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On a theorem of BaernsteinEnrique Villamor(1)
Abstract. In the paper [B2], Baernstein constructs a simply connected domain Ω in the plane for which the conformal mapping f of Ω into the unit disc Δ satisfies[ ∣∕wι⅛ι=∞,∙∕R∩Ωfor some p∈(l, 2), where R is the real line.This gives a counterexample to a conjecture stating that for any simply connected domain Ω in the plane, all the above integrals are finite for any l<p<2.In this paper, we give a conceptual proof of the basic estimate of Baernstein.

1. IntroductionLet us consider the following problem. Let Ω be a simply connected domain and f be the conformal mapping from Ω into the unit disc Δ. Assume that L is a straight line which intersects the domain Ω, Hayman and Wu [HW] showed that for any configuration as above,
L∩Ωwhere C is a universal constant. Later Garnett, Gehring and Jones [GGJ] simplified Hayman and Wu’s proof and gave an improved value for the constant C. Fernandez, Heinonen and Martio in [FHM] gave another proof of the same result with a better constant G=4π2, and a conjecture is offered for the best constant. In the same paper they showed that there exists a positive number p between 1 and 2, such that
L∩Ω(1) I would like to thank Professor Albert Baernstein II for his helpful comments and sug­gestions concerning this work
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where C and p are constants independent of the configuration. It is not difficult to see that the line L may be taken to be the real axis R. The question is then for which exponents p is it true that ∕,(z)∈Lp(R∩Ω), for any f and Ω7 Taking Ω to be Δ∖(-1,0] one sees that ∕,(z)∈L2(R∩Ω) can fail. Baernstein [Bl] conjectured that ∕'(z)∈Lp(R∩Ω) would be true for any l<p<2.Baernstein in [B2] showed that his own conjecture is not true. He constructed a simply connected domain Ω such that if we consider the conformal mapping f from Ω into the unit disc, there exists a positive value p between 1 and 2, such that,

We pass to describe briefly the work done by Baernstein in [B2]. His domain Ω is the complement of an infinite tree T clustering to the real line. The fixed aperture at every branching of the tree T is ∣π.Let us consider the domain Θ=C∖((-∞, l]U(0, ei7r∕3]), where (0,ezπ∕3] is the segment joining these two points. We are going to call α=βz7r∕3, and consider the conformal mappings Fi(zβ z=l, 2; mapping θ onto the domain Hr=C∖(-∞,0], such that Fi(l)=0, F2(α)=0 and lin⅛→oc ∖Fi(z)∕z∖ = l1 i=l, 2.If we consider, 
7 = lim

z→l

Fι(z)
z — 1 β — lim

z→a
W)
z — athen Baernstein’s theorem states that,

Theorem. 7l∕2+zjl∕2>√2.In his paper Baernstein proves this result after numerical evidence given to him by Donald Marshall, who computed the values of 7 and β using Trefethen’s program [T], see also [H, p. 422], for finding parameters for Schwarz-Christoffel transformations. He starts with the 4-place decimal approximation to the param­eters given by the computer and confirm by Calculus the validity of the theorem, then mentions that it would be desirable to have a conceptual proof of the theorem.In this paper, we present such a conceptual proof, in it our main tool is the method of the extremal metric. The idea of how to obtain lower bounds for 7 and β using extremal metric was inspired by the paper of Jenkins and Oikawa [JO], in which they obtain a sharp version of Ahlfors’ distortion theorem, and then use it to give simpler proofs of some well known results of Hayman.
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2. Proof of the theorem

2.1. Estimating 7=∣J^(l)∣Let Q be a small positive number and consider the discs ={z∖ |z —l∣<ρ},and D^q = {z∖ \z — 1∣<1∕^}. Let be the doubly connected domain
θω = ([θ∩r>⅛∖pω).Let Hg1'l be the image under -Fi(z) of θ^,1∖ by the normalization properties of the function Fι(z), it is not difficult to show that for any positive ε, there exists a small positive ρ(ε) such that,

{z: ∖z∖ < (l-ε)∕β(ε)}∩ff C F1 (D^ρ^) C {z: ∖z∖ < (l+ε)∕ρ(ε)}∩-Hrand
{z-. ∣z∣ < ∣F171)∣(ρ(ε)-ε)}∩jff c F1(¾) C {z: ∖z∖ < ∣F^(l)∣(ρ(ε)+ε)}∩H.

Consider now the module problem for the family of curves Γ joining with 
∂D^ρ^ in ∙ Using the conformal invariance of the module and the comparison property for the modules, we have thatAf(T θ^1) 1 <_________________ —_________________l ’ ^)^-ln((l-ε)∕ρ(ε)(ρ(ε)+ε)∣F1'(l)∣)∙This provides us with an upper bound for the module, our goal is to obtain a lower bound for the same module. For this we consider the conformal mapping Φ(z)=ln(z-1),

*ω<⅛→⅛bwhere is the quadrangle in the Figure 2.la.Let Γ be the family of curves in joining the pair of sides opposite to the vertical sides. By the conformal invariance of the module we have the following equality
where Γ is the family of curves in joining the pair of vertical sides. Since the families of curves Γ and Γ are conjugate in the quadrangle we have that^(Γ>⅛⅛) = 1∕M(Γ,⅛⅛),
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Figure 2.1a

1 .7ΓZ-∣πz
-lτri

Xlnρ(ε) ln(∣√3) 0 — In ^>(ε)

—πi

therefore, to obtain a lower bound for Λf(Γ, Θ^), we need an upper bound of w,⅛⅛∙The idea of how to obtain the right upper bound for M(Γ, S^εy) was suggested by [JO]. For any value of x in the interval ln^(ε)<^<- lnρ(ε), let σ(x) denote the maximal open subinterval of Re{z}=x, in such that the two components of (St^^∖σ(x)) have the two vertical sides as boundary components. Let θ(x) denote the length of σ(^), θ±(x) the length of the part of the segment σ(x) below the a?-axis, and Θ2(x) the length of the part above the rc-axis. As it can be easily seen, θι(x)=π for any x in the interval In ρ(ε) <x<- In ρ(ε). For we haveif lnρ(ε) <x<ln(∣vz3), if ln(∣yz3 ) ≤ x < 0, if O≤rr< — ln^(ε).Let the interval [ln(∣√z3),θ) be divided into n consecutive half closed subintervals ∆j∙- [ln(∣vz3)(l-J∕n),ln( j%∕3)(l-(t7÷l)∕n)), j=0, ...,n—1 of equal length, and for each J=0, ...,n—1 let C⅛⅛W,
and define for any xE [ln(∣vz3), θ), if ^∈∆j∙, J=0,..., n—1. It is clear
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that such minimum exists and is a step function on the interval [ln(∣χ∕3), θ). At the right end point x of any interval ∆j∙ the step function (τ) has a negative jump, then we draw the ray given by x-λ, λ≥Oj j=0..., n—1. The lowerenvelope of these rays and the locus y=θ2s∖x) defines on the interval [lnQ√z3), θ) a piecewise continuously differentiable function 02^Cr)> which determines a decom­position of the interval into a finite number of subintervals on which the locus has slope —1 or 0. We define Θ2∖x) in the interval (lnρ(ε), — lnρ(ε)) by
f π, lnρ(ε) < # ≤ln(∣yz3)(1 — n-1)-⅛2-rr÷ln(∣vz3)(l-n~1),ω ln(∣√3)(l-n~1)→+6^ <z <ln(∣√3)(l-n~1),f√2 ~

Θ2∖x), ln(∣vz3)(l-n-1) ≤rr<O,jπ÷λ^2, 0 ≤ æ < Λv∕π∕3λ,< π, y∕π∕3λ<x < — lnρ(ε),where A is a positive parameter to be determined later. The domain determined by
-θ1(x)<y< θr^(x); Inρ(ε) <x < — Inρ(ε),

becomes a quadrangle The part of below the x-axis is the same as for and the part above the τ-axis is as in Figure 2.lb.If we let Γ, be the family of curves joining the pair of sides complementary to the two vertical sides, we have that^(f,⅛⅛)≤M(Γ',⅛⅛).
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Thus it is enough to obtain an upper bound for It is known thatan upper bound for this module is given by the Dirichlet integral of any piecewise continuously differentiable function in taking the value 0 on the side given by 
y--Θγ(x∖ and the value 1 on the side given by y≡θ2∖χY A function like this is given by
where To estimate the Dirichlet integral of u(x,y) we sub­divide the domain into five pieces each corresponding to one of the following intervals in the rr-axis:∕= (lnρ(ε),ln(∣√3)(l-n-1)-π+^]5

II = (ln(∣vz3)(l-m-1)-τr+^2,ln(∣Vz3)(l-^-1))!
III = [ln(i√3)(l-n~1),0)j
IV = [0, √τr∕3λ)5
V = [√τr∕3λ-lnρ(ε)).On the two pieces of the Dirichlet integral corresponding to the intervals I and V, the function u(x1 τ∕) = (τ∕÷π)∕2π, and since when we take the limit as the number of subdivisions n→∞ then ⅛‰e7r∙ we have that

∕∕,+∕fv 1 wu ,λ'2* ds=⅛ '"(⅛)+⅛ [ln v - i
1 ∕ 1 λ 1 ΓiΓ^^2π ∖ρ(ε)∕ t2π∖∣ 3λ

It is not difficult to see that the Dirichlet integral corresponding to II after we let n→∞ tends to>ln(√3∕2) ∙5τr∕6-(x—ln(vz3∕2)) 1∕ + 7Γln(χ∕3∕2)-7γ∕6 J—πz4n(√3∕2) ∖117r∕β- {x-ln(√3∕2)) ,∙5π∕6-re÷lπ(λ∕3∕2) rln(vz3∕2)-π∕6 √ —π(v∕+π)2(llπ∕6-tf÷ln(yz3∕2))4.

2
dydx

_ (∏τr∕β-^÷ln(yz3∕2))2
dydx
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1λ1π(√3∕2) ⅛

J∖n(V3∕2)-π∕6 3 _ llπ∕6-^+ln(√3∕2) _ _ 4 ’ ^^ 34π 12= 3ln∏∙

dx,, ∕llπ , x/3Vln(v/5/2)-liil -æ+ln— I∖ 0 2 ∕ J ln(√3∕2)-π∕6
As for the piece corresponding to IV, we have that after some calculationsUv(⅛⅛5)∣2'iι'i,'' 1 4 arctan - ÷ -5 3
The estimate corresponding to III is more delicate, and we will treat it care­fully.

f0 dx ln(√3∕2) 6>W(x) 3√ln(√3∕2)
∕,° dx lyi r 1ln(√3∕2) 6,w(a0 + 3 Jsij d(t)(x)

'" (⅜r-⅞⅛+(⅞,1')2^
dx

where Ωj∙ is the subinterval of ∆j∙ over which (x) is equal to —1. We proceed to estimate these two integrals (i) and (ii).f0 <⅛ 3 √3Jln(√3∕2) θ^(x) 5τr n 2We estimate (ii) as follows,
dx

r dx ι U r 
ω. θW(x) ~ ⅛ ∕ω.

1
------------------------------------------------------- dx7r+02s∖aO+ln(χ∕3∕2) (1 - (j + l)∕n)-x1ω7∙ ---------------------------------------------------dxπ+0^÷ln(√3∕2)(l-(,7 + l)∕n)-a!

, , . . > x -,∙√rj

= ∑^3~ lnfπ+6,2j+ln ∕3V1 j + l2 ∕ ∖ n .ω
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where x^ is the right endpoint of the interval Ωj∙ and is the left endpoint. Hence, for n large enough,

¾+m( 2 ∏ n J j ~ 2j+1
(ι-i±η
∖ n ∕

—x (0 i+ιfor any j=0,..., n—2, thus
= j lnfπ+02*o+lnf-y^ )(l")-4°)-ln(π+02⅛-⅛°) >1--Vzg

1 nJ X°

since xθ^=ln(∣√z3), limn→00 02θ = ∣π> ~θ, and letting n go to ∞,we obtain that ι1 1111-*3⅛'This completes all our estimates, putting all of them together, we obtain that1 ΠΓ 4 12 3 √32πy 3A^^3 nil 5τr n 21 4 /7 r- 1 1, 11"Ct“ 5 + 3 V 3 'λ+ 200 + 3 1" 10
Let us call G (A) the expression on the right hand side of the above inequality involving the positive parameter A, 1 4 arctan - + -5 3and solve the equation G(A)=0, hence
thus,

arc tan - 1 arctan -5 = 0.10050259.
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Choosing λ to be this value the expression on the right hand side of the inequality involving λ is equal to zero, thereforeλ<<>)≤⅛4⅛)+⅛(1"t4)1 11 11 4112 3 1 √3+ 200 + 3lnW + 3ln∏^lnVPutting together the two estimates of M(Γ,Θ^) from above and from below, we obtain_________________ 2π_________________ >/_l_ ( 1 A J-Λ \/3_7r\ln((l-ε)∕ρ(ε)(ρ(ε)+ε)∣F1'(l)∣) ~∖2π ∖ρ2(ε)√ + 2τr ∖ n 2 6/1 1, 11 4,12 3 1 √3V1÷ 73777 ÷ 77 In — ÷ 77 m — — — In ——200 3 10 3 11 5π 2 )Taking inverses and exponentiating both sides, we obtain1—ε 1 ∫ ∕ vz3 πλ(ρ(ε)+ε)ρ(ε)∣F1'(l)∣ “ J{ε) θxp ∣ <n T “ 6 J1 11 11 4 12 3 , √3∞ + 31"w + 31"∏-⅛1"TIt is not difficult to see that choosing ε conveniently and letting ε→0 we get that∣womk ( A √3 π∖ n ∕ 1 11 11 41 12 3 1 √3λ 17 = lF1(DI≥exp∣-^v-5j-2^-+ -h- + 5ln---ta-^ = o
Hence, 71∕2 = ∣Fl'(1)∣ι∕2 ≥<√∕2 > o.79249.
2.2. Estimating /3= ∣F?(a) ∣Let ρ be a small positive number, and consider the discs D^={zt \z — α∣<^>}, and D^q-{z∖ \z — α∣<l∕p}. Let be the doubly connected domainθ^ = ([Θ∩D^]∖D^).Let Hρ2^ be the image under of θρ2∖ by the same reason as in the first estimate 2.1, for any positive ε, there exists a small ρ(ε) positive such that;

{z-. ∖z∖ < ∖F^a)∖(ρ(ε)-ε)}∏H CF2(D^') C {z: ∖z∖ < ∖F⅛(a)∖(ρ(ε')+ε)}∩H
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and
{z: ∖z∖ < (l-ε)∕ρ(ε)}∩tf C F2(D‰) c {z: ∖z∖ < (l+ε)∕ρ(ε)}∩ff. Considering now the module problem for the family of curves Γ joining ∂D^ε^ with 

∂D^6^ in we have that yrfp (A/2) j <_________________ ____________________k ’ ^)^-ln((l-ε)∕ρ(ε)(ρ(ε)÷ε)∣F'(α)∣)∙Our goal is to obtain a lower bound for the above module. For this we consider the conformal mapping Ψ(^)=ln(^-α)5
(2} where is again a quadrangle as in Figure 2.2a above.Let Γ be the family of curves in joining the pair of sides opposite to the vertical sides of S^εγ By the conformal invariance of the module we have that,Mγ,θ‰)=m(γ,⅛¾), 
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where Γ is the family of curves in joining the pair of vertical sides. Since the families of curves Γ and Γ are conjugate in Sρ(εy we have that'W(Γ-⅛⅛) =1∕W∙C>)'
thus, to obtain a lower bound for M(Γ, θ^), all we need is an upper bound for the module Λf (Γ, S^). To obtain this bound we proceed as in case 2.1. Our function 
θ2(x) in this case is given by,

6⅛0) = π+arctan y∕3∕(4e2ir-3), if In ρ(ε) < x ≤ 0, if 0 ≤ x < — In ρ(ε).We modify the function θ1(x) in the same way we did with θ2(x) in case 2.1 for values of x satisfying lnρ(ε)<^<0, and for values of x in the interval [0, -lnρ(ε)) we are going to modify 0ι(τ) as follows;
f+∖ ( ⅛7r÷Λr, if 0 < x < λ,()W(χ) = ) 3 ’ -1 I #1 (#), if λ≤ x< -lnρ(ε).Where <5>0 is a free parameter and λ is implicitely defined by the equationrλ ∕ 3 2πoλ÷arctan ↑ —ττ—- = —.V 4e2A —3 3The domain determined by

-θ[e> {x)<y< θ2 fy) ; In ρ(ε) < x < - In ρ(ε),becomes a quadrangle on assigning, as a pair of opposite sides, the segments-0^(lnp(ε)) <ι∕<02(lnρ(ε))and -0^,(-lnp(ε)) < j∕<02(-lnρ(ε)).The part of above the 2>axis is the same as for f>^ε, and the part below the Æ-axis is as in Figure 2.2b.As in the case 2.1 we have that"(f^⅛>)≤-w(f'-0⅛>).
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where Γ, is the family of curves in joining the pair of sides complementary to the vertical sides. Thus, it is enough to obtain an upper bound for the module M(Γ∖Q^p. An upper bound is given by the Dirichlet integral of the piecewise continuously differentiable function in
u(x,y) =

Θ2(x)-y 
θ(t∖x)where θ^t∖x)=θ^∖x)-{-θ2(xY Hence,

P(e) Q∞)∩{Re{2}≤0} J JQ^n{Re{z}>0}
∣Vτz(rr, y)∖2dxdy

= I+II.The estimate of the integral I is the same as in case 2.1 because if we look at the left hand sides of the domains and they are the same up to a symmetry and a vertical translation. Thus,τ 1 ∕ 1 ∖ 11 11 1 1 1⅛ln⅛V + 3 10 + ≡⅛ 4 12 3 1 √3
We pass to estimate the second integral II,

II =
∩{Re{z}>O}- lnρ(ε)

0

∖S7u(x,y)∖2dxdy

dx 1 /-lne(e) ^'(^)2-⅜v(g)^(z)÷¾(^)20<t) (αr) ^*^ 3 Jo θld'>(x) dx.
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where = π÷ arctan 34e2:r —3 for 0 < x < — In ρ(ε),and

(x) = θ^ (^)÷¾(^) = 2πfor values of x such that λ<x<- In ρ(ε). Thus II is equal to
tT_ fλ 1 ,7 ,√ fλ^'W2-^'W¾W+¾W2, 

∕o θW(x)dx+3j0 0(0 (x)____ 2ι J_ rlnρω+ 2π n ρ(ε) 2π^~6π Jx ^(θ,2{x)}2dx.

Let us compute the last integral in the above equality,/»—lnρ(ε) ∕*-lnρ(ε)
I (θ'2(x))2dx = ⅛ ∕ λ Jλ

dx 11 4e2*-3 = 2ln 4—3g2(ε)λ4—3e-2λ ∕It remains to estimate
fλ dx 1 rxθ^∖x)2-θ^'(x')θ,2(x')+θ'2(x)2

Jo Θ<^x) + Zjo θV>(x) _______________ [λ l + ⅜⅜2 + l∕(4e2x-3) + ⅜⅜√3∕(4e2^-3) Jo Iπ+δx÷arctan γ∕3∕(4e2*-3)
_ rx ι÷∣⅜2+ι∕(4β2*-3) dχ

Jo Iπ÷δx÷arctan ^∕3∕(4e2ar — 3)— Iδ[in{δx+1π+arctan ∖∕3∕(4e2x-3) )]θ.The second term in the formula above is equal to ∣51n∣. Thus, to complete our estimate, our final goal is to find a suitable bound for the following integral
o

l÷∣⅜2 + l∕(4β2*-3)__________ 2. I π+δx+arctan γz3∕(4e2ir — 3) 2π dx,

where 5λ+arctan yz3∕(4e2λ—3) = jπ. Our first observation is that
3+ fe÷arctan 1 ∕ - -5∣—— ≥ 2π-arctan 1 ∕ ——3 y (4e2x-3) y (4e2*-3)
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for O<rr<λ. Therefore it is enough to estimate the integral∩______ 1+1∙z<4ra-3> --q<⅛Jo L2π — arctan γz3∕(4e2^-3) 2π_ ∕,°o 2π∕ (4e2rc — 3) +arctan ^∕3∕(4e2æ — 3)~ Jo 2π(2π—arctan ^∕3∕(4β2ic-3) )In the above integral we have dropped the term ∣<52 in the numerator, since when λ goes to ∞ then δ goes to 0 as 2π∕3A, thus

fλ lδ2 j δ2λ
∕ ~λ------------------------===== dx ≤ ——,Jo Iπ÷frr+arctan a∕3∕(462x-3) 2πand this goes to ∣<5 as λ goes to ∞, hence the term in the integral correspond­ing to ∣<52 can be made as small as we please. Using the change of variable 

u=arctan γz3∕(4β2rr-3), the above integral becomes,° |7r(tan?z)2+?i du _ 1 Γr∕3 2π tanu .∕3 2π(2π-u) tanτz 2π Jo 3 (2τr-u)
= A+B.

r/3 u∕ 7~------ 7 cot U duo (2π-u)
Standard numerical integration methods give us the following estimates from above for the two integrals A and B:

A < ∣(0.126) = 0.042and
B< + (0.158) ≤ 0.0252.2πPutting all these estimates together and letting δ go to 0, we obtain that/3 π2 ^βW'.C>)≤⅛ιn⅛y + iιn⅛ + ⅛, + ⅛[ι.⅞-

+ ^lnTT~Γ^ln^V + J^ln( 4~3∫2-gU +0.042+0.0252. 3 11 5π 2 4π ∖ 4 JPutting together the estimates of Λ4^(Γ, θ^) from above and from below, taking inverses and exponentiating, as we did in case 2.1, and letting ε go to 0, we have that
β=∖⅛(a)∖∕ Γl1 11 1 1 /, √3 π∖ 41 12 3 1 √3> exp I —2π< - In — + —- + —- I In —— — ]÷-ln - — — In ——+0.0672- ∖ 1 3 10 200 2π∖ 2 βj 3 11 5ττ 2
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Hence, ∕31∕2 = ∣F'(a)∣1∕2 ≥ √z2 ≥ 0.6403.Therefore putting together the two estimates 2.1 and 2.2, we have that∣F^(α)∣1/2+ ∣F1'(1)∣1/2 =/31/2+71/2> 0.79249+0.6403 = 1.43279 >√2,and this proves the theorem. □
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