A”)=0 by quantization. O

Now, as DL¢ 1,- Dovy is non-trivial, the implicit function theorem allows us to shrink
U and change coordinates near 0 so that L¢ , becomes a linear function f/(zl, ey Zn) =Zn.

The hypothesis implies that there exists tg€R"™ such that w=Dgv)-tg is vp-signed
and DL¢ (vg)-w=0. By Corollaries 12 and 14, we have t;#0, so we may assume that
to=(1,0,...,0).

Shrinking U further, we may assume that Dy vy %o is vy,-signed at every A\g near 0.

IR anl'o))) has zero Lyapunov

For every (za,...,2,—1) and almost every z1, if (o, 4
exponent then, by Theorem 11, it is L?-conjugate to rotations, and hence, by Corol-
0) ¢Ck. This concludes the proof of

Proposition 18. O

lary 14, its acceleration is zero, and thus v,

s Zn—1,
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3.2. The critical regime as the boundary of non-uniform hyperbolicity
The indefiniteness estimate (Theorem 10) also has the following consequence.

THEOREM 15. Let «€R\Q and let veC¥(R/Z,R). If E€X,, , is critical, then there
exists a trigonometric polynomial w, and arbitrarily small t>0, such that E belongs to

the spectrum and is supercritical for Hy it -

Proof. Let w(a, AF="))=k>0. Define as before a function L¢ j, on a neighborhood
VCC¢(R/Z,R) of E—v, for an appropriate choice of {>0. Choose an (E—v)-signed
trigonometric polynomial w such that the derivative of v'+L¢ ;(E—v") at v'=v and in
the direction of w is zero. Let vy, with vg=wv, be an analytic family of trigonometric
polynomials which are tangent to w at 0 and satisfy L¢ i (E—vy)=0. Let Ny, R—R
denote the integrated density of states of Hg .

By the usual monotonicity argument (see, e.g., [AK2, Lemma 2.4]), and since w
is (E—wv)-signed, AN, ,, (E) is either non-increasing or non-decreasing for A small.
Moreover, since (o, A=)} is not uniformly hyperbolic, it cannot be constant near 0.(%?)

It follows that there exists a sequence A, —0 such that N ., (E)¢Z®aZ. By the
gap labeling theorem, this implies that F€X, ,, and it is accumulated from both sides
by points in ¥, 4, -

Let w’ be a trigonometric polynomial such that the derivative of v’ L¢ ,(E—v")
at v'=v and in the direction of w’ is positive. For every m, there exists a sequence
0<\},<1/j such that Ng.,,(E)¢ZOaZ, where vj,=vy, +A; w'. Taking n and j

large then E is supercritical for H, ,., : On one hand, E belongs to the spectrum (by

Vj,n
the gap labeling theorem), and on the other hand, L¢ ,(E—wv; ) >0 by the choice of w’,
so by convexity we have L(c, A(E_“’J"”))>L£7k(E—vj’n).

Note that in the generic case Ny, (E)¢Z®aZ, the result can be obtained in a much
simpler way (using only Theorem 8), since we do not need to assume that w is (E—v)-

signed in order to find a sequence 0<\,, <1/n such that N, ., (E)¢ZOoZ. O

3.3. Indefiniteness

Recall the setting of Theorem 10. We will need the expression for the derivative of

L¢ 1: V—R at veV that we previously derived. For each such v, there exists a maximal

(?2) Indeed, there exists e€{—1,1} and C'>1 such that, for all A small, Nq v, (E) belongs to the
closed interval bounded by Ng,,(E+£C~1\) and N, (E+eC)\). This, or rather the correspondig
estimate for the fibered rotation number g:%(l—N ), comes from a comparison of the p-dependence
in two monotonic families of cocycles (constructed by suitable coordinate change, see Remark 17). (A
related argument appears in the proof of [AK2, Lemma 3.6].) So A— Na,v, (E) is non-constant (near
A=0) if and only if A Nga,o (E+A) is, and this happens if and only if E is in the spectrum of Hq v, that
is, (o, ACF=?)) is not uniformly hyperbolic.
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interval (£_(v), &, (v))C(0,€) containing & such that the cocycle (a, A®)) is uniformly
hyperbolic through {z:£_(v)<Imz<&;(v)} (note in particular that £_(vg)=0). Let g1,
g2 and g3 be holomorphic functions in the band {z:{_ <Imxz<{,} given by the formulas
for the coefficients of the derivative of the Lyapunov exponent for uniformly hyperbolic

cocycles obtained in §2.3.3. Let u and s be the unstable and stable directions and let

B= (“ Z) €SL(2,C)

c

be such that the first column of B lies in u and the second column of B lies in the s. Then
we have ¢ =ad+bc, ga=cd and gs=—ab. We let q(z)=—q3(z). Note that ¢(z—a)=¢2(2).
The expression for DL¢ x(v) in a direction weC¢' (R/Z, R) is

DLg,;g(v)-w:Re/ q(z+et)w(z+ei)dr, & (v)<e<&i(v), (44)
R/Z
see (33).

We say that v is directed if DL¢ ;(v) - w#0 for every real-symmetric trigonometric
polynomial w with w(z)>0 for every z€R/Z.

The main step in the proof of Theorem 10 is the following.

THEOREM 16. Assume that vg is directed. Then

(1) the non-tangential limits of w and s exist almost everywhere;
(2)

(3) Re[u(z)—s(x)]>0 almost everywhere;

(4) if D(z) is the open real-symmetric disk with u(x),s(z)€dD, then 0¢D(z)NR,

but for every >0 there exists a positive measure set of x with D(x)N(—e,e)>0.

Imu(z) and Im s(z) are non-zero and have the same sign almost everywhere;

We delay the proof to the next subsection. We will also need the following result,

proved in §3.5.

THEOREM 17. Let veCy¥ (R/Z,R) be non-identically zero. Then there exist a neigh-
borhood U of A®W) in C¥(R/Z,SL(2,R)) and analytic functions ®:U—C¢(R/Z,R) and
U:U—C¥(R/Z,SL(2,R)) such that

(1) U(A)(z+a)A(x)¥(A)(x) " =AW (2);

(2) if A=A for some v, then ®(A)=v and U(A)=id.

Proof of Theorem 10. We start with the following simple consequence of Theo-

rem 17.

LEMMA 19. There exist, for t near 0, analytic families

neV and BtEC“’(R/Z,SL(ZR)),
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with Bo=id, such that, for every x€R/Z, By(z+a)A®W) (2)By(z) "' =A®) (x) and

d
Z(Bi(@)-0] >0

at t=0.

Proof. Recall that vo€C¢ (R/Z,R) for some ¢'>¢. Let be C¢(R/Z,R) be a positive
analytic funtion such that bvg is a trigonometric polynomial. Then there exists a unique

trigonometric polynomial a such that a(x)+a(z+a)==b(z)ve(x). Set c(x)=—b(x—a)

and let
(%)
n= .
c —a

e (z+a) AT (z)e™ " (z) = AT () +0(s?), (45)

Then, for small s,

with y(z)=(a(z+a)—a(z))vo(z)+b(x+a)—b(z—a). Notice that vy is not identically
zero, since w(a, A("0))£0. Thus, by Theorem 17, there exist 1, and 7, with |||l =0(s?)
and ||vs|le=0(s?) such that

e (z4a)e’ (z+a) AP (z)e™ M (z)e M (x) = AWo+sT ) (1), (46)
Set By=e™e!. Then
d
7 [Be(2)- 0] =b(z) (47)
at t=0. O

LEMMA 20. Let vy be as in Lemma 19. There exists arbitrarily small teR such that

vy 18 not directed.

Proof. We may assume that vg is directed, so there are disks D(z) defined for almost
every £€R/Z as in Theorem 16. Let B; be as in Lemma 19, and let u; and s; be the
unstable and stable directions for v;. Note that B;(z)-u(z)=u:(z) and Bi(z)-s(z)=s:(2).
By Theorem 16, if v; is directed for every |t|<e, then for every measurable continuity
point g of x—D(x), Bi(xg) -D(zp) must be a disk not containing 0. In particular, we
must have D(zg)NM (x9)=9, where M (z) is the set of all By(x)~1-0, for |t|<e.

Since there exists §>0 such that (—d,0) C M (z) for every z, this contradicts Theo-
rem 16. O

Let v; be as in the conclusion of Lemma 20. Since v; is not directed, there exists

a trigonometric polynomial w with DL¢ ;. (v¢)-w=0 and inf,egr/z w(x)>0. Define an
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analytic family A*eC¢ (R/Z,SL(2,R)), A€R, by A*(x)=By(z+a) AW ) (2) B, (),
so that A°=A®0)  Let ® and ¥ be as in Theorem 17 with v=vy and §=¢, and let

Oy=®(A*) and By=U(A*)B; ! for A€R small, so that fp=v,. Let

d d ~ ~
H=—7 d d=—B B
w d)\UA o an d)\ A o 0

By construction, we have

AP (2) = By (z+a) AU (2)By(2)~!,  [Imz| <&.
Differentiating (48) and then multiplying on the left by A®0)(z)~!, we get
0 0

—w 0

(L2 §) =A™ @) s o) a5

From the definition of L j, (48) implies that L¢ 1 (0x)=L(vi+Aw), and so
DLE’]C(’U()) -w=0.

(—Oﬁ 8)

is vo-signed. Since inf,ep/z w(x) >0, we have that

(o)

is ve-signed (see Remark 16), so there exists b€ C“(R/Z, sI(2,R)) such that

Let us now show that

a(w)A(”t)(x)lb(w+a)z4(”t)(:v)WH( . 0)

—w 0
is signed, i.e., det a(x)>0. Notice that (50) gives
By(z) ta(z)By(z) =AY (2) 1 By(z+a) " h(z+0) By (z+a) AV (z)

0 0>Bt(x).

—By(2)"'b(2) By (2) + By (z) ( (@) 0

Let
b=DB;'bB,—d
and let

a<x>A<v°><x>15<x+a>A<v°><x>5<w>+<_0a 8)

)Bt(x).

(53)

Putting together (49), (51), (52) and (53), we get that a=DB; *aB;, and thus det a=det a.

In particular, since a is signed, (53) gives that w is vg-signed, as desired.

While w is not necessarily a trigonometric polynomial, it can be approximated by

a trigonometric polynomial in the kernel of DL¢ 1 (vo), which will be vp-signed as well

(since vp-signedness is an open condition).

O
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3.4. When the derivative of the Lyapunov exponent is a measure

In this subsection we prove Theorem 16. We let v=vy and A=A® for simplicity of
notation.

The starting observation is that if v is directed then DL (v) extends to a functional
on C°(R/Z,R) with norm |DLg¢ j(v)-1|, which is either non-negative or non-positive on
positive functions. By the Riesz representation theorem, it is given by a measure with
finite mass y on R/Z. By (44), this means that for any weC¢'(R/Z, R) we have

Re/R/ZQ(x—I—Ei)w(JU—i—Ei) dyc:/]R/Z w(x)dp(z), 0<e<&. (54)

We will assume from now on that p is non-negative, the other case being analogous.

Our plan is to show that the non-negativity of u leads to good estimates for ¢ which
imply one of two conclusions:

(C1) either u or s extend analytically through R/Z;

(C2) the conclusion of Theorem 16 holds.

Let us first show that (C1) implies that w(«, A)=0, which contradicts the standing
hypothesis that veC*.

Assume for simplicity that u extends analytically. Then, either u(z)€R for every
TER/Z, or u(z)¢R for every x€R/Z (since the SL(2,R) action preserves R and z—z+a
is minimal).

If u(z)¢R for z€R/Z, this extends to Im 2>0 small. In this case we can select a=u

and c=1 when defining B(z), and it follows that A=u, so
L(a, Ae) :/ log |u(z+e1)| dx
R/Z

is independent of ¢ small (the argument of u is always different from kw, k€Z), thus
w(a, A)=0.
If u(x) €R, we can use u to define analytic functions

AR/Z—SL(2,R) and B':R/Z—sPSL(2,R)
such that A’(z) is upper triangular and B'(z+a) 'A(x)B'(x)=A'(z): take the first
column of B’ parallel to (’1‘) We have w(a, A" )=w(a, A), and we just need to show that

the w(a,A’)—O But lf
1/ (a/ l/)
0 d/ ’

then L(oz,A’E):f]R/Z log |a (z+¢7)| dx for £>0 small. This is independent of e, since
near R/Z the argument of a’ is always different from (k’+%)ﬂ', keZ. We conclude that
w(a, A")=0.
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The remainder of this subsection is dedicated to showing that one of (C1) or (C2)
always holds.

3.4.1. Non-tangential limits and analytic continuation

Recall that for any bounded holomorphic function f:D—C, the non-tangential limits
f(z)=lim,1_ f(rz) exist for almost every z€9D (see, e.g., [G]), and the Poisson formula
holds, i.e. f(()):fo1 f(e?™9)df. Applying appropriate conformal maps, we see that, if
UCC is any real-symmetric domain and f: UNH—C is a holomorphic function which
is either bounded, or takes values in H, or takes values in C\(—o0,0], then the non-

tangential limits f(z)=lim. o4 f(z+ei) also exist for almost every z€UNR.

We will use the following simple version of the Schwarz reflection principle.

PropPOSITION 21. Let U be a real-symmetric domain and let f:UNH—C be holo-
morphic. Then, the following statements hold:

(1) of f takes values in H and the non-tangential limits at UNR are almost surely
imaginary, then f extends analytically to a function on U such that f(zZ)=— @;

(2) if f:UNH—C\(—00,0] is holomorphic and its non-tangential limits at UNR are

almost surely real, then f extends analytically to a function on U such that f(2)=f(z).

Proof. Assume that Re f(2)=0 (resp. Im f(x)=0 and Re f(x)>0) for almost every
x€UNR. Let ¢: H—D (resp. ¢: C\(—o00,0]—D) be a conformal map commuting with
the symmetry about the imaginary axis (resp. real axis). Then ¢of is bounded and its
non-tangential limits are imaginary (real). Thus the usual Schwarz reflection principle
applies.(??) Since ¢of extends, the same holds for f. O

3.4.2. Initial estimates on ¢q

Let us write q(z)=if(z)+g(z), where f is analytic and real-symmetric on R/Z and g is a
holomorphic function with gz =0 for k<—1. Thus g is defined on Im z>0 and is bounded

at oo.

LEMMA 22. We have Re g(z) >0 for every z such that Im z>0.

(?2) The Schwarz reflection principle is usually stated assuming continuity at the boundary, the
version for bounded holomorphic functions following immediately (as we can consider convolution ap-
proximations satisfying the continuity requirement). See also [G, Exercise 12, p. 95].
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Proof. (All integrals in this proof are supposed to be over R/Z.) Let ¢: R/Z—R be

a positive C*° function with 4130:1, and let
9= [ gt+2)o(a) d.

It suffices to show that Re g?(z)>0 for every such ¢. Let

() = / o(y—) du(y)

which is a non-negative C*° function. Then, for any real-symmetric trigonometric poly-

nomial w and any £>0, we have

/ Reg?(z-+ei)w(ztei)] do = / / Relg(z+y-+ei)p(y)w(z-+ei)] dy da
/ oy / g(@+y+ei)w(z-rei) de dy
/ oy / g2 +eiyw(a’ —y+ei)] da’ dy

— [ o) [ vty duta') dy

where the first identity uses the definition of g%, the fourth one is (54) and the last one
is the definition of h?. There exists a bounded holomorphic function H? on Im z>0
which extends smoothly to Im 2>0 and satisfies Re H? (z)=h®(z) (it can be constructed
with the help of the Hilbert transform). Obviously H?(z)>0 on Im z>0 by the Poisson

formula. If w is a real-symmetric trigonometric polynomial, we have
/ Re[H® (2 +ei)w(a+2i)] dz — / 1o (2)w () dz (56)

for every £>0. Since both f[,f:O and g,f:o for every k<—1, this implies that H;f:g;f

for every k>1 and Re flg =Re gg’ . Thus ¢®—H? is a purely imaginary constant and
Re g?(2)=Re H?(z)>0 when Im z>0. O
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Since g takes values in a half-plane, it admits non-tangential limits. This allows us
to make conclusions for ¢ as well, and thus for almost every x€R/Z the non-tangential
limits g(z)=lim. o g(x+ei) exist and satisfy Re q(z)>0. Notice that Re g(z)€ L' (since
Re g(2)>0),(**) and hence Re q(z)e L.

3.4.3. The generic case

By a quick computation, we conclude that limits also exist, almost everywhere, for the

unstable and the stable directions. Indeed, from ¢(z)=a(z)b(z) and
g(z—a)=a(z—a)b(z—a) =c(z)d(r),

we get

and ¢(z—a)= (57)

u()—s(x)’

from which we conclude that

u(z)—s(x)
Assume the non-tangential limits of ¢ at « and x—« exist and are finite. If g(z—a)#£0
then

1+4¢(z)g(z—o) = (u(x)—i—s(m)) : (58)

Ce(p) = q(z)
u(w)=s(z) q(r—a) q(z—a)

define u and s uniquely up to a choice of sign for \/1+4¢(x)q(z—a). So the set of non-

tangential accumulation values for each of u and s is made of one or two points, and since

and u(z)s(x)=

it must be connected, the non-tangential limits must be well defined. If ¢(z—a)=0, then
as z approaches x non-tangentially, either u(z) is close to co and s(z) is close to ¢(x),
or s(z) is close to co and u(z) is close to —q(x). By the same argument as before, the
non-tangential limits of v and s also exist in this case. In either case, we also conclude
that the existence and finiteness of the non-tangential limits of ¢(x) at x and x—a imply
that s(x)#u(x). Also, by the following lemma, u and s must be finite almost everywhere.

LEMMA 23. Let w:R/Z—C be measurable and satisfy A(z)-w(x)=w(x+a). Then

w(z)#0o almost everywhere.

Proof. Otherwise, there would exist k,1>0 and a positive measure set X CR/Z such
that w(z)=w(z+ka)=w(x+(kl+1)a)=occ for every x€X. It follows from analyticity
that Ag(x)-0o=00 and A;11(x)-co=00 for every . Thus A(x)-oco=c0 for every x, which

is impossible since A(x)-co=v(z). O

(?4) Indeed, by pointwise convergence, fJR/Z |Reg(z)|dz is at most lime_,0 fR/Z |Re g(z+-et)| da.
Since Re g(z) >0, we have that f]R/Z |Re g(z+et)| dx is constant and equal to Re go.
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Consider now the following possibilities:

(1) s(x)=1u(z)¢R for almost every x€R/Z;

(2) s(z),u(z)€R for almost every z€R/Z;

(3) s(x)#u(x) and m(z)€H for almost every x€R/Z, and for some choice of me
{u, s, 1,5} (independent of x).

Those possibilities exhaust all cases since x—z+« is ergodic and A(x) preserves H,
for xeR/Z. We will now deal with the first two cases (which we call generic because
the existence of three invariant sections is very constraining for an SL(2,R) cocycle) and
leave the third, and hardest, case for §3.4.4.

In the first case, assuming, say, that s(z)€H, we have Reg(x)=0 and Im¢(z)>0
for almost every x€R/Z. Consider a decomposition g=if+g, where f is real-symmetric
and g is holomorphic in H and bounded at co. We may also assume that f(z)<0 for
x€R/Z. As we saw, Re g0 when Im x>0 and now we also get that the non-tangential
limits satisfy Re g(2)=0 and Im g(z) >0 for almost every x€R/Z. By Proposition 21, —ig
admits an analytic continuation. This implies successively that ¢, v and s also admit
analytic continuations, so we have reached conclusion (C1).

In the second case, Im ¢(z)=0 for z€R/Z. Consider a decomposition ¢= f+g, where
f is analytic real-symmetric, with f(z)<0 for x€R/Z, and g is holomorphic on Im >0
and bounded at co. By comparison with the decomposition considered before, Re g>0
on 0<Imz<e. Since Img(x)=0 and Im g(z)=0 for almost every z€R/Z, Corollary 21
implies that 7g admits an analytic continuation. Hence ¢, v and s also admit analytic

continuations, so we have reached conclusion (C1).

3.4.4. Many sections

We now consider the third case. We will assume that we can take m=u, the other
possibilities being analogous. Notice that («, A) admits at least three invariant sections

u, s and u.(%°)
LEMMA 24. We have Reg(x)>0 for almost every x.
Proof. Notice that Re ¢(x)=0 implies that either s(x+a)=00 or u(z+a)—s(z+a)

is purely imaginary and hence Im u#|Im s|. Let us show that the sets

X:={x€R/Z:Req(x)=0 and £Imwu(x) > £|Im s(z)|}

(?%) This implies that there exists a measurable function B:R/Z—SL(2,R) such that

B(z+a)A(z)B(z) "1 = +id.
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have zero Lebesgue measure.

If X, has positive measure then there exist k,[>0 and a positive measure set
of z€R/Z such that z,z+ko, z+(kl+1)acX,. It follows that Ax(z+a) -co=00 and
Agis1(x+a)-00=00.(%%) Since this happens for a positive measure set of z, this implies
that Ay (z)-00=00, Agi+1(2)-00=00, and hence A(z)-co=00, hold for every z€R/Z. But
A(z)-0o=v(x)#00, yielding a contradiction. O

For real z, consider the real-symmetric open disk D(z) with v and s on the boundary.
If 0eD, then Re[u(x)—s(z)]>0 implies that Re[u(x+a)—s(z+a)]<0, which yields a
contradiction. So 0¢ D for almost every z.

In order to show that (C2) holds, it remains to check that for every >0 there exists
a positive measure set of x€R/Z such that D(x) intersects (—e,¢).

Assume that this is not the case. Then D(x)NRC[—C, C], where C=1/e+||v]lo. We
claim that there exists ¢’>0 such that Reg(z—a«)>¢’ for almost every x€R/Z. There
are three cases to consider:

(1) Ims(x)=0. Then Reg(x—a) is the inverse of the diameter of D, so

Reg(z—a)= i
2C

(2) Ims(x)>0. Then Re ¢(x—«) is the inverse of the diameter of the real-symmetric
disk through u(z)—Im s(z) and s(z)—Im s(x), which is bigger than the diameter of D,

so we get

1
Reg(z—a)> FToh

(3) Im s(x)<0. Then

Reg(z—a)=

We have

N > —_
u(z)-s(z) 2C
as in the previous case, so we just have to show that there is a lower bound for

)] 1)

|u(2)—s(z)|

(26) If 21, 22 €C and BESL(2,R) are such that Re z1 =Re 22, Re[B-21]=Re[B-22], £|Im 22| <+ Tm z;
and +|Im B-z2|<+1Im B-z1, then B-co=00.
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This is equivalent to showing that there is a lower bound for

|u(z) =5(z)]

2Imu(x) (62)

which is equivalent to showing that the hyperbolic distance in H between u(z) and s(z),
d(x)>0, is bounded from below. Since the hyperbolic metric is invariant by the SL(2, R)
action, d(z)=d(z+«) for almost every z€R/Z, and so, by ergodicity, d(z) is constant.

It follows that Re ¢(2) is bounded away from 0 for every z with 0<Im z <4, for some
small §. Thus we can define t(z)=+/1+4¢(z)q(z—a), such that Ret(z)>0 for every z
with 0<Im z<4.(*") Thus

u(z) = 2;((5)_—3 and s(z)= Z((Z)_;; (63)
Also, we have (@) +5(2)
_ulz)+s(x
Hx)= :tu(:r) —s(x)
Notice that ) )
Ret:iluL_S'r;' :

so Ret>0 (by the choice of t) implies that &|u|>=|s|. Further, Re[u(z)—s(x)]>0 and
+|u|>=|s| imply that +£Rewu(x) and + Re s(z) are positive.(*®)

Thus, for almost every x€R/Z, £D(z) is contained in the right half-plane.

Let us assume that D(z) is contained in the right half-plane, so that D(x)NRC
(e, ).

Let e’<z(x)<z%(2)<C be the extremes of D(x)NR. Notice that

log‘A ( >H>chogz (x+ka), (64)

where ¢>0 depends only on ¢’ and C. Since the Lyapunov exponent is 0, we must have
=

klggo - nzzolog 25 (x+na) =0, (65)

(®7) Notice that the arguments of g(z) and g¢(z—a) can be taken in (—%w, %7‘1’), and hence the
argument of ¢(z)g(z—a) can be taken in (—m, ), so that 1+4¢(z)g(z—a)¢(—o0, 1].
(?®) If £D(x)C{z:Re2>0}, then
s(x) €0D(z)N{z:Rez <u(z)} CID(x)N{z: £|z| < tu(x)},

so £|u(x)|>=£[s(x)].
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so that
j/ log 2* () dz = 0, (66)
R/Z

which is impossible since z*(x)>2z" (z) almost everywhere.
The case where —D(z) is contained in the right half-plane is analogous. Thus the

proof of Theorem 16 is complete.

3.5. Conjugating SL(2,R) perturbations to Schrédinger form
Let d>1 be an integer and deR?. Let Q5={2€C?/Z%:|Im 2| <0y} and C¥(R?/Z4, )

stand for spaces of analytic functions on R%/Z? with continuous extensions to Qs which
are holomorphic on ;.

We will prove the following generalization of Theorem 17 to arbitrary dimensions.

THEOREM 18. Assume that veC¥(RY/Z, R) is not identically zero. There exists
e>0 such that, if A'eC¥(R?/Z SL(2,R)) satisfies ||A’—A(“)Hcgu <e, then there exist
v'€CY(RY/Z4,R) and B'eC¥(R?/Z%,SL(2,R)), depending analytically on A’, such that
B'(z+a)A'(x)B'(x) "' =A") (). Moreover, if A’ is already of the form A®) | then v/ =0
and B=id.

A version of this result, for smooth cocycles over more general dynamical systems,
was obtained in [ABD]. The proof of [ABD] makes use of partitions of unity to localize
perturbations to some small region with disjoint first few iterates, one then tries to define
functions in disjoint closed regions of space without worrying about interaction. The only
additional care is to select the localizing region away from the critical locus v(z+a)=0,
where the relevant equations develop singularities. Our approach is different: We take a
disconnected finite cover of the dynamical system to realize the non-interacting condition,
and concentrate on the linearized version of the problem, which can be broken up into
several subproblems each of which involves a perturbation dominated by v(z+«) in such

a way that it compensates the singularity.

Proof. Let A=A®). Writing A’=Ae¢*, B=¢" and v'=v+t', we see that the lin-
earized form of the problem is: For s'€C¥¢ (R¢/Z%,5[(2,R)), solve the equation

A(x)'w(z4a)A(z)+5' (z) —w(z) =t (z)L, (67)

L:(Olg)

where
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We will show below how to obtain a solution (w, ') of (67) which is linear in s’ and satis-
fies [|w||ce <C||s'||ce for some C=C(v)>0. Moreover, C(v") will be uniformly bounded
in a neighborhood of v. This allows one to construct the solution of the non-linear
problem by, say, Newton’s method.

Let

! !

s S

s’ = Il 2/ , s=s+s4L and t=t'+s}.
sy —s)

Then (67) is equivalent to
A(z)rw(z+a)A(z)+s(z) —w(x) =t(x) L. (68)

We will in fact construct a solution (w,t) to (68) which is linear in s and satisfies the
required bounds. Notice that when A’ is already of the form A, then s=0, so w=0
and the iterative procedure yields v'=9 and B=id.

Choose N >4 such that | Y0 > v(z+ka)?|>1 for every z€Qs.(2)

Note that N is constant in a neighborhood of v. Write

on(z) = k (;C-l-k‘a)

2<k<N=-2. (69)
Z] 2 U(x—'_.]a)

Let us show that there are, for 2<k<N —2, functions wy, ;, with [€Zy, and ¢4 ;(z), with
le{k—1,k, k;—H} such that

(1) wr,0=0

(2) A(z)~ wk71(x—|—a)A(x +s(x) —wk,0(x)=0;

(3) A(x) twy 41 (z+a)A(x) —wy  (x) =ty (z)L, le{k—1,k, k+1};
(4) A(x) twy 41 (z+a)A(z) —wy 1 (2)=0, 1¢{0,k—1,k, k+1}.
If we then set w(z)= ka 22 INBI wg,(z) and ¢(x)= ka 22 ;H_kl 1 tei(x), we will have
A(z)tw(z+a)A(z) +s(x) —w(x)=t(z) L.

Conditions (1), (2) and (4) clearly define all wy, ; except wy, j, and wy, k41, in particular

Wi
Wi

wi p—1(7) = —Ap_1(x—(k—1)a)sp(z—(k—1)a) Ap_1(z—(k—1)a) " . (70)
Using (69), we see that

lwr -1 (2)]| < Clo(z+a)?[|s(z—(k=1)a)]. (71)

(?9) By unique ergodicity of z++z+a on R?/Z?, the Birkhoff averages of v(z)? converge uniformly
to fRd/Zd v(z+x)2 dz, which equals fRd/Zd v(z)2 dz>0 by holomorphicity.
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The key equations are thus

A(a:)flwhk(x—i—a)A(J;) —wg k—1(x) =tk k—1(z)L, (72)
A(x)*lwk_,kﬂ(:c—i—a)A(x)—wk,k(:c) =ty i(z)L, (73)
—’wk,k+1($) :tk)k+1<x)L. (74)

From this we get an equation only involving unknown t’s,

—wpp—1(2) =tpp_1(2)L+A(x) o (x+a) LA(z)

(75)
+A(x) P A(z+a) Mg g (2) LA(z+) A().

Once the t’s satisfying (75) are known, one can determine the w’s, so from now on we

try to solve (75). Rewriting this equation we get

— Wi k—1(x) =tp k—1(x) L+tg L1 (x) +tg +1L2(x), (76)

where

o) —v(x) 1

Li(z) (—v(m)2 U(x)> (77)

and

L (veta)—v(zu(ata)? v(a-+a)?

Fat) ( —(I-v(@)v(z+a))? —U($+Ol)+v(x)v(x+a)2)' (78)

Thus
L1(a?)—v(x)2L:(_vO(m) U(i)) (79)

and
Ly(z)—v(z+a)’Li(z)+(2v(z)v(z+a)—1)L = (U(xga) v(y(c)+a))' (80)

We conclude that if v(z+a)#0 then L, Ly(z) and Lo(x) span s[(2,C), and there exists
a unique solution (¢g x—1, %%k, tkk+1) of (75), which is bounded by

[wp k1 (@)
l(z+a)|

As mentioned before, the singularity that seems to arise when v(x+a)=0 was well under-
stood to be one source of difficulties in this problem, but here it emerges from (71) that
whenever v(z+a)#0, the solutions are bounded by a constant times |v(x+a)|. Hence
they extend continuously as zero to {z:v(x+a)=0}, and by holomorphic removability

we conclude holomorphicity in 5. The result follows. O
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Appendix A. Some almost Mathieu computations
Throughout this appendix, we let v(z)=2 cos 2mz.

THEOREM 19. If a€R\Q, A\>0, E€R and >0, then
L(a, AP=2)Y —max{L(a, AE=2)) Tog A+27¢}.

Proof. A direct computation shows that if £ and A are fixed, then for every 6 >0
there exists 0<&< %71 such that if € is large and w€C? makes an angle at most ¢ with the
horizontal line, then for every 2€R/Z, w'=AF~ ) (z4¢i)-w makes an angle at most 13
with the horizontal line and [log [|w'[|— (log A427¢) | <4.

This implies that

Lo, A=) = 91e £log A o(1)  as & — oo.

By quantization of acceleration, for every e sufficiently large, w(a,AgE_’\v)):l and
L(a, AZ7)) =21 +1log \. By real-symmetry, w(a, A ")) is either 0 or 1 for £>0.
This implies the given formula for L(a, A% ). O

For completeness, let us give a contrived rederivation of the Aubry—André formula.

COROLLARY 20. ([BJ1]) If aeR\Q, A>0 and E<€R, then
L(c, AP > max{0,log A},

with equality if and only if E€X, ,.

Proof. The complement of the spectrum consists precisely of energies with positive
Lyapunov exponent and zero acceleration (as those two properties characterize uniform
hyperbolicity for SL(2,R)-valued cocycles by Theorem 6).

The previous theorem gives the inequality, and shows that it is strict if and only if
L(a, AF=2)) >0 and w(a, AF=A))=(. O

A.1. Proof of the example theorem
Fix aeR\Q, A>1 and weC¥(R/Z,R). Let v,=Av+ew.
LEMMA 25. If € is sufficiently small and E€X, ,_, then w(a, AP=v)y =1,

Proof. By Theorem 19 and Corollary 20, we have that L(a, AZF=2*))>log A and
w(a, A=A for every FER.
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For € small we have ¥, C[—4\, 4\]. By continuity of the Lyapunov exponent and
upper semicontinuity of the acceleration, we get w(a, AF=v))<1 and L(a, AP~2))>0
for every F€X, o, -

Since AP~?=) is real-symmetric, w(a, AF=v))>0 as well, and if w(a, AF~=))=0,
with FeXq 4., then (o, AE=v2)) is regular. This last possibility cannot happen: since
the Lyapunov exponent is positive, this would imply uniform hyperbolicity, which cannot
happen in the spectrum. We conclude that w(a, AXZ=<))>0 for EeX, ... By quantiza-
tion, this forces w(a, AF~v))=1, O

By Proposition 5, E— L(«, A(E’”f)) coincides in the spectrum with the restriction of
the analytic function Ers Ls 1 (o, AP~?<)) defined in some neighborhood. This concludes

the proof of the example theorem.

Appendix B. Coexistence near critical coupling

Here we show that perturbations of the critical almost Mathieu operator (with potential
v(x)=2cos 2wz) may exhibit coexistence of subcritical and supercritical energies, and
in fact one may have arbitrarily many alternances between subcritical and supercritical
regimes. As far as we know, all previous examples of coexistence present only a small

number of alternances.

THEOREM 21. Let «€R\Q, n>1 and {Ej}?:l be n distinct points in ¥, . Then,
for any §>0, there exists a trigonometric polynomial weC¥(R/Z,R) such that for every
»#0 sufficiently small, and every 1<j<n, there is E¥€X yisewN(Ej—0, Ej+0) such
that B is subcritical if (—1)’%>0 and E¥ is supercritical if (—1)73<0.

Proof. For H,,, all energies in the spectrum are critical, with zero Lyapunov ex-
ponent and acceleration 1 (see Appendix A). For E€C\Y, ,, we have that (o, AF~?))
is uniformly hyperbolic (this is general) with zero acceleration (this is obvious for real
energies and can be analytically continued to complex energies).

As for (a, AéE_”)), we have that it is uniformly hyperbolic with zero acceleration
for 0<e<L(FE)/2m and uniformly hyperbolic with acceleration 1 for e>L(FE)/2r (here
L(E)=L(a, AF~v))). This follows from the asymptotic estimate L(a, AgE_v)):Zws for
e>1 (see the proof of Theorem 19). In particular, for E€C\%, ,, (a,AgE_”)) is not
uniformly hyperbolic for e=L(E)/2m.

Let U be the set of all E such that L(a, AF~"))<1. This is an open neighborhood
of ¥q,». Following §3.3 define, for E€U, a holomorphic function qF on Imz>1/27 by



GLOBAL THEORY OF ONE-FREQUENCY SCHRODINGER OPERATORS 51

q?(x)=a” (x)b¥ (), where

a? bF
BF = (CE dE> €SL(2,C)
has columns parallel to the unstable and the stable directions of (o, A("=?)). Notice that
q¥ is holomorphic with respect to (E,z) and, for each E€U, ¢ admits holomorphic
extensions up to Imx>L(E)/2r. Thus, when E€Y, ., ¢¥ is defined in the entire upper
half-plane H.

Fix some 1<£p<2 and let VCC¥(R/Z,R) be an open neighborhood of all E—wv,
EcU, such that for every v’ €V the cocycle (a, Ag/)) is uniformly hyperbolic with accel-
eration 1. Define Ly 1:V—R by Lo (v')=L(a, AL)) 2.

For E€U and weC¥ (R/Z,R), the derivative of t+— Ly 1 (E—v—tw) at t=0 is given
by

- Re ¢” (z+ei)w(x+ei) dr, (81)
R/Z
where ¢ can be chosen arbitrarily with L(E) /27 <e<2 (see §3.3). Let ®¥ be the (bounded)
linear functional on C¥(R/Z,R) taking w to (81).

We claim that, for every finite subset £CX,, and any FE,€X,,, there exists
E'eX, , arbitrarily close to E, such that ®E" is not a linear combination of the {®F} pee.
Once this has been done, one can inductively obtain points E} €%, ,N (Ej—30,E;+30)
and a trigonometric polynomial weC*(R/Z, R) such that (—1)7®%i .w<0. Now choose
0<r<36é such that E'€U for every E'€ K;=[Ej—r, E}+r] and moreover (=1)7®F .w<0.
Then, for 570 small and every E’€ K, we have s(—1)7 Ly 1 (E' —v—3w)<0. Notice that
if %70 is small, then for every E' €%, y 45w we have

(1) if Ly 1(E' —v—>3w)>0 then E’ is supercritical for Hy vt sew;

(2) if Ly (E' —v—3w)<0 then E’ is subcritical for Hy 4 sen-

Indeed, in the first case, we just use that L>Ls; (by convexity), and in the second case
we notice that we must have L>0>Ls 1, so w(a, A(El*””“”))<1, hence by quantization
w(a, AT —v=2w)y=0 and (o, AP ~v=%®)) is regular. The result then follows since, for
every s small, g 4,00 intersects each of the int K; (as 334 44500 1S continuous in
the Hausdorff topology).

To conclude, let us prove the claim. Note that, by Theorem 8, ®F+£0, which in
particular implies the claim when & is empty. We may assume that the ®F, Ec&, are
linearly independent. If the claim does not hold, then for every E'€X, , close to E,,
®F" is a linear combination of ®F, for E€E. Thus, we can write (in a unique way)
@E/:ZE@ cp(E")®F. Note that the coefficients cg(E'), originally defined for E’ near

E, in X, 4, coincide with restrictions of real-analytic functions defined in a small open
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interval I, around E,, which we still denote by cg(E’).(3°) Let DCU be a small disk
around F, with DNRCI, and such that E'—cg(FE’) extends holomorphically to D.

For E'eD, we set ’YE,:qE/*ZEEg cg(E)q”. Then, for E'€X, ,ND, vE s a
holomorphic function defined on the upper half-plane H such that

/ Revy(z+ei)w(z+ei)dr =0
R/Z

for every weC¥(R/Z,R) and any 0<e<2. This implies that, for E'€X, ,ND, ~E ex-
tends to an entire function, which is purely imaginary on R (see §2.4). But for every
E'eD, v defines a holomorphic function on {z:Im2>1/27} which depends holomor-
phically on E’. Since X, ,ND has positive logarithmic capacity (see [S, Theorem 7.2]),
'yE' must define an entire function for every E'€D (just use Hartogs’ theorem). It
follows that ¢Z =~F +% pee cE(E")qP defines a holomorphic function on H for ev-
ery E'’eD. By a similar argument as in §3.4.3, we can, for every E’€ D, analytically
continue the unstable and stable directions of (o, A =)} defined for Imz>L(E’)/2n
to holomorphic functions u, s?: H—PC? which satisfy AZ =) (z)-u? (z)=u” (z+a),
AE =) (). 5B (2) =5 (z4a) and uF (2)#s (2) for every zcH.

Since L(a,AéE/_U))>O for every E’ and any £>0, this implies that (a,AéE,_”))
is uniformly hyperbolic for any e>0 and every E’€D. But this cannot happen when
E'eD\%, .4, as (o, AgEl_U)) is not uniformly hyperbolic when 2re=L(E’). This gives a

contradiction and proves the claim. O

Remark 26. For perturbations of the almost Mathieu operator, the acceleration is
bounded by 1, which implies that the number of alternances between the subcritical,
critical and supercritical regimes is always finite. Indeed, for any v'€C¢(R/Z,R), and
near any critical energy Fy€X, ,» with acceleration 1, we can define an analytic function
L¢ 1 as before which has the property that energies F€X, ,» near Ey are supercritical,
critical, or subcritical according to whether L¢ 1 >0, L¢ =0 or L¢ ;1 <0.

Remark 27. For aeR\Q, wng(R/Z, R) and 3 small, one may investigate the
transition from subcriticality to supercriticality within the one-parameter family of oper-
ators Hy \(v4scw)s A>0. It is convenient to look simultaneously at all ¥, x(y4scw) in the
(E, X)-plane. Our work implies that there is a (possibly disconnected) nearly horizontal
analytic curve L;}(O),(Sl) close to X4, x{1}, which separates the subcritical energies
(below it) and the supercritical energies (above it). From the point of view of this paper,

the study of this family is straightforward, since transversality can be checked by the

(39) Fix a #&-dimensional subspace FCC¥ (R/Z,R) such that the ®F|r, E€E, are linearly inde-

pendent, and define cg(E’) in a neighborhood of Ey so to have <I>E,|F:ZE€£ ce(ENOF|k.
(31) Here we use the explicit computation L¢ 1 (E—Av)=log A for A near 1 and E near Zq,v.
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direct computation of L¢ ; in the almost Mathieu case. In particular, since the critical

curve is nearly horizontal, it defines a premonotonic family of cocycles, so the arguments

in §3.1 show that the intersection of this curve with the spectra has zero linear measure.
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