Acta Math., 195 (2005), 197-252
(© 2005 by Institut Mittag-Leffler. All rights reserved

Symplectic nonsqueezing of
the Korteweg—de Vries flow

by
JAMES COLLIANDER MARKUS KEEL
University of Toronto University of Minnesota
Toronto, ON, Canada Minneapolis, MN, U.S.A.
GIGLIOLA STAFFILANI HIDEO TAKAOKA
Massachusetts Institute of Technology Kobe University
Cambridge, MA, U.S.A. Kobe, Japan
and

TERENCE TAO

University of California
Los Angeles, CA, U.S.A.

Contents
1. Introduction . . . . . ... ... 198
1.1. Summary of local and global well-posedness theory . . . . . .. 199
1.2. Low-frequency approximation of KAV . . .. ... ... ... .. 200
1.3. Application to symplectic nonsqueezing . . . . .. ... ... .. 203
2. Inverting the Miura transform . . . .. . ... ... ... ... ..... 211
3. The Fourier restriction spaces Y®and Z° . . .. ... .... .. ... 218
4. An improved trilinear estimate . . ... ... ... ... ... ... 219
4.1. The Fp (resonant) estimate . . . . . . .. .. ... ... ...... 220
4.2. The F4o (nonresonant) estimate . . ................ 221
5. Proof of Theorem 1.3: KdV low frequencies are stable under high-
frequency perturbationsof data . . . . . ... .. ... 226
6. Proof of Theorem 1.2: BKdV approximates KdV at low frequencies 231
7. Proof of Theorem 1.5: Symplectic nonsqueezing of KdV . . .. . .. 238

8. Proof of Theorem 1.1: P¢nyKdV does not approximate KdV . . .. 239

The first author was supported in part by N.S.E.R.C. Grant RGPIN 250233-03 and the Sloan
Foundation. The second author was supported in part by N.S.F. Grant DMS 9801558 and the Sloan
Foundation. The third author was supported in part by N.S.F. Grant DMS 0100345 and the Sloan
Foundation. The fourth author was supported in part by J.S.P.S. Grant No. 13740087. The fifth author
was a Clay Prize Fellow and was supported in part by grants from the Packard Foundation.



198 J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA AND T. TAO

9. Appendix. Proof of (6.3): H® bound for the BKdV flow ... ... 242
9.1. Review of proof of H® bound for KdV (1.3) .. ......... 243
9.2. Adapting the argument to the BKdV flow . .. ... .. .. .. 246

References . . . . . ... . ... . 251

1. Introduction

This paper is concerned with the symplectic behavior of the Korteweg—de Vries (KdV)
flow

Ut HUpze = Bun,,  u(0,z) =uo(z), (1.1)

on the circle zeT:=R/27Z, where u(t,x) is real-valued. In particular, we investigate
how the flows may (or may not) be accurately approximated by certain finite-dimensional
models, and then use such an approximation to conclude a symplectic nonsqueezing
property. In order to describe the symplectic space involved, and state the result precisely,
we need to set notation and recall some previous results describing the well-posedness of
the initial-value problem (1.1).

On the circle we have the spatial Fourier transform

_ 1
T orm

a(k): /O%u(a:) exp(—ikx)dx (1.2)

for all k€Z, and the spatial Sobolev spaces
lullzg = (27) 2| (k)*allig

for s€R, where (k):=(1+k|?)'/2. These are natural spaces for analyzing the KdV flow.
Let Py denote the mean operator
2w

Pyu:=— wdzx,
2m Jo

or equivalently
Pou(k) = xj=o (k).

The KdV flow is mean-preserving, and it will be convenient to work in the case when u

has mean zero.(!) Accordingly we define the mean-zero periodic Sobolev spaces Hg by
HS:={ue H;: Phu=0}

endowed with the same norm as H.

(*) One can easily pass from the mean-zero case to the general mean case by a Galilean transfor-
mation wu(t, z)—~u(t, z — Po(u)t) — Po(u).
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Recent work on the local and global well-posedness theory in H§ for (1.1) is ba-
sic to our results here. For example, the geometric conclusions from finite-dimensional
Hamiltonian dynamics which we ultimately need for our nonsqueezing result can only be
applied in the setting of rather rough solutions to the initial-value problem (1.1). We now
pause to summarize some of the analytical techniques that have been developed for the
study of such rough solutions, and the resulting regularity theory (see, e.g., [1], [19], [6],
(9] and [10]).

1.1. Summary of local and global well-posedness theory

If the initial data uo for (1.1) is smooth, then there is a global smooth solution(?) u(t)
(see, e.g., [26]). We can thus define the nonlinear flow map Skav(t) on C*(T) by
Skav (t)ug:=u(t). In particular, this map is densely defined on every Sobolev space Hj.

If s>—1, then the equation (1.1) is globally well-posed in H§. In other words,
the flow map Skqv(¢) is uniformly continucus (indeed, it is analytic) on H for times ¢
restricted to a compact interval [—T,T], and for such s we have bounds of the form

Islup 1 Skav (t)uollrs < C(s, T, [luollrg) (1.3)
LT

(see [19], [9] and [10] (and also §9.1 below)). For s<—1 the flow map Skqv () is no longer
uniformly continuous [6] (see also [20]) or analytic [4], so from the point of view which
requires a uniformly continuous flow in time, the Sobolev space H, /2 is the endpoint
space for the KdV flow. Coincidentally, this space is also a natural phase space for which
KdV becomes a Hamiltonian flow; we will have more to say about this at the end of
the introduction. Note, however, that if one asks only that the flow be continuous in
time, then global well-posedness for (1.1) has been established for all s>—1 in [16] using
inverse scattering methods. Combining mapping properties of the Miura transform and
the result in [27], local well-posedness of (1.1) in H¢ with a (not uniformly) continuous
flow map holds for —%<s<~%.

To obtain many of the local and global well-posedness results mentioned above, one
iterates in a certain space-time Banach space Y* (defined in (3.1) below; this space is
a variant of the X*°-spaces used, for instance, in [1] and [19]), which has the same

(%) This result can also be obtained by inverse scattering methods, since the KdV equation is
completely integrable. However, our methods here do not use inverse scattering techniques, although
the special algebraic structure of KdV (in particular, the Miura transform [24]) is certainly exploited.
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regularity as H® in the sense that one has the embedding(®)

oz ns Slullys

The nonlinearity is then placed in a companion space Z° (see (3.2) below), which is
related to Y® via an energy estimate of the form

In(®)ullys S lu(to)lms + s+ tazal 22

for any time ¢ty and any bump function n supported near t,. (We will elaborate more
upon these spaces and estimates in §3.) The local well-posedness theory(*) for the KdV
equation (1.1) then hinges on the bilinear estimate

[(wv)zllzs < llullysllvlly: (1.4)

whenever u and v are mean-zero functions and s>—1 (see [19], [9] and [10]).
To pass from local well-posedness to global well-posedness one needs to obtain long-
time bounds on the H§-norm. For —% <s<0, this has been achieved by means of the

“I-method”, constructing an almost conserved quantity comparable to the H®-norm; see
[9], [10] or §9.1.

1.2. Low-frequency approximation of KdV

The KdV flow (1.1) is, formally at least, a Hamiltonian flow on an infinite-dimensional
space. In order to rigorously apply results from symplectic geometry, we must approxi-
mate this infinite-dimensional flow by a finite-dimensional flow. Furthermore, in order to
apply these geometric tools, we need that the finite-dimensional flow is itself Hamiltonian.

We begin with a negative result. Suppose that we wish to study the KdV flow for
data ug whose Fourier transform is supported on [—N, N| for some large fixed N, and
specifically to approximate the KdV flow by a finite-dimensional model. A first guess for
such a model might be the flow

Ut +Uzzx :PgN(6uuz), U(O) = Ug, (15)

(3) In this paper we use A<B to denote an estimate of the form A< CB, where the implicit constant
C may depend on certain parameters such as s, which we will specify later in the paper. Similarly, AKB
denotes B>C A for some such universal constant C.

(%) Strictly speaking, in order to handle large initial data one must also generalize this estimate to
circles R/27AZ of arbitrarily large period, in order to apply rescaling arguments to make the data small
again. See [9], [10] or §9.1.
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where Py is the Fourier projection to frequencies <N,

Peyu(k) = Xk Glk).
Denote the flow map associated to (1.5) by Sp_ykav(t). This flow has several ad-
vantageous properties; for instance, S P.yKdv(t) is a symplectomorphism on the space
PcnHy Y % associated with a natural symplectic structure (see next subsection). Since
P¢nHy 1/2 is a finite-dimensional space, it is easy to see (e.g. using L2-norm conservation
and Picard iteration) that this flow Sp_ kav is globally smooth and well defined. In [2],
the nonlinear Schrédinger flow tu; +u,, =|u|?u was similarly truncated, and it was shown
that the truncated flow was a good approximation to the original (infinite-dimensional)
flow. Unfortunately, the same result does not apply for KdV:

THEOREM 1.1. Let ko€Z* T>0 and A>0. Then for any N>C(A, T, ko), there
exists initial data up with |luo| ;-1/2 <A and supp(tio) C{k:|k|<N} such that
0

|(Skav(T)ue) (ko) = (Sp ykav(T)uo) (ko)| = (T, A, ko) (1.6)
for some (T, A, ko)>0.

In other words, S P<yKdv does not converge to Skqv even in a weak topology.

We prove this negative result in §8. Basically, the problem is that the multiplier
X[-n~,n] corresponding to P¢y is very rough, and this creates significant deviations be-
tween Skqv and SPSNKdV near the Fourier modes k=+N. In cubic equations such as
mKdV (see (1.9) below) or the cubic nonlinear Schrodinger equation, these deviations
would stay near the high frequencies =N, but in the quadratic KdV equation these de-
viations create significant fluctuations near the frequency origin, eventually leading to
failure of weak convergence in (1.6).

Of course, there are several obvious ways to modify the finite-dimensional flow (1.5)
in an attempt to find an effective approximation to the KdV flow for data with Fourier
transform supported on [N, N], but at least a little bit of care is needed when consider-
ing these modifications. We let b(k) be the restriction to the integers of a real even bump
function adapted to [-N, N] which equals 1 on [-N/2, N/2], and consider the evolution

Ut +Uzgr :B(6'U,’U,I), U(O) =Uq, (17)

where
Bu(k)=b(k)a(k).
Let Spkav denote the flow map associated to (1.7). Observe that this is a finite-

dimensional flow on the space P¢yHS. Unfortunately, Spkqv is not a symplectomor-
phism, but we will explain in (1.27) below how by conjugating a flow of the form (1.7)



202 J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA AND T. TAO

with a simple multiplier operator we will arrive at our desired finite-dimensional symplec-
tomorphism on Pgx H~1/2(T) that well approximates the full KAV flow at low frequen-
cies. This desired symplectomorphism is labelled S%)V(t) in (1.27) below,(®) and once
the aforementioned approximation properties are established, the nonsqueezing result
will follow almost immediately after quoting the finite-dimensional nonsqueezing result
of Gromov [13].

The first step in the argument is to show that we can approximate Skav by Sskav

in the strong H§-topology:

THEOREM 1.2. Fiz 32—%, T>0 and N>>1. Let ug€H§ have Fourier transform
supported in the range |k|<N. Then

‘S[up | P yi/2(SBravuo(t) —Skav () uo)llmg < N77C(s, T, |uoll ng)
H<T

for some o=0(s)>0.

In particular, we can accurately model the KdV evolution for band-limited initial
data by a finite-dimensional flow, at least for frequencies |k|<N/2.

The well-posedness statement (1.3) gives Theorem 1.2 for all OSNC(s, T, l|luoll mg),
and hence our proof needs only to consider N>C(s, T, |luol|mg). This turns out to be
the most interesting case from the point of view of the nonsqueezing applications of this
approximation theorem which we take up below.

Theorem 1.2 can be viewed as a statement that one can (smoothly) truncate the
KdV evolution at the high frequencies without causing serious disruption to the low
frequencies, in spite of the obstruction posed by Theorem 1.1. Our second main result

(proven in §5) is in a similar vein:

THEOREM 1.3. Fiz s2~%, T>0 and N>1. Let ug, ip € H§ be such that Pconyup=

Peontig (i-e. ug and g agree at low frequencies). Then we have

lfﬁPT I P< v (Skav(t)@o—Skav(t)uo)ll s <N 7C(s. T, luolf g 1ol mg )

for some a=0(s)>0.

By the same reasoning following Theorem 1.2, we may assume in the proof of The-
orem 1.3 that N>C(s, T, |luollmg. |0l rg)-

The point of Theorem 1.3 is that changes to the initial data at frequencies >2N
do not significantly affect the solution at frequencies <N, as measured in the strong

(5) The equation which defines this flow is given in {7.1) below.
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H§-topology. This is in stark contrast to the negative result in Theorem 1.1. The point
is that there is some delicate cancellative structure in the KdV equation which permits
the decoupling of high and low frequencies, and this structure is destroyed by projecting
the KdV equation crudely using (1.5).

To prove Theorem 1.2 and Theorem 1.3, we shall need to exploit the subtle can-
cellation mentioned in the previous paragraph in order to avoid the obstructions arising
from Theorem 1.1. We do not know how to do this working directly with the KdV flow.
Rather, we are able to prove estimates which explicitly account for this subtle structure
in KdV by using the Miura transform uw=Mu, defined by

u=Muv:= v, +v°— P(v?). (1.8)

As discovered in [24], this transform allows us to conjugate the KdV flow to the modified
Korteweg—de Vries (mKdV) flow

Vet Uper = F(v), v(z,0)=1v0(2). (1.9)
where the nonlinearity F(v) is given by
F(v):=6(v?~Py(v?)) vs. (1.10)

The modified KdV equation has slightly better smoothing properties(®) than the ordinary
KdV equation, and in addition the process of inverting the Miura transform adds one
degree of regularity (from H, Y2 4o Hé / 2). In particular, the types of counterexamples
arising in Theorem 1.1 do not appear in the mKdV setting, and by proving a slightly more
refined trilinear estimate than those found in, e.g.. [10] (see, in particular, Theorem 4.3
below) we are able to prove the above two theorems by passing to the mKdV setting
using the Miura transform. Of course, in order to close the argument we will need some
efficient estimates on the invertibility of the Miura transform; we set up these estimates
(which may be of independent interest) in §2.

1.3. Application to symplectic nonsqueezing

We can apply the above approximation results to study the symplectic behavior of KAV
in a natural phase space H, 1/ *(T). Before doing so, we recall some context and results

from previous works. We are following here especially the exposition from [15] and [22].

() See §4, in particular Theorem 4.3.
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Definition 1.4. Consider a pair (H,w), where w is a symplectic form(”) on the Hilbert
space H. We say that (H,w) is the symplectic phase space of a partial differential equation
with Hamiltonian H[u(t)] if the partial differential equation can be written in the form

w(t) = J VHu(t)]. (1.11)

Here J is an almost complex structure(®) on H which is compatible with the Hilbert
space inner product (-, -). That is, for all u.veH,

w(u, v) = {Ju,v). (1.12)

The notation V in (1.11) denotes the usual gradient with respect to the Hilbert space
inner product,

(v, VH[u}) = dH[u)(v) (1.13)

Hlu+ev). (1.14)

BE =0

One easily checks that an equivalent way to write the partial differential equation corre-
sponding to the Hamiltonian H[u(t)] in (H,w) is

w(t) =V, Hlu(t)], (1.15)
where the symplectic gradient V,_,H[u} is defined in analogy with (1.13),
w(v, Vi, Hul) =dHu](v). (1.16)

For example, on the Hilbert space H, v Q(T), we can define the symplectic form
wﬁl/g(u,v)::/ u(z)0; tu(z) de, (1.17)
T

where 071 Hy Y 2(T)—>Hé / 2(T) is the inverse to the differential operator 0, defined via
the Fourier transform by

62 (R) = o f(k).

The KdV flow (1.1} is then formally the Hamiltonian equation in (H()_I/Q(T),w_lﬂ)
corresponding to the (densely defined) Hamiltonian

H{u] ::/r(%uiJruB) dz. (1.18)

(") That is, a nondegenerate, antisymmetric form w: Hx H—C. We identify in the usual way H
and its tangent space 7, H for each zcH.
(®) That is, a bounded, anti-self-adjoint operator with J?=—identity.
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Indeed, working formally(°) we have for any ve H; Y2y,

4
de

Hlutev] = / (uzvz+3u?v) dx
T

e=0

:/(—uw+3u2)vda¢

T

= [ ;7 (~Ugge +6uuy)vdz
T

= —/ (—umz+6uum)8x‘lv dz
T

:w~1/2(uzrz —buuz, U)

=w_1/2(V, —Usze +6Ul).

Comparing (1.15) and (1.16) with (1.1), we see that KdV is indeed the Hamiltonian par-
tial differential equation corresponding to H|[u] on the infinite-dimensional symplectic
space (H, 1/ 2, w_1/2). In particular, the flow maps Skqv (t) are, formally, symplectomor-
phisms on Ho_l/z(T).

That the KAV flow arises as a Hamiltonian flow from a symplectic structure as de-
scribed above was discovered by Gardner [12] and Zakharov and Faddeev [28]. A second
structure was given by Magri [23] using [, u®dz as Hamiltonian, but it is not as con-
venient as the first structure for our strategy to prove nonsqueezing. Roughly speaking,
it seems that the symplectic form in this second structure could possibly be used to
establish a nonsqueezing property—in the H—3/2-topology—of a finite-dimensional ana-
log of (1.1). However, since the well-posedness theory, and the accompanying estimates,
for the full KdV flow do not presently exist at such rough norms, we do not see how
we could approximate the full KdV flow in a space as rough as H~3/2 with a finite-
dimensional flow. The first structure described above allows us to adopt this strategy in

the space H()’l/2

, within which we do have well-posedness. (See below for references for
this approach to proving nonsqueezing for partial differential equations. See, e.g., [25]
and [11] for more details and history of the various symplectic structures for KdV.)

For any u.€ H; 1 2(T), r>0, kgcZ* and z€C, we consider the infinite-dimensional

ball

B*®(us;r)i={ue Ho_l/z(T) : HU—U*HH()—l/z <r}

(°) By the word ‘formally’, we mean here that no attempt is made to justify various differentiations

or integration by parts. Later, when we localize the space H /2 2nd Hamiltonian in frequency and
write down the corresponding equations, the reader can carry out the analogous computation where the
justification of the necessary calculus will be evident.
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and the infinite-dimensional cylinder
C(zir)i={uec HY V> (T): ko =V a(ko) — 2| < 7).

The final result of this paper is the following symplectic nonsqueezing theorem:

THEOREM 1.5. Let 0<r<R, u,€H “*(T), ko€Z*, 2€C and T>0. Then
Skav (T} (B (u.: B)) € C2(z:7).
In other words, there ezists a global Ho_l/Q(T)-solution u to (1.1) such that
H“(O)_U*HHD—‘/Q <R

and
ko /2 [u(T) (ko) 2| > .

Note that no smallness conditions are imposed on u,, R, z or T

Roughly speaking, this theorem asserts that the KdV flow cannot squash a large
ball into a thin cylinder. Notice that the balls and cylinders can be arbitrarily far away
from the origin, and the time T can also be arbitrary. Note though that this result is
interesting even for u,=0, z=0 and smooth initial data ug, as it tells us that the flow
cannot at any time uniformly squeeze the ball B>(0: R) even at a fixed frequency ko.
By Theorem 1.5, the well-posedness theory for KdV reviewed above, and density con-
siderations, we know that for any 7, 7< R, there will be some initial data ug€B>(0; R)
for which(*?) |a(kq, T)|>|ko|'/?r. (See [5, p. 96] for the same discussion in the context
of a nonlinear Klein—-Gordon equation.) A second immediate application of Theorem 1.5
to smooth solutions was highlighted in a different context already in [21], namely that
such smooth solutions of (1.1) cannot uniformly approach some asymptotic state: for
any neighborhood B® (ug; R) of the initial data in H~'/?(T) and for any time ¢, the
diameter of the set Skqav(t)(B>(ug; R)) cannot be less than R.

The motivation for Theorem 1.5, and an important component of its proof, is the
finite-dimensional nonsqueezing theorem of Gromov [13] (see also subsequent exten-
sions in [14] and [15]). The extension to the infinite-dimensional setting provided by
a nonlinear partial differential equation seems nontrivial. The program was initiated by
Kuksin [21], [22] for certain equations where the nonlinear flow is a compact perturbation

(10) We are using here the statement of the theorem only in the case u.=0, 2=0. Of course one
gets a similar conclusion to the one we draw here, but with different weights and a different initial data
set, by simply using the L?-conservation and time reversability properties of the flow. T hat is, for any
R>r, there is data G €{f: | fllp2(x) <R} such that the evolution & of this data satisfies |u(ko, T)|>r.
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of the linear flow. That the KdV equation does not meet this requirement can be seen
by an argument involving simple computations similar to those supporting Theorem 1.1,
which are detailed in §8 below: Fix 0«1, and for each integer N >1 consider initial data

1/2

ug,n(z) :=0oN"“cos Nz.

Clearly the set {ug ny:N=1,2,...} is bounded in HJI/Q. However, when one computes
the second iterate(!!) uE\QJ], one sees that it differs from the linear evolution of ﬁ[]?/] at
frequency k=N in that

A (N, 1) =l (N, ) ~ NV23N 7, (1.19)

By the local well-posedness theory we know, assuming that o is sufficiently small com-
pared to £, that the difference between the second iterate and the actual nonlinear evo-
lution un(t) of the data ug n satisfies

luw @)= uff ()l 17203y S (1.20)
Together, (1.19) and (1.20) show that if {N,}32, is a sequence of integers relatively
prime to one another,(1?) then

- . il 3
i, (Ni t) — Gl (Np.t) ~ 8 10N PNt

Hence the set {upn, (t)—ug\oj]k (t)}22.; has no limit point in H0_1/2(T).

The nonsqueezing results of Kuksin were extended to certain stronger nonlinearities
by Bourgain [2], [5]—for instance, [2] treats the cubic nonlinear Schrédinger flow on
L?(T). In these works, the full solution map is shown to be well approximated by a
finite-dimensional flow constructed by cutting the solution off to frequencies |k|<N for
some large N. The nonsqueezing results in [2] and [5] follow then from a direct application
of Gromov’s finite-dimensional nonsqueezing result to this approximate flow.

The argument we follow here for the KdV flow is similar to the work in [2] and [5],
but seems to require a bit more care. The complication seems to us to be somehow
rooted in the counterexample of Theorem 1.1, which clearly exhibits that a sharp cut-off
is not appropriate in constructing the approximating flow, but which seems also to be

subtly related to the fact that the estimates necessary to approximate the full KdV flow

(11) See, in particular, equation (8.2) for the notation used here, and if necessary §8 for what we
hope is a sufficiently detailed discussion to allow the reader to reproduce the elementary computations
we quote here.

(*2) Note (for example by examining the iterates and using well-posedness) that 2 (t) is supported
only at frequencies which are integer multiples of N.
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by a more gradually truncated flow are unavailable to us when we work directly with the
KdV equation. We have already sketched how we will deal with this difficulty (that is,
by passing to the modified KdV equation) in the discussion which followed Theorem 1.3
above.

We now provide some details of the previous paragraph’s sketch; in particular, we
indicate the difficulties that arise when one tries to repeat the argument in [2] and [5].

Let N>1 be an integer. By simply restricting the form w_,/,, we see that the
space (P<nH, v Q(T), w_1/2) is a 2N-dimensional real symplectic space, and hence by
general arguments (see, e.g., Proposition 1 in [15]) is symplectomorphic to the standard
space (R*M wg). We will make explicit use of such an equivalence below: Any u€
PcnHy Y 2(T) is determined completely by

(Red(1),...,Rea(N), Ima(1),...,Im a(N))

=(e1(u). ... en(w), fr{u), .., fn(u)) e R?N, (1.21)

In terms of the coordinates (1.21), the form w_, /o defined in (1.17) can be written using
the Plancherel theorem as

N 9
= Z z (ek(u)fk(v)—ek(v)fk(u))'

Writing I' for the N x N-matrix ['=diag(1. 1/V2, 1/\/3,...,1/\/-]\_7), A=diag(I",T), and

u=(&(u), f(1)) RV for the coordinates in Pcy Hy “/*(T), we summarize the discussion

above by saying that

—

w12 (u,v) = wo(A(B(w), f(w)). AR(), F(v))), (1.22)

where as before we have written wq for the standard symplectic form on R?Y. In other
words,
A (PenHy (D). w1 j2) — (RPY, w)

is a symplectomorphism.
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Following (2], our goal is to find a flow which satisfies three conditions: it should
be finite-dimensional —that is, map P<nyH ~/?(T) into itself: it should be a symplectic
map for each ¢; and it should well approximate the full flow Skgyv(t) in a sense that
we will make rigorous momentarily. For now, we write ng())dj(t) for this flow yet to be
determined:

_ A
(P¢nH, vz w_172) — (R*Y, wp)

Séigdml (1.23)
(PenHG % w 1 p2) —— (R*.wy).

Note then that the map
AOSgZidI(t)°A_li (R, wg) — (RN, wy) (1.24)

is likewise a symplectomorphism to which we can apply the finite-dimensional theory
of symplectic capacity (see {13] and, e.g., [15]). One defines, for any F.€R?", uMe
PenHy 2(T), r>0, 0< [ko| <N and z€C, the finite-dimensional balls in P<y Hy V/2(T)

and R2V, respectively, by the notation
BN (ui™;r) = {u™ e Poy Hy A(T): u™) —ul™ | yve <}, (1.25)
B(Z.,r):={F R |z-2.|<r}, (1.26)

and the finite-dimensional cylinders in the same spaces by

Cl(z:7) = {u™) € Py HyV*(T) : [kl /2 (0™ (ko) — 2| < 7},
Crolz:7):={(&, ) € RN |(eny+ifig) 2| <7}
From [13] (see also, e.g., Theorem 1, p. 55, in the exposition [15]), we have the
finite-dimensional analog of Theorem 1.5:
THEOREM 1.6. ([13]) Assume that for some R,7>0, zeC, 0<ko<N and Z,eR?N
there is a symplectomorphism ¢ defined on B(Z,, R)C(R?*M,wy) so that

$(B(Zs, R)) C Ciy (23 7).

Then necessarily r2R.

We apply this theorem to the symplectomorphism AoSgZ())d!OA_l defined in (1.24)
above to conclude the following result:
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THEOREM 1.7. Let N>1, O<r<R, u™ePcyHy *(T), 0<|ko|<N, 26C and

T>0. Let Sé;]\;))d!(T): PgNHJI/Q(T)—)PgNHO_l/Q(T) be any symplectomorphism. Then
S (BN WY R)) € Cf (2:7).

To deduce Theorem 1.5 from Theorem 1.7. one would like to let N —oc and show

that the flow Sggl 4(T) converged to Skqv(T) in some weak sense. More precisely, one

would need the following condition:

Condition 1.8. Let kgeZ*, T>0, A>0 and 0<e<«1. Then there exists an No=
No(ko,T,E,A)>|ko| such that

ko 72| (Sxcav (T)uo) (ko) = (S 1 (T)uo) (ko) < €

for all N >Ny and all ug€BY(0, A).

Once we find a finite-dimensional symplectic flow S(szgd!(t) for which Condition 1.8
holds, it is an easy matter to conclude Theorem 1.5. Indeed, let r, R, u., ko, z and T
be as in that theorem, and choose 0<e<(R—7)/2. The ball B*(u,; R) is contained in
some ball B>(0; A) centered at the origin. We choose N >Ny(ko, T, €, A) so large that
||u*-P<Nu*HH(;1/z <e. From Theorem 1.7 we can find initial data uéN)epgNH_lﬂ(T)

satisfying HaéN) ~P¢nua]| ;-1/2<R—¢, and hence by the triangle inequality,

[
ju§™ w2 < R,
and so that at time T we have
ol 2 1S L (TYusY) (ko) — 2| > re.

If we then apply Condition 1.8 and the triangle inequality, we obtain Theorem 1.5 with

’U,QI:ugN):

o] =12 |2~ (Skav(T)u§™)™ (ko))
> ko ™%} 12— (ST L (D)ul™Y (ko) = | (Skav (T)us™) (ko) = (Sena(T)ud™) (ko) |
>r4+e—¢

=T.

It remains to define the flow Sg:;))d!(t). One might first try to follow Bourgain’s

treatment of several different Hamiltonian partial differential equations, notably the cubic
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nonlinear Schrédinger flow on L?(T) (see [2] and [5]). Note that the Hamiltonian H[u]
in {1.18) is well defined on

(PenHy V*(T), w0 1)0).

and the equation giving the corresponding Hamiltonian flow on this space can be com-
puted as before to be (1.5), which can be viewed either as a partial differential equation
or as a system of 2V ordinary differential equations. The maps S PSNKdV(t) are therefore
symplectomorphisms, but from Theorem 1.1 we know that Condition 1.8 fails.

We proceed instead by using a flow of the form (1.7) as follows: Theorem 1.2 tells
us that for any multiplier B of the form described in (1.7), the finite-dimensional flow
Sgqy Provides a good approximation to the low-frequency behavior of KdV. However,
the flows Sgy 4y are not symplectomorphisms, and hence cannot be candidates for our
flow ng())d!(t) in the discussion above. Fortunately, there is a quick cure for this hiccup
using the approximation given by Theorem 1.3 as follows: We will define a symplectic,
finite-dimensional flow Sgi)v(t) on PeyHy 172 56 that the following diagram commutes:
1/2

— B
UoEPgNHO —— Bug

s&’iml Jsgzkdvm (1.27)

Sty (Hug —5— w(t).

We write explicitly the partial differential equation defining this flow in (7.1) below.
To show that Sgi)v(t) well approximates Skqv (¢) at frequency kg, and hence qualifies as
our choice of ng()) a(t), we will simply spell out the following: Theorem 1.3 allows us to
replace Spzkqv(t) on the right-hand side of (1.27) with Skqv(#); and our choice N> ko
allows us to ignore both the mappings on the top of (1.27) (again, by Theorem 1.3) and
the bottom of (1.27) (by the definition of B, this is the identity at frequency ko). We
give the details in §7 below.

Acknowledgement. This work was conducted at UCLA. The authors are indebted
to Tom Mrowka for his detailed explanation of symplectic nonsqueezing.

2. Inverting the Miura transform

As described in the introduction above, our work here on the KdV equation relies on
the continuity and invertibility properties of the Miura transform u=Muv, where M is
defined by

Mu = v, +1v2 —~ Py(v°)
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(see (24}]). The additional Py(v?)-term here is necessary to make the mean of Muv vanish.
Let Smkav(t) denote the flow associated to the mKdV equation (1.9). Then we have the
intertwining relationship

MSnkav (t) = Skav (t)M (2.1)

To see this, we suppose that v solves the mKdV equation (1.9), and set u:=Muv. Then
one easily checks that

Ut FUzgr —Outy = (82 +20) v+ (0p +20) Vpzr + 60V
—6(vz+12 = Po(v?)) (vzr +2v0z)
= (8 +20) (Vs + Ve — 60202 +6 Py (v?) v,
0.

{l

Heuristically, the Miura transform acts like a derivative operator 0, and in partic-
ular we expect it to be a locally bi-Lipschitz bijection from H§ to H3~'. The purpose of
this section is to make this heuristic rigorous for the range s>%. (See also [17], which
studies the Miura transform for the larger range s20.)

In what follows we shall make frequent use of the well-known Sobolev multiplication

law

Huvllgs ey S lullge e vl gz (), (2.2)

whenever s<min(s1, s9) and s<s; +89— %, with at least one of the two inequalities being
strict.

From (2.2) it is clear that M is a locally Lipschitz(*?) map from H§(T) to H3™*(T)
for s>1 (in fact, s>0 would suffice). The main result of this section is to invert this
statement:

THEOREM 2.1. Let 32%. Then the map M is a bijection from HE(T) to Hg_l(T),
and the inverse map M~! is a locally Lipschitz map from Hos_l(T) to H§(T).

Proof. We shall focus on the endpoint case s= % We shall see at the end of the proof
that the higher regularity cases s>% then follow from the endpoint case and standard
elliptic regularity theory. We remark that the arguments here (based on a variational
approach) are unrelated to the rest of the paper and can be read independently.

Since the linearization v+ v, of the Miura transform M is clearly bi-Lipschitz from
Hé/z(T) to HO_I/Z(T), it is tempting to treat the lower-order terms v?— Py(v?) as per-
turbations to be iterated away. This works well if v and Mv are small; for large v,

(*3) By this we mean that M is Lipschitz on every ball in H§(T), with a Lipschitz constant
depending on the ball.
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however, it appears that iterative techniques alone cannot obtain this result.(4) Indeed,
we shall need to also rely on variational techniques, and in particular we will use the well-
known connection between the Miura transform and the spectral theory of Schrodinger
operators. The key identity here is
2 2
(% +v> (‘gdg +v> = —6—%5 + (v +v7) = _d(iZ +Muv+Py(v?). (2.3)
We shall work entirely with the smooth functions in Hé/ *(T) and H, Y %(T), and
obtain bi-Lipschitz bounds for M on these functions; it will then be clear from standard
limiting arguments that one has bi-Lipschitz bounds in general.
Let uc Hy 1 2(T) be smooth. We consider the problem of finding a smooth function
’UGH(}/ 2(T) with Mv=u, showing that this v is unique, and of estimating v in terms of u.

This will be achieved by studying the self-adjoint Schrodinger operator L=L,, defined

by
d2
L= —E;?—'Fu(l)

and the associated energy functional E[¢]=FE,,[¢] defined on H!(T) by

El¢]:= (L, ¢>:/r(¢§(x)+u(x)¢2(z)) dx.

Since L is a self-adjoint elliptic operator on a compact manifold T, it has a discrete
spectrum A; <o <... with A,~4o0c. In particular, we have a lowest eigenvalue ;=
A1(u)€R and a nonzero (real-valued) eigenfunction ¢; with L¢i=A1¢1. A priori, ¢; is
only in H? (T, but since u is smooth one can use the equation L¢; =A;1¢1 to deduce that
¢1 is also smooth.

Our analysis here shall rely solely on A;. It is interesting to note that the work
in [4], which is at a similar level of scaling to H, 1 2(T), uses the entire spectrum A, of
the operator L.

From construction of E[¢] we observe that
Elg)> A [ oda (2.4)
T

for all p€ H'(T), with equality attained if and only if ¢ is a A;-eigenfunction of L. (As we
shall see, A; is an isolated eigenvalue, so equality only occurs when ¢=c¢; for some c.)
Thus A; can be described in a variational manner.

(14) However, iterative techniques do allow us to bootstrap low-regularity estimates to high-
regularity estimates, basically because M is elliptic and v lies above the critical regularity H -1/2 for M
(and for mKdV). The strategy of this argument will be to use variational estimates to obtain a prelimi-
nary estimate in very rough norms, and use iteration to improve this to estimates in the correct norms
Hy/*(T) and H; /*(T).
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Since uEHo_l/z(T) we see that E[1]=0, and thus A; must be nonpositive. If u#0
then 1 is not an eigenfunction, and so A; becomes strictly negative.

We now claim that ¢; cannot vanish anywhere. If it had a double zero at some
point, i.e. $1{zg)=0;¢1{x¢)=0, then from the second-order ordinary differential equation
Lpi=XA1¢1 and the Picard existence theorem for ordinary differential equations we see
that ¢1=0, a contradiction. Now suppose that ¢; had a simple zero at zo, so in particular
¢1 changed sign. Let ¢y =¢] +¢] denote the positive and negative components of ¢;.
An integration by parts shows that

El¢y]= / >0L<z>1(:c>¢1(a:) dz =\ /T of (z) dz.

This implies that ¢ is a Aj-eigenfunction of L, which contradicts the fact that all such
eigenfunctions are smooth.(!%) Thus ¢; is nowhere vanishing; without loss of generality
we may take @1 to be positive and L?-normalized (which uniquely identifies ¢;). If we
now define v to be the logarithmic derivative of ¢y,

vle)= 20,

then v is smooth and we have

; i 2
vy = aza:(pl _ (61:’@1> ‘:u—Al—U2
) )

(since Ly =A1¢1) and hence
U=V, +7J2+/\1-

Taking means of both sides we see that
—Ap = Py(v?) (255)

and hence u=Mu.
This shows existence of v such that u=Muv. Observe from (2.3) and an integration
by parts that

Elf)= /T ($2—v8)? dz — Po(v?) /T & da; (2.6)

from this and (2.5) we immediately see that (2.4) holds (which we already knew), and
that equality occurs if and only if ¢, =v¢, or in other words, if ¢ is a constant multiple

of exp(d;1v). In particular, this shows that v is unique, for if we had Mv=M?7 then the

(*®) Alternatively, one can smooth ¢ at the zeroes of ¢1 to contradict (2.4).
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above argument yields that exp(d; 'v) is a constant multiple of exp(8; '0), which implies
that v=7 if v and ¢ both lie in Hé/?'(T).

We have now shown that M is smooth, locally Lipschitz, and bijective on smooth

functions with mean zero. To extend this to Hé/ *(T) and Hy 1 ?(T) we need some

a priori estimates on M ™! in these norms.

Let ueHo_l/Q(T) and vEHol/Z(T) be smooth functions such that u=Muv. For this
discussion we will allow implicit constants to depend on the Hy Y 2(T)—norm of u. Write
U:=38;1u, and thus ”U||Hé/2(T) <1. We observe from integration by parts and the Holder,
Sobolev and Gagliardo—Nirenberg inequalities that

E[¢}=/r¢§ dx+/Tu¢2dz

> 16112 ~C U s |0l 22 6212
> 1612~ CNU g2/ 1l 272 121
> (16113 ~C Ul N6l Il g -

In particular, we have the coercivity bound
E[¢}+Clo]Z2 2 1¢llE

for all g€ H*(T). Applying this to ¢=¢; in particular, and recalling the upper bound
on Aj, we obtain the eigenvalue bound

—C<M <0 (2.7)
and the preliminary eigenfunction bound

61l S 1.
From (2.2) and the Ho_l/g(T)-bound on u we thus have

lugr |l g-1r2 S1,

which by the eigenfunction equation L¢;=A;¢; implies the better eigenfunction bound

1/l grarz S1. (2.8)

Now we estimate v. From (2.5) and (2.7) we have the preliminary bound

olle S5
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since u=Muv, we thus have

e —ulizs S1.

Since L' and Hy “/*(T) both embed into H~3/4 (for instance) we thus have by Sobolev’s
inequality that

lvlizs Slvll s S el p-ss S 1.
Returning once again to the equation u=Mu, we thus have
[ve—ullr2 $1,

which then implies
ol 272z S 1 (2.9)

In particular, we have
105 ol <107 "ol gsr2 ) S lell vz oy S 1.

and thus exp(d;1v) is bounded above and below. Since ¢; is a constant multiple of
exp(d, 1v), we thus see from (2.8) that

lo1(z)]~1 forallzeT. (2.10)

We have obtained good bounds for v=M~'u and for the ground state ¢;. We now
establish that M~! is Lipschitz for smooth v in a given bounded subset of Hé/ %, From
the inverse function theorem and the fact (from (2.2)) that M is a locally uniformly C2-
map from Hé/z to Ho_l/z, it suffices to show that the derivative map M'v: HS/Z—»HO—U2
is uniformly invertible for v in this set.

A direct computation shows that
M’ (v)(w) = (1—FPy)(0z+2v)w.

We shall invert this explicitly.

LEMMA 2.2, We have
M’ (v)~! = Afexp(—20; v)) 9; *Alexp(20; 'v)],
s . 3/2 Cprtl/2 +1/2 is th ¢
where for any positive function VE H3%(T), A[V}: Hy ' “(T)—Hy '“(T) is the operator

AlVj(w):=Vw— _Pf(/V) Py(Vw).
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We recommend that the reader think of M’'v and M/(v)~! as perturbations of 9
and 8; !, respectively.

Proof. We have
M'v = (1- Py) exp(—29; 'v) 0, exp(20; v)
= (1—-Py) exp(—20; 'v) 8, (1— Py) exp(20; 'v).
Also, observe that A[V7] is the inverse of (1-P)V =" on Hoﬂﬂ(T). The claim follows. O

Since H3/? is a Banach algebra (by (2.2)), we have

lexp(£20; " 0)| /2 S exp(C 187 0]l gs2) S exp(Cllv )S L (2.11)

[ Hy/3(T)

Thus from Lemma 2.2 we see that M'(v) ™! is uniformly bounded from Ho_l/2 to HOI/Q.
Having proven Theorem 2.1 at the endpoint s:%, we now sketch how one can use
elliptic regularity theory to bootstrap this to higher regularities s> %
Let us first show the boundedness of M~! from H3™' to Hg for smooth functions.

In other words, if u=Muv is smooth, we wish to show that
lollig SC el s
From the H'/2-theory we already know that
ol g2 S Cll .
Suppose for the moment that  <s<3. We write
Jolltg S el g S Mol g 11— Bo)o s < il ggos 102 .

If s<3, then by (2.2) we see that ]]vQIIHkxﬁ]]v]]i{l/zﬁCl]u]]Hg_l, which establishes
boundedness. By iterating this type of argument agaion one can cover the case %<s<%,
and so forth until we obtain boundedness for all s>%. The local Lipschitz property for
M~! is proven similarly and is left to the reader. a

From the above theorem, the analyticity of M, and the inverse function theorem,
we see in fact that M~ is locally uniformly C™ as a map from H3™'(T) to H§(T), for
any integer m and any s> %
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3. The Fourier restriction spaces Y*° and Z?*

In view of the results of the last section, we see that to analyze the KdV flow in the
Hgfl—topology it will suffice to analyze the mKdV flow in the H§-topology. We now
review the basic machinery (from [1], [19]. [9] and [10]) for doing so.

If u(z,t) is a function on the cylinder T xR with mean zero at every time, and
s,bER, we define the X*°=X**(T x R)-norm by

ull o := 2k ) (R)* (7 =K%l 2,

where Lf} & 1s with respect to Lebesgue measure d7 in the 7-variable and counting measure
in the k variable, (z)?2=1+|2|?, and the space-time Fourier transform #(k, ) is given for
ke€Z* and T€R by

ik, 7) = / eIy ) dr
T X

We use the same notation here as for the purely spatial Fourier transform (1.2), relying
on context to distinguish the two.
We also need the spaces

lullys = ullxe1r2 (k)@ 2 L2 3.1)
and »
L [ I (32
Observe that we have the crude estimate
lullzs < ullxeo = llull L2 15, (3.3)

which will be useful for controlling quartic or higher-order error terms; often we will be
localized in time and just estimate L?H® by L¥*H®. Here and in the sequel, we always
allow implicit constants to depend on the exponent s.

We can restrict the space Y to a time interval ICR in the usual manner as

”uHYf = lnf{HUHys . 'U|T><I :u}.

Similarly we can restrict the Z*-norm. In practice we shall work in a fixed time interval
(usually [—T,T]) and implicitly restrict all of our norms to this interval.
Now we give some embeddings for the Y*- and Z°-spaces. Since the Fourier trans-

form of an L!'-function is continuous and bounded, we have from (3.1) that

YSC CHS C LI°H?. (3.4)
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We have the “energy estimate”

In(E)ollys < llv(to)ll ms +llve+vasallzs (3.5)

for any to€R and any bump function 7 supported on [to—C,to+C]. (See {1} and also
(10, Lemma 3.1]; for analogous estimates in the nonperiodic context, see [18, Lemmas
3.1-3.3].)

Recall also the main estimate from [10] (see Proposition 1 in that paper), namely,

[a=ro((a-r) f[u) w)| s (r:[ sl ol (36)

for any 32% and any integer k>2, where the implicit constant depends on k. (We
shall only use (3.6) with k=2, 3,4.) This particular estimate is crucial (especially at the
endpoint s:%) in order to prove the local (and global) well-posedness of the modified
KdV equation (1.9) in H§(T) for s> 3.

It would be very convenient if the Z® on the left-hand side of (3.6) could be replaced

Zs

by Z*° for some ¢>0; this extra smoothing estimate would make it easy to ignore
the high-frequency components of the evolution and concentrate on the low-frequency
evolution. Unfortunately it is easy to see (by modifying the examples in [19]) that such
estimates fail, especially at s:%. Fortunately, as we will see in the next section, there
are some other ways to improve the trilinear version of (3.6), which will be useful for our

approximation results.

4. An improved trilinear estimate

The estimate 3.6 with k=2 allows us to estimate the cubic nonlinearity F(v) defined in
(1.10). However, for our analysis we shall need a refined version of this estimate.

The first step is to decompose F into “resonant” and “nonresonant” components.
In the following analysis we shall always assume that v has mean zero.

We start with the Fourler inversion formula

v(z) = Z (k) exp(ikx)
keZ~
for ve Hy, where Z*:=Z\ {0} is the set of the nonzero integers. A direct computation
gives that the Fourier transform of F'(v) is

Fo)(k)=6 > ©(k1)i(ks)iksd(ks) (4.1)
ki, ka2, ks€Z”
k1+ko+ks=k
k1+ko#0
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for all k€Z*. The constraint k; +k;#0 arises since we have subtracted the mean Py(v?)
from v? in the definition of F(v). Observe that F(v) is a perfect derivative and so has

mean zero and thus no Fourier component at 0.

LEMMA 4.1. We have
F(U) = FO(’Uw v, U)+F¢O(U7 v, U)$

where the “resonant” trilinear operator Fy is given by

Fo(u,v,w) (k)= —6ika(k)o(k) (k) (4.2)
for k€Z*, and the “nonresonant” trilinear operator Fo is defined by
Fao(wv,w) (k)= — > 2i(ki+katks) (k) d(ke)@(ks) (4.3)
k)l,kg.,kgez*
ki+kot+ks=k

(k1+k2) (k1 +ks)(ka+ks)#£0
for keZ*.

Proof. Consider the right-hand side of (4.1), and break the sum into pieces according
to how many of the quantities k; +k3 and ks +k3 are zero. There is a single term in the
sum for which ks+k3=k; +k3=0, and the summation in this case is Fy(v,v,v). If just
ko+ks is zero, then the total contribution of this case vanishes since the summand in
this case is antisymmetric with respect to swapping ks and k3. Similarly if just k;+ks
is zero. The remaining portion of the summation can be seen to be Fixo(v,v,v) by a

symmetrization in ki, ky and k3. U
If k=ky+ko+k3, then we have the fundamental resonance identity
k3 — (k3 k3 +k3) = 3(ky + ko) (k) +k3) (k2 +k3) (4.4)

(see e.g. [1]). This justifies the terminology that Fy is “resonant” but Flg is “non-
resonant”.

We remark that, if u, v and w are real, then Fy(u,v,w) and Fygo(u,v,w) are also
real, despite the presence of the imaginary ¢ in the definitions of these quantities. This
follows from identities such as 4(—k)=1u(k). We leave the details to the reader. We also
remark that eventually these two functions will be estimated in absolute value, so the

constants which appear (e.g. the minus signs out front) will play no role.

4.1. The Fy (resonant) estimate

We now give an estimate for Fy. Morally at least, the bound we give follows from
the trilinear version of (3.6), but we present an independent proof here for the sake of
completeness.
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LEMMA 4.2. For any s}%, and any u,v, weY® with mean zero, we have

[0 (u, v, w)l|zo < Nullys [vllye [wlly- (4.5)

Proof. We shall just prove the endpoint case s:%, as the general case easily follows
(e.g. by using the identity 85~ /2 Fy(u, v, w)=Fo(85 " *u, v, w)).

Split uszez* ug, where uy is a complex-valued function whose spatial Fourier
transform is supported on a single frequency k. Observe that

Fo(u,v,w) = Z Fo(ug, v_k. wg)-
kezZ*

Thus if we show that
(| Fo(uk, vk, wi)ll 2172 S HUkHl/z,l/z ||U~k||1/2,1/2 Hwklll/2,1/2a

then the claim (4.5) follows by summing in k£ and using Cauchy-Schwartz’s inequality in
u and v (just estimating the wy-term crudely by w).
Fix k, and define the function Gy, (t) by ux(z,t)=e*=ei**tG,, (t), so that

gl xss = (B [{7)° G (P 22y,

and similarly for G, , and G,,. The claim then collapses (after some translation in
frequency space) to the 1-dimensional temporal estimate

“GukGU—kak HH;1/2 S ”Guk “H}/"’ HGv—k HHtl/z Hka “Htl/2
and
H(GuGo_ Gue) (1) Hles SHGwll 2 1Gu_ N e Gl 22

But both left-hand sides can be estimated by ||Gu,Gv_,Gu,ll12, and the claim follows
easily from the Holder and Sobolev inequalities. O

4.2. The F, (nonresonant) estimate

We now turn to the nonresonant portion Fyo of the nonlinearity. In analogy with (3.6)
and (4.5) we have the estimate

[F0(u, v, w)| 25 < lul

ya|lvllys |wlye (4.6)

for all 52% and u,v, w€Y® with mean zero. This estimate can be proven by the tech-
niques used to prove (3.6) in [10], but we shall obtain it as a consequence of a slightly
stronger version, which we now state.



222 J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA AND T. TAO

We first need some Littlewood-Paley notation. If NV is an integer power of two, we
let Py denote the dyadic projection operator

m‘(k) = XNglk§<2Nﬁ(k)-

If Ny, N1, Ny and N3 are four integer powers of two, we let soprano, alto, tenor and

baritone be a permutation of the indices 0, 1, 2 and 3 such that
Nsoprano 2 ]Valto 2 ]Vtenor 2 iVbaritone~

THEOREM 4.3. Let Ny, Ny, Ny and N3 be integer powers of two. Then

N, s
| P Freo(Prvyu, Pryv, Praw)ll e S (**O——> Nelorllullyrzllvllyazlfwllyre  (4.7)

]Vsoprano
for some absolute constant o>0.(19)

This means that (4.7) is only sharp when the output frequency Ny is essentially the
highest frequency, and the two lowest frequencies Neenor and Nbaritone are O(1). This
means that very low Fourier modes can influence high modes, but medium and high
modes do not. In addition, the high modes do not have much influence on the low
modes. (") From (4.7) one can easily obtain (4.6) by summing in the N;.(*%)

The estimates (4.5) and (4.7) give some intuition for why it is possible to find a finite-
dimensional approximation to the mKdV flow—and hence, using the Miura transform,
for the KdV flow as well: the only nonlinear interactions for which we now have no
sharpened estimates are the resonant interactions coming from Fy (which does not mix
frequencies) and the high-low-low interactions in F.o. Heuristically, then, we might
start believing that if we truncate high frequencies. the evolution will not see much of
a difference at low frequencies. In fact, it is possible to use these estimates to prove
low-frequency approximation theorems for mKdV analogous to Theorems 1.2 and 1.3,
but we do not write out these results explicitly in this work.

The rest of this section is devoted to the proof of Theorem 4.3. We remark that the
computations in this section are not needed elsewhere in the paper, and the reader may
wish to take (4.7) for granted on the first pass and move to the next section.

Proof. We begin by reviewing some (nontrivial) estimates from [10].

(*%) The quantity o shall vary from line to line.

(*7) That is, when the soprano and alto dyadic factors are high frequencies and Np is low, we have
a small first factor on the right-hand side of (4.7).

(3%) More precisely, one first observes that the left-hand side of (4.7) vanishes unless Nsoprano~
Natto- Then one decomposes u, v and w into dyadic pieces and exploits orthogonality of the projec-
tions Px in the Y;- and Zs-spaces. We omit the details.
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The proof of (4.7) relies mainly on the trilinear estimate

HU]UQ’LL;;HLi,t 5 Hu1 ||Xo,1/2—1/1oo ||u2|]xo.1/2—1/100 HU3HX1/2~1/100,1/2—1/100
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(4.8)

proven in [10, Section 7]. This estimate can be viewed as a trilinear variant of the Lg’t

Strichartz estimate in [1], and its proof requires a small amount of elementary number

theory.

We will also use the following estimate, which follows relatively quickly from some

bounds found in [10]:

S lulys folive lwlly-

H (k) Fpo(u, v, w)” (k)|
1211

(r—k3)1=6

for all s>1 and some §>0. To establish (4.9), recall Theorem 3 from [10]:

k
< I sl

i=1

k

I

=1

Xs—1.1/2

for s>1. We need equation (9.2) in [10] as well, which also holds when s> 3:

” (k)* X p0((1=Po)us-(1—Po)uz) (k,7)
<7-_k3>145

L2L1
Combining these two and writing for the moment
W (k, 7) = X0 (k) (1= Po )t - (1= Po) (vw)) (K, 7)

= Xgz0(K) Z ik1t(k1) 0 (k2) W (ks),
ki+ka+ka=k
k1, ko +ks#0

we conclude by (4.10) that

(k)W (k,7)
(T—k3)1=6

S lluellxovarz owll xs-1a/2 < lullys [[vllys [[wlly-
2L71_

S lualxs-1as2 [Juzf xs-1.1/2-

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

We quickly conclude (4.9) from (4.13): looking at the definition of the norms involved,

one sees that without loss of generality we may assume that @(k),9(k), W(k)>0. Next,
by replacing the factor @(k) appearing in (4.13) and (4.12) with x; 5o(k1)d(k1) and

Xk, <o(k1)@(ky), one concludes (4.13) with the function W now replaced by

Wik, 7) = xzok) Y kil @(ky) d(ke) W(ks).
ki+kot+ka=k
k1. kao+ks#0
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Repeating this argument while interchanging the roles of k1 and ko, and then k; and ks,
and summing gives (4.13) with W replaced with

Wik, 7) = X0 (k) > (kalHIke|+lks]) alka) O(ka) B(ks)-
k1koks#0
(k1+kz)(ka+ka) (k1 +k3)5#0
By the definition of F..y in (4.3) this yields (4.9).
We now begin the proof of (4.7). It will suffice to prove the estimate

||PN0F;&O(PN1U, PNZU, PN3w) HX1/21—1/2

NO a (414)

< (52 ) Nt lulxmas Bllvasa e
SOprano

Indeed, this estimate already controls the X*/2~1/Z_portion of the Z'/2-norm. To control

the LZL1-portion, we observe from Holder’s inequality that the left-hand side of (4.14)

controls

3

\\ <k>l/2(PNo F#O(PN1U7 Pf\'va? PNsw))A(k)
LiL1

<7-__.k3>1+6

and the claim follows by a suitable interpolation with (4.9) (decreasing o if necessary).
It remains to prove (4.14). By duality this is equivalent to

‘// an;1F¢0(U1,UQ,U3)d$dt(
TxR

N a
< <—0——> Nl ol x—srzase flutll x 121z luallxizeasz |usl xirzar2,
Nsoprano
where u; has Fourier support on the region |k;|~N;. We have inserted the 87 L_multiplier
to cancel the (k; +ko+ks3)-factor in (4.3).
The right-hand side is comparable to

NoN1N2N3)
<__N0_> N=o (i_oNl,_zs_ H g | gore- (4.15)

N. tenor
soprano

Note that we may assume that Nyoprano~Nalto since the left-hand side of (4.14) vanishes
otherwise. Hence the right-hand side of (4.15) is bounded below (throwing away the
factor (Ny/Nsoprano)®) by

3
1/2 U]VT1/2 ]\Y_l H “Uj”XD,l/Z.

tenor baritone * 'soprano
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Taking space-time Fourier transforms and taking advantage of the frequency localization,
we thus reduce to showing that

Z /Hu] ) dr

1/2—0 nr1/2
< Ntenor Nbaritone soprano H HU’J HXO 1/2,
ko,k1,k2, k3 €Z"

ko+k1+ka+ks=0 (4.16)
(k1+kz2)(k2+ks)(kz+ka)#0

where dr is integration over the 3-dimensional space
{(7’0, T, T2, T3) S RY: To+T1+Te+T3 = 0}

with measure dr:=46(7p+71+72 +73)H?:0 dr;. We remark that the above estimate is
now symimetric with respect to permutations of kg, k1, ko and k3.

Without loss of generality we may assume that the 4; are all nonnegative. The
next step is to exploit the implicit (r;—k?)!/2-denominators. From the fundamental
identity (4.4},

3
> =k }:;& 3(ky +ka) (kg +ks) (k1 +ks), (4.17)

j=0
we see that
sup <Tj —*k?) 2 1k1 +k2} |k2+k3| |l€1 +k)3|
§=0,1,2,3

= IkSOprano + kbaritone | 'kalto + kbaritonel Iktenor + kbaritone | .

By symmetry we may assume that the supremum on the left-hand side is attained
when j=0.

LEMMA 4.4. We have

|ksoprano + kbarltone | |ka1to + kbarltone | Iktenor + kbarltone 1 N baritone < stoprano (4 18)

Proof. We have four cases:

(1) Nbaritone < Ntenor < Nalto. Then the left-hand side of (4.18) is comparable to
N, szoprano N, tenor N baritone:

(2) Nbaritone ~ Nsenor € Nalto- Then the left-hand side of (4.18) is 2 N2, ane Ntenor-

(3) Nbaritone < Ntenor ~Naito- Then the left-hand side of (4.18) is comparable to
Nsaopra,no Nbaritone .

(4) Nbaritone ~Nienor ~Nato. Then at least one of ki +kz, ka+ks and ki +ks must
have magnitude ~ Nsoprano (since they sum to —2kg). Since the other two factors have

magnitude at least 1, the left-hand side of (4.18) is > N? O

soprano’
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From this lemma, we have

<7'0-—k0> N2 N_

sopranc* 'baritone’

Thus to prove (4.16) it will suffice to show that

3 3
- 6 -
’ Z /Nterllc/)3+ —k8>1/2H%j(kj,Tj)dT 5 H HujHXOTI/2.

ko,k1,k2,ka€Z* Jj=0 j=0

kot+k1+ko+kz=0

(k1+k2)(ka+ks)(ka+k3)#0

At least one of ky, k2 and k3 is O(Nienor); by symmetry let us suppose that it is k3. Then
we can bound Ntle/foré by kl/ % and then by undoing the Fourier transform and doing

some substitutions the estimate becomes
‘// VpU1V2V3 dx dt 5 H’i)oHXo.o H?)l on.1/2 H’UQHXOJ/2 H’{)3HX1/2—6,1/2.
TxR

But this follows directly from (4.8) if o is small enough. This proves (4.7). 0O

5. Proof of Theorem 1.3: KdV low frequencies are
stable under high-frequency perturbations of data

We now prove Theorem 1.3. Fix s, T, ug and 4gq.

We have no upper bound on the time 7', and so, in particular, we cannot hope to
control the flow Skqv(t) on the entire interval [-T,T] by a single application of the
local well-posedness theory. On the other hand, because of the uniform bounds (1.3) we
see that we can divide [~T,T] into a bounded number C{s, T, lluollaz, ol mg) of time
intervals such that the local well-posedness theory can be used on each interval. It will
thus suffice to prove a local-in-time version of Theorem 1.3; more precisely, it will suffice
to show the following proposition:

PROPOSITION 5.1. Fiz 32—% and N'21. Let up, o€ H be such that Penruo=

P nitig. Then, if T' is sufficiently small depending on s, ||uollns and ||Goll#s, we have
= 9] o

ISIléP (P iz (Skav (t) tio — Skav (8)uo) | g < (N')T7C(s, lluoliag., 1ol 1g)

for some o=0c(s)>0.

The exponent % in (N’)!/2 is not particularly important here; any exponent between
0 and 1 would suffice.
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To see how this proposition implies the theorem, first recall that we may assume
that N is large, N2>C(s,T,|luollm;, (|40l ), since the claim in Theorem 1.3 trivially
follows from (1.3) otherwise. (This same remark also applies of course in Proposition 5.1,
allowing us to assume that N'>C(s, ljuol ug, ||Go|lzg) there too.) From (1.3) we may
divide [-T,T] into C(s, T, ||uolla;y, @0l xs) time intervals, such that on each interval
(a time-translated version of) Proposition 5.1 holds. Consider for example the first
such time interval [0,7”] on the positive real axis. We start with N':=2N and apply
Proposition 5.1, to get

t:{:)ll%,] [Py — (vryrrz (Skav () fio — Skav (£)uo) | g < (N')“7C (s, |[uoll mg., ol z5)-
Before moving on to the next subinterval, modify Skqv(7’)%o on frequencies |k|<
N'—(N")/2 to agree with Skav{T")ug. By the local well-posedness theory and the tri-
angle inequality, we can proceed as on the first subinterval, decrementing N’ by (N’ )1/2
each time we apply Proposition 5.1, to obtain Theorem 1.3 if N (and hence N’) is
sufficiently large.

It remains to prove Proposition 5.1. Henceforth we allow our implicit constants to
depend on s, ||uo|| s and ||tol ;-
Define

Vg 1= M_l’u,o, 'U(t) ::SmKdV(t)U07

Do i= M_lﬁo, f)(t) = SmKdV(t)ff(y

From Theorem 2.1 we thus have

(o9

HWOHHQ*'I <C an H@Q”HSH <C,

while from {2.1) we have
Skav(t)uo=Muv(t) and Skav(t)io=Mu(t).
Our task is thus to show that

\ts|1<117)” Il Pevr—(vryr2 (M5 (t) =Mu(t)) || SC(N')™°. (5.1)

Henceforth we allow the quantity >0 to vary from line to line.

We first investigate the discrepancy between # and v at time 0.
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LEMMA 5.2. With vg and 7y defined as above, we have

| P<n: (170—1’0)||Hg+1 <C(N')7°.

Proof. From the definitions and our assumptions on ug and s we have
Py (Mg —Muyg) =0.
On the other hand, from Theorem 2.1 we have
| P< v (B0 —vo) | gg+1 < CIMPg T —MPgnrvoll g
Thus by the triangle inequality, it will suffice to show the commutator estimate
|IM P¢ nvo — P< v M| g <C(N')Y™°, (5.2)

and similarly for &.
Clearly it will suffice just to consider vg. From the definition (1.8) of the transform M
and the fact that Py, P¢y- and 9, all commute, we have

MPg g~ Pen'Mug = (1= Po)[(P<vo) = P 5]
= (1= P<n)[(P<nrvo)?]
—(P¢n' = Po)[(1=Pgn)vo) (14 Pg i) vo)]-

But the last two terms have an H-norm of O{(N’)~?) for some o>0; this can be seen
by the Sobolev multiplication law (2.2), the H**!-bound on vy, and the estimate

I(1=Penvllas SN |vlims+e

to extract the (N')~“-decay from the high-frequency projection 1—Pgys. The claim
follows. |

We still have to prove (5.1). It will suffice to show that

sup || Peyr_weyssa (5(8) = v(t)l g1 < CV') . (5.3)
<1
This is basically because the commutator of M with Pgy,_(n/y1/2 is small thanks to the
argument in the proof of Lemma 5.2. We omit the details as they are very similar to
those in Lemma 5.2.
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From Lemma 5.2 we see that 79 and vy are almost identical at low frequencies
|k|<N'. In fact, because the solution map Smxav(t) is locally Lipschitz(1?) in H3™!, we
may assume that

PN (To—w0) =0, (5.4)

since the general case then follows by modifying @ (or vo) by a small amount in H*!
and using the Lipschitz property.

Henceforth we assume (5.4), so that the low frequency (|k|<N’) portions of o(t)
and v(t) are identical at time 0. Qur task is to prove (5.3), which asserts that the
slightly lower frequency (|k|<N’—(N’)!/2) portions of #(t) and v(t) are still very close
together at later times. This will be achieved primarily through the improved trilinear
estimate (4.7).

In what follows we assume that all our space-time norms are restricted to the time
interval [-T”,T"].

From the local well-posedness theory of mKdV (see(*) (3.5), (4.5) and (4.6), or
(1], [19] and {10]) we have the local estimates

||U|lys+l+||ﬁ”ys+l gc (55)

if the time T" is chosen sufficiently small depending on the HS'-norms of vy and .

The frequency interval [N’ —(N')}/2 N'] contains O((N')/*) intervals of the form
[M, M+(N')'/4]. By orthogonality and the pigeon-hole principle, we see that there must
exist one of these intervals [M, M +(N')/4] such that

(Pears(vryrra—Pear)vllyser +I1(Pepr s = Per) Ollysns SCN') ™7 (5.6)

Fix this M. We split

V="lo+Vmed +Vhi;

where
U10:=P<Mv, Umed:(P§M+(N/)l/4_P<M)'U and Uhi:=(1—P<M+(N/)1/4)U.
Thus from (5.5) and (5.6) we have

H'UIOHYSH <C, HUhi||Ys+l <C and  |uped|ys+r < C(N/)_U. (5.7)

(19) Since we are assuming 7" to be small this follows directly from the local well-posedness theory.

(20) Strictly speaking, when the data vy, g has large Hg*l—norrn, one has to first rescale the torus
by a suitable scaling parameter A in order to close the iteration, but this has no significant effect on our
argument. The details are carried out in [10] and {9].
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Applying Pcps to (1.9) and using Lemma 4.1, we see that vi, obeys the equation
(04 + 0222 ) V1o = Pcpr Fo(v, v, v) 4+ Pear Fro(v, v, v).
From the definition (4.2) of the resonant operator Fp, we see that
Py Fo(v,v,v) = Fy(vio, Vios Vio)-

The situation for Fy is more complicated as this nonlinearity will mix v)o, Umea and vy;

together. Define an error term to be any quantity with a Z**!-norm of O((N')~7).

From (5.7) and (4.6) we see that any term in Fo(v, v, v) involving vmeq is an error term.
Now let us consider the terms which involve vy;. A typical term is

ParFro(Vio, Vio: Uhi)-
We can dyadically decompose this as

Z Pry Py Fro{ Py, V1o, PNy Vio, Py vni)-
Ng,N1,Na, N3
Such a term can be estimated using the frequency separation between v}, and vy;: for the
summand to be nonzero, we need Ny, Ny <M and N3>M+(N’)Y/2. Using the notation
in the definition (4.3) of Flo, we also need |ki+ky+k3|~No<M, and hence we must
clearly also have Nieno: 2 (N')Y/4. From our nonresonant estimate (4.7), the bounds (5.7)
above, and a summation of the dyadic indices N; (conceding some powers of log N” if
necessary) we thus see that this term is an error term. A similar argument shows that
any other term involving vy; will also be an error term. Thus we see that v}, obeys the

equation
(01 +0z22) V16 = Fo(Vio, Vio, Vo) + P a1 F0(V10s Vios V1o )+ €ITOT terms. (5.8)

By similar reasoning, the function @1,:=PgT also obeys the same equation (but with
slightly different error terms, of course). Since ,(0)=v15(0), we thus see from the

standard local well-posedness theory(?!) that
%10 —Vio|lys+1 <C(N')7°, (5.9)

which by (3.4) implies (5.3) as desired. This proves Theorem 1.3.

(21) A rough sketch of what we have in mind here is: Write G for the portion of the nonlinearity
on the right-hand side of (5.8) not involving the error terms, and note that

t .
016~ Vlo =/ el(t~r)§3(G(ﬁlo)—G(vlo)+error terms) dr.
0

Writing G('D]O)—G(vlo):.folDG(Bﬁlo+(l—0)1)10)({;10—1110)) dh, we use (3.5), (4.5), (4.6) and the fact
that by scaling, we may assume that the data for v), and 7, are small in Y*+! to conclude (5.9).
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6. Proof of Theorem 1.2: BKdV approximates KdV at low frequencies

We now prove the more difficult of our KdV approximation theorems, namely Theo-
rem 1.2. The proof here is definitely in the same spirit as that of Theorem 1.3, in
that we show that two flows remain close by showing that their mKdV analogs remain
close. However, the proof will be more complicated since one of the flows being studied
is Spkav (see (1.7)), and the standard Miura transform M defined by (1.8) seems an
inappropriate tool with which to pull the Spxqv-flow back to an mKdV-type evolution,
as it introduces a v2-type nonlinearity on the right-hand side of (1.9) which is too rough
for us to estimate. Instead, we introduce a modified Miura transform Mp. This strategy
is illustrated in (6.1), where we have written Spyrqv for the flow which intertwines Mp
and BKdV in the sense that

MpoSpmkav(t)oMpz' = Spkav(t),

Smdv (t) Serav(t)

vo Sy P LLLIONNET
Ml JvM MEI TMB (61)
wo—— (), o (2).
Skav(t) SBmKav (t)

We can summarize the proof of Theorem 1.2 (using the same notation as in (6.1),
which will be defined momentarily!) by saying that u(t) and %(t) are shown to be close
at low frequencies by showing that ©(t) and v(t) are likewise close.

We now turn to the details. Fix s}»%, T>0, N>1, B and up€ H; our implicit
constants may depend on s, T and |lug||ns. We work exclusively in the time interval
[-T,T].

Let @(t):=Spkav(t)uo denote the evolution of the flow (1.7). Our task is to show
that

[slup ||P<N1/2 (SKdV (t)uo —ft(t)) “HS S N7, (62)
t|<T

We first claim (in analogy with (1.3)) the bound
sup ||a(t)||mg S1 (6.3)
ftIsT
if N is large enough. This bound is achieved by a repetition of the arguments in [9]. As
it is somewhat technical and uses techniques different from those elsewhere in this paper
(notably the “I-method”), we defer the proof of (6.3) to an appendix.
We may assume from (6.3) and the local well-posedness theory(??) that ug, and
hence 1, is smooth.

(?2) The well-posedness theory for KdV from [19] can be applied without substantial change to the
BKdV equation (1.7). The presence of the multiplier B on the right-hand side presents no difficulty.
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The Miura transform (1.8) intertwines the KdV flow with the (renormalized) mKdV
flow (1.9) and (1.10). We seek a similar transform to intertwine the KdV-like flow Sgkqav
with an mKdV-like flow. It turns out that the correct transform to use is given by

Mp i =0, +B(1—Py)(3?) = i, + B(9?) — Po (%), (6.4)

where of course the multiplier B here is that which appears in the flow (1.7) above.

As with M, the operator Mp is a locally Lipschitz map from Hg“ to H5. We now

address the question of invertibility of Mpg.
Let @ be a function bounded in H3™!. We first look at the derivative operator Mp7,
defined by

M (3) f := fo+2B(1—Py)(f).

LEMMA 6.1. Fix ﬂEHSH, 32——%, and allow the implicit constants in this lemma to
depend on H17||H8+1. If N is sufficiently large, then M/g® is invertible from H§ to H3*',
in the sense that

M5 (0) ™ f || grg+2 S I fllg
for all (smooth) f.
Proof. Recall from the proof of Theorem 2.1 that we have the bound
IM (@)l s Sf - (6.5)

We proved this for SZ—% but it is easy to see that the same argument works for s> —%.

From the resolvent identity
O l=A"11-(A-0)A~ 1),
it thus suffices to show that the operator
(Mo —M'3) M/ (3)*
is a contraction on H§. Applying (6.5) again, it thus suffices to show the bound
IMp(2) f —M'(2) fll g < || fll gasr-

But the left-hand side is just

1200-B) ()l atg S N7 f frzeer SN llggess 11l gzes SNl g

by (2.2) for some >0, and the claim follows if N is sufficiently large. O
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COROLLARY 6.2. Let R>0 and 32—%, If N is large enough depending on R,
then there is a map MF' defined on the ball B®(0; R):={@€Hy : ||| us <R} which in-
verts Mg and is a Lipschitz map from B>(0; R) to H3™".

Remark. Recall that Mp depends on N through the definition of B (see (1.7)).

Proof. Fix R; implicit constants are allowed to depend on R.
Let 2€B>(0; R). To define M 3" at @, we of course have to solve the equation

Mpi=1.
From Theorem 2.1 we can find a @appr, bounded in HS™', such that

Migppr = il.

We now apply the ansatz 9 =0ap,, +W. One easily checks, using (6.4), that w verifies the
difference equation

Wz +B(1= Po)(20appr G+w?) = (1~ B)(02,5,)
or equivalently,
=M (appr) (1= B)(52,p0) ~ Ml (Bappr) " B(1—Fo)(2).
Since Uappe is bounded in H5*! we see from Lemma 6.1 and (2.2) that

”ME (gappr)_l(l —B)({)zppr),

o SN7O.

A contraction mapping argument again using Lemma 6.1 and (2.2) thus shows that a

solution w to the above difference equation exists and obeys the bound
@l groer SNT°

if N is sufficiently large. In particular, we see that Mgl exists at @ and that Mgl is
bounded on Hj.

The Lipschitz bound now follows from Lemma 6.1 and the inverse function theorem,
since Mp is a smooth map from H3™' to H. (Equivalently, one can use contraction
mapping arguments similar to the one above to show that Mgl is uniformly Lipschitz
on very small neighbourhoods of %, and hence on the whole ball B>=(0; R).) O

Thus if N is large enough, the above corollary and (6.3) let us write

#(t) =Mpa(t) (6.6)
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and conclude also that

sup (5(t) 30+ S1. (6.7)
[H<T

From the Leibniz rule we see that

Uzgr = MIB (U {)zzz+6B({}x@zz)
Wiy = (U5 +B(0%) — Po(2%)) Mg (2) T
= Bp g + 202 B(00g )+ B(0%) Uge + 2B (%) B(055 ) — Mg (3) (Po (%) 0z ),
where we have used the fact that Py(ff,)=0 for any f. Expanding (1.7) and cancelling
the two terms of 6 B(¥,0,,,) which appear, we obtain

My (8) (U +Bzae) = 6B(20, B(08z) + B(8%) B0+ 2B(3%) B(97;)) — BM (0) (6P (7°) ).

The first term of the right-hand side is roughly Mg (%)(6B(B(2?)7,)). Indeed, a compu-
tation shows that

M (8)(6B(B(52)5)) = 6B(26, B(it,) + B(5) i) + 12B(1~ Po)(@B(B(3°)7)).
Thus we have
M3 (8) (0 +Vagz ~6 B(B(0°) ) + 6 B(Po(0%)3z)) = 121 +6 Ea,
where the error terms E; and E» are the “commutator expressions”
Ey := B(B(#) B(3%,) - (1- Po)(3B(B(7%)5,))),
Ey = Py(3°)[M/g?. B)¥,.
Thus ¥ obeys the equation
By +Uge = 6B((B—Py)(92)0,) + Mg (#) " (12E, +6E2),  ©(0) =1y. (6.8)

We have written Spnkqv(t) in diagram (6.1) to represent this flow. Since © is smooth,
it is a priori in the space Y**! when restricted to the interval [-T,T]. We now seek to
control the nonlinear terms in (6.8).

If it were not for the error terms E; and E3, one could obtain bounds of the form

IT]]ys+1 <1 (6.9)

from (6.7) and the local well-posedness theory for mKdV in [10] (which can easily handle
the presence of the operator B of order 0). To deal with the terms E; and Ea, we use

the following estimate:
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LEMMA 6.3. We have
M (8)(6) Byl 7o <ON (6.10)
for 5=1,2 and te[-T,T].
Proof. By (3.3) and Lemma 6.1 (using (6.7), of course), it suffices to show that
VBl ms SN2, (6.11)

We first prove this for E;. Observe that B(9?) B(30,)=0, (B(7?))? has mean zero, and
so we can factor out 1— Py, and reduce to showing that

@B (U0,)— 5 B(@0s) | gs SN,

where we have used the shorthand w:=B(%?).
By (2.2) we see that @ is bounded in H:t° for some ¢>0. From the identity

WB(00,) — 0 B(Wi,) = w|[B, 0]t —0[B, W]v,
and another application of (2.2), we see that it suffices to show the commutator estimate

1B, flgllms SN2 fll o gl s (6.12)

Without loss of generality we may assume that f and g have nonnegative Fourier trans-
forms. Observe that

(1B, fla)" (k)= > (b(k)=b(k2)) f(k1)g(k2).
k1+ko=k
The quantity b(k)—b(ks) is clearly O(1). If [k;|< N then one also obtains a bound of
O(|k1|/N) by the mean-value theorem. Thus we have a universal bound of

|b(k)—b(k2)| < |ka[7/2N /2.

The commutator estimate then reduces to

11821772 f) gl 113 S 11/ W grs= gl

but this follows from (2.2).
Now we prove (6.11) for E,. From (6.7) we see that Py(¢?) is bounded in time, so
it suffices to show that
M50, Bl oy || oy SN°
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Since [0;, B]=0, we have
[M'5%, Bl¥, = B(1—Py)(#Bt,) — B*(1— Py)(9%,) = B(1—Py)[0. B) s,
and the claim follows from (6.12). O

From this lemma and perturbation theory in the Y **!-spaces (using the local well-
posedness theory in [10]), we thus obtain (6.9).

We now repeat the argument from §5. Recall the notation from diagram (6.1) that
v(t)=Smkav(t)vo. From (1.3), (2.1) and Theorem 2.1 we see that v(t) is uniformly
bounded in H*T1. From the local well-posedness theory for mKdV we thus have

ollyors 1.

From this and (6.9), we may find an interval [A, M +N'/4|C[N'/2 2N'/?] such that

[{(P<ars nra—Pear)llyser + | (Pearent/a =P )vllysst SN77

Fix this M. Set

’510 = Pg;uf) and Vio (t) = Pg[w'u.

By arguing as in the previous section we see that vy, obeys the equation
(6t +azz:l:)vlo =k (vlo: Vlos Ulo) +F;é0 (UIO: Vlo, vlo)+ error terms, (613)

where the error terms have a Zt!-norm of O(N~7). We now claim that ¥, obeys the
same equation (but with a different set of error terms, of course). Assuming this claim
for the moment, note that v, and 7), have the same initial data, so we obtain
sup [|vio(t) = Tio(t) || gz=r SN (6.14)
ltI<T
by perturbation theory. The bound (6.14) implies our goal {6.2) relatively quickly: apply
the Miura transform M (see (1.8)) to the difference on the left-hand side of (6.14), and use

the commutator bound (5.2), the fact that Pc M= Py Mp and M >N/2 to conclude
that

N77 2 |[P<arMpo(t) — Paar Mo ()| s 2 || Peni/z@(t) — Penreullag, (6.15)

as desired (see (6.2)).
It remains to show that @y, verifies (6.13). Applying P<ap to (6.8) and using
Lemma 6.3 we have

(at‘+'az:r$)7jlo - 6P<:\1((B_PO)(7~)2)1‘}$)+ ETTor.



SYMPLECTIC NONSQUEEZING OF THE KDV FLOW 237

By repeating the argument in §5 we have
6P<ar (1—Po)(0%)0z) = Pear (Fo (0,7, 7) +Fro(8. 9, 7))
= Fo(T10s V10s Tlo) + F20(T10, V1o, Vo) + €ITOL terms.
Thus it will suffice to show that
P ((1—B)(92)#,) = error terms. (6.16)
For a fixed time ¢, the spatial Fourier coefficient of the left-hand side at (k,t) is

> Xewran (B)(1—b(ky +k2)) D(ky, t) (ko t) iksd (ks ).
k=ki+ko+tks
The summand vanishes unless |k|<M <NY/2 and |ky +ko| > N, which forces |k3|ZN.

First consider the contributions of the case when (ki +k2)(k2+ks)(k1+k3)#0. We
now apply (4.7). By our previous discussion we have Ny 51\71/ 2 and Nooprano 2N, and
hence we see from (6.9) (writing things in terms of space-time Fourier transforms instead
of spatial Fourier transforms, taking absolute values and discarding the (1—b(ki1+k2))-
factor) that this contribution is error.

It remains to consider the case when (k; +k2)(ko+ks)(k1+k3)=0. By the previous
discussion, k;+k2 cannot be zero, while |k3| is much larger than |k|. Thus the only two
cases are when (k;, ko, k3) is equal to (k, —ks, k3) or (—ka.k, k3), so by symmetry the
total contribution to the Fourier coefficient is

2y (k) D ikg(1—b(ky—k)) (k. t) b(—ks. t) B(ks, ).
lk3iZ N
Combining the k3-term with the —ksz-term, this becomes
2X[-mar) (k) Y iks(b(—ks—k)—b(ks—k)) 0(k, t) D(—ks, 1) O(k3, ).
k32N

By the mean-value theorem and the fact that b is even, we have
b(—ks—k)—b{ks—k)=O(k|/N)=O(N77).
Meanwhile, we have

D Ikl [k, )] [(ks, 6)] S 030 S 1.

ks >N
Thus the above Fourier coefficient is O(N~?|6(k,t)]). By (6.7) we thus see that this
contribution to (6.16) has an LHS  -norm of O(N~7). By (3.3) we thus see that this
contribution is error as desired, which completes the proof of (6.13) and hence (6.2).
This concludes the proof of Theorem 1.2.
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7. Proof of Theorem 1.5: Symplectic nonsqueezing of KdV

Let N>>1, let b be a symbol adapted to [~ N, N| which equals 1 on [—-N/2, N/2], and let
B be the associated Fourier multiplier. We begin by considering the modified Hamilton-
ian Hy on PeyHy '/*(T), defined by

Hy(u) ::-/r(—%ui—(Bu)S) dz.

We compute the Hamiltonian flow on P<y Hy 1/2 corresponding to Hy. Fix u,veH, 172,

We see that

d
—H
e ~N(u+tev)

z/r(—uxvz—i%(Bu)QBr) dr = {—Uzz, +6B((Bu)(Bus)), v}
e=0

Since —Uzzz +6B((Bu)(Bu,)) is in PgNH(;l/?. we conclude as in (1.15) and (1.16)
that the Hamiltonian flow of Hy on P<nH, 12 i given by

Ut +Ugge = 6B((Bu)(Bug)),  u(0)=uo€ P<yHY*(T). (7.1)

Let S%)V(t) denote the flow map associated to this equation; for each ¢, we observe that

Sg(]\;)v(t) is thus a symplectomorphism on the finite-dimensional symplectic vector space

PgNHo_lﬂ. In particular, it obeys Theorem 1.7 (that is, we pick S((;’Z({d!zsﬁ‘g)v). To

conclude the proof of Theorem 1.5 it thus suffices to show that the flow S%)V (t) obeys
the weak approximation property in Condition 1.8:

PROPOSITION 7.1. Let kg€ Z*, T>0. A>0 and 0<e<kl. Then there exists a fre-
quency No=Noy(ky, T, e, A)>|ko| such that

kol /2 |(Skav(T)uo) (ko) — (Siegy (T)u0) " (ko)| <&

for all N>Ny and all ug€BN(0, A) (see (1.25) for the definition of this ball).

Proof. We make the transformation w:=Bu, where u solves (7.1). Applying B to
(7.1) we obtain
Wi+ Waze =6B2(ww,), w(0)= Buy,

which is (1.7) with B replaced by B2, Thus we have the intertwining relationship de-
scribed by (1.27) in the introduction to this paper,

BSE(jg)\/(t)uO = Spa2kqv(t) Buo.
In particular, if No>>|kol, then b(ky)=1, so we have

(S (T)uo) (ko) = (Speav (T) Buo)~(ko)- (7.2)
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From Theorem 1.3 we have
kol /2 |(Skav(T) o)~ (ko) — (Skav (T) Bug) (ko) SN7°. (7.3)
From Theorem 1.2 we have (if Ny is large enough, Ng>>ko)
kol =2 |(Skav (T) Buo)” (ko) ~ (Spzxav (T) Buo) ~ (ko)l SN ™7, (7.4)

where the implicit constants are allowed to depend on T and A. By (7.2), the second term
on the left of (7.4) is the same as (Sg\é}v(T}ug)A(ko). Combining this observation with
(7.3), (7.4) and the triangle inequality, we obtain the desired claim, if Np is sufficiently
large depending on kg, T, € and A. (i

The proof of Theorem 1.5 is now complete.

8. Proof of Theorem 1.1: P(yKdV does not approximate KdV

Informally, the point of this section is that there is absolutely no slack in the bilinear
estimate (1.4) at regularity s:—%, no matter what the frequencies of the various func-
tions are; see the examples in [19]. But to convert the examples for the bilinear estimate
to quantitative estimates of the KdV and the truncated KdV flow—in particular, to
establish that the two flows differ as claimed in Theorem 1.1—we must do some tedious
computation of iterates, which we detail below.

Fix kg, A and T, for instance T, A~1; our implicit constants in this section will be
allowed to depend on these parameters. Without loss of generality we may assume that
ko>0. We let 0<o<1 be a small parameter depending on ko, 4 and T to be chosen
later.

Let N>>0 1% be a large integer. We consider the initial data
uo(x) := 03 cos(kox)+0 N2 cos(Nz).

Note that ug lies in PgNHO_I/2(T) with norm O(g), and in particular we have ug€
BY(0; A) if 0«1 is sufficiently small.

Let u and u{") be the solutions to the KdV flow (1.1) and the truncated KdV
flow (1.5), respectively, with initial data u(0)=u{")(0)=uq. We shall show that, if o is
sufficiently small,

—

|a(T) (ko) ™) (T) (ko) | ~ 0%, (8.1)

which gives (1.6).
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To prove (8.1) we need good approximations of u and u"V). To approximate u, we
look at the iterates ul?! for j=0,1,2, ..., defined inductively by ul=*(¢,2)=0 and

(3t+3mz)u[ﬂ - 81(3(u[j*15)2), ul (0) = up. (8.2)

From the contraction mapping arguments in [19] (see also [10]) we know that the ul]

converge to u in the Y[E ;/]Q-norm; indeed each iterate is closer to u by a factor of at least

O(o) compared to the previous one.(**) A routine calculation yields
u%l(t, z) = 0% cos(koz+kit) +o N2 cos(Nz+N3t),
and thus
8z (3(ul)?) = — 354 N3/ 2gin((N +ko)z+(N3+k3)t)
— 36 N*/2sin((N —ko)z+(N*—k§)t)+0z(c®),

where Oz(K) denotes a quantity with a Z[B.lT/f -norm of O(K) (note that we have used
the hypothesis N >0 190 to absorb several terms into this Oz(0%)-error(?4)).
Observe that

(s +0zzz) (— 3 NV 2 (cos((N + ko) x4+ (N3 +k3)t) —cos((N +ko)z+ (N +ko)*t)))
=35 N 2kg sin((N+ko)z+ (N3 +k3)t)+ 0z(0°)
and
(044 0rsz) (3 N™12(cos((N —ko) z+ (N3 —k3)t) —cos((N —ko)z+ (N —ko)°t)))
=34 N3y sin((N —ko)z+(N*—k3)t)+ 0z(c®).
Combining this with the caleulation of 8. (3ul’)? above and using (3.5) we obtain
(¢, z) = ulo(t, z)
— Lot N2 (cos((N +ko)z+(N3+k3)t) —cos((N + ko) z+ (N +ko)*t))
+30 N2k (cos((N —ko) 2+ (N3—E3)t) —cos((N —kg)z+ (N —ko)*t))
+0y (%),

(23) Strictly speaking, this contraction mapping property was only proven for T sufficiently small,
but by subdividing [0, T} into a finite number of small intervals one can obtain the same contraction
mapping for arbitrary T if o is sufficiently small depending on T. This naive argument requires oge= T
for some C; the more sophisticated scaling argument in {10] can improve this to o T~ 1/3~, but we will
not need this quantitative improvement for our arguments here.

(?*) For example, the term o*N'/2kq sin((N +ko)z+(N3+k$)t), which appears when one calcu-
lates 8z (3(ul))?), is Oz(0®), as the space-time Fourier transform of this term is supported a distance
approximately N2 from the cubic 7=¢3. Hence when computing the Z~!/2-norm of this term, we get a
factor of N1 <0190 from the denominator in the definition of this norm.
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where Oy (0®) denotes a quantity with a Y.~ /?-norm of O(c®). In fact, since the
Y [0,7]

cos((N%ko)x+ (N £ko)3t)-terms are already Oy (0%) we have

uM(t, 2) = ull(t, 2)+ Lo N2k (cos((N —ko)z +(N* —kj)t)
—cos((N+ko)z+ (N3 +k3)t))+Oy (09).

Using (1.4) to handle any interaction with a factor of o® or better, we obtain
9:(3(uM?) =8, (3(u)?)+ 0z (). (8.3)
Note that there are two additional, potentially disruptive terms of the form
i%os sin(koz+k3t)

which appear in the expansion of 8;(3(u!'!)?), but they have opposite signs and so can-
cel(?%) each other. From (8.3) and (8.5) we have

u? =ull 40y (6%).
From the contraction mapping property of the iteration map we thus have
u=ull+0y (c®).
In particular, we see that
W(T) (ko) =l (T (ko) + O(0%) =uld) (T (ko) + O(c%). (8.4)

Now we approximate u™). To do this we construct iterates @], j=0,1,2, ..., for the
truncated equation by setting @%:=u" and

(at+azm)ﬂ[j] :PgNax(?)(ﬂ[j—l])?)’ ikl (0) = uq.

By a variant of the local well-posedness theory from [19] (and [10]) we know that @l
will converge to (™) in the Y-norm. By reviewing the computation of ulll(t, ), but now
bearing in mind the presence of the projection Py, we obtain for the first iterate

al(t, z) =uO(t, 2)+ %0’4N_1/2 cos((N —kg)z+ (N3 —k3)t)+ Oy (0°)
=ultl(z,t)+ Oy (c9).

(25) This special cancellation seems to be what distinguishes the KdV flow (1.1) from superficially
similar flows such as (1.5), and is crucial to obtaining our high-frequency and low-frequency approxima-
tion results for this flow. It is instructive to see this cancellation via the renormalized mKdV flow (1.9)
by computing iterates for mKdV and then applying the Miura transform to those iterates.



242 J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA AND T. TAO

Comparing this with the formula for ul!! above, we note that the Fourier modes at

+(N+ko) are not present here. As a consequence, the analog of (8.3) reads
02 (3(aM)?) = 8. (3(u!™)?) + § o° sin(koz+k5t) + 0z (0°).
Since (8;+02)(t sin(kox+kt))=sin(koz+k3t), we can write
@ =gl 4 3 55t sin(koz+kit)+ Oy (0°).
We can easily check then that
0, (3(a)%) = 0. (3(ul")?) + 0z (0°),
and hence 413 =42+ Oy (¢%), which by the contraction mapping property implies that
u™) =4+ Oy (6°).

In particular, we see that

—— —— e—

u)(T) (ko) = 42 (T) (ko) + O(6%) = ull}(T) (ko) — 2iTo%e* T + O (0®).

Comparing this with (8.4) we obtain (8.1) as desired. This proves Theorem 1.1.

9. Appendix. Proof of (6.3): H*-bound for the BKdV flow

We now prove the bound (6.3) for H§-solutions to the KdV-like equation
U+ Uzze =6B(uuz).  u(0)=uq,

with [lugl|zg <1; this bound is needed to complete the proof of Theorem 1.2 and hence
Theorem 1.5.

If s3>0 then this bound follows from L?-conservation and standard persistence of
regularity theory (see, e.g., [1]), so we shall assume that —3 <s<O0.

To do so, let us first review (from [9]) how the corresponding bound (1.3) was proven

for the KdV flow

U+ Ugez = Buty, u(0)=1up.



SYMPLECTIC NONSQUEEZING OF THE KDV FLOW 243

9.1. Review of proof of H*-bound for KdV (1.3)

The idea is to modify the conserved L?-norm [ u®dz to something resembling the H*-
norm and which is still approximately conserved. To do this, it is convenient to introduce
some notation for multilinear forms.

If n>2 is an integer, then we define a (spatial) n-multiplier to be any function
M, (ki1,...,ks) on the (discrete) hyperplane

Up={(k1, ... ko) €Z" : k1 +...+k, =0}.

If M, is an n~multiplier and u., ..., u, are functions on R/27Z, we define the n-linear
functional Ap(Mp;u1,...,up) by

An(Mai frseos fa)i= D0 Mulky, k) [T £ (k)

We adopt the notation
An(My;u):=Ap(My;u, ... u).

Observe that A, (M,; f) is invariant under permutations of the k;-indices. In particular,

we have
An(Mna u) = An([Mn}sym§ u)
where )
[Mn}sym(k) = ol Z My (o(k)) (9.1)
" o€S,

is the symmetrization of M.

Thus, for instance, we have fT u?dz=2mAs(1;u), and more generally
s = 2w (s fal*s ) = 2mAa(a ;)

for uc Hg.
Now suppose that u obeys the KdV evolution (1.1), and M, is a symmetric multi-
plier. Then we have the differentiation law

2 An(Msu(t)
= A (M0t 0(8))— 302y (M (R s s Rrn 1 bR 1) (o) 0(2)),

(9.2)

where
Q= ik kD)
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(see [9]). Thus for instance we have

iAz(l; u(t)) = Ao(an; u(t)) —6iAz(ka+ks;ult))

dt
= Ao (i(K} +k3); u(t)) —4iAs (ki +kz +ks; u(t))
=0-0,

demonstrating the conservation of the L2-norm.

Henceforth we shall omit the u(¢) from the A,-notation for brevity. We also adopt
the convenient notation k;;:=k;+k;, etc.; thus, for instance, kigs=k1+ks+ks. Also we
write m;:=m(k;), my;:=m(k;;), etc., and N; for |k;|, Ny; for k), ete.

Let A>>1 be a large number to be chosen later,(?%) and let m(k) be a multiplier
which equals 1 on [—A, A], equals (|k|/A)* for |k|>2A, and is real, even and smooth in
between. We denote the corresponding Fourier multiplier by I:

Tu(k) := m(k)a(k).

Thus I acts like the identity on frequencies <A and is smoothing on frequencies 2 A. We
define the modified energy E,(t) by

Ey(t) = Ag(mﬂnz).
Then one can verify that
()3 S Ba(t) S A7 |lu(®) I

From (9.2), (9.1) and the fact that ap;=0, we have

%Eg(t) = —6iAg(mimaskas) = 6iAz(m3ky) = As(M3),
where M3 is the 3-multiplier

M3 = 2i(m2k; +m3ke +m3ks).
Now define the modified energy E3(t) by

Es(t):= E»(t)+As(03),

(%6) Note that the quantity A here represents what was called N in [9], a notational change necessary
since in the present paper N represents something else.
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where g3(ky, k2, k3) is the 3-multiplier

M;

g3 = .
a3

This multiplier may appear to be singular at first glance, but we observe that
az =4k} +k3+k3)=3ikikoks (9.3)

and that M3 vanishes whenever kik2k3=0. Then by (9.2) and (9.1) we have

d
71 F3() = Aa(Ms)+ Ag(030i3) = 9ia (03 (kv b, Kiza ) sa) = Aa(Ma),

where My is the 4-multiplier
My = —9i[os(ky, kg, k34)k3a]sym.
Now define the modified energy Fy(t) by
Ey(t) := E3(t)+Aa(04).

where o4(k1, k2, k3, k4) is the 4-multiplier

My

T4 == .
(8 21

This multiplier may appear to be singular at first glance, but we observe that
oy = k345 +k3+k2 =3k12k13k1a (9.4)

(cf. (4.17)), and one can check that My vanishes when ki12k13k14=0. Then as before we

have that .
—FE4(t) = As(M5), (9.5)
dt

where

Ms = —12i[o4(k1, k2, k3, ka5 ) kas]sym-

We could continue this procedure indefinitely, but E4 will turn out to be a suitable almost
conserved quantity for our purposes. In [9] it was shown (by Gagliardo-Nirenberg-type
arguments) that E4 is bounded if and only if [lullz; is bounded, so to obtain (1.3) it
suffices to control E4(t). In light of (9.5) it will suffice to control Ms. The key lemma
here was the following:
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LEMMA 9.1. ([9]) Let k1, ko, k3, ks and ks be real numbers (not necessarily integer)
such that kizsas=0. Then Ms(k1,.... ks) vanishes when Ny, ..., Ns<<A. In all other cases
we have the bound
m2 A’r* N
\Ms(ky, ..., ks)| < (N15) Nas

(A+N1)(A+N2)(A+N3)(A+Ngs)

sym

where
Nugs = min(Ny, No. N3, Nys, N1z, N1z, Ni4).

With this bound and some multilinear Y *-estimates,(*") a bound on the growth of
E4(t) was obtained. In particular, if F4(T) was small for some time T, it was possible
to obtain the bound Ey(T+8)=FE4(T)+O(A~3/2") for some small time ~1. Iterating
this and using a rescaling argument one could obtain (1.3) for all 52—% (after choosing
A appropriately depending on |jug| gz and T'). See [9] for details.

9.2. Adapting the argument to the BKdV flow

We now adapt the above argument to the flow (1.7). The main difference will be the
appearance of various quantities of the form b(k;), b(k;;), etc. However, these factors
will play essentially no role in the argument. Accordingly, we write b; for b(k;), etc. We
shall assume that the frequency parameter N corresponding to b is much larger than the
frequency parameter A corresponding to m.

Suppose that 4 solves (1.7). Then (9.2) now becomes
d
_An(Mn»ﬁ(t)) :An(Mnana(t)) (96)

dt
—3iTern+1 (A’-l[n(kl-, knﬁl, kn +kn+1 ) b(kn +kn+1)(kn+kn+1); ﬂ(t))

Again we define
Eg(t) = AQ(m1m2>.

Then one can verify that

S Ex(t) = As(M).

where M3 is the 3-multiplier
My :=2i(fi+f2+f3)
and f(k):=m?(k)b(k)k. Observe that f is an odd function with f’(k)=0(m(k)) and
" (k)y=0(m(k)/(A+|k|)) for all k.
‘We observe the following bounds on Mj:

(°7) Strictly speaking, in order to handle large data, these estimates had to take place in the
large-period setting R/27AZ, as one would need to rescale large data to be small. This causes some
unpleasant technical complications in the arguments, and in particular this is why the k; in the above
lemma need to be real (or lie in Z./A) rather than integer. See [9] and [10] for more details. In this
paper we will ignore the large-period issue, as it does not cause any essential change to the argument.
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LEMMA 9.2. If N1, Np, N3 A, then M3=0. Otherwise, we have

|M3| < max(m?, m3, m2) min(Ny, Na, N3).

Proof. (See [9].) When Ny, No, N3< A then f;=k; for j=1,2,3, and the claim is
clear. Otherwise, we use symmetry to assume that N3~N;> N3. But then the mean-
value theorem and the above bounds on f give

fo=—f13=—f1+0(miN3).
and the claim easily follows. 0
Now define the modified energy E3(t) by
Eg(t) = Eg(t)+A3(0'3),
where o3(k1, k2, k3) is the 3-multiplier
Afg
[0 %:3 ’

From Lemma 9.2 and (9.3) we see that o3 vanishes when max (N, N2, N3)< N, and

otherwise we have the bounds

g3 = —

max(m3, m3, m3)
N+max(Nl, JVQ, 47\'73))2
(note that the two largest values of N; have to be comparable).

By (9.2) and (9.1) we have

(9.7)

EIPS
(

d

EE:z(t) = Ag(My)

where M, is the 4-multiplier
My :=—9i[o3(k1, ko, k31)b3ak3]sym-
Now define the modified energy E,{t) by
E4(t):=E5(t)+As{0y),

where o4(k1, k2, ks, k4) is the 4-multiplier

]\’_[4
T4 = — .
(o7

Then as before we have that
S BA(6)= As(0M),
where
My = —12i[o4(k1, ko, k3, ka5 ) bas kas)sym-
Our aim is to show that this new Mj still verifies the bounds in Lemma 9.1; the
rest of the arguments in [9] will then give the desired bound (6.3) (the presence of the

B-multiplier having no impact on the local well-posedness theory).
From the definition of o4 and Ms, it will suffice to prove the following My-bound.
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LEMMA 9.3. If max(Ny, No, N3, Ny) < A, then My vanishes. Otherwise, we have

|oea| m?(N.)
(A+N1)(A+Np)(A+Ng)(A+Ny)’

where N*Z:miH(Nl,NQ,Ng,N4,N12,N13,N14).

|Ma| S

Proof. When max (N1, No, N3, Ny) < A then o3(k1, k2, ks4) and all of its symmetriza-
tions vanish, and hence M, vanishes. Now we assume that max(Ny, Na, N3, Ny)2 A. By
symmetry we may assume that N; >N, > N3> Ny, and thus Ny~N> 2> A. From (9.4) we
have |a4|~N13Ni4N3g4.

We divide into several cases depending on the relative sizes of Ny, N3 and Ny.

Case 1: Ny>>N3>> Ny In this case, |ayq|~N{ N3, and thus we reduce to showing
that )

M| < )
A+ Ny

But from Lemma 9.2 we have

min(mg, mp, Mea)® . m*(Ny)

<
|03(ka1kb7k0d)bcdkcd| ~ A+maX(Na,Nb,ch) ~ (A+N4)

as desired.

Case 2: N3~N3>> N,. In this case, |ay|~ N3, and thus we reduce to showing that

m?2(N,)
< .
|Ma| S A+N,

One then proceeds as in Case 1.

Case 3: No>»>Nz~Ny. In this case, |ay|~NZN3q, and thus we reduce to showing
that
< mQ(N*)N34-
~ (A+N3)?
From Lemma 9.2 we have

m2(N,) N3y

(A+max(Ny, Na, N3g))?’

loa(k1, k2, k3a)bzakssa| S

which is acceptable. Similarly

mZ(N*)le
(A+ma.x(N3, ]\/217 ng))2

lo3(ks, kg, k12)biakia| S
is acceptable since Nio=N34. It thus suffices to show that

loa(k1, k3, k2a) baakas +03(k1, ka, kaz) baskas+03(ka, k3, k14) brakis+03(k2, ks, k13)bi3k1s]

<m2(N*)N34
~ (A+N3)2 '
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We expand o3 using (9.3), and replace k; by —ko3s4 throughout, and reduce to
showing that

_b24(f3+f24-f234)_b23(f4+f23—f234)+b23(f2+f3—f23) boa(fo+fa—faa)
ko3qks koszsks kaks koky
<m2(N*)N34
~ (A+N;3)?2

From the mean-value theorem we have byz=bo+ O(N3/N3)=by+O(N3/(A+N3)),
and similarly bys=by+O(N3/(A+Nj)). Let us then consider the contribution of the
O(N3/(A+Ny))-errors. It will suffice to show that

_ Ja+faa—fasa n fotfa—foa
ko3aks koky

and
_ Jat+fa3—fozs n fat+fs—fos
kozaka kaks
are both O(m?(N,)N34/N3(A+N3)). By the k3<+>ks symmetry it suffices to estimate

the former expression. From the mean-value theorem we have

1 _ 1 _ 1 + (N34)
kosaks  (kot+ksa)(—kat+kss)  koka NoNZ)°

By Lemma 9.2, the contribution of the error term O(N34/NaN3) is bounded by

N.
2 34
m (N*)N30<N2N§>,

which is acceptable. Thus it suffices to show that

fa+ f2a— faza n fot fa—fou _O<m2(N*)N34)
kaky kaks T\ N3(A+N3) )’

But from the mean-value theorem we have

Fka)— f(kosa)+ f(ks) — f (k3 —k3a) = O(m*(N.) Naa),

and the claim follows by dividing by kok,.
Case 4: Na~N3~N4. Observe that this case is essentially symmetric in the indices
1, 2, 3 and 4. By definition of My, o3 and a3 we have

(_flifﬁ_fm)@}
sym

|M4|NH ~ N

[(f1+f2+f34)b34k3k4J

k1kg

sym
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Our task is thus to show that

[(fi+ fo+ faa) baakakalsym = O(m?(N.) N12NagNi3).
Since bsq=by2, it will suffice by symmetry to show that

(fi+ fot faa) kaka+(fa+ fat+ f12) kiko = O(m?*(Ny) N1aNazNis).

Observe the identity
kaks—kiko =ksks+kazako = kagkog.

Hence we can write the left-hand side as

(fr+fot+ fs+fa)kika+(f1+ fa+ faa) kaskoq

(since fag=—f12). By Lemma 9.2, the second term is O(m?(N,) N34 No3Nay), which is
acceptable. Thus it will suffice to show that

fi+ fo+ fa+ fa = O(m?(N.) N1aNas Ni3/N3E).

Since kio4kis+kos=-—2k,, we see that at least one of N2, N1z and Naj is comparable
to N;. Without loss of generality we may take Naz~N;. We now write the left-hand
side as

fk1)— f(k1—kio)— f(ki—kis)+ f(k1—ki2—k13)

and use the double mean-value theorem(%8) (since f”=O(N; ') here) to conclude the

argument. a

(?8) See, e.g., Lemma 4.2 and the preceding definition in [9], or Lemma 2.3 in [8]. One could object
that f' is much larger than N, ! near the origin. However, since we are only evaluating f at points in
the annulus {k: |k|~ N1}, we can smooth out f inside this annulus so that f”:O(Nl_l) throughout the
interval {k:|k|<N1} without affecting the left-hand side.
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