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Torsion sections of elliptic surfacesRick Miranda(1) and Peter Stiller
Abstract. Given a torsion section of a semistable elliptic surface, we prove equidistribution results for the components of singular fibers which are hit by the section, and for the root of unity (identifying the zero component with C) which is hit by the section in case the section hits the zero component.

1. IntroductionIn this article we discuss torsion sections of semistable elliptic surfaces defined over the complex field C. Recall that a semistable elliptic surface is a fibration 
τu.X→C, where X is a smooth compact surface, C is a smooth curve, the general fiber of π is a smooth curve of genus one, and all the singular fibers of π are semistable, that is, all are of type Irrι in Kodaira’s notation (see [K]). In addition, we assume that the fibration ττ enjoys a section So; this section defines a zero for a group law in each fiber, making the general fiber an elliptic curve over C.The Mordell-Weil group of X, denoted by MW(X), is the set of all sections of 7Γ, which forms a group under fiber-wise addition; the section So is the identity of MW(X). Note that any section S∈MW(X) meets one and only one component of each fiber.Given any section S∈MW(X), one can ask the following two questions. First, which components of the singular fibers of X does S meet, and second, exactly where in these components does S meet them?When S is a torsion section, the first question was addressed in [M]. To describe those results we require some notation. Recall that a singular semistable fiber of type Irn is a cycle of m P1,s. Suppose that our elliptic fibration τrιX→C has s such singular fibers Fi,..., Fs, with Fj of type Im.. Choose an “orientation” of each
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fiber Fj and write the tr∏j components of Fj as

∕nr(J) z^γ(j) ∕nr(J)°o ,o1 , ..., ‰j∙-1
where the zero section So meets only Cq^ and where for each k, meets only C⅛±1 mod r∏j. If mj∙ = l, then Fj=C^ is a nodal rational curve with self-intersection 0. If mj∙≥2, then each is a smooth rational curve with self-intersection —2.Given a section S' of X, and orientations of all of the singular fibers Fj, inducing a labeling of the components as above, we define “component numbers” ∕⅛(S) to be the index of the component in the jth fiber Fj which a given section S meets. That is,

S meets C‰(S) *n ^erThis assigns to each section S', an s-tuple (⅛ι(S),..., ks(S)). The component number 
kj can be taken to be defined mod r∏j once the orientation of Fj is chosen; if the orientation is unknown, then kj is defined mod τ∏j only up to sign. Note that Ajj∙(So)=0 for every j; indeed, after choosing orientations, the assignment of component numbers can be considered a group homomorphism from MW(X) to Z∕mj∙Z.Now suppose that S is a torsion section of prime order p. In this case, since 
P'S=Sq, we must have pkj(β)≡0 mod τ∏j for every j. If p does not divide τ∏j, then this forces ∕c7(S)-0. However if mj=pτij, then kj(S) can a priori be any one of the numbers mj∙, for z—0,...,p—1. This multiple i measures, in some sense, how far around the cycle S is from the zero-section So in the jth fiber.Of course, changing the orientation in the fiber Fj will have the effect of chang­ing this multiple i to p—z(ifz^O;z=O remains unchanged). We are therefore led to a definition of the following quantities. Let Mi(S) denote the number of singular fibers where kj(S)=i∏j or kj(S) = (p-i)∏j (weighted by the number τ∏j of compo­nents in the fiber Fj), and then divided by the total number τ∏j of components:

Λ∕Γ f G∖ _ j With ⅛ ('s')=inJ θrMi(b)-
2^mj

3We may view Mi as a probability, since it is the fraction of the fibers where S meets “distance z” away from the zero section.The main result of [M] is the following:
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Theorem 1.1. If S is a torsion section of odd prime order p, then Mi(S) = 

2p∕(p2-l) ifi≠0, and Mo(S,) = l∕(p÷l).Notice that, firstly, these fractions are independent of Sf, and secondly, that they are independent of i (for i non-zero). Thus we obtain an “equidistribution” property for these component numbers. The proof of the above theorem given in [M] used only basic facts about elliptic surfaces and some intersection theory.In this paper we will address the second of the two questions raised above in a similar spirit. Again let S' be a torsion section of order p, and consider those fibers where fcj∙(S)=0, i.e., where S and So meet the same component. By the above result, this happens exactly l∕(p÷l) of the time, where each fiber is weighted by the number mj∙ of components it has. Each identity component Cq^ may be naturally identified as a group with C*, by sending the two points of intersection with the neighboring components to 0 and ∞, and the point where So meets to 1. (This identification can be made in exactly two ways, corresponding to which node is sent to 0 and which to ∞.) Given such a coordinate choice on Cq∖ the section S of order p will hit Cq^ at a point whose coordinate is a pth root of unity.Let us denote by Zj(S) that integer in [l,p-1] such that the point S∩Cq^ has coordinate exp(2π⅛∙(S)∕p). (Since torsion sections can never meet, Zj(S) cannot equal 0.) Note that Zj (S) is defined only when fcj∙(S)=0 and may be thought of as being defined modulo p; in addition, if we switch the roles of 0 and ∞, we see that 
lj{S) is replaced by p-lj(β). Thus, combinatorially, we are in a situation identical to the one for the component numbers kj. We will call these numbers lj(S) root of 
unity numbers for the section S.Now define numbers ⅛(S) to be the total number of fibers having kj(S)=0 and having Zj∙(S')=±i mod p (weighted by the number of components mj∙), and then divided by the total (weighted) number of fibers with kj(β)=0t

?, rn3
j with fcj∙(S,)=0 and Zj∙(S)=±i

Ri(S) —---------------—--------------------zL mi
j with Zcj(S)=OThe main theorem of this article is an equidistribution property for these fractions 

Ri(Sy. namely, if p is odd, then j¾(5)=2∕(p-1), independent of S and LThese results rely on computations on elliptic modular surfaces. We also give as a by-product the equidistribution for the component numbers kj(Sy both by an explicit computation and via a relationship between the component numbers and the root of unity numbers. Finally we develop an Abel theorem for a singular semistable elliptic curve and use it to compute a Weil pairing on the singular semistable fibers 
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of an elliptic surface. Using this Weil pairing, we may also discover the duality between the component numbers and root of unity numbers.

2. Equidistribution for the roots of unity via the universal propertyIn this section we will give a proof of the following theorem.
Theorem 2.1. Fix a prime number p, and let S be a section of a smooth 

semistable elliptic surface which is torsion of order p. Then

Rι(S) = l ifp = 2, and Ri(S) = 2∕(p-1) if p is odd.

Proof First note that if p=2, then the only possible value for lj is one, so that certainly Rγ{S)-l. Similarly, if p=3, the only values for lj are 1 or 2, which are inverse mod 3; therefore jRi(5) = 1 again. Thus we may assume that p is an odd prime at least five.Second, note that it is immediate to check that if S is a section of τr.X→Cf and if F∖D→C is an onto map of smooth curves, then S induces a section S' on the pull-back surface π'.X'→D, which is also torsion of order p. Moreover, it is easy to see that j¾(S,)-for every i.If p≥5, then we may consider the elliptic modular surface Yι(p) over the mod­ular curve Xι(p), which is defined using the congruence subgroup Γι(p) of SL(2, Z) given by α, d≡ 1 mod p, c≡0 mod pj>.
Note that Xι(p) is a fine moduli space for elliptic curves with a torsion point of order p, and that Pi(p)→Xι(p) is the universal family (see [Shm], [Shd] or [CP]). This elliptic modular surface also has a universal section T of order p, and every elliptic surface with a section S of order p may be obtained via pull-back from this modular surface in such a way that S is the pullback of T. By the above remark concerning the constancy of the fraction ⅛ under pull-back, it suffices to prove that j¾(T)=2∕(p-1), for each i=l,..., ∣(p-1); in other words, we need only verify the statement of the theorem for the universal section T of the modular surface Tι(p) over the modular curve X± (p).Now the elliptic modular surface has exactly p—1 singular fibers, occuring over the cusps of the modular curve -X^ι(p), of which half are of type fy and half of type Ip depending on the order of the cusp: the total “weight” of the singular fibers, which is equal to the Euler number of the modular surface, is ^∙mj∙ = ∣(p2-1). For the fy fibers, the component numbers kj(T) must be 0, contributing 
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[∣(p-l)]∕[∣(p2-1)] =l∕(p÷l) to the weighted fraction Mq(T). However, by the results of [M] mentioned in the introduction, the total weighted fraction Mq(T) is l∕(p+l), and therefore the component number must be non-zero for all the fibers of type Ip.At this point, label the I1 fibers as Fi,..., F(p-1)∕2. Choose an “orientation” of each I1 fiber, which in essence means give an isomorphism of its smooth part with C*, such that the zero section 7q meets Fj in the point corresponding to the number 1.Denote by Ti=T,, T2=2T,..., Tp-1 = (p-1)71 the non-zero multiples of the uni­versal section T. Note that Tj and Tp~1 meet each I± fiber Fj in inverse roots of unity; in other words, using the notation of the Introduction, lj(Ti) = -lj(Tp-i) mod 

p for every i and j. Construct a square matrix Z of size ∣(p-1) whose r∕th entry is the pair of integers ±Zj(7i) = {∕j(7⅛), lj(Tp-i)}.Now two torsion sections of an elliptic surface never meet, so the sections {Tz} are all disjoint. In particular, if we fix an index j, in the jth column of this matrix Z, we must have p— 1 distinct integers; since the integers come from [l,p-1], each integer in this range occurs exactly once in each column of Z.Next fix an integer z∈ [1, ∣(p-1)]. By the universality of the modular surface, there is an automorphism of the surface fixing the zero section and carrying Ti to 
T-Tγ. Therefore, the entries along the zth row must be the same as the entries along the first row, but permuted in some way (indeed, permuted as the automorphism permutes the Iγ fibers Fj).As noticed above, each integer in [l,p-1] appears exactly once in the first column of Z. Hence each integer appears in some row of Z. By the above remark, each integer must then appear in the first row, and indeed in every row. This is exactly the statement that i¾(71)=2∕(p-1) in this case. □

3. Equidistribution for the roots of unity via explicit computationIn this section we will re-prove Theorem 2.1 via an explicit computation. Fix an odd prime p≥5, and let Γ=Γι(p) be the relevant modular group defined in the proof of the theorem. Let H denote the upper half-plane. Form the semi-direct product Γ=ΓoZ2 and recall that Γ acts on H×C by
z ∖ f f a b∖ , ∖∖ ∕ ∖ ( CLT +b 1 z λ∖(3.!) (11,+mτ + ,l)j.
Denote the quotient H×C∕Γ by T10(p), and the quotient H∕Γ by Xθ(p). The natural map tt:F10(ρ)→X10(ρ) induced by sending (τ,w) to τ is a smooth elliptic fibration.
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The curve Xθ(p) is not compact, but these quotients and the fibration π extend to the natural compactifications 7r: Yι(p)→Xι(p). The compact curve -X∖(p) is obtained by adding p— 1 points (called cusps) to the open curve Xθ (p), over which the elliptic fibration has singular curves. These cusps correspond to an equivalence class of rational points on the boundary of the upper half-plane and the vertical point z∞at infinity.For this modular group Γι(p), representatives for the cusps can be taken to be the rational numbers

r 1 11-, with 1 ≤ r ≤ -(p-1), and - with 1 ≤ s ≤-(p-l). 
p 2 s 2(See [CP].) The cusp at 2∞ is equivalent to the cusp l∕p.Over the cusps of the form r∕p, we have singular fibers for π of type Ii; over the cusps of the form l∕s, we have singular fibers of type Ip.There are exactly p sections of the map τr, which are induced by letting 

for 0<a<p-1. (See [Shd].) The zero-section 7q for π is of course defined by w(τ)=0, while the universal section T can be defined by w(τ) = l∕p.A local coordinate for the modular curve Xγ (p) about the point corresponding to the cusp at τ-z∞ is Q=exp(2πzτ)÷ the fibers of the modular surface itself may be locally represented near this point as C∕(Z÷Zτ) = C* ∕q7i. We want to determine a local coordinate about the point corresponding to the cusp at τ=r∕p. For this, choose 6,d∈Z such that rd—bp=l, and let
which is then in SL(2, Z). This element 7 sends r/p to z∞ via the action of (3.1); for our purposes its effect is to induce an isomorphismC∕(Z+Zτ) = C∕(Z(r-pτ)+Z(dτ-6)) ≥ C*∕qzwhere this last map sends w to exp(2πzw∕(r —pr)); here ^=exp(2πz(dτ-6)∕(r-pτ)) is the local coordinate near τ=r∕p.Since a∕p=a(dτ-b) + (αd∕p)(r-pτ), we see that the section w(τ}-a∕p maps under the above isomorphism to exp(2πz(α7(τ)÷αd∕p)). As τ approaches r/p, 7(τ) approaches z∞ and this quantity approaches exp(2πmd∕p). This is the root of unity which we have desired to compute.
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Note that had we used —7 instead of 7 we would have gotten the inverse root of unity, and that d is determined only mod p.Using the notation of the introduction, let us label the I1 fibers of the modular surface as Fl, ..., F(p-1)∕2, with Fr corresponding to the cusp at τ=r∕p. We have shown that for the section Tθi=aT,

lr(Ta) = ar~1,where the value of r~1 is taken modulo p.This gives an alternate proof of Theorem 2.1, since for any fixed o, these values are equidistributed among the nonzero classes mod p, up to sign.
4. Equidistribution for the component 

numbers via explicit computationThe main theorem of [M] concerning the equidistribution of the component numbers can also be proved by appealing to the universal property of the modular surface πT1(p)→X1(p). Using the notation of the introduction, one sees that the fractions A⅞(S) for a torsion section S of order p remain unchanged under base change. Thus it suffices to check that they have the correct values, namely those given by Theorem 1.1, for the universal section T of the modular surface. This we do in this section.As noted in the previous section, the modular surface contains the fibers Fι,..., Fr,..., F(p-1)∕2 of type I± over the cusps represented by the rational num­bers r∕p, for l≤r≤∣(p-1). For these fibers, since they have only one component, the component number kr(T) is zero, contributing [∣(p-1)]∕[∣(p2-1)] =l∕(p+l) to the fraction Mq(T).The rest of the singular fibers of the modular surface will be denoted by F(p+i)∕2,..., Fp_i where Fp~s will be taken as the fiber over the cusp represented by the rational number l∕s, for l≤s≤∣(p-1).The component number theorem then follows from the next computation.
Proposition 4.1. With the above notation, if l≤s≤ |(p—1), then kp~3(T) = ±s (the indeterminacy of the sign being due to the choice of orientation of the 

singular fiber Fp~s).

Proof It is convenient to again transport the computation to τ=z∞ as was done in the previous section. Fix an s, with l≤s≤∣(p-1), and let
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As τ approaches l∕s, 7(τ)=τ∕(l-st) approaches z∞. This element 7 induces an isomorphismC∕(Z+Zτ) = C∕(Z(1-sτ)+Zτ) ≥ C*∕∕z
where this last map sends w to exp(2τriw∕(l-st)); here Q=exp(2πiτ∕p(l-.sτ)) is the local coordinate near this cusp.Since l∕p=(l∕p)(l-sτ)÷(s∕p)τ, we see that the universal section T, which is defined by w(τ) = l∕p, maps under the above isomorphism to exp(2πi(l+s7(τ))∕p) = 
ζpqs, where ζp=exp(2πz∕p).Now using the toric description of the surface near this cusp, (see [AMRT, Chapter One, Section 4]), the exponent of q (modulo p) in this formula governs which component is hit by the section. In particular, the universal section hits component s in the fiber over the cusp represented by l∕s. Note that using —7 instead of 7 would result in — s instead of s. □

5. The canonical involutionThe matrix
normalizes the congruence subgroup Γι(p), and therefore induces an automorphism of the modular curve Xι(p). Since Ä2 is a constant multiple of the identity, this automorphism (which we will also call A) is an involution, called the canonical involution; in terms of the variable τ, A takes τ to -l∕pτ. The involution A also permutes the cusps, exactly switching the two sets of ∣(p-1) cusps; indeed, the rational number r/p is taken by A to the number —1/r, which is equivalent to the number 1/r under the action of Γι(p). Thus the I↑ cusp represented by r/p is switched via A with the Ip cusp represented by 1/r.Hence we observe that under this correspondence, the I1 cusp having u as the root-of-unity number for the universal section T is paired with the Ip cusp having 
u~1 as the component number for T.Note that for the fibers, all sections have component number kj equal to zero, and all non-zero sections have root-of-unity number lj in G(p) = {Z∕p)x∕±1. Moreover, for the Ip fibers, all non-zero sections have component number kj also in this value group G(p). For a cusp x of type Iι, denote the root-of-unity number of the universal section T in G(p) by lx∖ for a cusp x of type 7p, denote the component 



Torsion sections of elliptic surfaces 125
number of the universal section T in G(p) by kx. With this notation the above statement can be re-phrased as follows.(5.1) For every cusp x of type Ii, lx = k~^c in G(p).This is a manifestation of a certain duality between the two notions. This we will explore further in the next sections, via a version of the Weil pairing on singular fibers of elliptic surfaces. Before proceeding to this, we want to make some elementary remarks concerning the modular surface and this involution.As above, denote the modular surface over X∖(p) by πι Yγ(p)→Xi(p). Let π,ι y^ι (p)z→Xι (p) denote the pull-back of π via the involution A. This operation exactly switches the fibers over the cusps, so that the fiber of π' over an r/p cusp is now of type 7p, and the fiber of πf over a 1/s cusp is of type I1. The universal section T of π pulls back to a section T, of π,. (We note that this surface is the modular surface for the group Γ1(p).)An alternate way of constructing this elliptic fibration π, is to take the origi­nal modular surface π.∙ Yχ(p)→Xχ(p) and divide it, fiber-by-fiber, by the subgroup generated by the universal torsion section T. Over the cusps represented by r/p, the original modular surface has Iι fibers, which are rational nodal curves; in the quotient there is again a rational nodal curve, but the surface acquires a rational double point of type Ap-γ at the node, and the minimal resolution of singularities produces a fiber of type Ip. Over the cusps represented by l∕p, we have Ip fibers in the original surface; in the quotient the p components are all identified to a single 11 component. For details concerning this quotient construction, the reader may consult [MP].The section T, in this view comes not from the original section T, but from a p- section of the modular surface, consisting of a coset of the cyclic subgroup generated by T in the general fiber of π. (The universal section T and all of its multiples of course descends to the zero-section of π,.) The formula (5.1) implies that

kx(T') = lx(T)~1in the group G(p).
6. The function group of a semistable elliptic curveIn the next section we will develop a version of the Weil pairing on a semistable singular fiber of an elliptic surface (that is, a fiber of type ∕τn). The essential ingredient in the definition of the Weil pairing on a smooth elliptic curve is Abel’s 
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theorem; see for example [Sil, Chapter III, Section 8]. Therefore we require a version of Abel’s theorem for a fiber of type Im, and this in turn requires a notion of appropriate rational functions on the degenerate fiber. In this section we describe the set of functions which we will use; Abel’s theorem is an immediate consequence of the definition.For a nodal fiber F of type I1, which is irreducible, we have the function field of rational functions on F, which may be identified with the field of rational functions on P1. The non-zero elements of this field form a multiplicative group, which has as a subgroup 1C the group of functions which are regular and nonzero at the node. This group 1C comes equipped with a divisor function to the group of divisors Div(Fsrn) supported on the smooth part Fsrn of F. Since Fsrn is a group, there is a natural map Φ÷ Div(Fsm)→Fsm which takes a formal sum of points of 
Fsm to the actual sum in the group. It is easy to check that Abel’s theorem holds: a divisor Z)∈Div(Fsm) is the divisor of a function ∕∈∕C if and only if deg(Z))=0 and Φ(D)=0 in the group law of Fsm.We will now extend this to fibers of type Im with m≥2. With this assumption there is no field of functions to employ, since the fiber F is no longer irreducible. Thus we must find a multiplicative group of appropriate functions without the aid of an associated field of rational functions.For this we rely on the existence of a set of coordinates on the components of F, which are adapted nicely to both the group law on Fsm and to the elliptic surface on which F lies.

Definition 6.1. Suppose that the singular fiber F (which is assumed to be of type 7m) has components Co, Ci,..., Cm~ι, with the zero section So meeting Co and 
Cj meeting only Cj∙±ι for each j. Let Uj be an affine coordinate on C7∙ for each j. The set {u7∙} of coordinates will be called a standard set of affine coordinates on F if the following conditions hold:(a) For each 7, Uj=Q at C7∩C7∙-ι and ¾=∞ at C7∙∩C7∙+ι.(b) The map a: C* × rL∕m→Fsm sending a pair (t,J) to the point Uj=t in component Cj of F is an isomorphism of groups.(c) For each j, if we set Vj=Λ∕uj to be the affine coordinate on Cj near uj∙=∞, then Vj and Uj±ι extend to coordinate functions Vj and Uj+ι on the elliptic surface near the point C7 ∩C7+1, such that Vj=0 defines Cj+ι and CT7∙+ι=O defines C7∙ near this point.

Proposition 6.2. Let F be a fiber of type Irn on a smooth elliptic surface X. 
Then a standard set of affine coordinates exist on F. Moreover, given the ordering 
of the components, there are exactly m such standard sets of affine coordinates on F.

Proof The existence of a standard set of affine coordinates on F is an immedi-
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ate consequence of the local toric description of a smooth semistable elliptic surface near a singular fiber of type Irn given in [AMRT, Chapter One, Section 4]. Indeed, the standard set of affine coordinates is exactly the set of coordinates on the toric cover described there, which descend nicely to X.Note that by (a) and (b), the coordinate uq on Co is determined: it must be 0 at C,o∩Cm-ι, ∞ at C,o∩C,ι, and 1 at Sq∩Co. Similarly, each coordinate uj is determined by the point uz∙ = l, which must be one of the points of Cj of appropriate order. Thus there are exactly m possibilities for uι- By (b), once u± is determined, so is Uj. It is easy to check that these m different possibilities all give standard sets (once it is known that one of them does). □Note that if {i/o, ∙∙∙5 ‰-ι} is a standard set of affine coordinates on F, then any other standard set is of the form {uj= ζjUj} for some mth root of unity ζ.We can now define the group of functions K, which plays the role of rational functions on F. A bit of notation is useful. Suppose that g(u) is a nonzero rational function of u. Firstly, define ∏o(g) to be the order of g at u=0, and noo(g) to be the order of g at u=∞ (which is the order of g(l∕v) at υ=0). These integers are of course independent of the choice of affine coordinate u. Moreover, we have that 
g(u)∕un°^ has a finite value at ιz=0, and g(u)unσo^ has a finite value at u—∞. Secondly, define co{g) to be the value of g{u)∕un°^ at ιz=0, and define coo(g) to be the value of g{u)un°o^ at u=oo. These constants do depend on the choice of coordinate u; they are simply the lowest coefficient of the Laurent series for g expanded about u=Q and u=oo.If we write

e ∕ f(6.3) g(u)=∞'[](u-λi)∕ II (u~∕⅛)>i=l k=lwith α, λi and μ∕c nonzero, and Z∈Z, then(6.4) n0(g) = l(6.5) n00(g) = f-e-l(6.6) c0(g) = α(-l)e+7 ∩ λi ∣ ∩μk, and
i k(6.7) c∞(g) = a.Fix a standard set {uj} of affine coordinates on F. Define ∕C to be the set of m-tuples of nonzero rational functions (^o(^o)55,ι(^ι)5 ∙∙∙, ‰-ι(‰-ι)) satisfying the following conditions:(a) For each j, n∞(¾)+∏o(3⅛+ι)=O∙
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(b) For each coo(¾)=c0⅛+ι).(c) ∑Γ=o1noto)=O.Note that condition (a) says that the functions {gj} have opposite orders at the nodes of F, and condition (b) says that with respect to the standard set of affine coordinates, they have the same leading coefficients in their Laurent series at these nodes. These are local conditions about each of the nodes. The final condition (c) is a global condition, saying that the orders sum to zero upon going around the cycle of components. We note that ∕C is a multiplicative group (the operation being defined component-wise), and that it does not depend on the particular standard set of affine coordinates used.These conditions are motivated by a notion of restriction of functions from the surface to the fiber. Suppose that G is a rational function on X. We may uniquely write its divisor, near the fiber F, as div(G)=F+V, where V is the “vertical” part of the divisor consisting of linear combinations of components of F, and H is the “horizontal” part of the divisor consisting of linear combinations of multi-sections for the fibration map. If one restricts to the general fiber near F, one only sees the contributions from H. We want to make the following regularity assumption for the function G:{*} No curve appearing in the horizontal part H passes through any node of F.Under this assumption, we see that the zeroes and poles of G, as we approach the singular fiber F, survive in the smooth part Fsm of F. Therefore we have a chance of obtaining a limiting version of Abel’s theorem.Take then such a rational function G, and let us define a “restriction” to the fiber F, which will be an element of the group 1C. Fix a standard set of affine coordinates {¾} on F, and also assume that we have normalized the base curve so that π=0 along F. Write V=∑jγ7∙G7∙ as the vertical part of div(G). For each J, consider the ratio G∕πrj ; this is a rational function on X which does not have a zero or pole identically along Cj (since π has a zero of order one along F). Restricting this function to Cj gives a nonzero rational function gj(uj).

Lemma 6.8. If G satisfies the regularity condition {*}, then the m-tuple 
(9(h-,9m-ι) lies in 1C.

Proof. Near the point G7∙∩G7∙+1, we have local coordinates Uj+ι and Vj on X as in the definition of a standard set of affine coordinates. The curve G7 is defined locally by U7∙+ι=0, and Cj+ι by Vj=0. Moreover the fibration map π is locally of the form π=Uj+ιVj. Hence near G7∙∩Gj∙+i, we may write G as
G(Uj+1, Vj∙) = U⅛1V^+1L(Uj+1, Vj)
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where the condition {*} implies that L(0,0)≠0. With this notation we have 9j(vj) = 

υrj+1 -rj υ. ) and =ω7+ir'+1 z¼ + l > 0) ∙Thus we see that noo(¾∙)=rj∙+ι-Tj and n0(gj+ι)=rj — Γj+ι, proving that con­dition (a) of the definition of ∕C is satisfied.We also have that c00(ρj)=co(ρj+ι)-L(0,0), giving us condition (b).Finally, the sum JT ∏o(¾) telescopes to 0, showing that condition (c) holds. □From this point of view, the definition of 7C, though at first glance rather ad- hoc, is actually quite natural. Motivated by the above, we call ∕C the function group of the singular fiber F.We have a divisor map div: ∕C→Div(Fsm), sending an m-tuple (g0, ∙∙∙5‰-ι) to the formal sum of the zeroes and poles of each ¾∙, throwing away any part of the divisor at the nodes. This map is a group homomorphism. Recall that we also have a natural summation map Φ from Div(Fsm) to Fsm. Abel’s theorem for F can be stated as follows.
Theorem 6.9. A divisor P∈Div(Fsm) is the divisor of an element of ∕C if 

and only z∕deg(Z))=0 and Φ(D)=0.
Proof. Let (g)∈∕C, and let D=div(g). For each J, write

ej f3

9j(uj)=ajuljj ∩ (¾-λ^) ∕ ∩ (¾-μ^).
i=l k=lFrom the definition of ∕C, we must have

oij = aj+ι(-l)ej+1+fi+1 ∏λ^ ∕∏Mfc ∖ and
i k

y? ⅛=θ∙
3Summing the first set of equations over j, we see thatdeg(P) = ^(ej-∕7∙>0.

3Multiplying the second set of equations over J, and applying the above, we havethat
π ∏, -λ∕'
i,1rWl 
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which shows that the C* part of the group element Φ(Z)) is trivial. Finally, to show that the Z/m part of Φ(P) is trivial, we must show that ∑2j j(¾-Λ)-θ mod m. Writing ej — fj as lj+∖-lj using the first equation, we see that this sum telescopes to 52 ∙7 (ei ml° ~∑li

3 3which is 0 mod m by the third equation. This completes the proof of the necessity of the conditions on D.We leave the sufficiency, which is equally elementary, to the reader. □We note that the only elements (g) of 1C which have div(g)=0 are the constant elements, where gj=c for every j with c being a fixed nonzero complex number. We thus have an exact sequence
0 → C* → ∕C → Div0(Fsm) Λ Fsm → 0

where Divo(Fsm) is the group of divisors of degree 0 on Fsm.

Example 6.10. Suppose F is a fiber of type Im∕c, with a standard set of affine coordinates {¾}. Fix a primitive mth root of unity ζ, and an integer α∈[0, m—1], and let p be the point of Ca⅛ with coordinate uak=ζ. We note that p is a point of order τn in the group law of Fsm, so that D—mp—mQ is a divisor on Fsm with deg(Z))=0 and Φ(D)=0 (where 0 is the origin of the group law, i.e., the point in 
Cq with coordinate Uq = 1).By Abel’s theorem, there is an element (g)∈∕C such that div(g)=D. If α=0, this element (<?) is

n (^o-ζ)m 
ffo =-------------∣⅛-ι)m,

gj = 1 for j ≠ 0.
If l<θi<m-1, we have

n -9o —-------- for j = 1, ...,αfc-1,(ιz0-l)m,
9j=uj~m and
gj = (—l)τnutj for j = αfc÷l,...1mk- 1.
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7. The limit Weil pairing on a degenerate elliptic curveThe Weil pairing on a smooth elliptic curve E is defined as follows (see [Sil, Chapter III, Section 8]). Let S and T be two points of order m on E. Choose a rational function g on E with div(g) = [m]*(T) — [m]*(0), where [m] denotes multi­plication by m. Then the Weil pairing ern on the m-torsion points of E is defined by

em(S,T) = g(XφS)∕g(X)for any XeE where both g(X^S) and g(X) are defined and nonzero. (We use φ as the group law in E to avoid confusion.) The existence of the rational function 
g relies solely on Abel’s theorem for E, as does the fact that ern has values in the group of mth roots of unity.In the previous section, we developed an Abel theorem for a singular fiber F of type Ik on a smooth elliptic surface, by replacing the notion of the field of rational functions with the limit function group ∕C. This allows us to define in the same way a limit Weil pairing on the m-torsion points of F, which we also denote by ern. In this section we compute it.Since the eτn pairing is isotropic and skew-symmetric, it suffices to compute ern(S,T) for generators S and T of the group of m-torsion points on F.Fix an integer m; in order that F have m2 m-torsion points, F must be of type 
Irnk for some k. Since the Weil pairing is formally invariant under base change, we may assume k=l and F is of type Im, Also fix a standard set of affine coordinates 
{uj} on F. Let ζ=exp(2πz∕m) be a primitive mth root of unity. Let T be the m-torsion point of F which is in component Co having coordinate uo=ζ. Let S be the m-torsion point of F which is in component C± having coordinate uγ-1. These points S and T generate the group of m-torsion points of F.Let z∕=exp(2πz∕m2) so that vτn=ζ. Consider the point TfeF in component 
Co having coordinate uo=v', note that mT,=T, and [m]*(T,)=∑r(T'ΦR) where the sum is taken over all m-torsion points of F. Similarly, [m]*(0) =∑βCR).The element (g)∈∕C such that div(g) = [m]*(T)-[m]*(0) is defined by

ur∙l-ζ
9j(uj) = ζ j~m~ι'

Now choose an XeCq with coordinate uq=x∙ The point X®S is then the point in Ci with coordinate x. Thus2(XΦS)∕5(X) = 51(x)∕p0ω = C-1^4 ∕ = Γ1∙
This shows that ern(S, T)=ζ~1.
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Let M(t, s)=tTφsS be the general point of order m in F∖ note that M(t, s) is in component Cs and has coordinate us=ζt. Extending the calculation above using the bilinearity and skew-symmetry we obtain the following.
Proposition 7.1. With the above notation, the limit Weil pairing on F takes 

the form
ern(M(t1,s1),M(t2,s2))=ζt1s2~t2s1.Note that this limit Weil pairing is computed using Abel’s theorem for the limit function group /C; since ∕C is independent of the choice of the standard set of affine coordinates used, as are deg(D) and Φ(Z)), we see that Abel’s Theorem and the limit Weil pairing are both well-defined, independent of the choices made. (The formula of the above Proposition also depends on the choice of the sections S and T; if we choose different sections, the formula may change, but the limit Weil pairing does not.)Moreover the limit Weil pairing is indeed the limit of the usual Weil pairing on the nearby smooth fibers of the elliptic surface. This follows from the nature of the element (g)∈∕C used in the computation above: each gj has degree 0 on the component where it is defined, and hence is the usual restriction of a rational function G on the elliptic surface. This function G can be chosen so that, when restricted to the nearby smooth fibers, it is the function used to define the Weil pairing there. Therefore the limit Weil pairing is the limit of the usual Weil pairing.

8. The root-of-unity and component 
number relationship via the Weil pairingFinally, we want to point out that the duality between the root-of-unity results and the component number results, which were mentioned in Section 4 as being related to the canonical involution, can be expressed also in terms of the Weil pairing. We will compute this Weil pairing on the singular fibers using the limit Weil pairing developed in the previous section.First let W be a torsion section of order m of an elliptic surface passing through the zero component Co of an Irn fiber. Let ζ=exp(2πi∕m) be a primitive mth root of unity. Assume that the Iπι fiber is given a standard set of affine coordinates, such that the point W∩Cq has coordinate Uo=ζa, with (α,m) = l. In the notation of the last section, we have W=aT. Let W* be the set of (local) sections Z such that ern(W, Z)=ζ, By the computation given in Proposition 7.1, we see that such a local section Z is one which passes through component b, where ab≡l mod m.
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Specializing to the case where m is an odd prime p, and using the root-of-unity numbers I and the component numbers k, we see the following:If kj(W) = 0 and lj(W) = a, then W* is the set of local sections Zwith kj(Z) = a~1.Finally let us return to the modular surface τ∏lι⅛)→Xι⅛) and the quotient π,∙. yι,(p)→Xι⅛), as described in Section 5. In the above, set W—T, the universal section, and fix a cusp x of type on Xγ(p). Assume that lx(T)=a for this cusp, that is, T∩Cq is the point with coordinate ζa. The section Tf on the quotient is induced by the multisection of π which, by (5.1), has kx-a~1. Since the Weil pairing is invariant under isogeny, we see by (8.1) that T, is exactly the image, locally, of the set W* of sections pairing with T to give value ζ. Alternatively, we may write

T, = image of em(T, -)-1(ζ).
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