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1. I n t r o d u c t i o n  

This paper  is concerned with the symplect ic  behavior  of  the Korteweg de Vries (KdV) 

flow 

ut+ux,x=6uu~,  u(O,x)=uo(x), (1.1) 

on the circle x E T : = R / 2 ~ r Z ,  where u(t,x) is real-valued. In particular,  we investigate 

how the flows m a y  (or may not)  be accurately  approximated  by cer tain finite-dimensional 

models, and then use such an approximat ion  to conclude a symplect ic  nonsqueezing 

property.  In order to describe the symplect ic  space involved, and state  the result precisely, 

we need to set nota t ion  and recall some previous results describing the well-posedness of 

the initial-value problem (1.1). 

On the circle we have the spatial  Fourier t ransform 

1/02  ~(k) :=  ~ u(x) exp(- ikx)  dx (1.2) 

for all kEZ,  and the spatial  Sobolev spaces 

for s E R ,  where (k} :=(1+lk[2)  1/2. These are natura l  spaces for analyzing the K d V  flow. 

Let P0 denote  the mean opera tor  

1 ~0 2~ P 0 u : =  ~ udx, 

or equivalently 

p0 (k) = Xk=0 (k). 

The KdV flow is mean-preserving,  and it will be convenient to work in the case when u 

has mean  zero.(1) Accordingly we define the mean-zero periodic Sobolev spaces H~ by 

endowed with the same norm as H i .  

(1) One can easily pass from the mean-zero case to the general mean case by a Galilean transfor- 
mation u(t, x)~+u(t, x-Po(u)t) -Po(u). 
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Recent work on the local and global well-posedness theory in H~ for (1.1) is ba- 

sic to our results here. For example, the geometric conclusions from finite-dimensional 

Hamiltonian dynamics which we ultimately need for our nonsqueezing result can only be 

applied in the setting of rather rough solutions to the initial-value problem (1.1). We now 

pause to summarize some of the analytical techniques that  have been developed for the 

study of such rough solutions, and the resulting regularity theory (see, e.g., [1], [19], [6], 

[9] and [10]). 

1.1. S u m m a r y  of  local a n d  global  wel l -posedness  t h e o r y  

If the initial data u0 for (1.1) is smooth, then there is a global smooth solution(2) u(t) 

(see, e.g., [26]). We can thus define the nonlinear flow map Sgdv(t) on C~(W) by 

SKdV(t)u0::U(/; ). In particular, this map is densely defined on every Sobolev space H~. 

If s>~-�89 then the equation (1.1) is globally well-posed in H~. In other words, 

the flow map SKdv(t) is uniformly continuous (indeed, it is analytic) on H~ for times t 

restricted to a compact interval I-T,  T], and for such s we have bounds of the form 

s u p  llSKdV(t)U011H~ <~ C(s, T, IlUOI]HS) 
It[<~T 

(1.3) 

1 the flow map SKdV(t) is no longer (see [19], [9] and [10] (and also w below)). For s < - ~  

uniformly continuous [6] (see also [20]) or analytic [4], so from the point of view which 

requires a uniformly continuous flow in time, the Sobolev space Ho 1/2 is the endpoint 

space for the KdV flow. Coincidentally, this space is also a natural phase space for which 

KdV becomes a Hamiltonian flow; we will have more to say about this at the end of 

the introduction. Note, however, that  if one asks only that  the flow be continuous in 

time, then global well-posedness for (1.1) has been established for all s ) - i  in [16] using 

inverse scattering methods. Combining mapping properties of the Miura transform and 

the result in [27], local well-posedness of (1.1) in H~ with a (not uniformly) continuous 
5 1 flow map holds for - g < s < - 3" 

To obtain many of the local and global well-posedness results mentioned above, one 

iterates in a certain space-time Banach space ys (defined in (3.1) below; this space is 

a variant of the XS'b-spaces used, for instance, in [1] and [19]), which has the same 

(2) This result can also be obtained by inverse scattering methods, since the KdV equation is 
completely integrable. However, our methods here do not use inverse scattering techniques, although 
the special algebraic structure of KdV (in particular, the Miura transform [24]) is certainly exploited. 
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regularity as H ~ in the sense that  one has the embedding(a) 

The nonlinearity is then placed in a compamon space Z ~ (see (3.2) below), which is 

related to y s  via an energy estimate of the form 

for any time to and any bump function T] supported near to. (We will elaborate more 

upon these spaces and estimates in w The local well-posedness theory(4) for the KdV 

equation (1.1) then hinges on the bilinear estimate 

(1.4) 

1 ( s e e  [19], [9] a n d  [10]). whenever u and v are mean-zero functions and s~>-~ 

To pass from local well-posedness to global well-posedness one needs to obtain long- 

~< s < 0. this has been achieved by means of the t ime bounds on the H~-norm. For - ~  

" / -method",  constructing an almost conserved quantity comparable to the H~-norm; see 

[9], [10] or ~9.1. 

1.2. Low-frequency approximat ion  of  K d V  

The KdV flow (1.1) is, formally at least, a Hamiltonian flow on an infinite-dimensional 

space. In order to rigorously apply results from symplectic geometry, we must approxi- 

mate  this infinite-dimensional flow" by a finite-dimensional flow. Furthermore, in order to 

apply these geometric tools, we need that  the finite-dimensional flow is itself Hamiltonian. 

We begin with a negative result. Suppose that  we wish to s tudy the KdV flow for 

da ta  u0 whose Fourier transform is supported on I - N ,  N] for some large fixed N,  and 

specifically to approximate the KdV flow by a finite-dimensional model. A first guess for 

such a model might be the flow 

ut+Uxxx=P<~x(6uu~), u(0) = u0, (1.5) 

(3) In this paper  we use A~B to denote  an es t imate  of the form A<~CB, where the  implicit cons tant  
C may depend  on cer tain parameters  such as s, which we will specify later in the  paper.  Similarly, A<<B 
denotes  B ) C A  for some such universal cons tant  C. 

(4) Strict ly speaking, in order to handle  large initial da ta  one must  also generalize this es t imate  to  
circles R/2~r,~Z of arbi trar i ly large period, in order to apply rescaling arguments  to make the  d a t a  small 
again. See [9], [10] or w 
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where P<~N is the Fourier projection to frequencies ~< N, 

A 

= Xlkl.<N (k). 

Denote the flow map associated to (1.5) by Sp<.N•dV(t ). This flow has several ad- 

vantageous properties; for instance, Sp<.Ni<dv(t ) is a symplectomorphism on the space 

P<<,NHo 1/2, associated with a natural symplectic structure (see next subsection). Since 

P<<.NHo 1/2 is a finite-dimensional space, it is easy to see (e.g. using L2-norm conservation 

and Picard iteration) that  this flow Sp<NKd v is globally smooth and well defined. In [2], 

the nonlinear Sehr6dinger flow Jut +uxx = lul2u was similarly truncated, and it was shown 

that  the truncated flow was a good approximation to the original (infinite-dimensional) 

flow. Unfortunately, the same result does not apply for KdV: 

THEOREM 1.1. Let k0EZ*, T > 0  and A>0.  Then for any N>>C(A,T, ko), there 
exists initial data uo with IlUOIIHol/2 <. A and supp(~o)C{k: Ikl<~ N} such that 

I(SKdv(T)uo)A(ko) -(Sp<.xKdv(T)uo)A(ko) I >/e(T, A, k0) (1.6) 

for  some c(T, A, k0)>0. 

In other words, SP<•KdV does not converge to SKdV even in a weak topology. 

We prove this negative result in w Basically, the problem is that  the multiplier 

X[-N,N] corresponding to P<<.N is very rough, and this creates significant deviations be- 

tween Szav  and Sp<NKdV near the Fourier modes k=:hN. In cubic equations such as 

mKdV (see (1.9) below) or the cubic nonlinear SchrSdinger equation, these deviations 

would stay near the high frequencies + N ,  but in the quadratic KdV equation these de- 

viations create significant fluctuations near the frequency origin, eventually leading to 

failure of weak convergence in (1.6). 

Of course, there are several obvious ways to modify the finite-dimensional flow (1.5) 

in an a t tempt  to find an effective approximation to the KdV flow for data with Fourier 

transform supported on [ -N ,  N], but at least a little bit of care is needed when consider- 

ing these modifications. We let b(k) be the restriction to the integers of a real even bump 

function adapted to I -N ,  N] which equals 1 on I-N~2, N/2], and consider the evolution 

ut+ux~=B(6uux) ,  u(0) = u0, (1.7) 

where 
A 

Bu(k)  : b(k)a(k).  

Let SBKdV denote the flow map associated to (1.7). Observe that  this is a finite- 

dimensional flow on the space P<~NH~). Unfortunately; SBKdV is not a symplectornor- 

phism, but we will explain in (1.27) below how by conjugating a flow of the form (1.7) 
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with a simple multiplier operator we will arrive at our desired finite-dimensional symplec- 

tomorphism on P<.NH-1/2(T) that  well approximates the full KdV flow at low frequen- 
(N) cies. This desired symplectomorphism is labelled SKdV(t ) in (1.27) below,(5) and once 

the aforementioned approximation properties are established, the nonsqueezing result 

will follow almost immediately after quoting the finite-dimensional nonsqueezing result 

of Gromov [13]. 

The first step in the argument is to show tha t  we can approximate  SKdV by SBKdV 
in the strong H~-topology: 

THEOREM 1.2. Fix s>~-�89 T > 0  and N>>I .  Let uoEH~ have Fourier transform 

supported in the range lkl<~N. Then 

sup ]]P<~2V~/~(SBKdVUo(t)-- SKdv(t)Uo)t]Ha <<. N-~C(s ,  T, Iluol[Ha) 
It[~<T 

for some a = ~ ( s ) > 0 .  

In particular, we can accurately model the KdV evolution for band-limited initial 

data  by a finite-dimensional flow, at least for frequencies Ikl <.N 1/2. 

The wel 1- posedness st ate ment (1.3) gives Theorem 1.2 for all 0 <~ N ~ C ( s, T, II uo II Ha ), 

and hence our proof needs only to consider N>~C(s,T, Ilu011Ha). This turns out to be 

the most interesting case from the point of view of the nonsqueezing applications of this 

approximation theorem which we take up below. 

Theorem 1.2 can be viewed as a s tatement  that  one can (smoothly) t runcate the 

KdV evolution at the high frequencies without causing serious disruption to the low 

frequencies, in spite of the obstruction posed by Theorem 1.1. Our second main result 

(proven in w is in a similar vein: 

THEOREM 1.3. Fix s ) - � 8 9  T > 0  and N )  I. Let uo,(toEH~ be such that P<~2NUO = 

P<~2N(tO (i.e. uo and (to agree at low frequencies). Then we have 

sup liP<~N(SKav(t)(to--SKdv(t)Uo)IIHf ~ N-~  T, Iluol{na, II(tollu~) 
I<~<T 

for some a = a ( s ) > 0 .  

By the same reasoning following Theorem 1.2, we may assume in the proof of The- 

orem 1.3 that  N > C ( s , T ,  Ilu0HHa, Ilfi011H~). 

The point of Theorem 1.3 is that  changes to the initial da ta  at frequencies ~>2N 

do not significantly affect the solution at frequencies ~<N, as measured in the strong 

(5) The equation which defines this flow is given in (7.1) below. 
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H~-topology. This is in stark contrast to the negative result in Theorem 1.1. The point 

is that  there is some delicate cancellative structure in the KdV equation which permits 

the decoupling of high and low frequencies, and this structure is destroyed by projecting 

the KdV equation crudely using (1.5). 

To prove Theorem 1.2 and Theorem 1.3, we shall need to exploit the subtle can- 

cellation mentioned in the previous paragraph in order to avoid the obstructions arising 

from Theorem 1.1. We do not know how to do this working directly with the KdV flow. 

Rather, we are able to prove estimates which explicitly account for this subtle structure 

in KdV by using the Miura transform u=Mv, defined by 

u = M y  := vx +v  2 -  P0 (v2). (1.s) 

As discovered in [24], this transform allows us to conjugate the KdV flow to the modified 
Korteweg-de Vries (mKdV) flow 

=F(v),  (1.9) 

where the nonlinearity F(v) is given by 

:= 6(v (1.10) 

The modified KdV equation has slightly better  smoothing properties(6) than the ordinary 

KdV equation, and in addition the process of inverting the Miura transform adds one 

degree of regularity (from Ho 1/2 to H1/2). In particular, the types of counterexamples 

arising in Theorem 1.1 do not appear in the mKdV setting, and by proving a slightly more 

refined trilinear estimate than those found in, e.g., [10] (see, in particular, Theorem 4.3 

below) we are able to prove the above two theorems by passing to the mKdV setting 

using the Miura transform. Of course, in order to close the argument we will need some 

efficient estimates on the invertibility of the Miura transform; we set up these estimates 

(which may be of independent interest) in w 

1.3. Application to symplectic nonsqueezing 

We can apply the above approximation results to s tudy the symplectic behavior of KdV 

in a natural phase space H o l / 2 ( T ) .  Before doing so, we recall some context and results 

from previous works. We are following here especially the exposition from [15] and [22]. 

(6) See w in particular Theorem 4.3. 
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Definition 1.4. Consider a pair (H, w), where w is a symplectic form(7) on the Hilbert 

space H. We say that  (H, w) is the symplectic phase space of a partial differential equation 

with Hamiltonian H[u(t)] if the partial differential equation can be written in the form 

it(t) : J VH[u(t)]. (1.11) 

Here J is an almost complex structure(s) on H which is compatible with the Hilbert 

space inner product ( . ,  �9 }. That  is. for all u. vEH,  

w(u, v) = (Ju, v>. (1.12) 

The notation V in (1.11) denotes the usual gradient with respect to the Hilbert space 

inner product, 

{v, VH[u]) - dH[u] (v) (1.13) 

--: d H[u+sv] .  (1.14) 
d~ s=0 

One easily checks that  an equivalent way to write the partial differential equation corre- 

sponding to the Hamiltonian H[u(t)] in (H, ~) is 

it(t) = V~H[u(t)], (1.15) 

where the symplectic gradient V~H[u] is defined in analogy with (1.13), 

w(v, V.~H[u]) : dH[u](v). (1.16) 

For example, on the Hilbert space H o l / 2 ( T ) ,  we can define the symplectic form 

")  :=  fT u(x)o;lv,(x) dx, (1.17) C0-1/2 (U,. 

where O~l:Ho 1/2 (T)--+H 1/2 (T) is the inverse to the differential operator COx defined via 

the Fourier transform by 
1 

o~-lf(k) : :  ~ f ( k ) .  

The KdV flow (1.1) is then formally the Hamiltonian equation in (Hoa/2(T) ,  w-1/2) 

corresponding to the (densely defined) Hamiltonian 

H[u] := f (�89 + u  a) dx. (1.18) 
JT 

(7) That is, a nondegenerate, antisymmetric form w: H x H-+C. We identify in the usual way H 
and its tangent space TzH for each xCH. 

(s) That is, a bounded, anti-self-adjoint operator with J2=-identity. 
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Indeed, working formally(9) we have for any v EHo 1/2 (T), 

H['tt-l-cvl = fT(~txVx + 3u2v) dx 

= dx 

= j/wOx ~ ( - - u ~  +6uux)v  dx 

= ~ - l / 2 ( u ~ - 6 u u ~ ,  v) 

=a,_l/2(v,-Ux~x +6Uu~). 

Comparing (1.15) and (1.16) with (1.1), we see that  KdV is indeed the Hamiltonian par- 

tial differential equation corresponding to H[u I on the infinite-dimensional symplectie 

space (Ho 1/2, a3_1/2). In particular, the flow maps SKdV(t) are, formally, symplectomor- 

phisms on H o U 2 ( T ) .  

Tha t  the KdV flow arises as a Hamiltonian flow from a sympleetic structure as de- 

scribed above was discovered by Gardner [12] and Zakharov and Faddeev [28]. A second 

structure was given by Magri [23] using fT u2 dx as Hamiltonian, but it is not as con- 

venient as the first structure for our strategy to prove nonsqueezing. Roughly speaking, 

it seems that  the symplectic form in this second structure could possibly be used to 

establish a nonsqueezing p r o p e r t y - - i n  the H 3/2- topology--of  a finite-dimensional ana- 

log of (1.1). However, since the well-posedness theory, and the accompanying estimates, 

for the full KdV flow do not presently exist at such rough norms, we do not see how 

we could approximate the full KdV flow in a space as rough as H -3/2 with a finite- 

dimensional flow. The first s tructure described above allows us to adopt this s trategy in 

the space Ho 1/2, within which we do have well-posedness. (See below for references for 

this approach to proving nonsqueezing for partial  differential equations. See, e.g., [25] 

and [11] for more details and history of the various symplectic structures for KdV.) 

For any u.  ~ H o l / 2 ( T ) ,  r > 0 ,  k0EZ* and z E C ,  we consider the infinite-dimensional 

ball 

B~176 r ) : =  {u E H o U 2 ( T ) :  [ I n - u .  11Hol/2 ~< r} 

(9) By the word 'formally', we mean here that no attempt is made to justify various differentiations 
or integration by parts. Later, when we localize the space Ho 1/2 and Hamiltonian in frequency and 
write down the corresponding equations, the reader can carry out the analogous computation where the 
justification of the necessary calculus will be evident. 
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and the infinite-dimensional cylinder 

C~o(z; r ) : =  {It C Hol/2  (T): Ik01 -~/2 I~(k0)-zl ~< r) .  

The final result of this paper is the following symplectic nonsqueezing theorem: 

THEOREM 1.5. Let 0 < r < R ,  u, E H o l / 2 ( T ) ,  k0EZ*, zEC and T>0.  Then 

SKdv(T)(B~C(u,;  R)) ~ Ck~(z; r). 

In other words, there exists a global Ho~/2(T)-solution u to (1.1) such that 

and 

Jk01-z/ l (k0)-zl>r 
Note that no smallness conditions are imposed on u, ,  R, z or T. 

Roughly speaking, this theorem asserts that  the KdV flow cannot squash a large 

ball into a thin cylinder. Notice that  the balls and cylinders can be arbitrarily far away 

from the origin, and the time T can also be arbitrary. Note though that this result is 

interesting even for u , = 0 ,  z=0  and smooth initial data u0, as it tells us that  the flow 

cannot at any time uniformly squeeze the ball B~C(0; R) even at a fixed frequency k0. 

By Theorem 1.5, the wel]-posedness theory for KdV reviewed above, and density con- 

siderations, we know that  for any T, r</~,  there will be some initial data  uoEB~(0;  R) 

for which(1~ ]~(k0, T)[ > [kolZ/2r. (See [5, p. 96] for the same discussion in the context 

of a nonlinear Klein-Gordon equation.) A second immediate application of Theorem 1.5 

to smooth solutions was highlighted in a different context already in [21], namely that 

such smooth solutions of (1.1) cannot uniformly approach some asymptotic state: for 

any neighborhood B~(u0;  R) of the initial data in H-1/2(T)  and for any time t, the 

diameter of the set SKdV(t) (B ~ (u0; R)) cannot be less than R. 

The motivation for Theorem 1.5, and an important component of its proof, is the 

finite-dimensional nonsqueezing theorem of Gromov [13] (see also subsequent exten- 

sions in [14] and [15]). The extension to the infinite-dimensional setting provided by 

a nonlinear partiM differential equation seems nontriviM. The program was initiated by 

Kuksin [21], [22] for certain equations where the nonlinear flow is a compact perturbation 

(10) We are us ing  here the  s t a t e m e n t  of the  t heo rem only in the  case u .  =0 ,  z = 0 .  Of  course  one 
gets  a s imilar  conclusion to the  one we draw here, bu t  wi th  different weights  and  a different initial d a t a  
set ,  by s imply  us ing  t he  L2-conserva t ion  and  t ime  reversabil i ty proper t ies  of t he  flow. T h a t  is, for any  
R>r, there  is d a t a  ~ 0 E { f :  [[f]IL2(T)<~R} such t ha t  the  evolut ion ~ of th is  d a t a  satisfies [u(ko,T)[>r. 
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of the linear flow. Tha t  the KdV equation does not meet this requirement can be seen 

by an argument involving simple computat ions similar to those supporting Theorem 1.1, 

which are detailed in w below: Fix o.<<l, and for each integer N~> 1 consider initial da ta  

UO,N (Z) := ~rN 1/2 cos Nz.  

Clearly the set {Uo,x :N=l  , 2, ... } is bounded in Ho 1/2. However, when one computes 

the second iterate(1~) u[~ ] , one sees that  it differs from the linear evolution of ~2[~ ] at 

frequency k = N  in tha t  

( X, t ) -  ( N, t) ~ xl/ o. (1.19) 

By the local well-posedness theory we know, assuming that  a is sufficiently small com- 

pared to t, that  the difference between the second iterate and the actual nonlinear evo- 

lution uN(t) of the data  U0jv satisfies 

IlUN (t) -u[~T ] (t)IIHj 1/2 (T) ~ o.4. (1.20) 

Together, (1.19) and (1.20) show that  if {Nk}~=l is a sequence of integers relatively 

prime to one another,(~2) then 

Hence the set {UNk (t)--U[~ (t)}~= 1 has no limit point in H o U 2 ( T ) .  

The nonsqueezing results of Kuksin were extended to certain stronger nonlinearities 

by Bourgain [2], [5]--for instance, [2] t reats  the cubic nonlinear Schr6dinger flow on 

L2(T).  In these works, the full solution map is shown to be well approximated by a 

finite-dimensional flow constructed by cutting the solution off to frequencies I k l~N  for 

some large N. The nonsqueezing results in [2] and [5] follow then from a direct application 

of Gromov's  finite-dimensional nonsqueezing result to this approximate flow. 

The argument we follow here for the KdV flow is similar to the work in [2] and [5], 

but seems to require a bit more care. The complication seems to us to be somehow 

rooted in the counterexample of Theorem 1.1, which clearly exhibits that  a sharp cut-off 

is not appropriate  in constructing the approximating flow, but which seems also to be 

subtly related to the fact that  the estimates necessary to approximate the full KdV flow 

(n) See, in particular, equation (8.2) for the notation used here, and if necessary w for what we 
hope is a sufficiently detailed discussion to allow the reader to reproduce the elementary computations 
we quote here. 

(12) Note (for example by examining the iterates and using well-posedness) that ~zN(t ) is supported 
only at frequencies which are integer multiples of N. 
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by a more gradually truncated flow are unavailable to us when we work directly with the 

KdV equation. We have already sketched how we will deal with this difficulty (that is, 

by passing to the modified KdV equation) in the discussion which followed Theorem 1.3 

above. 

We now provide some details of the previous paragraph's sketch; in particular, we 

indicate the difficulties that arise when one tries to repeat the argument in [2] and [5]. 

Let N>~I be an integer. By simply restricting the form w-l~2, we see that  the 

space (P<<.NHoU2(T), a;-1/2) is a 2N-dimensional real symplectic space, and hence by 

general arguments (see, e.g., Proposition 1 in [15]) is sympleetomorphic to the standard 

space (R 2N, c~0). We will make explicit use of such an equivalence below: Any uE 

P<~NHo 1/2(T) is determined completely by 

(Re ~2(1), ..., Re fi(N), Im ~(1), ..., Im ~t(N)) 

( e l ( ' / / , ) ,  . . . ,  en(lt), fl(U), ..., fN(U)) E R 2N. 
(1.21) 

In terms of the coordinates (1.21), the form c*'-l/2 defined in (1.17) can be written using 

the Plancherel theorem as 

N 

k = - N  
kr 

N 

= }2  ~ (~(-k)~(k)-~(k)~(-k)) 
k = l  

N 
2 

= E k Im(~;'(k)~(k)) 
k = l  

N 
2 

= }2 ~ (ek(~)fk(v)-ek(v)A(u)). 
k = l  

Writing r for the NxN-ma t r i x  r_=diag(1, I/,/-2, 1/v~, ..., 1 /v~ ) ,  A - d i a g ( r , r ) ,  and 

u =  (~'(u), dT(u))ff R 2N for the coordinates in P~<N Ho 1/2 (T), we summarize the discussion 

above by saying that  

~_a/~(~, ~) = ~o(A(~'(~), ;(~)), A(~'(~), f(~))), (1.22) 

where as before we have written a~0 for the standard symplectic form on R 2Iv. In other 

words, 

A: (P<~NHol/2(T), a,'_ 1/2) > (R 2N, wo) 

is a symplectomorphism. 
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Following [2], our goal is to find a flow which satisfies three conditions: it should 

be finite-dimensional--that is, map P<~NH-1/e(T) into itself: it should be a symplectie 

map for each t; and it should well approximate the full flow SKdV(t) in a sense that  
(N) ., we wilt make rigorous momentarily. For now, we write SGood!(~ ) for this flow yet to be 

determined: 

(P<~NHo 1/2., ~ - 1 / 2 )  A ) (R2N,  wo) 

s(d~)oa,(t)~ (1.23) 

(P<.~Ho ~/~, ~-1/~) ~ (R 2N. ~o). 

Note then that  the map 

Ao~(N) (R2N (R 2N ~Good!(t) ~ , wo) > ~ wo) (1.24) 

is likewise a symplectomorphism to which we can apply the finite-dimensional theory 

of symplectic capacity (see [13] and, e.g., [15]). One defines, for any ~ . � 9  2N, u!N)�9 

P<<.NHol/2(T),  r>0,  0< Ik01 ~<N and z � 9  the finite-dimensional balls in P<~NHo~/2(T) 

and R 2N, respectively, by the notation 

BN(u!N);r):={u(N)Ep<~NHol/2(T):[]u(N)--u!N)]IHjI/2 <<. r}, (1.25) 

B(~,, r):= {~ �9 R~N: I~-~,1 ~<r}, (1.26) 

and the finite-dimensional cylinders in the same spaces by 

C~o(Z; ~):= {u (N) �9 P.<NHol/2(T): Iko 1-1/2 t~ (N) (ko)-zl ~< r}, 

Cko (z; r) := { (~', f )  �9 R2N: I(eko + i fko) - z I <~ r}.  

From [13] (see also, e.g., Theorem 1, p. 55, in the exposition [15]), we have the 

finite-dimensional analog of Theorem 1.5: 

THEOREM 1.6. ([13]) Assume that for some R, r>~O, zCC, O<~ko<<.N and ~ . E R  2N 

there is a symplectomorphism r defined on B('~., R ) C ( R  2N, 4'o) so that 

r R)) c Cko (z; r). 

Then necessarily r >jR. 

We apply this theorem to the symplectomorphism Ao r oA -1 defined in (1.24) 
~ ~Good! 

above to conclude the following result: 
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THEOREM 1.7. Let N ) I ,  0 < r < R ,  u!N)cp<~NHol/2(T), 0<[k01~<N, z E C  and 
(N) 

T > 0 .  Let SOood!(T): P<.NHo~/'2(T)-+P<.NHo~/2(T) be any symplectomorphism. Then 

(N) N (:v). C)~(z; r). SGood!(T)(B (u. ,R)) g 

To deduce Theorem 1.5 from Theorem 1.7. one would like to let N--+oc and show 

that  the flow S Uv) Oood!(T) converged to SKdv(T) in some weak sense. More precisely, one 

would need the following condition: 

Condition 1.8. Let k0EZ*, T > 0 ,  A >0  and 0<e<<l .  Then there exists an No=  

No(ko, T, e, A) > Ik01 such that  

_(r  
I~ol 1/21(SKav(T)uo)~(ko) <~ <<r 

for all N>~No and all u0EB~'r A). 

Once we find a finite-dimensional symplectic flow (N) SCood ! (t) for which Condition 1.8 

holds, it is an easy matter  to conclude Theorem 1.5. Indeed. let r, R, u. ,  k0, z and T 

be as in that  theorem, and choose O<c<(R-r)/2. The ball Boo(u.; R) is contained in 

some ball B~176 A) centered at the origin. We choose N>~No(ko, T, e, A) so large that  

Ilu,-P<~xu, IJH&I/2 ~e. From Theorem 1.7 we can find initial data u(oN)<P<<.NH-1/2(T) 
satisfying (N) f1% --P<<.NU.IIHo~/2<~R--e, and hence by the triangle inequality, 

tl (0 N)- .IIHolj2 .< n, 

and so that  at time T we have 

)ko1-1121 '~(N) ~T~u(-v)~A/k ~-z I > r + e .  ~~ ) 0 ) ~ O) 

If we then apply Condition 1.8 and the triangle inequality, we obtain Theorem 1.5 with 
UO :=U (N) : 

I k01-1/21Z-- ( S K d v ( T ) ~ N ) ) - - ( ] % ) I  

/>lko1-1/2 z (N) (SKdv(T)u~N))~(ko)_(~(N) (T )u (N) )~ (ko ) I I  t] - -  (SGood! (T) u(0 N) ) - (k0 ) [ -  I k~'Good[ 

) r --~- ~ - -  C 

=T.  

It remains to define the flow ~(N) ' - 'Good! ( t ) .  One might first t ry to follow Bourgain's 

t reatment of several different Hamiltonian partial differential equations, notably the cubic 
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nonlinear Schr6dinger flow on L2(T) (see [2] and [5]). Note that the Hamiltonian H[u] 
in (1.18) is well defined on 

(P<~NHol/2(T), w ,/2), 

and the equation giving the corresponding Hamiltonian flow on this space can be com- 

puted as before to be (1.5), which can be viewed either as a partial differential equation 

or as a system of 2N ordinary differential equations. The maps SP<NKdV(t ) are therefore 

symplectomorphisms, but from Theorem 1.1 we know that  Condition 1.8 fails. 

We proceed instead by using a flow of the form (1.7) as follows: Theorem 1.2 tells 

us that  for any multiplier /~ of the form described in (1.7), the finite-dimensional flow 

S/}Kd V provides a good approximation to the low-frequency behavior of KdV. However, 

the flows St]Kd v are not symplectomorphisms, and hence cannot be candidates for our 

flow s(No)od,(t) in the discussion above. Fortunately, there is a quick cure for this hiccup 

using the approximation given by Theorem 1.3 as follows: We will define a symplectic, 
(x) 

finite-dimensional flow SKdV(t ) on P<~NHo 1/2 so that  the following diagram commutes: 

U 0 E P ~ N g o  1/2 t3 } Buo 

S(Nd)v(fS)l ~ SB2KdV( ~ ) 

(N) w(t) S K d V ( t ) u 0  ~ " 

(1.27) 

We write explicitly the partial differential equation defining this flow in (7.1) below. 
(N) 

To show that  SKdV(t ) well approximates SKdv(t) at frequency k0, and hence qualifies as 

our choice of (g) SGood!(t), we will simply spell out the following: Theorem 1.3 allows us to 

replace SB2KdV (t) on the right-hand side of (1.27) with SKdV (t); and our choice N>> I k01 

allows us to ignore both the mappings on the top of (1.27) (again, by Theorem 1.3) and 

the bottom of (1.27) (by the definition of B, this is the identity at frequency k0). We 

give the details in w below. 

Acknowledgement. This work was conducted at UCLA. The authors are indebted 

to Tom Mrowka for his detailed explanation of symplectic nonsqueezing. 

2. I n v e r t i n g  t h e  M i u r a  t r a n s f o r m  

As described in the introduction above, our work here on the KdV equation relies on 

the continuity and invertibility properties of the Miura transform u=Mv,  where M is 

defined by 

Mv := vx + v2 -  Po(v 2) 
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(see [24]). The additional P0(v2)-term here is necessary to make the mean of Mv  vanish. 

Let SmKdV(t) denote the flow associated to the mKdV equation (1.9). Then we have the 

intertwining relationship 

MSmKdV (t) = S KdV (~)M. (2.1) 

To see this, we suppose that  v solves the mKdV equation (1.9), and set u : = M v .  Then 

one easily checks that  

- 6 ( v z + v  2 -P 0 (v 2 ) ) (v ~+2 v v ~)  

= (a~+2v) (v t+v~-6v2v~+6Po(v2)v~)  

~ 0 .  

Heuristically, the Miura transform acts like a derivative operator 0x, and in partic- 

ular we expect it to be a locally bi-Lipschitz bijection from H~ to H~ - l .  The purpose of 

this section is to make this heuristic rigorous for the range s~>�89 (See also [17], which 

studies the Miura transform for the larger range s~>0.) 

In what follows we shall make frequent use of the well-known Sobolev multiplication 

law 

II~II.~(T) < II~IIH~(~)11~11~(~/, (2.2) 
1 whenever s ~< rain(s1, s2) and s ~< s 1 + s 2 - 3 ,  with at least one of the two inequalities being 

strict. 

From (2.2) it is clear that  M is a locally Lipschitz(13) map from H~(T) to H ~ - I ( T )  

for s~> } (in fact, s>0  would suffice). The main result of this section is to invert this 

statement: 

THEOREM 2.1. Let s ~  �89 Then the map M is a bijection from H~(T) to H ~ - I ( T ) ,  

and the inverse map M -1 is a locally Lipschitz map from H ~ - I ( T )  to H~(T).  

_ 1 We shall see at the end of the proof Proof. We shall focus on the endpoint case s -  3' 

that  the higher regularity cases s>  �89 then follow from the endpoint case and standard 

elliptic regularity theory. We remark that  the arguments here (based on a variational 

approach) are unrelated to the rest of the paper and can be read independently. 

Since the linearization v~+v~ of the Miura transform M is clearly bi-Lipschitz from 

H0/2(W) to Hol/2(W), it is tempting to treat the lower-order terms v2-Po(v  2) as per- 

turbations to be iterated away. This works well if v and Mv are small; for large v, 

(13) By this we mean that M is Lipschitz on every ball in H~(T), with a Lipschitz constant 
depending on the ball. 
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however, it appears  that  iterative techniques alone cannot obtain this result.(14) Indeed, 

we shall need to also rely on variational techniques, and in particular we will use the well- 

known connection between the Miura transform and the spectral theory of SchrSdinger 

operators. The key identity here is 

- + v  - t - ( V x + V 2 ) = - d x z + M v + P o ( v 2 ) .  (2.3) 

We shall work entirely with the smooth functions in H~/2(T)  and H o l / 2 ( T ) ,  and 

obtain bi-Lipschitz bounds for M on these functions; it will then be clear from standard 

lilniting arguments tha t  one has bi-Lipschitz bounds in general. 

Let u E H o l / 2 ( T )  be smooth. We consider the problem of finding a smooth function 

v E H ~ / 2 ( T )  with M y = u ,  showing that  this v is unique, and of estimating v in terms of u. 

This will be achieved by studying the self-adjoint SchrSdinger operator  L = L ~  defined 

by 
d 2 

L : -  dec2 ~-u(x) 

and the associated energy functional E[r162 defined on Hi (T)  by 

z[ r  :-- <Lr r = s (x) + s (x)) dz. 

Since L is a self-adjoint elliptic operator on a compact  manifold T,  it has a discrete 

spectrum AI~<A2~<... with A~-++oc.  In particular, we have a lowest eigenvalue AI= 

A I ( u ) E R  and a nonzero (real-valued) eigenfunction 01 with L r 1 6 2  A priori, r is 

only in H i ( T ) ,  but since u is smooth one can use the equation Lr =A1r to deduce that  

r is also smooth. 

Our analysis here shall rely solely on A1. It  is interesting to note that  the work 

in [4], which is at a similar level of scaling to H o l / 2 ( T ) ,  uses the entire spectrum An of 

the operator L. 

Prom construction of E[r we observe tha t  

for all C E H  1 (T),  with equality at tained if and only if ~ is a AFeigenfunction of L. (As we 

shall see, A1 is an isolated eigenvalue, so equality only occurs when r162  for some c.) 

Thus A1 can be described in a variational manner.  

(14) However, iterative techniques do allow us to bootstrap low-regularity estimates to high- 
regularity estimates, basically because M is elliptic and v lies above the critical regularity H -1/2 for M 
(and for mKdV). The strategy of this argument will be to use variational estimates to obtain a prelimi- 
nary estimate in very rough norms, and use iteration to improve this to estimates in the correct norms 
H1/2(T) and Hol/2(T). 
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Since UEHo~/2(T) we see that  El1]=0,  and thus A~ must be nonpositive. If u ~ 0  

then 1 is not an eigenfunction, and s o / ~ 1  becomes strictly negative. 

We now claim that  r cannot vanish anywhere. If it had a double zero at some 

point, i.e. r162 (xo)=0,  then from the second-order ordinary differential equation 

Lr162  and the Picard existence theorem for ordinary differential equations we see 

that  r  a contradiction. Now suppose that r had a simple zero at x0, so in particular 

r changed sign. Let r162162  denote the positive and negative components of r 

An integration by parts shows that 

~[r = f~ Lr162 
1>0 

This implies that  r is a Al-eigenfunction of L, which contradicts the fact that  all such 

eigenfunctions are smooth.(15) Thus r is nowhere vanishing; without loss of generality 

we may take r to be positive and L2-normalized (which uniquely identifies r If we 

now define v to be the logarithmic derivative of 01, 

then v is smooth and we have 

V : ~  - -  - -  

(since L r 1 6 2  and hence 

r \ ~-1 / U -  ~ l - V  2 

u = v ~ + v  2+A1. 

Taking means of both sides we see that  

- ~  =P0(, 2) (2.5) 

and hence u=Mv. 
This shows existence of v such that u=Mv. Observe from (2.3) and an integration 

by parts that 

EIr  r dx- r dx; (2.6) 

from this and (2.5) we immediately see that  (2.4) holds (which we already knew), and 

that  equality occurs if and only if 0~=vr  or in other words, if r is a constant multiple 

of exp(0~-lv). In particular, this shows that  v is unique, for if we had Mv=M~ then the 

(15) Alternat ively,  one can  s m o o t h  01  at  t he  zeroes of ~1 to cont rad ic t  (2.4). 
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above argument yields that  exp(a~-lv) is a constant multiple of exp(CgxlV), which implies 

that  v--~ if v and ~ both lie in H0/2(T). 

We have now shown that  M is smooth, locally Lipschitz, and bijective on smooth 

functions with mean zero. To extend this to HoU2(T) and Hol/2(W) we need some 

a priori estimates on M -1 in these norms. 

Let uEHoU2(T) and vEH~/~(T) be smooth fimctions such that  u=Mv. For this 

discussion we will allow implicit constants to depend on the Ho 1/2 (T)-norm of u. Write 

U:--O[ i u, and thus II U I[ H~/" (W) ~'  1. We observe from integration by parts and the Hhlder, 

Sobolev and Gagliardo-Nirenberg inequalities that 

E[O] = ~ r dX + /TUr dx 

: II~H~ - 2 s  U ~ x  ~x 

/> IIClI~, -CllUl[L~. IIr [[r 
>1 JJCJI}~, --C JJUIJ H~J2(T) IJCJJ H~.- JJCJJ ~, 

/> I1r - c  lithe/: :2 FIr [Ir 

In particular, we have the coercivity bound 

for all CEHI(T) .  Applying this to r162 in particular, and recalling the upper bound 

on A1, we obtain the eigenvalue bound 

- C  ~< A~ 4 0 (2.7) 

and the preliminary eigenfunction bound 

[1r IIH 1 ~< 1. 

From (2.2) and the Hol /~(T)-bound on u we thus have 

IluC~llH-~/~ < 1, 

which by the eigenfunction equation Lr =Alr  implies the better eigenfunction bound 

I1r < 1. (2.8) 

Now we estimate v. From (2.5) and (2.7) we have the preliminary bound 
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since u=Mv, we thus have 

Ilvx-uHL~ < 1. 

Since L 1 and H o l / 2 ( T )  both embed into H -3/4 (for instance) we thus have by Sobolev's 

inequality that  

IlviIz~ < I l v l l ~  < [Iv~llH-~/~ 5 1. 

Returning once again to the equation u=Mv. ,  we thus have 

IlVx--~IIL~ ~ 1, 

which then implies 

In particular, we have 

IlVtlHo~/~<T) 5 1. (2.9) 

11021rILL ~ 5 II021VMH3/2<T) ~ IIvlIH&/~<T> ~ 1, 

and thus exp(0~-lv) is bounded above and below. Since r is a constant multiple of 

exp(Oglv), we thus see from (2.8) that  

I(~I(X)] r '~ l  for all x e T .  (2.10) 

We have obtained good bounds for v = M - l u  and for the ground state r We now 

establish that  M -1 is Lipschitz for smooth v in a given bounded subset of --0r-r1/2. From 

the inverse function theorem and the fact (from (2.2)) that  M is a locally uniformly C 2- 
~/-1/2 1/2 , Lr--1/2 

map from ~'0 to Ho 1/2, it suffices to show that  the derivative map M~v: H 0 --~10 

is uniformly invertible for v in this set. 

A direct computat ion shows that  

M ' (v ) (w)  = (1-Po)(Ox+2v)w. 

We shall invert this explicitly. 

LEMMA 2.2. We have 

M'(v )  -1 = A[exp(-20~-lv,)] O~lA[exp(20~lv)], 

where for any positive function VEH3/2(T), A[V]: Hoil/2(T)~Ho~I/2(T) is the operator 

V 
g[v](w) := v w -  po---~ Po(Vw). 
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We recommend that  the reader think of M ' v  and M ' ( v )  -1 as per turbat ions of 0x 

and 0 -1 respectively. 

Proof. We have 

M ' v  = (1 - P 0 )  exp( -20~  -iv) Oz exp(20~- t v) 

= ( 1 - P 0 )  e x p ( - 2 0 x - i v ) 0 ~ ( 1 -  P0) exp(20~- iv) - 

Also, observe that  A[V] is the inverse of ( 1 - P 0 ) V  -1 on H0~I/2(T). The claim follows. [] 

Since H 3/2 is a Banaeh algebra (by (2.2)), we have 

Ilexp(• s exp(CIIcgfIvlIHa/~) 5 exp(CIIV}IH~/2(T)) ~< 1. (2.11) 

Thus from Lemma 2.2 we see that  M ' ( v )  -~ is uniformly bounded from 1to t/2 to H~/2. 
Having proven Theorem 2.1 at the endpoint _ 1 s - g ,  we now sketch how one can use 

1 elliptic regularity theory to boots t rap this to higher regularities s >  3" 

Let us first show the boundedness of M -1 from H~ -1 to H~ for smooth functions. 

In other words, if u=Mv is smooth, we wish to show that  

From the H1/2-theory we already know that  

1 < 8< 3. We write Suppose for the moment  that  

]I'O]IH~ ~,~ ]]UX]IH~-I ~ I]MV]]Hg-1 +II(1--Po)v21!Hg-1 < JlUlIHg-I +IIv21IH ~-1. 

If s <  a, then by (2.2) we see that  ] ] v 2 l l g  s ,s which establishes 

boundedness. By iterating this type of argument again one can cover the case 3 <~ s < 5 3, 

and so forth until we obtain boundedness for all s > �89 The local Lipschitz property for 

M -1 is proven similarly and is left to the reader. [] 

Prom the above theorem, the analyticity of M,  and the inverse function t h e o r e m ,  

we see in fact tha t  M -1 is locally uniformly C "~ as a map from H ~ - I ( T )  to H~(T) ,  for 

any integer rn and any s 7> �89 
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3. T h e  F o u r i e r  r e s t r i c t i o n  s p a c e s  Y~ a n d  Z* 

In view of the results of the last section, we see that  to analyze the KdV flow in the 

H~ l-topology it will suffice to analyze the mKdV flow in the H~-topology. We now 

review the basic machinery (from [1], [19], [9] and [10]) for doing so. 

If u(x,t) is a function on the cylinder T • R with mean zero at every time, and 

s, bER,  we define the xs'b=xs'b(TxR)-norm by 

H IIx  := II (k, T)<k>~ @--k3>bllL~.~, 

where L~, k is with respect to Lebesgue measure d~- in the ~--variable and counting measure 

in the k variable, (x)2_=l+]xl 2, and the space-time Fourier t ransform fi(k, T) is given for 

kEZ* and T c R  by 

~(k, r ) : = /  e-2~(~k+t')u(x.t)dxdt. 
J T x R  

We use the same notation here as for the pro'ely spatial Fourier t ransform (1.2), relying 

on context to distinguish the two. 

We also need the spaces 

and 

Observe tha t  we have the crude estimate 

(3.1) 

(3.2) 

(3.3) 

which will be useful for controlling quartic or higher-order error terms; often we will be 

localized in t ime and just estimate L2t Hs by L~H ~. Here and in the sequel, we always 

allow implicit constants to depend on the exponent s. 

We can restrict the space Y~ to a t ime interval I C R  in the usual manner as 

Ilu[Iy/, := inf{llvlly, : VITxX = u}. 

Similarly we can restrict the ZS-norm. In practice we shall work in a fixed t ime interval 

(usually I - T ,  T]) and implicitly restrict all of our norms to this interval. 

Now we give some embeddings for the ys_ and ZS-spaces. Since the Fourier trans- 

form of an Ll-function is continuous and bounded, we have from (3.1) that  

ys C CtH~ C L~H~. (3.4) 



S Y M P L E C T I C  N O N S Q U E E Z I N G  O F  T H E  K D V  F L O W  219 

We have the "energy estimate" 

II (t)vllYs ilv(t0)llH  + IIv  + ' xxllzs (3.5) 

for any t o E R  and any bump function • supported on [to-C, to+C]. (See [1] and also 

[10, Lemma 3.1]; for analogous estimates in the nonperiodic context, see [18, Lemmas 

3.1-3.3].) 

Recall also the main estimate from [10] (see Proposition 1 in that  paper), namely, 

k k 

(1-Po)(((1-Po)jH_lUj)W~) z < (jH=lllUjllY~)llwI,ys (3.6) 

for any s~�89 and any integer k~2,  where the implicit constant depends on k. (We 

shall only use (3.6) with k=2,  3, 4.) This particular estimate is crucial (especially at the 

endpoint s=�89 in order to prove the local (and global) well-posedness of the modified 

KdV equation (1.9)in H~(T) for s~>�89 

It would be very convenient if the Z s on the left-hand side of (3.6) could be replaced 

by Z ~+a for some (~>0; this extra smoothing estimate would make it easy to ignore 

the high-frequency components of the evolution and concentrate on the low-frequency 

evolution. Unfortunately it is easy to see (by modifying the examples in [19]) that  such 
1 estimates fail, especially at s=  ~. Fortunately, as we will see in the next section, there 

are some other ways to improve the trilinear version of (3.6)~ which will be useful for our 

approximation results. 

4. A n  i m p r o v e d  t r i l i n e a r  e s t i m a t e  

The estimate 3.6 with k=2 allows us to estimate the cubic nonlinearity F(v)  defined in 

(1.10). However, for our analysis we shall need a refined version of this estimate. 

The first step is to decompose F into "resonant" and "nonresonant" components. 

In the following analysis we shall always assume that v has mean zero. 

We start  with the Fourier inversion formula 

v(x) = E ~(k)exp(ikx) 
kEZ*  

for vCH~, where Z* :=Z\{0}  is the set of the nonzero integers. A direct computation 

gives that  the Fourier transform of F(v) is 

F(v)(k) = 6 E i'(kl)~(k2)ikas (4.1) 
kl,k2,k3EZ* 
kl'F-k2-Fkn:k 

kl+k2#O 
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for all k C Z*. The constraint kl +k2 # 0  arises since we have subtracted the mean P0(v 2) 

from v 2 in the definition of F(v). Observe that  F(v) is a perfect derivative and so has 

mean zero and thus no Fourier component  at 0. 

LEMMA 4 . 1 .  We have 

F(v) = Fo(v, v, v)+ F#o(V, v, v), 

where the "resonant" trilinear operator Fo is given by 

Fo(u, v, w)A(k) := -6ikit(k)~(k)~(-k) (4.2) 

for kEZ*, and the "nonresonant" trilinear operator F#o is defined by 

F#o(u,v,w)-(k) := - E 2i(kl+k2+k3)it(kl)CJ(k2)~(k3) (4.3) 
kl,k2,k3EZ* 
kl+k2+k3=k 

(k14-k2)(k1§ 

for kEZ*. 

Proof. Consider the right-hand side of (4.1), and break the sum into pieces according 

to how many of the quantities kl+k3 and k2+k3 are zero. There is a single te rm in the 

sum for which k2+k3=kl + k 3 = 0 ,  and the summation in this case is Fo(v, v, v). If  just  

k2+k3 is zero, then the total  contribution of this case vanishes since the summand in 

this case is antisymmetric with respect to swapping k2 and k3. Similarly if just  kl +k3 

is zero. The remaining portion of the summation can be seen to be F#o(v,v,v) by a 

symmetr izat ion in kl, k2 and k3. [] 

If k = kl + k2 + k3, then we have the fundamental  resonance identity 

k 3 -- (k 3 + k  3 + k  3) = 3(kl +k2)(kl  +k3)(k2 + k3) (4.4) 

(see e.g. [1]). This justifies the terminology that  F0 is "resonant" but F#0 is "non- 

resonant".  

We remark that,  if u, v and w are real, then Fo(u, v, w) and F#o(U, v, w) are also 

real, despite the presence of the imaginary i in the definitions of these quantities. This 

follows from identities such as ~ ( - k ) = ~ ( k ) .  We leave the details to the reader. We also 

remark that  eventually these two functions will be est imated in absolute value, so the 

constants which appear  (e.g. the minus signs out front) will play no role. 

4.1. T h e  Fo ( r e s o n a n t )  e s t i m a t e  

We now give an estimate for F0. Morally at least, the bound we give follows from 

the trilinear version of (3.6), but we present an independent proof here for the sake of 

completeness. 
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LEMMA 4.2. For any s>>.�89 and any u,v, wEY  s with mean zero, we have 
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(4.5) 

Pro@ We shall just prove the endpoint case s = �89 as the general case easily follows 

(e.g. by using the identity O~-l/2Fo(u, v, w)=Fo(O~-t/2u, v, w) ). 

Split u = ~ k e z .  Uk, where uk is a complex-valued function whose spatial Fourier 

transform is supported on a single frequency k. Observe that  

Fo(u,v,w)= E Fo(Uk,V-k,Wk). 
kEZ* 

Thus if we show that  

I IFo(~,  v-~,  ~ k ) l l z , .  5 ll~ll~/=,~/= IIv-klla/=,l/= llwk[[1/2,1/2, 

then the claim (4.5) follows by summing in k and using Cauchy-Schwartz's inequality in 

u and v (just estimating the wk-term crudely by w). 

Fix k, and define the function Guk(t) by Uk(X, t)=e~kxeik3~G~(t), so that  

Ilukllx~,~ = <k> ~ II <~->aS~(~-)II L~.CR), 

and similarly for Gv_k and Gw k. The claim then collapses (after some translation in 

frequency space) to the 1-dimensional temporal estimate 

IlC;~c._~Cw~ IIHc'/= < IlCu,~ I1.:. II c,~,_~ ilH:~= IIC,,,k IIH:/= 
and 

But both left-hand sides can be estimated by IlGukGv_kGwk ]IL~, and the claim follows 

easily from the HSlder and Sobolev inequalities. [] 

4.2. T h e  F#o  ( n o n r e s o n a n t )  e s t i m a t e  

We now turn to the nonresonant portion F#0 of the nonlinearity. In analogy with (3.6) 

and (4.5) we have the estimate 

IqF~o(,~, v, w) llz~ < II'~llY~ I1~'11 ~'., IlwliYs (4.6) 

for all s>/�89 and u,v, w c Y  ~ with mean zero. This estimate can be proven by the tech- 

niques used to prove (3.6) in [10], but we shall obtain it as a consequence of a slightly 

stronger version, which we now state. 
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We first need some Litt lewood-Paley notation. If N is an integer power of two, we 

let PN denote the dyadic projection operator 

If No, N1, N2 and Na are four integer powers of two, we let soprano, alto, tenor and 

baritone be a permutation of the indices 0, 1, 2 and 3 such that  

Nsopra.no ~ ]~alto ~ ]u . . . .  ~ l~/barit . . . .  

THEOREM 4.3. Let No, N1, N2 and N3 be integer powers of two. Then 

tlPN~ < \Nsopr~noJ " t~n~ (4.7) 

for some absolute constant ~>0.(I~) 

This means that  (4.7) is only sharp when the output frequency No is essentially the 

highest frequency, and the two lowest frequencies Nt~,or and Nbaritone are O(1). This 

means that  very low Fourier modes can influence high modes, but medium and high 

modes do not. In addition, the high modes do not have much influence on the low 

modes.(17) From (4.7) one can easily obtain (4.6) by summing in the Nj.( is)  

The estimates (4.5) and (4.7) give some intuition for why it is possible to find a finite- 

dimensional approximation to the mKdV flow--and hence, using the Miura transform, 

for the KdV flow as well: the only nonlinear interactions for which we now have no 

sharpened estimates are the resonant interactions coming from F0 (which does not mix 

frequencies) and the high-low-low interactions in F~0. Heuristically, then, we might 

start believing that  if we truncate high frequencies, the evolution will not see much of 

a difference at low frequencies. In fact, it is possible to use these estimates to prove 

low-frequency approximation theorems for mKdV analogous to Theorems 1.2 and 1.3, 

but we do not write out these results explicitly in this work. 

The rest of this section is devoted to the proof of Theorem 4.3. We remark that  the 

computations in this section are not needed elsewhere in the paper, and the reader may 

wish to take (4.7) for granted on the first pass and move to the next section. 

Pro@ We begin by reviewing some (nontrivial) estimates from [10]. 

(16) T h e  q u a n t i t y  ~ shall  vary  from line to line. 
(17) T h a t  is, when  the  soprano and  alto dyadic factors are h igh  frequencies and  No is low, we have  

a smal l  first factor on t he  r igh t -hand  side of (4.7). 
(18) More precisely, one first observes t ha t  the  le f t -hand side of (4.7) vanishes  unless  Nsoprano~ 

Nalto. T h e n  one decomposes  u, v and  w into dyadic pieces and  exploi ts  o r thogona l i ty  of t he  projec- 
t ions  t~ in the  Ys- and  Zs-spaces .  We omit  the  details .  
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The proof of (4.7) relies mainly on the trilinear estimate 

liulu2uallzL < Ilu111xo,1/2-~/loo Ilu21]xo,1/2-1/~oo Iluallx,/2-1/loo.~/,-1/loo (4.8) 

proven in [10, Section 7]. This estimate can be viewed as a trilinear variant of the L6t 
Strichartz estimate in [11, and its proof requires a small amount of elementary number 

theory. 

We will also use the following estimate, which follows relatively quickly from some 

bounds found in [10]: 

(~--k~)~-~ < II<[> Ilv[iY~ II<lg, (4.9) 

1 for all s~>~ and some 5>0. To establish (4.9), recall Theorem 3 from [10]: 

k k 

j_I~I ~J < 1-I IluJll>, (4.10) 
- -  X ' ~ - 1 " 1 / 2  j = l  

1 We need equation (9.2) in [10] as well, which also holds when s>~ �89 for s>~ .  

(k)Sxkr176176176 2 ~ < II~,Hx~-*.*~= [t~2ttx,-~.~/=. (4.11) 
@--k3} 1-a LkL, 

Combining these two and writing for the moment 

W(k, r) =_ Xkr (1-P0)(vw))~(k, T) 

= Xk# ~ E iklu'(kl)v(k2)w(k3)' (4.12) 
kl+k2+ka=k 
kl,k24-ka~O 

we conclude by (4.10) that  

(k}~W(k,r) 
IIL~L~. < II~llx~ ~,~ [l~lIxo-~.~/~ < II~ll/~ IIvll/~ I1~11/~. (4.13) 

We quickly conclude (4.9) from (4.13): looking at the definition of the norms involved, 

one sees that  without loss of generality we may assume that / t (k) ,~(k) ,  ~(k)~>0. Next, 

by replacing the factor ~(k) appearing in (4.13) and (4.12) with Xk~>~o(kl)~t(kl) and 

Xk~<~o(kz)it(kl), one concludes (4.13) with the function W now replaced by 

WII(k'T)~--Xk~kO(k) E t/gl [ ~t (/gl) V (~2) W(~3)" 
kl+k2+ka=k 
kl:k2+kar 
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Repeating this argument while interchanging the roles of kl and k2, and then kl and k3, 

and summing gives (4.13) with W replaced with 

WIII(]~'T)~ Xk# O(k) Z (l~ll~-]]g21~-I]%D~(kl)~(k2)w(k3) 
klk2k35~O 

(k14-k2)(k2+k3)(kl+k3)#O 

By the definition of F#0 in (4.3) this yields (4.9). 

We now begin the proof of (4.7). It will suffice to prove the estimate 

iIPNoF#o( PNl u, Py2v, PN3W) lix~/2 -~12 
(4.14) 

7 < Neno~ II'~l/x*/~.'/~ Ilvllx,l~,,l~ I lwllx,/~,,- .  
n O  

Indeed, this estimate already controls the X ll2"-ll2-portion of the ZW2-norm. To control 
the 2 1 �9 LkL , -pomon  , we observe from HSlder's inequality that  the left-hand side of (4.14) 

controls 

(r-ka} 1+~ c~L~.' 

and the claim follows by a suitable interpolation with (4.9) (decreasing a if necessary). 

It remains to prove (4.14). By duality this is equivalent to 

f s l Feo( ul , us, u3) dx dt 

N 
< ( ~0 ~ N~[or l lUo l lx_3/~ . ,1211u l l l x , /2 . , /211u211x, i~ . , /~ l lu311x l l2 .~ /~  ' \ SV~o~o ) 

where ~ has Fourier support on the region/k, l~N~ We have inserted the 021-multiplier 
to cancel the (k 1 +k2+k3)-factor in (4.3). 

The right-hand side is comparable to 

No (NoN,~r2N3) 1 /2a 
ms~prano / Xtena~ IV2 H Ilujllxo,1/=. (4.15) 

j=0  

Note that  we raay assume that  Nsoprano~'~.~alto since the left-hand side of (4.14) vanishes 

otherwise. Hence the right-hand side of (4.15) is bounded below (throwing away the 

factor (No/N~opr~no) ~) by 

3 
Ntl/2-crhfl/2 h7-1 

. . . . .  ~'bari~one~'soP ran~ I ' I  tlUJllX~ 
j=0 
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Taking space-time Fourier transforms and taking advantage of the frequency localization, 

we thus reduce to showing that  

3 

ko,kl,k2,k3CZ* j=O 
ko+kl +k2+ka=O 

(kl+k2)(k2+ka)(k2+k3)r 

dT 3 fV1/2-c~ MI/2 N-1 
*'tenor ~'baritone soprano I I  IIUJtlX~ 

j=0 
(4.16) 

where dr is integration over the 3-dimensional space 

{(To, 71, T2, T3) E R4:7-0 4-T1 +72 +T3 = 0} 

with measure d r : = ~ ( r 0 + % + 7 2 + % )  a Ylj=o dTj. We remark that  the above estimate is 

now symmetric with respect to permutations of k0, kl, k2 and k3. 

Without loss of generality we may assume that  the gj are all nonnegative. The 

next step is to exploit the implicit @j-k~}l/2-denominators. From the fundamental 

identity (4.4), 

3 3 
E (rj - k  3) = - E k3 = 3(kl +k2)(k2 § k3)(kl +k3), (4.17) 
j=o j=o 

we see that  

sup ( r~ -k  3} > I~1-/-k211]c24-k311]c14-]~31 
j~-0,1,2,3 J 3 

I ksop . . . .  + kbaritone I I ]Cairo + ~Cbaritone I I ~tenor 4- kbaritone I" 

By symmetry we may assume that  the supremum on the left-hand side is attained 

when j =0. 

LEMMA 4.4. We have 

I~soprano4-~Jbaritonel I]~alto4-kbaritonel [ktenor § 2~rbaritone ~ 2 Nsopran o (4.18) 

Pro@ We have four cases: 

(1) Nbaritone((Ntenor((Nalto. Then the left-hand side of (4.18) is comparable to 

X:oprano Ntenor Nbaritone. 
(2) Nbaritone ~'~2~rtenor<<Nalto - Then the left-hand side of (4.18) is ~ N : o p r a n  o Ntenor. 

(3) Nbar i t one (<Ntenor~ . ~  . Then the left-hand side of (4.18) is comparable to 

X2oprano Xbaritone. 
(4) Nbaritone~./Vtenor ~,~Nalto. Then at least one of kl +k2, k2+ka and kl +ka must 

have magnitude ~-JNsopran o (since they sum to -2k0). Since the other two factors have 

magnitude at least 1, the left-hand side of (4.18) is >Ns2oprano �9 [] 
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From this lemma, we have 

1V2 N - 1  (TO--k30} ~ ~ ' s o p r a n o  b a r i t o n e "  

Thus to prove (4.16) it will suffice to show that  

f ~-1/2-[-6/ L 3 \ 1 / 2  3 d'r 3 

k0, k l ,  k2, k3 c Z *  j = 0  j : 0  
ko+kl +k2-t-k3:0 

(kl +k2)(k2+ka)(k2+k3)#O 

At least one of kl, k2 and ka is O(Nt~or);  by symmetry  let us suppose that  it is k3. Then 

~1/2-5 and then by undoing the Fourier t ransform and doing we can bound N: /L7 by , 

some substitutions the estimate becomes 

/T• dx dt ~ Ilvollxo.o llvlllxo ~/: llv211xo,~/2 IIv3[Ix~/2-~,~/:. 

But this follows directly from (4.8) if a is small enough. This proves (4.7). [] 

5. P r o o f  of  T h e o r e m  1.3: K d V  low f r e q u e n c i e s  a r e  

s t a b l e  u n d e r  h i g h - f r e q u e n c y  p e r t u r b a t i o n s  o f  d a t a  

We now prove Theorem 1.3. Fix s, T, u0 and u0. 

We have no upper  bound on the time T, and so, in particular, we cannot hope to 

control the flow SKdv(t) on the entire interval [ -T ,  T] by a single application of the 

local well-posedness theory. On the other hand, because of the uniform bounds (1.3) we 

see that  we can divide [-T,T] into a bounded number C(s,T, IlUOIIH~, IlUOIIH~) of t ime 

intervals such tha t  the local well-posedness theory can be used on each interval. It  will 

thus suffice to prove a local-in-time version of Theorem 1.3; more precisely, it will suffice 

to show the following proposition: 

PROPOSITION 5.1. Fix s>~-�89 and N'~>I.  Let u0,~0EH~ be such that P<~N, uo = 
P<<.N'UO. Then, if T' is sufficiently small depending on s, IlUollH~ and II~OllU~, we have 

sup [IP~N,_(N,)~/~(SKaV(t)~o--SKaV(t)~O)IlH ~ ~ (N')-~C(s, [[uOIIH~, (l~0ttH~) 
It]~T' 

for some a = a ( s ) > 0 .  

1 The exponent g in (N') 1/2 is not particularly important  here; any exponent between 

0 and 1 would suffice. 
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To see how this proposition implies the theorem, first recall that  we may assume 

that  N is large, N>~C(s,T, IluollH~, IIgOIIH3), since the claim in Theorem 1.3 trivially 

follows from (1.3) otherwise. (This same remark also applies of course in Proposition 5.1, 

allowing us to assume that  N'>~C(s, tluollH~, II~OIIU~) there too.) From (1.3) we may 

divide I -T ,  T] into C(s, T, IluOIIH~, II~011~g) time intervals, such that  on each interval 

(a time-translated version of) Proposition 5.1 holds. Consider for example the first 

such time interval [0, T'] on the positive real axis. We start with N ' : = 2 N  and apply 

Proposition 5.1, to get 

sup (SKGV(t)~O-- SKdV(t)~O)]]Hd < ( X')-~C(s, Iluoll  , II ollH ). 
te[O,T'] 

Before moving on to the next subinterval, modify SKdv(T')u0 on frequencies lk[~< 

N' - (N ' )  1/2 to agree with SKav(T')uo. By the local well-posedness theory and the tri- 

angle inequality, we can proceed as on the first subinterval, decrementing N '  by (N') 1/2 
each time we apply Proposition 5.1, to obtain Theorem 1.3 if N (and hence N ' )  is 

sufficiently large. 

It remains to prove Proposition 5.1. Henceforth we allow our implicit constants to 

depend on s, I]U0HH~ and [[?s 

Define 

vo := M - l u o ,  v(t) :=SmKdV(~)V0, 

V0 : :  M- l i fo ,  v(t) := SmKdV (t)V 0. 

From Theorem 2.1 we thus have 

HvoiiHg+~ ~<C and IIsOIIHg+~ ~<C, 

while from (2.1) we have 

SKdV(t)Uo = M y ( t )  and SKdV(t)u0 = M S ( t ) .  

Our task is thus to show that  

sup }lP<~x, (N,p/~ (M~(t)--Mv(t))lJH3 <~ C(N')-C 
Itl<.r' 

(5.1) 

Henceforth we allow the quantity a > 0 to vary from line to line. 

We first investigate the discrepancy between ~ and v at time 0. 
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LEMMA 5.2. With vo and 'bo defined as above, we have 

I[P<~N, @o-V0)]IH~+l ~< C(N') -% 

Proof. From the definitions and our assumptions on u0 and uo we have 

P~<N' (Ms - M y 0 )  = O. 

On the other hand, from Theorem 2.1 we have 

IIP.<N' (~o-vo)[lH3+l <~ CHMP<~N'vo-MP~N'Vol[H3. 

Thus by the triangle inequality; it will suffice to show the commutator  estimate 

I[MP<~N, VO- P~<N, Mv01]H~ ~< C(N')  -~, (5.2) 

and similarly for ~o- 

Clearly it will suffice just to consider v0. From the definition (1.8) of the transform M 

and the fact that  Pm P<~N' and O~ all commute, we have 

MP<.N'Vo-P<<N'Mvo = (1-Po)[(P<~N'vO)2-p<~N'V~] 

= (1--P<~N,)[(P<N, vo) 2] 
--(P<~N'- Po)[( (1-P<~N,)vo)( (I + P<~N')vo)]. 

But the last two terms have an H(~-norm of O((N') -~) for some a > 0 ;  this can be seen 

by the Sobolev multiplication law (2.2), the H~+Lbound on Vo, and the estimate 

II(1--P<,N')VlIH~ ~< x-~'llvltH~+~ 

to extract the (N~)-~'-decay from the high-frequency projection 1--P<~N,. The claim 

follows. [] 

We still have to prove (5.1). It will suffice to show that  

sup C(N') (5.3) 
It[<~T' 

This is basically because the commutator  of M with P<<.N,(N,)~/2 is small thanks to the 

argument in the proof of Lemma 5.2. We omit the details as they are very similar to 

those in Lemma 5.2. 
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From Lemma 5.2 we see that  ~0 and v0 are almost identical at low frequencies 

[k[ <~N'. In fact, because the solution map SaKdV(t) is locally Lipschitz(19) in H~ +], we 

may assume that  

P<N' (v0--v0) = 0, (5.4) 

since the general case then follows by modifying v0 (or v0) by a small amount in H~ +1 

and using the Lipschitz property. 

Henceforth we assume (5.4), so that  the low frequency ([kl~<g') portions of ~(t) 

and v(t) are identical at time 0. Our task is to prove (5.3), which asserts that  the 

slightly lower frequency ([k[ ~<N ' - (N ' )  1/2) portions of ~(t) and v(t) are still very close 

together at later times. This will be achieved primarily through the improved trilinear 

estimate (4.7). 

In what follows we assume that  all our space-time norms are restricted to the time 

interval [- T', T']. 
From the local well-posedness theory of mKdV (see(2~ (3.5), (4.5) and (4.6), or 

[1], [19] and [10]) we have the local estimates 

(5.5) 

if the time T' is chosen sufficiently small depending on the H~+Cnorms of vo and Vo. 

The frequency interval [N'-(N') 1/2, N'] contains O((N') 1/4) intervals of the form 

[M, M+(N')I/4]. By orthogonality and the pigeon-hole principle, we see that  there must 

exist one of these intervals [M, M +  (N')1/4] such that  

II(P<M+(N,)I/4--P<M)V]Iys+I~-II(P<I~I+(NQI/4--P~M)~]Nys+I ~< C(N')-C (5.6) 

Fix this M. We split 

where 

?2 = Vlo-~-Vmed ~-Vhi ~ 

Vlo:=P<MV, Vmed=(P<~M+(N,)I/4--P<~M)V a n d  Vhi:=(1--P<~M+(N,)I/4)?2. 

Thus from (5.5) and (5.6) we have 

IlVloltys+l ~ C ,  tlVhi[[y~+l ~ C  and IlVmedlly~+l <C(N') -a. (5.7) 

(19) Since we are assuming T' to be small this  follows directly from the  local well-posedness theory. 
(20) Strict ly speaking, when the  da ta  vo, v0 has large H~+l -no rm,  one has to first rescale the  torus  

by a sui table scaling paramete r  A in order to close the  i teration,  but  this  has no significant effect on our 
argument .  The details are carried out in [10] and [9]. 
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Applying & M  to (1.9) and using Lemma 4.1, we see that  Vlo obeys the equation 

(or +Oxx~)V~o = P.<MF0 (v, ~,, ~)+P.<MY~0(v,  ~, v). 

From the definition (4.2) of the resonant operator F0, we see that  

P.<MF0 (~, v, v) - F0 (,lo, '~'~o, ~lo). 

The situation for F#0 is more complicated as this nonlinearity will mix Vlo, Vmed and Vhi 

together. Define an error term to be any quantity with a Z~+l-norm of O((N~)-a) .  

From (5.7) and (4.6) we see that  any term in Fg0(v, v, v) involving Vmed is an error term. 

Now let us consider the terms which involve L'hi. A typical term is 

P<~MF#o(Vto, r i o ,  Y h i ) .  

We can dyadieally decompose this as 

E PNoD<~MFr176176 PN2vl~ rNaVhi)" 
No,N1,N2,N3 

Such a te rm can be estimated using the frequency separation between rio and Vhi: for the 

summand to be nonzero, we need N1, Nz ~<M and N3 >~M+ (N ~)1/2. Using the notat ion 

in the definition (4.3) of Fr we also need lk~+k2+k3j~No<~M, and hence we must 

clearly also have Ntenor > (N')1/4. From our nonresonant estimate (4.7), the bounds (5.7) 

above, and a summation of the dyadic indices . ~  (conceding some powers of log N ~ if 

necessary) we thus see that  this term is an error term. A similar argument shows that  

any other te rm involving Vhi will also be an error term. Thus we see that  vlo obeys the 

equation 

(Ot+Ox~)Vio =Fo(vlo,Vlo, Vlo)+P<<. MFr terms. (5.8) 

By similar reasoning, the function ~?lo:=P~<Mf: also obeys the same equation (but with 

slightly different error terms, of course). Since 91o(0)=Vlo(0), we thus see from the 

s tandard local well-posedness theory(21) that  

II~o-v~ol/y~,~ ~< C(N')-L (5.9) 

which by (3.4) implies (5.3) as desired. This proves Theorem 1.3. 

(21) A rough sketch of what  we have in mind here is: Write G for the port ion of the nonlinearity 
on the r ight-hand side of (5.8) not involving the error terms,  and note tha t  

J0  t �9 3 ~ Vlo -Vlo = e z(t-~)~ (G(vlo) - G(vlo) + error terms)  dr. 

Writing G(~lo)-G(Vlo)=f~DG(O~lo+(1-O)vlo)(%o-Vlo))dO, we use (3.5), (4.5), (4.6) and the fact 

tha t  by scaling, we may assume tha t  the data  for rio and 5to are small in y s + t  to conclude (5.9). 
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6. P r o o f  o f  T h e o r e m  1.2: B K d V  a p p r o x i m a t e s  K d V  at low f r e q u e n c i e s  

We now prove the more difficult of our KdV approximation theorems, namely Theo- 

rem 1.2. The proof here is definitely in the same spirit as that of Theorem 1.3, in 

that  we show that  two flows remain close by showing that  their mKdV analogs remain 

close. However, the proof will be more complicated since one of the flows being studied 

is SBKdV (see (1.7)), and the standard Miura transform M defined by (1.8) seems an 

inappropriate tool with which to pull the SBKdV-flOW back to an mKdV-type evolution, 

as it introduces a v~-type nonlinearity on the right-hand side of (1.9) which is too rough 

for us to estimate. Instead, we introduce a modified Miura transform MB. This strategy 

is illustrated in (6.1), where we have written SBmKd V for the flow which intertwines MB 

and BKdV in the sense that 

M• oSBmKdV(t)oM) 1 ~ S B K d V ( t ) ,  

v0 Sn, Kav (t) SBKdV (t) 
> v(t) 

uo > u( t ) ,  > 
SKdV(t) SBmKdV (t) 

(6.1) 

We can summarize the proof of Theorem 1.2 (using the same notation as in (6.1), 

which will be defined momentarily!) by saying that  u(t) and ~(t) are shown to be close 

at low frequencies by showing that  5(t) and v(t) are likewise close. 

We now turn to the details. Fix s~>-�89 T > 0 ,  N>>I,  B and uoEH~; our implicit 

constants may depend on s, T and ll'uollH~. We work exclusively in the time interval 

[ - r ,  T]. 

Let ~t(t):=SBKdV(t)uo denote the evolution of the flow (1.7). Our task is to show 

that 

sup ]IP<~N1/2 (SI<dV(t)uo --~2(t))[[H~ <~ N - C  (6.2) 
[tl<~T 

We first claim (in analogy with (i.3)) the bound 

sup II (t)ll   2 1 (6.3) 
[tl<~Z 

if N is large enough. This bound is achieved by a repetition of the arguments in [9]. As 

it is somewhat technical and uses techniques different from those elsewhere in this paper 

(notably the " /-method") ,  we defer the proof of (6.3) to an appendix. 

We may assume from (6.3) and the local well-posedness theory(22) that u0, and 

hence g, is smooth. 

(22) The  well-posedness theory  for KdV from [19] can be applied wi thout  substant ia l  change to  the  
B K d V  equation (1.7). The  presence of the  multiplier B on the  r ight -hand side presents  no difficulty. 



232 J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA AND T. TAO 

The Miura transform (1.8) intertwines the KdV flow with the (renormalized) mKdV 

flow (1.9) and (1.10). We seek a similar transform to intertwine the KdV-like flow SBKdV 

with an mKdV-like flow. It turns out that  the correct transform to use is given by 

MBV := vx +B(1  -/9o) (~2) = ~ix +B(~  2) - P0 (~2), (6.4) 

where of course the multiplier B here is that  which appears in the flow (1.7) above. 

As with M, the operator MB is a locally Lipschitz map from H~ +1 to H~. We now 

address the question of invertibility of MB. 

Let 5 be a function bounded in H~ +1. We first look at the derivative operator M~O, 

defined by 

M ~ ( 5 ) f  := f x+2B(1-Po) ( f~ f ) .  

LEMMA 6.1. Fix v E H  s+l  1 o , s>>.-7, and allow the implicit constants in this lemma to 

depend on LIolIH~§ I f  N is s ~ c i e n t l y  large, then M ~ 0  is invertible from H~ to H~ +1, 

in the sense that 

][M~(v)-lf][H~+~ ~< [[f[[H 3 

for all (smooth) f .  

Pro@ Recall from the proof of Theorem 2.1 that  we have the bound 

IlM'(v)-lfllH~* I ~< LIfIIH~. (6.5) 

1 1 but it is easv to see that the same argument works for s > - ~ .  We proved this for s = - ~  

Prom the resolvent identity 

O - I = A  1 ( 1 _ ( A _ O ) A - 1 ) - 1  ' 

it thus suffices to show that  the operator 

( M ~ - M ' ~ )  M'(~) -1 

is a contraction on H~. Applying (6.5) again, it thus suffices to show the bound 

[[M~(~)f--M'( i ' ) fHH3 << IlfllH3+~. 

But the left-hand side is just 

]12(1 -B)(~I ) I In~ < N - "  I]~?f H H,+,, ~< N -'~ II~IIHg+~ IlfllHg+~ < N - "  IlfllH3§ 

by (2.2) for some or>O, and the claim follows if N is sufficiently large. [] 
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COROLLARY 6.2. Let R > 0  and s>>. -~  ~. If N is large enough depending on R, 

then there is a map MB 1 defined on the ball B~~ II~IIH~ <~R} which in- 

verts MB and is a Lipschitz map from B~r R) to H~ +~. 

Remark. Recall that MB depends on N through the definition of B (see (1.7)). 

Proof. Fix R; implicit constants are allowed to depend on R. 

Let ~2~B~(0; R). To define M~, 1 at ~2, we of course have to solve the equation 

M B v = u .  

From Theorem 2.1 we can find a �9 bounded in H~ +1, such that  

Mvappr = ~. 

We now apply the ansatz v---~Uappr-~-w. One easily checks, using (6.4), that  5 verifies the 

difference equation 

wx + B(1 - P0) (25appr ~5+*V 2) = (1-- ~)  (Lappr),7'2 

or equivalently, 

w = M ~  (Vappr)-- 1 (1 -- B) (V2ppr) -- M ~  (Vappr)-- 1B(1-- P0) (w2). 

Since V&ppr i8 bounded in H s+l we see from Lemma 6.1 and (2.2) that  

t]M~ (~app~)-* (1--B)(~2ppr)llHS+, ~ IV -c'. 

A contraction mapping argument again using Lemma 6.1 and (2.2) thus shows that  a 

solution ~ to the above difference equation exists and obeys the bound 

II~IIH~+~ ~ N -~  

if N is sufficiently large. In particular, we see that  M ~  1 exists at ~ and that  M ~  1 is 

bounded on H~. 

The Lipschitz bound now follows from Lemma 6.1 and the inverse function theorem, 

since MB is a smooth map from H~ +1 to H~. (Equivalently, one can use contraction 

mapping arguments similar to the one above to show that  M ~  1 is uniformly Lipschitz 

on very small neighbourhoods of ~, and hence on the whole ball B~(0 ;  R).) [] 

Thus if N is large enough, the above corollary and (6.3) let us write 

5(t) -- MBI~(t )  (6.6) 
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and conclude also that  

sup II~(t)ll~a+~ ~ 1. 
Itl<~T 

From the Leibniz rule we see that  

ut = M~ (~)vt, 

~2~ = M~(~)~x = ~9~ + 2 B ( 5 ~ ) ,  

~ = M~ (~) ~ + 6B(Ox~'~), 

~;u. = ( ~ + B ( ~ 2 ) - P o ( ~ 2 ) ) M ~  (~7,)~?. 

= ~ =  + 2 ~ B ( ~ . )  + ' (~2 )~ .x  + 2 ~ ( ~ )  8 ( , ~ ) - M ~ ( ~ ) ( P o ( ~ 2 ) ~ x ) ,  

(6.7) 

where we have used the fact that  Po(ff~:)=O for any f .  Expanding (1.7) and cancelling 

the two terms of 6B(Ox~?~) which appear, we obtain 

M 5  (v) (~t + S z ~ )  = 6 B ( 2 ~  B (~3~) + B (~2) ~?z~ + 2B(~2) B (~?~)) - BM• (77) (6P0 0? 2) ~ ) .  

The first term of the right-hand side is roughly M~B(~)(6B(B(~2)#,)). Indeed, a compu- 

tation shows that 

M~(~)(6B(B(52)O~)) =6B(2~B(~'z)+ B(~)~x~)+12B(1- Po)(~B(B(~2)f;~)) �9 

Thus we have 

M~B( ~)( ~t + O~-6B(  B( 52)f~ ) +6B( Po(~2)~) ) = 12El +6E2, 

where the error terms E1 and E2 are the "commutator expressions" 

E1 := B(B@2)B(v~;z)- (1 -Po)(~B(B(~2)~))), 

E2 := P0(O2)[M~,  B]5~. 

Thus ~ obeys the equation 

f4+5:~z=6B((B-Po)(f~2)Ox)+M'B(~)-I(12EI+6E2), ~?(0) = ~0. (6.8) 

We have written SBmKav(t) in diagram (6.1) to represent this flow. Since 9 is smooth, 

it is a priori in the space y~+l  when restricted to the interval [ -T ,T} .  We now seek to 

control the nonlinear terms in (6.8). 

If it were not for the error terms E1 and E2, one could obtain bounds of the form 

II~'[Ir~+~ 51 (6.9) 

from (6.7) and the local well-posedness theory for mKdV in [10] (which can easily handle 

the presence of the operator B of order 0). To deal with the terms E1 and/?72, we use 

the following estimate: 
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We have 

IIM'B(~)(t)-~EjlIz~+~ <. C N  -~ 

for j = l , 2  and tE[-T,T]. 
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(6.10) 

Proof. By (3.3) and Lemma 6.1 (using (6.7), of course), it suffices to show that  

]IEj]]LrH~ < N  -~. (6.11) 

We first prove this for El .  Observe that  B(~2)B(~)=Ox�88 2 has mean zero, and 

so we can factor out 1 - P 0 ,  and reduce to showing that 

where we have used the shorthand ~ :=B(~2) .  

By (2.2) we see that  ~ is bounded in H~ +~ for some or>0. From the identity 

~ B ( ~ ) - ~ B ( ~ x )  = ~[B,  ~ ] ~ - ~ [ B ,  ~ ]~ ,  

and another application of (2.2), we see that  it suffices to show the commutator  estimate 

II[B, f]gllH~ < N -~/2 ]]fl]Hg +" Ilgl[/~. (6.12) 

Without  loss of generality we may assume that  f and g have nonnegative Fourier trans- 

forms. Observe that  

( [B , f ]g ) - (k )  = ~ (b (k ) -b (k2) ) f (<)0 (k2) .  
kl+k2=k 

The quantity b(k)-b(k2) is clearly O(1). If [kl/<<N then one also obtains a bound of 

O(Ikll/N) by the mean-value theorem. Thus we have a universal bound of 

Ib(k)-b(k2)l g ]kl ["/2N-~/2. 

The commutator  estimate then reduces to 

II(la~l~/2f)gllH~ s IlfllH~+~ IlgllH~, 

but this follows from (2.2). 

Now we prove (6.11) for E2. From (6.7) we see that  P0(~ 2) is bounded in time, so 

it suffices to show that  

II [M~?, B] ~ I I LF H~ ~ N -~. 



236 J. C O L L I A N D E R ,  M. K E E L ,  G. S T A F F I L A N I ,  H. T A K A O K A  A N D  T.  T A O  

Since [0x, B]=0,  we have 

[M~O, B]hx = B(1 -Po)(#B~)-B2(1 - P0) (vv~) = U(1-P0)[~ ,  B ] ~ ,  

and the claim follows from (6.12). [] 

From this lemma and perturbation theory in the Y~+X-spaces (using the local well- 

posedness theory in [10]), we thus obtain (6.9). 

We now repeat the argument from w Recall the notation from diagram (6.1) that  

v(t)=--SmKdV(t)Vo. From (1.3), (2.1) and Theorem 2.1 we see that  v(t) is uniformly 

bounded in H ~+1. From the local well-posedness theory for mKdV we thus have 

IIvllz.~+l < 1. 

From this and (6.9), we may find an interval [M, M+N~/4]C_[N x/2, 2N ~/2] such that  

I[ (P<~M+N~/~ --P~<M)9l[Y~*l + ]l (P<~M+Nw4 -- P,_.MDvlIY*+ 1 < N - ~  

Fix this M. Set 

~lo:=P<~M~ and Vlo(t):=P<~MV. 

By arguing as in the previous section we see that  rio obeys the equation 

(Ot+O~)vlo=Fo(vlo, Vlo, Vlo)+Fco(Vlo,Vlo, Vlo)+error terms, (6.13) 

where the error terms have a Z~+l-norm of O(N-~) .  We now claim that  01o obeys the 

same equation (but with a different set of error terms, of course). Assuming this claim 

for the moment, note that Vlo and Vlo have the same initial data, so we obtain 

sup Ilvlo(t)-f'lo(t)]lHg§ < N -~ (6.14) 
Itl<~z 

by perturbation theory. The bound (6.14) implies our goal (6.2) relatively quickly: apply 

the Miura transform M (see (1.8)) to the difference on the left-hand side of (6.14), and use 

the commutator bound (5.2), the fact that  P<M M - -  P<M MB and M >1 N 1/2 to conclude 

that  

N-~ > IIP<~M MB~(t)-- P<~M Mv(t )IIH~ > I[P<~N1/2 ft(t)-- P<~N1/2UNH~, 

as desired (see (6.2)). 

It remains to show that  Vlo verifies (6.13). 

Lemma 6.3 we have 

(o~+oxxx)~o = 6P,<.,,~((B- Po) (~)~x)+  error. 

(6.15) 

Applying P<~M to (6.8) and using 
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By repeating the argument in w we have 

6P<M ((1 --P0)(~2) ~x) = ~ M  (F0 (~, ~, ~) +F~0 (~, ~, ~)) 

= F0 (Vlo, vlo, Vlo)-[-F#0 (~)lo, ~1o, ?~1o) -]- error terms. 

Thus it will suffice to show that  

P<M((1-B)(~2)~x) = error terms. (6.16) 

For a fixed time t, the spatial Fourier coefficient of the left-hand side at (k, t) is 

k~kl+k2+k3 

The summand vanishes unless Ik[ <~M<N~/2 and Ik~ +k2]>N, which forces ]k31>N. 
First consider the contributions of the case when (kl+k2)(k2+k3)(kl+k3)~O. We 

now apply (4.7). By our previous discussion we have No<~N 1/2 and N~op~o>N,  and 

hence we see from (6.9) (writing things in terms of space-time Fourier transforms instead 

of spatial Fourier transforms, taking absolute values and discarding the (1-b(kl+k2))- 
factor) that  this contribution is error. 

It remains to consider the case when (kl +k2)(k2 +k3)(kl +k3)=0.  By the previous 

discussion, kl+k2 cannot be zero, while ]k31 is much larger than Ikl. Thus the only two 

cases are when (kl, k2, k3) is equal to (k , -k3 ,  k3) or (-k3, k, k3), so by symmetry the 

total contribution to the Fourier coefficient is 

2X[_M,M] (/C) E i~C3(1 --b(k3- k)) v(k, t) ['(-k3, t)v(k3, t). 

Combining the k3-term with the -]~3-term, this becomes 

2X[-M'M] (]r Z i]~3 (b(-k3 -]r -b(k3 - k ) )  v(/~, t) 7~(-]~3, t)v(]r t). 
k3~N 

By the mean-value theorem and the fact that  b is even, we have 

Meanwhile, we have 

b ( -  k,~ - k )  - b ( k 3  - ~ )  = O ( I k l / N )  = O ( J V -  ~ ). 

Jk311~(-k3,t)l I~(k~ t)l 2 II II,;+, ~ 1. 

Thus the above Fourier coefficient is O(N-~l~;(k,t)]). By (6.7) we thus see that this 

contribution to (6.t6) has an L~H;+ l -norm of O ( N - %  By (3.3) we thus see that this 
contribution is error as desired, which completes the proof of (6.13) and hence (6.2). 

This concludes the proof of Theorem 1.2. 
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7. Proof  of  Theorem 1.5: Symplect ic  nonsqueezing of  KdV 

Let N>>I, let b be a symbol adapted to [-N~ N] which equals 1 on [-N/2,  N/2], and let 

B be the associated Fourier multiplier. ~,~ begin by considering the modified Hamilton- 

ian HN on P<~NHol/2(T), defined by 

T 1 2 ( B u ) 3 ) d ~ .  HN(u) := - ~ -  

We compute the Hamiltonian flow on P<~NHo 1/2 corresponding to HN. Fix u, vEHo 1/2. 
We see that  

~ HN(U+CV) = f T ( - U ~ V ~ - 3 ( B u ) 2 B v ) d x = { - u ~ + 6 B ( ( B u ) ( B u ~ ) ) , v } .  
]~=0 

Since -U~x~+6B((Bu)(Bu~)) is in P < x H o  1/2, we conclude as in (1.15) and (1.16) 

that  the Hamiltonian flow of HN on P<_.NHo 1/2 is given by 

ut+u,~, = 6B((Bu)(Bux)), u(O) = Uo �9 P<~NHo/2(T). (7.1) 

Let (N) SKdv(t ) denote the flow map associated to this equation; for each t, we observe that  
(x) 

SKdV(t ) is thus a symplectomorphism on the finite-dimensional symplectic vector space 

P<~NHo 1/2. In particular, it obeys Theorem 1.7 (that is. we pick ~(N) =r ~ To , ~ 'Good!  - -  ~-" K d V ] "  

conclude the proof of Theorem 1.5 it thus suffices to show that  the flow r -KdV(t) obeys 

the weak approximation property in Condition 1.8: 

PROPOSITION 7.1. Let k0EZ*, T>0 .  A>0  and 0<~<<1. Then there exists a fre- 

quency No=No(ko, T, G A)>>lkol such that 

i~ 0 [ 1/2 I(SKdv(T)Uo)~(kO)_ (S(KN)v(T)uo)~(kO)] <~ 

for all N>~No and all u0EBN(0, A) (see (1.25) for the definition of this ball). 

Proof. We make the transformation w:=Bu, where u solves (7.1). Applying B to 

(7.1) we obtain 

wt+w~ =6B2(WWx), w(O)= Buo, 

which is (1.7) with B replaced by B 2. Thus we have the intertwining relationship de- 

scribed by (1.27) in the introduction to this paper, 

(N) 
BSKd v(t)u0 = SB~KdV(t)Buo. 

In particular, if N0>>lk01, then b(k0)=l, so we have 

( S(~)v( T)uo )~ ( ko ) = ( SB2Kdv(T) Buo)~ ( ko). (7.2) 
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Prom Theorem 1.3 we have 

Ikol-1/21(SKdv(T)uo)A(ko)-(SKdv(T)Buo)A(ko)l < N -~'. (7.3) 

From Theorem 1.2 we have (if No is large enough, N0>>k0) 

IkoJ-1/2](Szdv(T)Buo)A(ko)-(SB2Kdv(T)Buo)A(ko)l < N -~ (7.4) 

where the implicit constants are allowed to depend on T and A. By (7.2), the second term 
(N) on the left of (7.4) is the same as (SKdv(T)~o) (ko). Combining this observation with 

(7.3), (7.4) and the triangle inequality, we obtain the desired claim, if No is sufficiently 

large depending on k0, T, c and A. [] 

The proof of Theorem 1.5 is now complete. 

8. P r o o f  of  T h e o r e m  1.1: P~<NKdV does  not  approx imate  K d V  

Informally, the point of this section is that  there is absolutely no slack in the bilinear 

estimate (1.4) at regularity s = - g ,  no matter  what the frequencies of the various func- 

tions are; see the examples in [19]. But to convert the examples for the bilinear estimate 

to quantitative estimates of the KdV and the truncated KdV flow--in particular, to 

establish that  the two flows differ as claimed in Theorem 1.1--we must do some tedious 

computation of iterates, which we detail below. 

Fix k0, A and T, for instance T, A ~ I ;  our implicit constants in this section will be 

allowed to depend on these parameters. Without loss of generality we may assume that 

ko>0. We let 0<~<<1 be a small parameter depending on k0, A and T to be chosen 

later. 

Let N>>~ 100 be a large integer. We consider the initial data 

u0 (x) := aa cos(k0x) +c~N 1/2 cos(Nx). 

Note that  u0 lies in P<~NHol/2(T) with norm O(~r), and in particular we have u0E 

BN(0; A) if a<<l is sufficiently small. 

Let u and u (N) be the solutions to the KdV flow (1.1) and the truncated KdV 

flow (1.5), respectively, with initial data u (0 )=u  (N) (0)=u0. We shall show that,  if a is 

sufficiently small, 

S~ (ko)-u(N~)(ko)I ~ r  5, (8.1) 
which gives (1.6). 
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To prove (8.1) we need good approximations of u and u (N). To approximate u, we 

look at the iterates uUI for j = 0 ,  1,2, ..., defined inductively by u[-ll(t, x)-O and 

From the contraction mapping arguments in [19] (see also [10]) we know that  the u [j] 
-1/2 converge to u in the ~0,T] -norm:. indeed each iterate is closer to u by a factor of at least 

O(a) compared to the previous one.(23) A routine calculation yields 

u [~ (t, x) = cra cos(kox+k~t)+aN 1/2 cos(Nx+Nat), 

and thus 

0~ (3(u[~ 2) = -~craN3/2 sin((N+ko)x+(N3+kao)t) 
_ ~4N3/2 sin((N-ko)x+(N3-kao)t)+Oz(a6), 

~ - 1 / 2  where Oz(K) denotes a quantity with a z[0.r ] -norm of O(K) (note that  we have used 

the hypothesis N>>~r -1~176 to absorb several terms into this Oz(a6)-error(24)). 

Observe that  

(Ot+Ozxz)(-�89 (N +ko)X +(X3 +k~)t)-cos( (N +ko)x +(N +ko)3t) )) 

= -~a4Na/2ko sin((N+ko)x+(Na+k30)t)+Oz(a 6) 

and 

(Ot+cgxxx)(�89 

= -~a4N3/2ko sin((N-ko)x+(Na-k~)t)+Oz(a6). 

Combining this with the calculation of 0T(3u[~ 2 above and using (3.5) we obtain 

~t [1] ( t ,  X) = 7s [0] ( t ,  X) 

- �89 (cos((N+ko)X+ (N3+ k ~ ) t ) - c o s ( ( N + k o ) x + ( N + k o ) 3 t ) )  

+ l a4N-1/2kol(cos((N-ko)x+(Na-k~)t)-cos((N-ko)x+(N-ko)at)) 

+Oy(~), 

(23) Str ict ly speaking,  th is  cont rac t ion  m a p p i n g  p roper ty  was only proven for T sufficiently small ,  
bu t  by subd iv id ing  [0, T l into a finite n u m b e r  of smal l  intervals  one can  ob ta in  the  s ame  con t rac t ion  
m a p p i n g  for a rb i t r a ry  T if a is sufficiently smal l  depend ing  on T.  Th i s  naive a r g u m e n t  requires  a<<e  - C T  
for some  C; the  more  sophis t i ca ted  scaling a r g u m e n t  in [10] can  improve this  to a < < T  - 1 / 3 - ,  bu t  we will 
no t  need th is  quan t i t a t ive  i mprovemen t  for our  a r g u m e n t s  here. 

(24) For example ,  t he  t e r m  a4N1 /2ko  sin((N+ko)x+(N3+k~)t), which  appea r s  when  one calcu- 

lates 0=(3(u[~ is O z ( ~ 6 ) ,  as the  space- t ime  Fourier  t r an s fo rm  of th i s  t e r m  is suppor t ed  a d i s tance  
app rox ima te ly  N 2 f rom t he  cubic T = ~  3. Hence when  c o m p u t i n g  the  Z - 1 / 2 - n o r m  of th i s  t e rm,  we get  a 
factor of  N -1  <<a 1~176 from t he  d e n o m i n a t o r  in the  defini t ion of th is  norm.  
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. r - l / 2  where Oy(a 6) denotes a quantity with a ~[O,TI-norm of O(a6). In fact, since the 

cos((N+ko)x+(N+ko)3t)-terms are already Oy(a 6) we have 

utl] (t, x) = uEo] (t, x) + �89 0-4N-1/2ko 1 (cos((~ T- ko)x + (X 3 - ko3) t) 

-cos( (N +ko)x +(N3 +k3o)t) )+Oy(0-6). 

Using (1.4) to handle any interaction with a factor of 0-6 or better, we obtain 

0x (3(u [1])2) = Ox (3(u I~ + Oz (0-6). (8.3) 

Note that  there are two additional, potentially disruptive terms of the form 

•  0-~sin(k0~+k0 ~t) 

which appear in the expansion of Ox(3(u[1])2), but they have opposite signs and so can- 

cel(25) each other. From (8.3) and (8.5) we have 

U [2] = U[1] + Oy(O "6). 

From the contraction mapping property of the iteration map we thus have 

U = U [1] + O y  (0-6). 

In particular, we see that  

l t (T~ (]go) = u[l] ( T ) ( k 0 )  + 0 ( 0  "6) = ~[0] (T)(]go ) Q- 0 ( 0 6 )  �9 (8 .4)  

Now we approximate u (N). To do this we construct iterates ~[J], j = 0 ,  1, 2, ..., for the 

truncated equation by setting ~[0] :=u[0] and 

~ [J] (Ot+r = P<<NO~(3(~[J-~])2), ~[J](0)=u0. 

By a variant of the local well-posedness theory from [19] (and [10]) we know that  ~[J] 

will converge to u (N) in the Y-norm. By reviewing the computation of u [1] (t, x), but now 

bearing in mind the presence of the projection PN, we obtain for the first iterate 

?~[11 (t ,  X) = 72 [0] (t, X) ~- 1 rr4]V--1/2 ~ ~ - c o s ( ( N - ] g o ) X + ( N ~ - ] g 3 o ) t ) + O ~ ( 0 -  ~) 

=- U [1] (x, t)+Oy(0-6). 

(25) This special cancellation seems to be what  distinguishes the KdV flow (1.1) from superficially 
similar flows such as (1.5), and is crucial to obtaining our high-frequency and low-frequency approxima- 
t ion results for this flow. It is instructive to see this cancellation via the renormalized mKdV flow (1.9) 
by comput ing iterates for m K d V  and then applying the Miura transform to those iterates. 
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Comparing this with the formula for u [1] above, we note that  the Fourier modes at 

• are not present here. As a consequence, the analog of (8.3) reads 

o (3( Ill)2) = 0z(3( E~ 

Since (Ot+O3x)(tsin(kox+k3t))=sin(kox+k3t), we can write 

?~[2] = ~[1] @ 3~0.5 t sin(kox+k3t)+Oy(0.6). 

We can easily check then that  

Ox (302 [2] )2) = c9= (3(u [1] )2) + Oz (0.6), 

and hence g[31 =~212J + Oy (0.6), which by the contraction mapping property implies that 

U (N) = ?1 [2l -~- Oy (0"6). 

In particular, we see that  

u (N) (~-T)(ko) = t~ [2] (T)(ko) + 0(0. 6) = tt[l] (T)(k0) -- 3 iT0.Seik]T+ 0(0.6). 

Comparing this with (8.4) we obtain (8.1) as desired. This proves Theorem 1.1. 

9. A p p e n d i x .  P r o o f  o f  (6.3):  H a - b o u n d  for  t h e  B K d V  flow 

We now prove the bound (6.3) for H~-solutions to the KdV-like equation 

ut+ux: x =6B(uux). u(O) =uo, 

with Ilu011H3<l; this bound is needed to complete the proof of Theorem 1.2 and hence 

Theorem 1.5. 

If s~>0 then this bound follows from L2-eonservation and standard persistence of 

regularity theory (see, e.g., [1]), so we shall assume that  l ~ < s < 0 .  

To do so, let us first review (from [9]) how the corresponding bound (1.3) was proven 

for the KdV flow 

u t + u ~ = ~  = 6uu~:, u(O) = Uo. 
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9.1. Rev iew of  proof  of  HS-bound for KdV (1.3) 

The idea is to modify the conserved L2-norm fw u2 dx to something resembling the H s- 

norm and which is still approximately conserved. To do this, it is convenient to introduce 

some notation for multilinear forms. 

If n~>2 is an integer, then we define a (spatial) n-multiplier to be any function 

Mn(kl, ..., kn) on the (discrete) hyperplane 

: =  Z E , : k l + . . . + k n = 0 } .  

If Mn is an n-multiplier and ul,  ..., u~ are functions on R/27rZ, we define the n-linear 
functional A~(Mn; ul,..., un) by 

An(Mn;fl,...,fn):= E Mn(kl,...,k~) ~ fj(kj). 
(kl ..... kn)cF,~ j = l  

We adopt the notation 

An(Mn;u):=An(Mn;u,. . . ,u).  

Observe that  An (Mn;f) is invariant under permutations of the kj-indices. In particular, 

we have 

An(Mn; u) = An([Mn]sym; u), 

where 
1 

[Mn]sym(~:) := ~.I E ~L/n(G(k)) 
crcS~ 

is the symmetrization of Mn. 
Thus, for instance, we have fT u2 dx = 2zrA2 (1; u), and more generally 

= 27rA2 (Ikl I s Ik21S; u) = 27rA2 (Ik112s; u) 

(9.1) 

for uEH~. 
Now suppose that  u obeys the KdV evolution (1.1), and M,, is a symmetric multi- 

plier. Then we have the differentiation law 

dAn(Mn;u(t)) 
= A~ (Mnan; u(t))- 3inAn+l (Mn(kl,..., k~-l, k~ -}-]~n+l)(~nJYkn+l); u(t)), 

where 

(9.2) 
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(see [9]). Thus  for instance we have 

d A2 (1; u(t)) = A2 (~2; u(t)) - 6iA3 (k2 +k3; u(t)) 

= A2 (i(k3 +k23); u( t ) ) -4 iA3 (kl +k2 +k3; u(t)) 

= 0 - 0 ,  

demonstrating the conservation of the L2-norm. 

Henceforth we shall omit the u(t) from the An-notation for brevity. We also adopt 

the convenient notation kij:=ki+kj, etc.; thus, for instance, k145=kl+k4+k5 . Also we 

write mi:=m(ki), mij:=m(kij), etc., and Ni for Ikil, Nij for Ikijl, etc. 
Let A>>I be a large number to be chosen later,(26) and let re(k) be a multiplier 

which equals i on I-A, A], equals (Ikl/A) s for Ikl >~2A, and is real, even and smooth in 

between. We denote the corresponding Fourier multiplier by I: 

A 

Thus  I acts like the identi ty on frequencies ~<A and is smoothing on frequencies >A .  We 

define the modified energy E2(t) by 

E2(t) := A2(mffn2).  

Then  one can verify tha t  

Ilu(t)l]~3 <~ E2(t) < A -2s Ilu(t)ll~r3. 

From (9.2), (9.1) and the fact t ha t  ~2=0 ,  we have 

d E 2  (t) = -6 iA3  (rnl m23 k23) = iAa kl)  = A3 (M3), 6 

where M3 is the 3-multiplier 

M3 := 2i(. Ikl 

Now define the modified energy E3 (t) by 

E3 ( t ) : :  E2 (t) + A3 (cr3), 

(26) Note that the quantity A here represents what was called N in [9], a notational change necessary 
since in the present paper N represents something else. 
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where a3(kl, k2, k3) is the 3-multiplier 

M3 
0" 3 : ~  - - - - .  

Ol3 

This multiplier may appear to be singular at first glance, but we observe that  

~3 = i(k~ + k~ + k~) = 3i kl k2 k3 (9.3) 

and that  M3 vanishes whenever klk2k3=O. Then by (9.2) and (9.1) we have 

d E 3  (t) = A3 (M3) + Aa (0"3 c~a) - 9iA4 (0"3 (kl, k2, k34) k34) = A4 (M4), 

where M4 is the 4-multiplier 

M4 : =  -9i[0"3 (k l ,  k2, k34) k34]sym. 

Now define the modified energy E4(t) by 

E4( t )  : =  E3( t )  +A4(0-4) ,  

where 0"4(kz, k2, k3, k4) is the 4-multiplier 

AI4 
0"4 :: ---- 

(~4 

This multiplier may appear to be singular at first glance, but we observe that  

3 3 3 3 a4 ---- k 1 +k  2 §  3 +k  4 -- 3k12k13k14 (9.4) 

(cf. (4.17)), and one can check that  ~[4 vanishes when k12k13k14-=O. Then as before we 

have that  

where 

d E 4  (~) = A5 (Ma), (9.5) 

M5 := -12i[a4 (kl, k2, k3, ]r ]'g45]syrn- 

We could continue this procedure indefinitely, but Ea will turn out to be a suitable almost 

conserved quantity for our purposes. In [9] it was shown (by Gagliardo-Nirenberg-type 

arguments) that  E4 is bounded if and only if IlUllH3 is bounded, so to obtain (1.3) it 

suffices to control E4(t). In light of (9.5) it will suffice to control M5. The key lemma 

here was the following: 
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LEMMA 9.1. ([9]) Let kl,  k2, ka, k4 and k5 be real numbers (not necessarily integer) 

such that k12345=0. Then Ms(k1, ..., k5) vanishes when N1, ..., N5<<A. In all other cases 
we have the bound 

~n2 ("u N45 1 

IJ~ls(kl ,  ..., k5)l ~< (A+N1)(A+N2)(A+Na)(A+N45)Jsym' 

where 

N,45 = mm(N1, Nz, N3, 1~45, NI~, Nla, N14). 

With this bound and some multilinear YS-estimates,(27) a bound on the growth of 

E4(t) was obtained. In particular, if E4(T) was small for some time T, it was possible 

to obtain the bound E4 (T + (~) = E4 (T) + O (A-  5/2 - ) for some small t ime 5 ~ 1. Iterating 

this and using a rescaling argument one could obtain (1.3) for all s~>-�89 (after choosing 

A appropriately depending on IlUo[[H~ and T).  See [9] for details. 

9.2. A d a p t i n g  the  argument  to  the  B K d V  flow 

We now adapt the above argument to the flow (1.7). The main difference will be the 

appearance of various quantities of the form b(k~), b(k~j), etc. However, these factors 

will play essentially no role in the argument. Accordingly, we write bi for b(ki), etc. We 

shall assume that  the frequency parameter N corresponding to b is much larger than the 

frequency parameter A corresponding to m. 

Suppose that  ~ solves (1.7). Then (9.2) now becomes 

d 
~ A n ( M n ;  g(t)) = An(M~a~; ~(t)) (9.6) 

-3inAn+l(.lt'In(kl, ..., kn--1, kn 4-kn+l)b(]% +]%+l)(kn-~kn+l); ~t(t)). 

Again we define 

E2(t) := A2(mlm2). 

Then one can verify that  

where 21//3 is the 3-multiplier 
~tE2( t) = a a ( M a ) ,  

M3 := 2i(fl + f2+ fa) 

and f (k) :=m2(k)b(k)k .  Observe that f is an odd function with f ' ( k )=O(m(k ) )  and 

f"(k)=O(m(k)/(A+lkl)) for all k. 

We observe the following bounds on M3: 

(27) Strictly speaking, in order  to handle large data,  these es t imates  had to take place in the  
large-period set t ing R/27rAZ, as one would need to rescale large da t a  to be small. This causes some 
unpleasant  technical  complicat ions in the  arguments ,  and in part icular  this is why the  kj in the  above 
lemma need to be real (or lie in Z . /A)  ra ther  than  integer. See [9] and [10] for more details. In this  
paper  we will ignore the  large-period issue, as it does not cause any essential change to the  argument .  
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LEMMA 9.2. If N1, N2, N3<<A, then M3=0.  Otherwise, we have 

15//31 ~ max(m~, m~, m~) rain(iV1, ,~r2, N3). 

Proof. (See [9].) When N1,N2,N3<<A then fj=kj for j = 1 , 2 , 3 ,  and the claim is 

clear. Otherwise, we use symmetry to assume that NI~N2>~N3. But then the mean- 

value theorem and the above bounds on f give 

f2 = - f z3  = - f l  +O(m~N3), 

and the claim easily follows. [] 

Now define the modified energy E3(t) by 

E3 (t) := E~ (t) + A3 (o.3), 

where o.3(kl, k2, h3) is the 3-multiplier 

M3 
0"3 :z ----. 

C~3 

From Lemma 9.2 and (9.3) we see that o.3 vanishes when max(N1, N2, N3)<<N, and 

otherwise we have the bounds 

max(m~, m~, m~) (9.7) 
Io.31 5 (N+max( l \T1 ,  iY2, ~Nr3))2 

(note that the two largest values of Nj have to be comparable). 

By (9.2) and (9.1) we have 

~ E 3 (t) ~- A 4 (-~/[4), 

where M4 is the 4-multiplier 

M 4 := - 9 i  [o.3 (kl, k2, k34) b34 k34]sym. 

Now define the modified energy E4 (t) by 

E4( t  ) :=  E3( t )  +A4(o.4) ~ 

where  o.4(kl, k2, k3, k4) is t he  4-mul t ip l ier  

M4 
o- 4 :-- 

c~ 4 " 
Then as before we have that 

d E 4 ( t )  = A5 (Ms), 

where 

M5 := - 12i [0" 4 (kl, k2, k3, k45 ) b45 k45]sym. 

Our aim is to show that this new M5 still verifies the bounds in Lemma 9.1; the 

rest of the arguments in [9] will then give the desired bound (6.3) (the presence of the 

B-multiplier having no impact on the local well-posedness theory). 

From the definition of o.4 and Ms, it will suffice to prove the following M4-bound. 
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LEMMA 9.3. If max(N1, N2, N3, N4)<<A, then M4 vanishes. Otherwise, we have 

15//41 < (A+NI)(A+N2)(A+N3)(A+N4)' 

where N. := min(N1, N2, N3, N4, N12, Ni3, NIa). 

Proof. When max(N1, N2, N3, N4)<<A then a3(ka, k2, k34) and all of its symmetriza- 

tions vanish, and hence M4 vanishes. Now we assume that  max(N1, N2, N3, N4)>~A. By 

symmetry we may assume that  NI>~N2>~N3>~N4, and thus NI~N2>~A. From (9.4) we 

have ]a4]~N13N14N34. 
We divide into several cases depending on the relative sizes of N2, N3 and N4. 

Case 1: N2>>N3>>N 4. In this case: [0t4[~1u and thus we reduce to showing 

that 

IM41 < m2(N*) 
A+N4 

But from Lemma 9.2 we have 

min(ma,mb,mcd) 2 < m2(N*) 
[a3(ka, kb, kcd)bcdkcd[ < A+maX(~a,  Nb, Ncd) "~ (A+Na) 

as desired. 

Case 2: N2~N3>>N4. In this case, ]~4]~N 3, and thus we reduce to showing that  

IM4] < m2(N*) 
A+N4 

One then proceeds as in Case 1. 

Case 3: N2>>N3~N4. In this case: [(~41~N~N34, and thus we reduce to showing 

that  
~7%2 (~r,) N34 

IM4[ < (A+N3)2 

From Lemma 9.2 we have 

~2(N.)N34 
]0"3(]~1' k2' k34)b34]~34] <~ (A+max(N1, N2, N34)) 2' 

which is acceptable. Similarly 

m2(N,)N12 
]0"3(]~3: k4, k12)b12]~12] ~< (A+max(N3, N4, N12)) 2 

is acceptable since N12 =N34. It thus suffices to show that  

[a3 (kl, k3, k24) 524 k24 + 0.3 (kl, k4, k23) 523 k23 + c~3 (k2, k3, k14) b14 k14 -~- 0"3 (k2, k4, k13) b13 k13] 

< m2(N*)N34 
(A+N3)2 " 
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We expand or3 using (9.3), and replace kl by -k234 throughout, and reduce to 

showing that  

b23(f2+f3-f23) b24(f2+f4-f24) I b24(f3+ f24- f234) _ b23(f44- f23- f234) 4- 4- 
k234 k3 k234 k4 k2 k3 k2 k4 

< rn2(N*)N34 
(A+N3)2 

From the mean-value theorem we have b23 = b2 + O(Na/N2) = b2 + O(N3/(A+N3)), 
and similarly b24=b2+O(N3/(A+N3)). Let us then consider the contribution of the 

O(Na/(A4-N1))-errors. It will suffice to show that  

f3 4- f24 -- f234 f2 4- f4 -- f24 
k234 k3 k2 k4 

and 
f~+f23-f234 f2+f3-f23 

- 

k234k4 k2k3 
are both O(m2(N.)N34/N3(A4-N3)). By the k3++k4 symmetry it suffices to estimate 

the former expression. From the mean-value theorem we have 

1 1 1 0 (  N34 ~ 
/g234 ~3 - -  (~2 4- k34) ( - -  ]~4 A- ~34) - ~2~4 4- \N2N~}" 

By Lemma 9.2, the contribution of the error t e r m  O(N34/N2N24) is bounded by 

  2(N*)N30 , 

which is acceptable. Thus it suffices to show that  

f34-f24--f234 f2 -t- f4  --  f24 

k2 k4 k2 k4 

But from the mean-value theorem we have 

f(k2)- f(ki34)4- f(k3)- f(k3-k34) : O(?7~2(N.)N34), 

and the claim follows by dividing by k2 k4. 

Case 4: N2,.~N3,.~N4. Observe that  this case is essentially symmetric in the indices 

1, 2, 3 and 4. By definition of M4, a3 and a3 we have 

]M4] ~ [ [ (f14- f24- f34)b34 2 ~ N14 F(f14- f24- f34)bs4k3k4] �9 
sym L Jsym 
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Our  t a sk  is thus  to show tha t  

[(f l+ f2+ fa4)b34k3k4]sym = O(m2(N.)N12N23N13) �9 

Since b34=b12, it  will suffice by s y m m e t r y  to show t h a t  

(fl +f2 +A4) h h  + (f3 +f4 +f12) kl k2 = O(~2(N,) N12N23N13). 

Observe  the  iden t i ty  

k3 k4 - kl k2 = k3 k4 § k234 k2 = k23 k24. 

Hence we can wr i te  the  le f t -hand  side as 

(]:1 + f2 + f3 +]:4) kl k2 + (f~ + f2 +f34)  k23k24 

(since f 3 4 = - f 1 2 ) .  By L e m m a  9.2, the  second t e r m  is O(m2(N.)N34N2aN24),  which is 

acceptab le .  Thus  it will suffice to  show tha t  

f l  + f2 + ]~ + f4 = 0 (  ?Tt2 (2\7.) IV12 ]V23 ]V13/N12) �9 

Since k12+k13+k23=-2k4,  we see t h a t  a t  least  one of N12, N13 and  N23 is c ompa ra b l e  

to  N1. W i t h o u t  loss of genera l i ty  we may  take  N23 ~ N 1 .  We now wr i te  the  l e f t -hand  

side as 

f ( k l )  -- f ( k l  - k12) - f ( k l  - k13) + f ( k l  - k12 - k13) 

and  use the  double  mean-va lue  theorem(2s)  (since f " = O ( N 1 1 )  here)  to  conclude the  

a rgument .  [] 

(2s) See, e.g., Lemma 4.2 and the preceding definition in [9], or Lemma 2.3 in [8]. One could object 
that f "  is much larger than N i 1 near the origin. However, since we are only evaluating f at points in 
the annulus {k:lk ] ~N1 }, we can smooth out f inside this annulus so that i f ' =  O(N~-1) throughout the 
interval {k:lkl<N1} without affecting the left-hand side. 
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