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Capacitary inequalities for fractional
integrals, with applications to partial
differential equations and Sobolev multipliers

Vladimir G. Maz’ya and Igor E. Verbitsky

Abstract. Some new characterizations of the class of positive measures v on R™ such that
H,l,CLp('y) are given, where H;, (1<p<o0,0<l<00) is the space of Bessel potentials. This imbed-
ding, as well as the corresponding trace inequality

1wl () £C llullz,,

for Bessel potentials J;=(1 —A)‘l/ 2, is shown to be equivalent to one of the following conditions.
(@) ()P <CJiv ae.
(b) My(Myy)P' <CMyy ace.
(c) For all compact subsets F of R™

/E (Ji)?' de < C cap(E, HY),

where 1/p+1/p’=1, M; is the fractional maximal operator, and cap( -, Hzlv) is the Bessel capacity.
In particular, it is shown that the trace inequality for a positive measure « holds if and only if it
holds for the measure (er)p/d:v. Similar results are proved for the Riesz potentials I;y= lel_"*'y.
These results are used to get a complete characterization of the positive measures on R"
giving rise to bounded pointwise multipliers M (Hp*— Hp !y, Some applications to elliptic partial
differential equations are considered, including coercive estimates for solutions of the Poisson
equation, and existence of positive solutions for certain linear and semi-linear equations.

1. Introduction

Let M*T=M*(R") be the class of positive Borel measures on R™, finite on
compact sets. For [€ER and 1<p<oo, we define the space of Bessel potentials
Hl=H!(R") as the completion of all functions ue D=Cg°(R™) with respect to the
norm ||u”H£=||(1—A)‘/2u||LP. For >0, u€ H}, if and only if u=G)* f, where f€L,
and G is the Bessel kernel defined by G;(-)=(1+]|- [2)=/2 (see [20]). (Note that
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G120 and G;€L;(R").) The operator J;f=G,*f defined for functions f€L, or
measures f€ M is called the Bessel potential of order I(I>0). The Bessel capacity
cap E=cap(FE, H},) of a compact set ECR™ is defined by

(1.1) cap E=inf{||ul} :Jiu=1o0n E;u>0,ueL,}.

For ye Mt and ECR™, we denote by g the restriction of vy to E:dyp=xg dv,
where x g is the characteristic function of E.
In this paper we consider the trace inequality for Bessel potentials

(1.2) ||Jlu||Lp(.,) < const ||u||Lp,

where the Ly-norm of u on the right hand side is taken with respect to Lebesgue
measure. It is well known that inequalities of this type are closely connected with
spectral properties of the Schrodinger operator and lead to deep applications in par-
tial differential equations, theory of Sobolev spaces, complex analysis, etc. (See [20],
[22], [3], and Section 5 of this paper.)

The following result is due to Maz’ya [18], [19], Adams [1], and Dahlberg [8]
(see also [20], [2], [10]).

Theorem 1.1. Let 1<p<oo,0<l<o0, and YEM™. Then (1.2) holds if and
only if, for all compact sets E in R™,

(1.3) v(E) < C-cap(E, H}).

(Note that we may restrict ourselves to sets E such that diam E<1 in (1.3).
See [22].)

It is easily seen that (1.3) is equivalent to a “dual” condition [1]

(14) l7sllE,, < CA(E),

where 1/p+1/p’=1. Kerman and Sawyer [14] showed that we may restrict ourselves
to arbitrary cubes E=Q (diam@Q<1) in (1.4). One can also replace J; by the
corresponding fractional maximal function

(1.5) Myy(z) =sup{|Q"""/"v(Q) :z € Q,diam Q < 1}.

Thus, the non-capacitary condition (1.4) can be restated as [14]

(16) /Q (Mgl de<ex(Q), dismQ<1.
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(See also [26] for a simplified proof of this result.) We observe that conditions (1.3),
(1.4), and (1.6) are difficult to verify and sometimes not sufficient for applications.
For instance, it is not straightforward that, if 4; and y,e M, and Jiv.<Jj7; ae.,
then sup~;(F)/ cap E<oo implies sup~y;(F)/ cap E<oco. In certain problems dis-
cussed below we need characterizations of the trace inequality in terms of potentials
Jiy, rather than the measure = itself.

Our main result on the trace inequality (see Section 2) is as follows.

Theorem 1.2. Let ye M, 1<p<oo, and 0<l<oo. Then (1.2) holds if and
only if any one of the following conditions is valid.
(a) For all ueL,

(L7) [Py de <clult,.

(b) For all compact sets E

(1.8) /;:(er)p’dm <c-cap(E, HII,).
(c) For all compact sets E

(1.9) /(erE)p'da: <c-cap(E, Hzl,).
(d) The potential Jiy(z) is finite a.e. and

(1.10) Jl(er)”l <cJiy a.e.

Note that in the simpler case |>n/p it follows that (1.2) is equivalent to

sup{y(Q) : diam @ <1} < oo.

Analogous results are also given for Riesz potentials, ju=(—A)""2u,0<l<n/p
(Theorem 4).

In Section 2 we discuss some corollaries and examples. In particular, we show
that the trace inequality holds if there exists t>1 such that, for all cubes @,
(diam Q<1)

1 , 1/pt .
(1.11) {@/Q(er)’”dw} <ec Q7Y™
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It should be noted that (1.11) is a strengthened version of the condition of C. Fef-
ferman and D. Phong [9]

1 1/pt
111 — | otd Q|
o (i ] " serar

where dy=g(z)dz. We show that (1.11) is less restrictive than (1.11’) and, ob-
viously, applies to measures which are not necessarily absolutely continuous with
respect to the Lebesque measure. An example demonstrating that one cannot set
t=11in (1.11) so that the trace inequality remains true is given.

We also prove that many operators of Harmonic Analysis (maximal functions,
Hilbert transforms, g-functions etc.) are bounded in the space of measurable func-
tions f such that

[E |fl*da < c-cap(E, H.)

for all compact set E. Here 1<p, g<oo, 0<I<o0.
Section 4 is devoted to the multiplier problem for a pair of potential spaces.
We denote
M(H"— H))={g:u€ H' = g-uc H}.

For positive m and [, multipliers have been characterized by Maz’ya and Sha-
poshnikova [22]. In the case m-[<0, only some sufficient conditions were known.
We characterize positive measures y€ M (H,'— H, 1) and show that, at least in this
case, the sufficient conditions of Maz’ya and Shaposhnikova are also necessary.

Theorem 1.3. Let y€ M, 1<p<oo, >0 and m>0. ThenyeM (H;*—H,*)
if and only if the following two conditions hold:

(1.12) /E(Jl'y)pd:c <c-cap(E, Hy"),

(1.13) /E(Jm’y)pldm <c-cap(E, Hzl,,),

for all compact sets ECR™.

Note that, in contrast to the assumption (b) of Theorem 1.2, the exponents on
the left hand sides of (1.12) and (1.13) are the same as in the corresponding capac-
ities on the right hand sides. In the simpler case p=2, |=m this pair of conditions
is equivalent to supy(E)/ cap E<oo by Theorem 1.2. (Cf. [22, Theorem 1.5].)
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In Section 5 we consider applications to some linear and non-linear problems
for elliptic partial differential equations. We show, in particular, that solutions of
the Poisson equation —Au=vy, v>0 and ye M (H,—H, ") satisfy the coercivity
property: Diue M(H)— H;*) for all I, |I|=2.

Acknowledgements. This work was done while the second author was visit-
ing Link6ping University and the Courant Institute of Mathematical Sciences. He
wishes to thank Lars Inge Hedberg and Louis Nirenberg for their encouragement
and support.

Both authors are grateful to Kurt Hansson for valuable discussions and his kind
permission to present here his new results on the n-dimensional Riccati’s equation.

2. Trace inequality for Riesz and Bessel potentials

For [>0 and 1<p<oo, we denote by hé the completion of the space D=C§°
with respect to the norm Hullhézll(—A)l/zuﬂLP. If 0<l<n/p and 1<p<oo, then
Uue hé if and only if u=Ijv, where v€L,, and the Riesz potential I; is defined by
ILiv=|-|"""xv. In the same manner we define Riesz potentials of measures y€M*:

Iry(ac)=/lzc_i:y%, x€R".

Note that I}y is finite a.e. (locally integrable) if and only if fly|>1 lyl'""dy< oo [17].
To any measurable set ECR™, we associate its Riesz capacity by [20]

(2.1) cap(E, hl) = inf{||ullf, : lu=1on E; u>0, u€ Ly}
The (homogeneous) fractional maximal operator M;, where 0<l<n, is defined
by
: (@)
(2.2) Ml'y(x)=sup{@|7_—l/—n :zeQ}.

It is easily seen that M;y(z)<cl;y(z) for all ze R™.
Now we are in a position to state our main result for Riesz potentials.

Theorem 2.1. Let yEM™, 1<p<n/p. The following conditions are equiva-
lent.
(a) The trace inequality

(2.3) I fllz,cn <clflz,



86 Vladimir G. Maz’ya and Igor E. Verbitsky

holds for all f€L,.
(b) For all compact sets E

(2.4) ¥(E) < c-cap(FE, hé).
(¢) For all compact sets E

(25) [y dw< )
(d) For all compact sets E

(2.6) /(IryE)"'d:c <c-cap(FE, hi,)‘
(e) For all compact sets E

(2.7) /E(Il'y)p/dcc <c-cap(FE, hi,).

(f) The potential I}y is finite a.e. and

(2.8) Il(Il'y)p, <cliy a.e

Note that the equivalence of (a), (b) and (c) is known (see [20]). We can restrict
ourselves to cubes E=Q in (2.5) due to a result of Kerman and Sawyer [14]. It will
be shown below that, for conditions (2.6) and (2.7), this is not true. The potential

Iy can be replaced by My in (2.5)—(2.8).

Proof. It suffices to prove that (c) = (f) = (e) = (d) = (b).

Step 1. (c) = (f). Suppose (2.5) holds. Let us show first that IneL;,‘)C, and, in
particular, I;y<oo a.e. Let B=B,(z) be the n-dimensional ball with radius r>0,

centered at x€R™. Then
(2.9) [ ey ay <),
B

For z€ B, we have
Iyp(z) > cy(B)(diam B)' ™.

Hence, by (2.9)

(2.10) (B, (z)) <c-r™7P,
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We set y=71+72, where 71 =72 and vo=7(2p)c. Here 2B={t:|z—t|<2r}. Then

(2.11) /| (Imf"dySc[ [ amrays [ (Imp’dy].
By (2.9)
(2.12) /B (Im)? dy < cy(2B) < .

To estimate the second integral on the right hand side of (2.11), note that, for all
yEBT (.’l?),

(2.13)

Iva(y) = / ly—t "y () <27 / ety () <
|z—t|>2r lz—t|>r

Sc/wl(ﬁ@d@

gn—l+1

It follows from (2.10) that

o0
sup Im(y)Sc/ 0~ PD=1gp < 0.
yEB r

Thus, we have proved that IWEL;S,C. Now let us show that (2.9) implies (2.8). Note
that

2 = p’ dr
()P () <c ; ()(IW) dy

To estimate the right hand side of the preceding inequality, we use again the de-
composition (2.11). By (2.12)

(2.14) /OO/ (TP d -i‘lli_<c/°° (2B,(2)) =2 < cliy(a)
: o Joo@) MR =€ MNebr\Z)) Ty S CUYE)-
The estimate of the second term is more delicate. By (2.13)

, I' (o] dQ '
Iy pdygcr"/ Y(By(z))——1| .
[ @ R

For fixed xeR", let /
00 ’ dQ '!P
o= | [ Bale) |
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We claim that
&0 p/ dr b 1—1
A , )(Il’)/g) dy———rn_l_’_1 <c | ' ro(r)dr <cliy(z).

To prove this, we note that

o) dQ P’ ,
(2.15) sup o)< | [ (Bola) 2| <l
Similarly, by (2.10)
o) o
(2.16) suprPo(r) < csup r'? [/ g"l(p“l)'ldg] <ep <oo.
>0 r>0 r

Clearly, for any fixed R>0,

&) R 0o
/ r=lo(r) drgcl/ rl‘ldr«supgo(r)+cz/ r=P)=1 g sup rPo(r).
0 0 >0 R >0

Applying (2.15) together with (2.16), we get
/ = o(r) dr < e [Iy(z)]P R +c, R-P),
0

Choosing R=[I;7y(z)]"/P=1)) we have

/ r=lo(r) dr < c Iy(x).
0

We have proved that

o P’ dr
A (m)(Il’Y) dy,,-n——l-!-l <cliy().
Thus, for all zeR™,
L(Iiv)?P (z) <ciy(z).

The proof of Step 1 is complete.

Step 2. (f) = (e). Suppose (2.8) holds and I;y<oo a.e. If, for some zo€R",
Iiy(zp) <00, then

Mi(Iy)P (o) < cLi(Iy)P (20) < cIyy(zo) < 00,
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where M; is the fractional maximal operator defined by (2.2). Hence, for any
cube Q, zo€Q,

/ (Iy)? dz < c| Q'™ Iy (zo) < 00
Q
This implies that I;ye Lif,c, By (2.8)

[L(IY)P TP <c(Iy)” <oo  ae.

Setting dy=(1, l'y)p' dz and integrating the preceding inequality over an arbitrary
cube @, we get

[ @y de< i@ <o
This obviously implies ¢
| Uy de < @)
and, by a result of Kerman and Sawyer [14],
Y(E)<c-capE

for all compact sets E. The proof of Step 2 is complete.

Step 3. (e) = (d). Suppose that (2.7) holds. Let us prove first that f(Il'yE)p/dx<
oo for any compact set E. Assuming ECB={z:|z|<R}, we have

/(Il»yE)P'da:Sc{/ZB(IW)P'dx+/(2B)C(IlfyB)P/dx}
Sc{cap2B+[’y(B)]p//l L} < 00.

o|>2R |z|(~VP

To show that (2.7) implies (2.6), we need some facts from the non-linear potential
theory. The non-linear potential of a measure y€ M ™ introduced by Khavin and
Maz’ya in [16] is defined by
Vory=L(Im)? ™!

Lemma 2.2. ([16], [22]) For any compact set ECR", there exists a measure
v=vF such that

i) supprCE,

i) v(E)=cap E,

iii) | Lv||f ,=capE,

v) Vav(z)<K=K(p,l,n) on R",
vi) cap{Vpur>t}<At=°capE for all t>0, where c=min(1,p—1);cap(-)=
cap(-,hl ), and the constant A is independent of E.

(
(
(
(iv) Vpv(z )21 quasi-everywhere on R™,
(
(
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The measure vE

sure of E.

associated with F is called the capacitary (equilibrium) mea-

Remark 2.1. In what follows one can replace Vj,y by the potential

(2.17) Wpy(z) = /Ooo [Mr’—l dr < e Vury(z).

,rn—lp T

As was shown by Hedberg and Wolff (see [2]), Wy is a good substitute for V;; in
many problems. In particular, the estimate (vi) holds for Wp; with o=p—1.
We will need the following lemma.

Lemma 2.3. Suppose 0<l,m<n. Suppose v and vE M*. Then

(2.18) Li(Invdy) <cLi(Imydv)+Inv-Iiy].

Proof of Lemma 2.3. By Fubini’s theorem

it an)(o)= [ 2 [ B0 [avy [ K de),

where K (z,y,t)=|z—y|'""|y—t|™ ™. It is easily seen that

/K(x,y,t) d’)’(y)S/ K(z,y,t) dfy(y)—}-/ K(z,y,t) dy(y)
ly—tl<lt-sl/2 ly—tl2[t-al/2
on—l gn—m I
L - .
< Iw-t|"‘lIm7(t)+|x—t|"‘m ()

Hence
L(ILnv dy) <27 L (Tpydv) 27" ™ Iy - Ty

The proof of Lemma 2.3 is complete.

Now we are in a position to complete the proof of Step 3. Let E be a compact
set and let v=vF be its associated capacitary measure. Then

[ty se< [Imp )y as,
where go=(Ilu)p"1. Applying Lemma 2.3 with [=m,y=vg and dv=ypdz, we get

(2.19) / (Liyp)? dz < c{ / (L) (Iiy)? da+ f [Il(cpImE)]”'dx} — c(A1+42).
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To estimate A, we choose an arbitrary r>1 and apply Holder’s inequality

, ., 1/r
A1 < ”IL’YEHP '/ {/(II’YE)p (Lip)"? dx} .

Recall that by assertion (v) of Lemma 2.2 one has [jp(z)<K=K(n,l,p) for all
z€R™. Then

K
/(IWE)”’ (Ilw)rl”/dms/ {/ (Iﬁ)”/dw}t"”"ldt.
0 Lip>t

By (2.7) and assertion (vi) of Lemma 2.2
/ (Iry)”,dz <c-cap{[;f >t} < t% cap E,
Lip>t
where o=min(1,p—1). Hence
/ I K ot
/(IWE)” (Lip)™® d:cSc-capE/ trP gy,
0

Choosing r’ >op’, we obtain

(2.20) Av<c|\lsl}] (cap B)V".

Let us get a similar estimate for the term Ay. By duality

sup
llgllz, <1

sup
llgllz, <1

A;/ ' —

/ Li(pIiyE)g dx| =

/Itg'ItVE'<Pd$ .

Suppose first that p>2. We set s=p/(p—2)>1. Then 1/p+1/p+1/s=1. Ap-
plying Hélder’s inequality for the three functions, ¢, ¢3=(I;yg)®~2/®-1) and
p2=(I1y5)"/ P~V Iig, we get

1/p
) A <leli, el s { / ulgwumpdx} .
flglle, <1

By Lemma 2.1
llellz, =1 /? = (cap B)V/».

From (2.7) and the trace inequality for the measure (I;7)? dz it follows that

. /P
sup { [ mgrany dx} cecoo

llgll, <1



92 Vladimir G. Maz’ya and Igor E. Verbitsky

Thus
(2.22) Ay <c(cap E)/ p“IlW’E”Ii:,/ E

Since p>2, we can choose '=p/p’>c/p’ in (2.20). Then, combining (2.20) and
(2.22), we have

A1+ Az < c(cap E)'/7|| Iy § P77,

We have shown above that [|I1vgl|r,, <oo for all compact sets E. Thus (2.19),
together with the preceding estimate, gives

Iyely,, <ccapE.
In the case 1<p<2 we estimate the right hand side of (2.21) in a different way.
We set s=p/(2—p) with 1/p’+1/p’+1/s=1. Using again Hoélder’s inequality for

the three functions,

e1=¢""",  pa=(p|Lg))* P and 3=|Lg/" 'L,

we obtain
(2.23) |
1/p s
AL <y s {1 Iw)”dx} « s { [1nap Pdw} .
gllL, <1 gllL, <1

As above ||¢||, =(cap E)*/?, and, by (2.7) and the trace inequality,
Y4
sup {/Ulglp(fﬂ)p dx} <e<oo.
llgllz, <1

Let us show that

1/s
(2.24) sup { / |Ilg|p(IlV)p/da:} <e< oo

gz, <1

as well. Since v is the capacitary measure, its non-linear potential is bounded:
Vpiv(z) <K for all zeR"™. Then, for any compact set eCR"™, we have

/(Ilz/e)pld:c:/l/},ll/e dve < K-v(e).
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By Steps 1 and 2 of the proof applied to the measure v, the preceding estimate
implies

/(Iu/)p/dx <c-cape

e
for all compact sets e. Hence, by the trace inequality for the measure (Ilv)”l dz, we
get (2.24). We have proved that, for 1<p<2,

A <c|el}, =ccapE.
Together with (2.20) it gives
(2:25) |vel, < efcap B+I|Lvsllf/ (cap B)/"'}.

We have already shown that ||I;vg|| L, <oo. Moreover, we may assume that
||Il7El] L, >cap E. (Otherwise, the desired estimate (2.8) is obviously true.) Then
it follows from (2.25) that

\vely, < cleap BYY | Tyl /"
Since r>1, we have
1Tyl , <e-cap .
The proof of Step 3 is complete.

Step 4. (d) = (b). This is easy. For an arbitrary ECR"™ let [ju>1 on E; u>0,
u€L,. If (2.6) is valid, then by Holder’s inequality

v(E) < /E Tiudy= / ulyyp dz < |lullz, 1 hvels,, < cllullz, (cap )P
Now it follows from the definition of capacity (see (2.1)) that
Y(E) < c-cap E,

which concludes the proof of Theorem 2.1.

Remark 2.2. Let 1<p<oo, 0<i<n/p, and g=1+1/p’. Then assertion (e) of
Theorem 2.1 can be rewritten as
(2.26) Vay(z) <cliy(z) ae.
where Vi =1I;(I;y)? ~! is the non-linear potential of 7.

We observe that one cannot replace Vy; in (2.26) by the corresponding Hedberg—
Wolff potential Wy, (see (2.17)). Note that Wgy(z) <cVgy(z), but the converse is
true only for [>(2—gq)/n [16]. Unfortunately, this is not the case when ¢=1+1/p’

and 0<l<n/p.
In fact, the inequality Wy (z) <cl;y(z) follows from the estimate

(B (x)) <7, (z€R™, 2>0),

which is weaker than the trace inequality.
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Corollary 2.4. Suppose 1<p<oo and 0<l<u/p. Supposey,veE M+ and I;y<

Liv a.e. Then
capFE capE
where the suprema are taken over all compact sets ECR™.

sup

Corollary 2.4 follows from assertion (e) of Theorem 2.1.

The analogue of Theorem 2.1 for Bessel potentials (see Theorem 1.2 in the
Introduction) can be proved in a similar fashion, and we do not go into details here.
Note only that condition (1.10) can be replaced by

Ji(J)? < cmax(1, Jiy),

since Ji1=[ Gi(z)dz. Hence, we can restrict ourselves to the set {z:Jiy(x)<1}
in (1.10), as well as we can consider only the sets E of diam E<1 in conditions
(1.3), (1.8) and (1.9) (see [22]).

3. Some corollaries and examples

Let us show that we can put M;v in place of I;7y in assertions (¢)—(f) of The-
orem 2.1. For (c) and (d) it is easy, since by a result of Muckenhoupt and Whee-
den [23]

(3.1) /(Iry)pldavgc/(Mry)”'dw

with the constant ¢ independent of v; the reverse inequality is trivial.
We will need the following lemma, which shows that many operators of classical
analysis are bounded in the space of functions f such that

(3.2) / |f|%dx <c-capE
E

for all compact sets E, (1<g<o0), if they are bounded in Lg-spaces with Mucken-
houpt weights.
Recall that a weighted analogue of (3.1), namely

(3.3) [mwdese [y,

holds for 1<g<oco and w€ Ao, where A, is the union of the Muckenhoupt classes
Ay, 1<p<oo, [23]. In particular, (3.3) is true for all A;-weights w such that

(3.4) Muw(z) < A-w(z) ae.,

where Mw=Mw for |=0 is the Hardy-Littlewood maximal function. Moreover,
the constant ¢ in (3.3) depends only on [, ¢,n and the constant A from (3.4).
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Lemma 3.1. Let 0<g<o0, 1<p<oo, and 0<l<n/p. Suppose that a function
f EL}IOC satisfies (3.2) with cap(-)=cap(- ,hi,). Suppose that, for all weights we Az,

(3.5) /Rn |glqwdw§K/Rn |f 19w dz

with a constant K depending only on n,q, and the constant A in the Muckenhoupt
condition (3.4). Then

(3.6) / lg|%dz < C-cap E
E

for all compact sets E, with a constant C depending only on l,p,n and K.

For g=Mf and g=p, Lemma 3.1 is due to I. Verbitsky. (See [22], where it
was used to derive an analogue of the Sobolev inequality for the spaces of functions
defined by (3.2).) The idea of the proof is the same in the general case and we give
here only a sketch of the proof.

Proof of Lemma 3.1. Suppose v=vF is the capacitary measure of ECR" and
=V is its non-linear potential. Then, by Lemma 2.2,

(i) ¢(x)>1 quasi-everywhere on E;

(ii) ¢(z)<B=B(n,p,l) for all zeR™;

(iii) cap{p>t}<ct~? cap E, (c=min(1,p—1), t>0), with the constant ¢ inde-
pendent of E. We need one more property of ¢ [22]:

(iv) M®(z)<cp®(z) a.e., with a constant c independent of E, where 0<6<
n/(n—1) for 1<p<2-1/n, and 0<6<(p—1)n/(n—Ip) for 2—I/n<p<oco. (Note that
the bounds on § are exact. If we use the Hedberg—Wolff potential W, v instead of
Vpiv, then one can show that (iv) holds for all 0<6<(p—1)n/(n—Ip).)

Now, it follows from (iv) that ¢®€ A;. Hence by (3.5)

/ lg|%p°de < K / |f19¢° da.

Applying this together with (i) and (ii), we get

B
[lltaes [ latstanse [ fintn=c [ [ \rpaseiar
E R Rn o o>t

By (3.2) and (iii)

|f]9dz <c-cap{p >t} < t% capE.
P2t
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Hence

B
/[glqszC-capE-/ o= 14t
E 0

Clearly, for all 0<i<n/p, we can choose §>o=min(1,p—1), so that 0<é<
n/(n—1) if 1<p<2—I/n, and 0<6<(p—1)n/(n—Ip) if 2—1/n<p<oo. Then

B
/ 97 1dt < o0,
0

which concludes the proof of Lemma 3.1.

We observe that Lemma 3.1 is also valid for Bessel capacities cap(~,H;l,),
0<i<oo (see [22]).

In Section 5 we will need the boundedness of the Riesz transforms R;f=
f*z;/|z|"*t1 (j=1,2,...,n) in the spaces of functions defined by the capacitary con-
dition (3.2).

Corollary 3.2. Let 1<p,q<oo and 0<i<n/p. Then

R;fl4d ad
o L RS0

1 =1,2,...
capE = capE ) (.7 )4y ?n))

where the suprema are taken over all compact sets in R™ and cap(-)=cap(-, hIlD).

Proposition 3.3. Suppose 1<p<oo, 0<l<n/p, and yeM™*. Then the fol-
lowing three conditions are equivalent.
(a) For all sets E

(3.7 / (I;7)P dz < c-cap E.
E
(b) For all sets E
(3.8) / (Myy)?' dz < c-cap E.
E

(¢) The mazimal function My is finite a.e. and

(3.9) My(Mpy)? < c-Mpy.
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Proof. Applying Lemma 3.1 with g=I;y, f=M,y, and g=p’, we see that (a)
is equivalent to (b).
Let us show that (a) implies (c). Note that the latter can be restated as

(3.10) /Q (M) dy < c-|QI*"/" Myy(a)

for all z€@. As in the proof of Theorem 2.1, we set y=71+72 (y1=72¢ and
Y2="7(2@)-) and have

/ (Ml’)/)p,dy < C|:/ (Mryl)”'dy+/ (Ml’yz)pldy] .

Q Q Q

By Theorem 2.1, (a) implies that, for z€@,

e [ ampayse [ (o) dy<en@) <elQl " Mi(a).
Q

To estimate the second integral, note that

_ o (@N(2Q)°)
Miv2(y) = SUD QT

If ye@Q'NQ and Q'N(2Q)°#0, then clearly QC5Q’. Thus, for ye@Q,

Mm@ s LD <o gp A

Q:Qcsq QYT g QY
Then
/(sz)pldy50|Q| sup [v(Q)/|Q)* /"
Q QDQ

< clQI!/" Miy(@) sup Q' (Y(@)/1Q

It follows from (a) that v(Q)<c|Q|*~*?/™, so that the last factor on the right
hand side is finite. Combining this with (3.11) we get (3.10).
It remains to prove that (c) = (b). It follows from (3.9) that

/ M(M)P P dz < / (M) da
Q Q
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for all cubes Q. Letting dy=(M;y)?' dz we have
| i de < 7(@),
Applying again the result of Kerman and Sawyer we get
Y(E)= /E(Ml'y)p,dx <c-capE.

The proof of Proposition 3.3 is complete.

Let us consider some simpler conditions sufficient for the trace inequality to
hold. It was shown by Fefferman and Phong [9] that (2.3) is true for the measure
dvy(z)=g(z) dz (9>0) if there exists t>1 such that

i t . —lpt/n
(3.12) ol /Q ¢t(c) do < | QI 7/,

We observe (see [14]) that this result is a consequence of two known estimates:
Sawyer’s inequality for the fractional maximal function [25]

(3.13) IMifllz, ) < cllfllz, [sup QP 4(Q)]/P,

and the Adams-Hedberg inequality [2], [12]

(3.14) ILfI S c(Muef)H(Mf)HE

where t>1 and 0<l<n/t. Actually, it follows from (3.12) and (3.13) that

(3.15) | Mie £l (gtdz) <cllfllz,-

Hence by (3.14) and the boundedness of the Hardy-Littlewood maximal oper-
ator, we have the Fefferman—-Phong inequality

td(l) 1/tp
(3.16) LY RCTER (Ll

Combining (3.16) with our Proposition 3.3, we obtain the following corollary.
Corollary 3.4. Let ye M*, 1<p<oo, and 0<l<n/p. Then the trace inequal-
ity (2.3) holds if there exists t>1 such that
(3.17) / (Myy)?*dz < c|Q|! P/
Q

for all cubes Q.

It is of interest to note that condition (3.17) is stronger than the original
Fefferman—Phong condition, and applies to measures not necessarily absolutely con-
tinuous with respect to the Lebesgue measure.
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Proposition 3.5. Let dy=gdx, g>0. Under the assumptions of Corollary 3.4,
(8.12) implies (3.17).

Proof. Suppose (3.12) holds. Then, by Holder’s inequality,

(3.18) v(Q) <@/

for all cubes Q. Using the preceding inequality, it is easy to see that (3.17) is
equivalent to

(3‘17/) /Q(Ml’YQ)p,tdw < C'IQ‘I_lpt/" )

(See analogous statements in the proof of Proposition 3.3 or Theorem 2.1 based on
the decomposition dy=x2¢ dy+(1—x29) dy.) For z€Q we have

pt
(Mirg(@)P* = sup [IQ’I‘/””l [ st dy]
zeQ’ QNQ

t t(p'—1)
< sup [IQ’l‘l | o dy] [tQ’l“’/’“l [ o dy]
TEQ QNQ Q'

Then, by (3.18),

t
i@ <csu Q17 [ ati)dy] =cldrixon)
z€Q’ QNQ
Since the maximal operator M is bounded in L:(R™), t>1, we have

/Q(Mz’YQ)p’tdﬂvSC/[M(ng)]tdec/Qgtdw.

Now it is clear that (3.12) implies (3.17"). The proof of Proposition 3.5 is
complete.

We observe that, for t=1, Corollary 3.4 is not true. In other words, we cannot
restrict ourselves to cubes E=Q in assertions (c) and (d) of Theorem 2.1.

Proposition 3.6. There erists a measure v with compact support such that

(3.19) ] ()P de < c-|Q*/
Q
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for all cubes Q, but the trace inequality (2.3) does not hold.

Note that a similar example for assertion (b) of Theorem 2.1 is well known.
By a theorem of Frostman, there exists a measure v with compact support e such
that v(Q)<c|Q|*~*/™, but cap(e,hé):O, which contradicts the condition v(e)<
c-cap(e, hﬁ,), Unfortunately, the energy of the measure v in this example is infinite;
[[Zive| 1, =0c. Hence it does not satisfy condition (3.19).

To construct a measure claimed in Proposition 3.6, we set

dy(z) =n(zn)p(z’) da’ dzn
where
z=(2',z,), =’ =(z1,.,Tn-1),
n(zn)=1 for |z,|<1, n(z,)=0 for |z,|>1 and
|2'[' =" (log(2/2') 77, |a'| <1

(3.20) p(a) =pp(a’) = { 0 |#/| > 1.

Let 1<p<oo, n>2, and !=(n—1)/p. We claim that, for 1+1/p'<S8<p the
estimate (3.19) is true, but the trace inequality is not valid.

For 0<r<1, set E,={z:|z'|<r, |z,|<1}. It is known [20] that for [=(n—1)/p
the capacity of the cylinder E,, cap(E;, hl)=(log2/r)' .

Then

VE) _ Jwri<r 127 log(2/|2']) P da’ 2y~*
>c = > | log - .
cap E, (log(2/r))1-P T
For B<p, (log(2/r))P~#— 00 as r—0. Thus the trace inequality is not valid.

Now suppose 1+1/p'<B<p. (Clearly, such § exists for any 1<p<oo.)
We show that

cla'[1="(log(4/1a'])) P+ for |2'| <2;

3.21 I <
(3:21) (@) < { clz|t" for |2| > 2.

It is easily seen that

1 , ,
o(t') dt! dt,
I =
l7(x) \/_~1 ‘/|;/|£1 (Ix/_t,P+|$n—‘tn|2)(n_l)/2

= dt
< t") dt’ n
_/|tf|31 #le) /—oo (| =t |24 |Tr —t, |2) (=172

<c/ o(t') dt’ —¢B
= l<1 |x’—t’|"‘l‘1— :
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For |z'| <2, we have

—B
BSCIJIIIZ_n+1/ !t,|1—n (log 2 ) dt/
tI<le’]/2 Il
5 \P
+clz'|*™ n(log - ) / |z’ —¢'|'=" gt
2| 2| /2< [t/ <2l

2 -3
+c/ |t/|f—2nt2 <log - ) dr’
20a’|<|t/|<1 ']

= B{+B5+Bs.

By direct computation we get
4\
Br<ele = (og )
T
4 —B
B, <cla'|!ImmH (log ——) :
T
4 -B
Bs <c|z/|'="H (log —) .
T
Combining these estimates we see that

4\
Im(x)fcnx'v-"“(log, |) . <2

If |2'|>2, we have

(') dt’ dty, - / N
T <c/ / <clz|™" th) dt
(e <1 (127 |2+|xn—t [2)(n=D/2 l« |t'|51¢( )

Since 3>1, we have

/ p(t") dt’ < oo,
[t]<1
which gives (3.21) for |2’|>2.

Using (3.21), we see that, for any cube Q

/Q (I)? da

4 (1-8) ,
Slell/n{ / Edanid (1og ) pda’+ / || (=P d:c’}.
|z |<2 | | |z’ |>2



102 Vladimir G. Maz’ya and Igor E. Verbitsky

Recall that {=(n—1)/p. Thus p'(n—l—1)=n—1 and 1/n=1—Ip/n. Since B>
14+1/p’ and (n—1)p’>n—1, both integrals on the right hand side of the preceding
inequality are finite. We obtain that

/ (Iy)? dz < c|Q[*~P/™
Q

which concludes the proof of Proposition 3.6.

Remark 3.1. It can be shown that, for the measure
dy=n(z,)ps(z’) dz’ dz,,

constructed in the proof of Proposition 3.6, the trace inequality holds if and only if

Bzp.
The estimates of I;y given by (3.21) are easily seen to be sharp. In fact, on the
support of v, Bo={(z, zn):|2'| <1, |z,| <1}, we have I;y(z)=<c|z'|'="*1 (log ﬁ)l_ﬁ.
For x¢2By we clearly have I;y(z)=c|z|'"™. Using these estimates and tak-
ing into account that {=(n—1)/p, one can show that, for S>p, condition (f) of

Theorem 2.1 is valid.

4. Positive measures as multipliers

Recall that hi, and H}, are the spaces of Riesz and Bessel potentials, respectively.
We define the class of multipliers for a pair of potential spaces as

”’YU”hl
M(R™ — Rt ={ €D :su ——”<oo}.
(" =) =7 €D 0 T

A similar definition is valid for Bessel potentials.
A complete characterization of the classes

M(h7*—hl) and M(H)'— H))

(as well as multipliers of some other spaces of differentiable functions) is due to
Maz’ya and Shaposhnikova [22], mostly in the case when [-m>0. For [-m<0, some
sufficient conditions were given.

In this section, we characterize positive measures which are multipliers for a pair
of potential spaces when I-m<0. (Since by duality M(hT*—h ')=M (hi,,—>h;,m),
we can assume m>0 and [<0.) As in Sections 2 and 3, we give full proofs only for
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Riesz potentials. The case of Bessel potentials requires minor modifications (mainly
in the case when m>n/p or [>n/p’), but we do not give the details here.
Let
l<p<oo, 0<m<n/p, 0<l<n/p’, and yeMT.

Then, clearly, y€ M (hy'—h, 1Y if and only if

(@) [ woar| <elul ol

(Note that, by duality, A, =(h,")*, where 1/p+1/p'=1, 0<i<n/p'.)
Letting u=I; f and v=1I,,g in (4.1), we restate it as

(4.1 j / sz-fmgdvl < flzwr gl

where the functions f and g may be assumed to be positive.
By Holder’s inequality

I/Ilf-lmgd'yl <cllifllr, () IHmgllL, (-

Suppose that
(4.2) ~v(E) <c-cap(FE, hé,,); Y(E) < c-cap(E, hy')

for all compact sets E. Then it follows from the trace inequality for the spaces hﬁ,,
and h!, that (4.1) holds, and hence y€ M (R]—h,").

For p=2 and m=I, (4.2) is also necessary in order that ye M (hb—h;"). (See
[22].) Indeed, letting f=g in (4.1") we see that it implies the trace inequality

1 f Lo S ellfllza-

Thus, v(E)<c-cap F for all compact sets E.

Unfortunately, conditions (4.2) are not necessary when p#2 or l#m. (See an
example at the end of this section.) However, it follows from Theorem 2.1 that, for
p=2 and l=m, (4.2) is equivalent to

[ tyPde < c-cap(e .

It is this condition, rather than (4.2) that can be extended to characterize
positive measures y€ M (h'—h,") in the general case.
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Theorem 4.1. Let
l<p<oo, O0<m<n/p, 0<l<n/p/, and yeMT.

Then ye M (hy —h, 1Y if and only if the following two conditions hold:

(4.3) [E (Iiy)Pdz < c-cap(E, hT"):

(4.4) / (Iny)? dz < c-cap(E, hﬁ,,).
E
Proof. Tt follows from (4.1') that ye M (hT*—h,') if and only if

'/ fL(Img dy) dx

<clfliz,lgllz,-
By duality, this is equivalent to

(4.5) I L(Img dV)|lL, <cllgllz,

for all ge Ly, g>0. Changing the roles of I;f and I,,g, we get in a similar fashion
that (4.5) is also equivalent to

(4.6) (I f d)lz,, <cllfllz,

for all feL,, f>0.
We recall that by Lemma 2.3

(4.7) L(Img dv) < clLi(glm™y) +Img-I17].

Thus
11i(Img d)llz, < {1 (gIm) |z, + 11 ImgllL, )}

where dv=(I;7y)Pdz. Suppose that assumptions (4.3) and (4.4) hold. Then it follows
from (4.3) that

(4.8) mgllL,w) <cllgllz, -
Similarly, it follows from (4.4) that

ILflL, o) <cllfllz,
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where do:(Im'y)p/. The dual form of the preceding inequality is

1L (f do)liz, <cllfllz,)-
Letting f=(Inny)!"? g, we get

I(f do)=1i(gImy) and ||fllL,@)=lgllL,

Thus
(g Lm NI, <cllgliz,-

Combining this with (4.8) we obtain (4.5). We have proved that (4.3) and (4.4)
imply ye M(h*—h;t).
Conversely, suppose that ye M (hy*—h;*). Then (4.1’) is valid which implies
(4.5) and (4.6). Letting f=g=x¢ in (4.1'), we get
Y(@)-1QIY™M@QIT™" < C/Q Lif - Imgdy<cl|fll, llgllz, =c|@QI-
Thus

(4.9) Q) S c|Q|~tH+m/m

for all cubes Q. Similarly, substituting f=x¢g and g=x¢ in (4.5) and (4.6) gives
(4.10) ‘/MwWMSomPWN% /UWmWMSo@WWW.
Q Q

(In fact, it is easily seen that any one of the preceding estimates implies (4.9).) As
in the proof of Theorem 2.1, (4.10) together with (4.9), implies

/ (Iy)Pdz < o0; / (Im'y)”,dx <00
Q Q
for all cubes Q. Setting g:XQ(Imfy)pl‘l we see that
lol, = [ (2} d <o0.
Q
By (4.5) we get

(4.11) /Q [(Ing dy)Pde < /Q (Iny)? da.
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Clearly, for x€@Q), we have

S:g |Q'|t/nt /Q Img dy=M(Ing dy)(x) < chi(Img dv)(z).
T 4 ’

By our choice of g,
/ Ingdy= / 9lImyq dy > / (Imyg/ )" dy.
Q Q
Thus
(4.12) sup (@' /Q (Imy)? dy < Ti(Img d) (@)

for z€Q. Now from (4.11) and (4.12) it follows that

)  [spliow [ daerafase [ (1)

z€Q’

Let us show that we can replace Ip,vg' by I,y in the preceding inequality. We
have

/ (L) dy <c [ Ly)? dy+c / (Ly2)? dy,
QNQ’ QNQ’ Q'

where dyi=x20dy and dy,=(1—x2¢)dy. Then by (4.13)

P
(4.14) / sup [!Q’ll/”_I/ (Im'}’l)pldy:l diUSC/ (Im7)? da.
Q QNQ’ Q

zeQ’

To estimate the second term note that, for z,y€@’ and t€(2Q’)¢, we have
[t—y|=<|t—z|. Hence

dya(t) c dy2(t)

IRl A NE =cl, .
eyl =) a2l

Lny2 (y) =

Consequently,

sup |Q'|Y/"! / (Imy2)? dy < ¢ sup |Q' |V [Lnya(2)]”
(4.15) zeQ! Q zeQ’
<c[Iny(z)]P 71 sup Q'™ L2 ().
zeQ’
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Let diam Q'=r. Making use of estimate (4.9) we get

% 7(Be())
sup Q') Iny2(z) < csu rl/ Z(—"———-—d <c< oo,
xeé)/'Ql mY2(z) < supr® | ~pammr1 S

with the constant C independent of z€Q. This, together with (4.15), implies
P
@io) [ sl [ ey dose [ (1 as
Q z€Q’ Q'NQ Q
Combining (4.14) and (4.16), we obtain
| Mitxapde <ev(@),

where dv=(I,y)? dz. Applying again the result of Kerman and Sawyer [14], we
conclude that the trace inequality

1LfllL, @) <cllfllz,

holds. Thus assertion (b) of Theorem 4.1 is valid.
Substituting f=xg(l;7)?~! into (4.6), we derive in a similar way that, for
do=(I;7)" dz

/Q [Mon(x0)]P dz < co(Q)

for all cubes @, which implies assertion (b). The proof of Theorem 4.1 is complete.

Corollary 4.2. Under the conditions of Theorem 4.1 it is true that
yeM(h*—h') if the following two relations hold

(4.17) ( 7V ()
(4.18) I ()P (2)

<c(Imy)? "Hz)<oo, ae.,
<c(IyyP~Hz)<oo, ae
Proof. It follows from (4.17) and (4.18) that

LIL(Iny)? P <cL(Imy)? <oo, ace.,
LI (L)) < cln(Iy)P <0,  ace.

By Theorem 2.1, this gives
/E(Im’y)p/dx <c-cap(F, hﬁ,,),

/E(Il'y)pdx <c-cap(E, hy')
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for all compact sets E. Applying Theorem 4.1 we conclude that ye M (h;"—>h; h.
For p=2 and I=m, the assumptions of Corollary 4.1 coincide with the estimate

L(Iy)? <cliy<oo, ae.
By Theorem 2.1 the preceding condition is valid if and only if
Y(E) < c-cap(E, h}).

As mentioned above, this is equivalent to y& M (hy—hy").

Remark 4.1. If p#2 and l#m, conditions (4.2) are not necessary for y€&
M(hm—h3Y).

To show this one can use the same idea as in Proposition 3.6. For p#2 we set
I=(n—1)/p’ and m=(n—1)/p. Let dy=n(z,)p(z')dz'dz, where p(z') is defined
by (3.21) with 8=2 ; n(z,)=1 for |z,|<1 and n(z,)=0 for |z,|>1. For

E,={z=(2',z,):|2'| <7, |z0| <1}, 0<r<1,

we have cap(E;, hl,)=<(log(2/r))! P and cap(E,, hZ,)=(log(2/r))'~P [20]. Then

pl

R P o ) R A o
cap(Br, h) = (log(2/r)1-7 z (l 8 ) '

Y(Er) 2 P
—2——>c| log - .
cap(Ey, hL,) ~ c( o8 7”)

Similarly

Letting r—0, we see that for p#2, one of the conditions (4.2) is violated. In the
opposite direction, one can use estimates (3.21) (see also Remark 3.1) to show that,
for I=(n—1)/p’ and m=(n—1)/p, conditions (4.17) and (4.18) are valid. Hence,
yeM(h—h;'), but (4.2) is not true.

Setting p=2, I=(n—2)/2, m=(n—1)/2, (n>4), one can construct an analogous
example showing that (4.2) is not necessary even in the case p=2, I#m.

There is another generalization of the fact that ye M+tNM(hh—h5") if and
only if the Lo-trace inequality holds.

Proposition 4.3. Let 1<p<co, 0<l<n/p, and yeM™*. Thenye M (h,—h")
if and only if

(4.19) 1L fllza(ry S cllfllz, -
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The proof is the same as for p=2. By duality, ye M (h;,—>h;,l) if and only if

[ woar| < bl ol

Substituting u=v=1I;f in the preceding inequality, we see that (4.19) holds.
Conversely, it follows from the Schwartz inequality that

I/u-v d’y’ < C”ulle('y)”””Lz('y)‘

Applying (4.19), which is obviously equivalent to
el zacoy < elullag,

we get that 'yEM(hf,—ah;,l).
Note that, for p<2, by a result of D. Adams (see [3]) (4.19) holds if and only if

1(Q) <c|QPP/P=t/m)

for all cubes Q). For p>2, we arrive at the “upper triangle case” of the trace
inequality considered in [21]. According to the Maz’ya—Netrusov result (4.19) is
equivalent to

(4.20) /0 ~ [V_f{)r/(p—z) dt < oo,

where p>2 and v(t)=inf{cap(E, h,):v(E)>t}, t>0. A non-capacitary characteri-
zation of the trace inequality in the “upper triangle case” based on different ideas
was given by Verbitsky [26].

5. Applications to partial differential equations

In this section we outline possible applications of the trace inequality and ca-
pacitary estimates found above to some elliptic partial differential equations. We
mention here only simple cases of several model problems without any attempts of
generalization. However, we treat both linear and non-linear equations, sometimes
in the non-Hilbert case p#2, so that the elements of non-linear potential theory
used in the proofs above are essential.

Some of the applications are known (see [20], [3], [14]), and we discuss them
briefly, emphasizing interesting connections with other parts of Analysis. Note that
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even in this case known results are stated in a new analytical form; all criterions are
close to being necessary and sufficient, and many particular cases can be derived
easily from them.

We start with a few problems for the Schrédinger equation

(5.1) Lu=-Au—~yu=0,
with ye M ¥, related to the trace inequality

(5.2) llell Lo () < comst -[|Vaulz,,
or, equivalently,

(5.2)) [ 11ull £, (y) < const -[|uf|z,,

where I; is the Riesz potential of order [=1. Note that (5.1) and (5.2) are obviously
connected through the equation

(5.3) (L, uy = | Va3, - / .

We would like to mention the following problems for the Schrédinger operator:

(1) Spectral properties of L.

(2) Positivity of solutions.

(3) Unique continuation property.
Problem 1 has been studied in great detail from the point of view of imbedding
theorems since the work of Friedrichs (see [18], [20], [9], [11], [14]). It follows from
(5.3) and our Theorem 2.1 that if L>0, then

(5.4) Li(I17)*(z) <c-L1y(z) <00  ae.

Moreover, there exists a constant ¢, >0 such that if (5.4) holds for ¢<¢,, then
the Schrodinger operator is positive. A sufficient condition for L>0 is given by

1 2 Y2 1
(55) {@ /Q (1) de} <clQIVn

for some p>1 and all cubes Q, if c<c,. As was mentioned above, (5.5) is a refined
version of the Feffermann—Phong condition applicable to measures 7 not necessarily
absolutely continuous with respect to the Lebesgue measure. Many other applica-
tions to distribution of eigenvalues, semiboundedness, discreteness and finiteness of
the negative part of spectra, etc., can be found in the cited literature.
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The second problem has attracted attention of specialists in partial differential
equations as well as in stochastic processes. A necessary and sufficient condition
for existence of positive solutions to the Schrédinger equation (5.1) for positive
potentials v was given by R. Khas’minsky [15] in terms of the Brownian motion (see
also [7] and the papers cited there). It was shown later that Problem 2 reduces to
Problem 1 under minor restrictions on the potential 7, not necessarily positive. (See
Agmon [4] where the case of general second order elliptic operators on Riemannian
manifolds is considered; 7y is assumed to be in Li,°°, p>n.)

We note that a standard substitute u=e" yields that Problem 2 is equivalent
to the existence of solutions of the n-dimensional Riccati’s equation

(5.6) ~Av=|Vv|*+7.

As was pointed out by K. Hansson (see Proposition 5.2 below), one can obtain
directly a criterion for existence of solutions of (5.6) in the following form. There
exists a constant Cp, >0 such that, if

(5.7) 7(E) < C-cap(E, h3)

for C<C,, and all compact sets E, then (5.6) has a solution (in a weak sense) in R™.
Conversely, if a solution exists, then (5.7) is valid.

Problem 3, first considered for the Schrédinger equation by T. Carleman (see
[6], [13], [25)), is related to the inequality

(5-8) el (o) < el Aull (o)

where p is an arbitrary non-negative weight. It is easy to see that (5.8) is equivalent
to (5.2) with dy=pdz, for any weight ¢. Hence again the solution can be given in
terms of condition (5.7).

Next, we obtain coercive estimates for solutions of the equation

(5.9) —Au=v,

where v is a measure from M(hl—h;'), 1<p<oo. (Similar results are also valid for
the equation —Au+u=" if we replace h}, by H} and use the corresponding Bessel
capacity.) The proof is again based on Theorem 2.1 and Lemma 2.3.

Proposition 5.1. Let yeM™* and let u be a solution of (5.9) such that
(5.10) / |u|dz=o(r"t!) asT— 0.
r<|z|<2r

Then the following properties are equivalent
(a) yeM(hl—ho1).
(b) Vue M (h}— Ly)NM (hyy— Ly).
(c) D'ueM(hy—hy') for alll, |l|=2.
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Moreover, the following estimates hold

l; “DIU“M(h;_,h;l) SCl(lW“”M(h;—»LP)+”VUI|M(h;,—»Lp,)
=2

(5.11) <ol Aullpreny —nyry

<es Y I Dvull pg iy —ny -
=

Proof. Suppose y€ M (hj—h;*). Then by Theorem 2.1

(5.12) /E (Liy)Pda < c-cap(E, hY), /E (Iiy)?' de < c-cap(E, hL).

Let neC*, n(z)=1 for |z|<1 and n(z)=0 for |z|>2: Put n.(z)=n(z/r).
From (5.9) it follows

—A(npu) =n.7—-2Vn,.Vu—uln,,

which yields
nru=I2(n-y—2Vn,Vu—uln,).

After integrating by parts this is rewritten as
neu=Io(ny)+Io(ulAn,)—2div I (uVn,).

By differentiating we obtain that on the ball |z|<r/2 there holds the estimate

Vul <e(n) (mwn—l [ i)

<ly|<2r

where the constant ¢(n) depends only on n. By using (5.10) and taking the limit
as r—o00 we obtain the estimate

|Vu| <e(n)lry.
Now (5.12) implies
(5.13) /E |VulPdz < c-cap(E, hzl,), /}; |Vul? dz < c-cap(F, h},,).

We have proved that Vu€M (hy— Lp)NM (hl,— Ly). Thus, (a) = (b).
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Now suppose Vue M (h},—>Lp)ﬂM (h;,—>Lp/). Then by a theorem of Maz’ya
and Shaposhnikova ([22], Section 1.5), D'ue M(hy—h;?') for all |I|=2 and

”DZU“M(h;_,h;l) < C(”VUHM(h;,—»L,,) + “VU“M(h;,—»L,,,)),

from which we conclude that (b) = (c).

The implication (c) = (a) is trivial, because if D'u€ M (h}—h!), then —Au=
y€M(hj—h;'). Obviously, estimate (5.11) follows from the above argument. The
proof of Proposition 5.1 is complete.

Now let us consider two non-linear problems

(5.14) —Au=ul+Nly on Q, u>0;
(5.15) —Au=0a|Vu|?+y on Q;
(5.16) u=0 on 09,

where (2 is a bounded open subset of R™ with smooth boundary and + is a positive
measure with compact support on 2. Moreover, 1<g<oo, A and « are positive
constants.

The semi-linear problem (5.14), (5.16) was treated by Baras and Pierre [5]. A
necessary and sufficient condition for existence of solutions (in a weak sense) was
given in terms of a certain non-linear functional. Later Adams and Pierre [3] showed
that (5.14) has a solution, for sufficiently small A>0, if and only if, for all compact
sets EC(Q,

(5.17) v(E) < c-cap(E, h2),

where p=¢’. The proof is based on capacitary estimates and certain weighted L,-
estimates, as in our Lemma, 2.3.

The generalized Riccati’s equation (5.15) was considered by K. Hansson. The
proof of the following result is to appear.

Proposition 5.2. (K. Hansson) If the problem (5.15)-(5.16) has a solution
(in a weak sense), then for all compact sets ECS
(5.18) v(e) < c-cap(E, k).
Conversely, (5.18) implies that (5.15)—~(5.16) has a solution for sufficiently small
a>0.

Hansson’s proof of the second assertion is based on our Theorem 2.1 and an
iteration procedure. Clearly, both (5.17) and (5.18) can be given in a different form
by using results of the present paper.
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