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Capacitary inequalities for fractional 
integrals, with applications to partial 

differential equations and Sobolev multipliersVladimir G. Maz’ya and Igor E. Verbitsky
Abstract. Some new characterizations of the class of positive measures 7 on Rn such that HpCLp(7) are given, where Hlp (l<p<∞, 0<Z<oo) is the space of Bessel potentials. This imbed­ding, as well as the corresponding trace inequality

1. IntroductionLet M+=M+(Rn) be the class of positive Borel measures on Rn, finite on compact sets. For Z∈R and l≤p<∞, we define the space of Bessel potentials 
⅛=Hlp(Rn) as the completion of all functions ueT>=Cqo(Rn) with respect to the norm ∣∣ιz∣∣= ∣∣(1 — ∆)z∕2ιz∣∣zzjp. For Z>0, uεHlp if and only if u=Gι*f, where f^Lp and Gι is the Bessel kernel defined by G7(∙) = (l÷∣ ∙ ∣2)~z∕2 (see [20]). (Note that

mz^ι∣Lp(7) <c im∣lp>for Bessel potentials Jj = (l-Δ)-i∕2, is shown to be equivalent to one of the following conditions.(a) Λ(Λ7)p≤GJz7 a.e.(b) Mt(Mιy)P, <CMιy a.e.(c) For all compact subsets E of Rn

f (Jvy)p'dx < C ca,p(E, Hlp), 
J Ewhere l∕p+l∕p, = 1, Mi is the fractional maximal operator, and cap( ∙, Hlp) is the Bessel capacity. In particular, it is shown that the trace inequality for a positive measure 7 holds if and only if it holds for the measure (Jz7)p dx. Similar results are proved for the Riesz potentials Zz7=∣aψ-n*7.These results are used to get a complete characterization of the positive measures on Rn giving rise to bounded pointwise multipliers Some applications to elliptic partialdifferential equations are considered, including coercive estimates for solutions of the Poisson equation, and existence of positive solutions for certain linear and semi-linear equations.
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Gι>Q and G∕∈Lι(Rn).) The operator Jιf=Gι*f defined for functions f^Lp or measures is called the Bessel potential of order Z(Z>O). The Bessel capacity cap7Γ=cap(E,,7ifp) of a compact set EcRn is defined by(1.1) capE = inf{||n||£p : J],u> 1 on E; u≥0, ueLp}.For 7∈M+ and EcRn, we denote by 7# the restriction of 7 to E: drγE=XE d^, where xe is the characteristic function of E.In this paper we consider the trace inequality for Bessel potentials(i∙2) ∣∣J<u∣∣l p(7) ≤ const ∣∣u∣∣lp,where the Lp-norm of u on the right hand side is taken with respect to Lebesgue measure. It is well known that inequalities of this type are closely connected with spectral properties of the Schrôdinger operator and lead to deep applications in par­tial differential equations, theory of Sobolev spaces, complex analysis, etc. (See [20], [22], [3], and Section 5 of this paper.)The following result is due to Maz’ya [18], [19], Adams [1], and Dahlberg [8] (see also [20], [2], [10] ).

Theorem 1.1. Let l<p<oo, 0<Z<∞, and 7∈Λ∕+. Then (1.2) holds if and 
only if for <dl compact sets E in Rn,(1∙3) 7(E)≤C∙cap(E,fφ.
{Note that we may restrict ourselves to sets E such that diamE,≤l in (1.3). 
See [22].)It is easily seen that (1.3) is equivalent to a “dual” condition [1](1-4) ∣μ∏E∣∣ζ, ≤Cι(E),

where l∕p+l∕p, = l. Kerman and Sawyer [14] showed that we may restrict ourselves to arbitrary cubes E=Q (diamQ≤l) in (1.4). One can also replace Jι by the corresponding fractional maximal function(1.5) M∏(x) = sup{∣Q∣1-^n7(Q) : x ∈ Q, diam Q ≤ 1}.Thus, the non-capacitary condition (1.4) can be restated as [14]
(1.6) {M∩o)p, dx<cy{Qf diamQ≤ 1.
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(See also [26] for a simplified proof of this result.) We observe that conditions (1.3), (1.4), and (1.6) are difficult to verify and sometimes not sufficient for applications. For instance, it is not straightforward that, if 71 and 72∈M+, and J∏2≤Λ71 a.e., then sup 71 (E) ∕ cap E < ∞ implies sup 72 (E) ∕ cap E < ∞. In certain problems dis­cussed below we need characterizations of the trace inequality in terms of potentials J∕7, rather than the measure 7 itself.Our main result on the trace inequality (see Section 2) is as follows.

Theorem 1.2. Let 'γeM+, l<p<oo, and 0<Z<∞. Then (1.2) holds if and 
only if any one of the following conditions is valid.(a) For all ueLp

(1.7) j (Jιu)p(Jπ)p' dx ≤ c∣∣u∣∣^p.
(b) For all compact sets E(1.8) f (J∏)p'dx<ccwp(E,Hlp).

JE(c) For all compact sets E(1.9) [(J∏E)p'dx ≤ c∙cap(tf, Hlp).

(d) The potential J∩(x) is finite a.e. and(l.lθ) Jι(J∏y)p ≤cJrf a.e.

Note that in the simpler case l>n∕p it follows that (1.2) is equivalent tosup{7(Q) : diam Q ≤ 1} < ∞.Analogous results are also given for Riesz potentials, Iιu=(-∆)~z∕2n, 0<l<n∕p (Theorem 4).In Section 2 we discuss some corollaries and examples. In particular, we show that the trace inequality holds if there exists t>l such that, for all cubes Q, (diamQ≤l)
(1.11) 
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It should be noted that (1.11) is a strengthened version of the condition of C. Fef- ferman and D. Phong [9] f 1 f γ∕ptll∙11'> scwr""'
where dy=ρ(x) dx. We show that (1.11) is less restrictive than (1.11') and, ob­viously, applies to measures which are not necessarily absolutely continuous with respect to the Lebesque measure. An example demonstrating that one cannot set 
t=l in (1.11) so that the trace inequality remains true is given.We also prove that many operators of Harmonic Analysis (maximal functions, Hilbert transforms, g-functions etc.) are bounded in the space of measurable func­tions f such that

[ ∖f∖qdx <c∙cap(E,Hlp)
JEfor all compact set E. Here l<p, g<∞, 0<Z<∞.Section 4 is devoted to the multiplier problem for a pair of potential spaces. We denote M(¾m →Hlp) = {g-.ue H™^9-uξ Hlp}.For positive m and ∕, multipliers have been characterized by Maz’ya and Sha­poshnikova [22]. In the case m√<0, only some sufficient conditions were known. We characterize positive measures and show that, at least in thiscase, the sufficient conditions of Maz’ya and Shaposhnikova are also necessary.

Theorem 1.3. Let yeM+, l<p<∞, ∕>0 and m>0. ThenyeM(H^l→H~l) 
if and only if the following two conditions hold:

(1.12) [ (J∏)pdx ≤ c∙cap(^, JÇ1),
Je

(1.13) (Jm'7)p'dx < c-cap(E, Hlpl),

for all compact sets EcRn.Note that, in contrast to the assumption (b) of Theorem 1.2, the exponents on the left hand sides of (1.12) and (1.13) are the same as in the corresponding capac­ities on the right hand sides. In the simpler case p=2, l=m this pair of conditions is equivalent to sup7(E,)∕capE,<∞ by Theorem 1.2. (Cf. [22, Theorem 1.5].)
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In Section 5 we consider applications to some linear and non-linear problems for elliptic partial differential equations. We show, in particular, that solutions of the Poisson equation —∆tz=7, 7≥O and 7∈M(Hj, →JLp^1) satisfy the coercivity property: DluEM(Hp→Hp1) for all Z, ∣Z∣=2.
Acknowledgements. This work was done while the second author was visit­ing Linköping University and the Courant Institute of Mathematical Sciences. He wishes to thank Lars Inge Hedberg and Louis Nirenberg for their encouragement and support.Both authors are grateful to Kurt Hansson for valuable discussions and his kind permission to present here his new results on the n-dimensional Riccati’s equation.

2. Trace inequality for R,iesz and Bessel potentialsFor Z>0 and l<p<∞, we denote by hlp the completion of the space T>=Cqo with respect to the norm ∣∣u∣∣^ = ∣∣(-∆)z∕2w∣∣∕zp. If 0<l<n∕p and l<p<∞, then 
uEhlp if and only if u=Iιv^ where vζLp, and the Riesz potential Iι is defined by , ∣z-n*^∙ In the same manner we define Riesz potentials of measures y∈M+r
Note that I∕7 is finite a.e. (locally integrable) if and only if J∣jz∣>1 ∖y∖l nd'y<(×) [17]. To any measurable set EcRn. we associate its Riesz capacity by [20](2.1) cap(E, hlp) =inf{||u||£p : Iιu ≥ 1 on E; u ≥ 0, u ∈ Lp}.The (homogeneous) fractional maximal operator where 0<Z<n, is defined by(2.2) M∏(x)=sup∣∣^f^ιx∈Q∣.
It is easily seen that M∩{x)<cl∩{x) for all r∈Rn.Now we are in a position to state our main result for Riesz potentials.

Theorem 2.1. Let ^eM+ , l<p<n∕p. The following conditions are equiva­
lent. (a) The trace inequality(2.3) I∣Λ∕IIlp(7) ≤c∣I∕I∣l1 
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holds for all fζLp.(b) For all compact sets E(2∙4) 7(E)≤c∙cap(E,⅛).(c) For all compact sets E

(2∙5) (I∏E)p,^≤c∙7(E).
(d) For all compact sets E

(2∙β) (⅛)p dx ≤ c∙cap(E, hlp).

(e) For all compact sets E

(2.7) p dx< c-cap(Ey hlp).

(f) The potential Ij∕γ is finite a.e. and(2.8) Iι(Iι∕7)p <clιy a.e.

Note that the equivalence of (a), (b) and (c) is known (see [20]). We can restrict ourselves to cubes E=Q in (2.5) due to a result of Kerman and Sawyer [14]. It will be shown below that, for conditions (2.6) and (2.7), this is not true. The potential 
Iι∕y can be replaced by M∩ in (2.5)-(2.8).

Proof It suffices to prove that (c) ≠> (f) => (e) => (d) ≠> (b).
Step 1. (c) ≠> (f). Suppose (2.5) holds. Let us show first that ⅞7∈Lp8c, and, in particular, Ij/y<∞ a.e. Let B=Br(x) be the n-dimensional ball with radius r>0, centered at z∈Rn. Then
(2∙9)
For x∈B, we have
Hence, by (2.9)(2.10)

I (Iγ∣b')p'dy<c^l-(B). 
B

¼5W≥c7(jB)(diamB)z-n.
7(5r(aj))≤c∙rn-zp.
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We set 7=71+72, where 71=723 and 72=7(2B)<≈∙ Here 2B={t∙.∣x-1∣<2r}. Then(2∙11) ! (∕∏)p'⅜≤c[ [ (W'dy+ f (I∏2γ>'dy

J B B J BBy (2.9)(2.12) [ {Inιγ'dy<c^2B)<∞.
JBTo estimate the second integral on the right hand side of (2.11), note that, for all 

yeBr(x),(2∙13)
I∏2(y)= [ ∖y-t∖l~nd^t)<2n~l { ∖χ-t∖l~nd'1(t)<

J∖x-t∖>t2r J∖x-t∖>r7(-⅛))ρ∏-z+ι dρ.

It follows from (2.10) that Z∞
ρ~l⅛~r>~1dρ<∞.

Thus, we have proved that Z∕7∈Zyc. Now let us show that (2.9) implies (2.8). Note that
IlW(x)<c ∕ (W⅜≡r∙Jo J Br(x) rTo estimate the right hand side of the preceding inequality, we use again the de­composition (2.11). By (2.12)

∕*∞ ∕* , dr Λ∞ dr(2∙14) ∕ (Wdy^<c ^2Br(x'))^ÏTÏ<cIl^x).
Jo jβr(x) r Jo rThe estimate of the second term is more delicate. By (2.13)

[ (I∩2)p'dy<crn∖ f 7(Bg(^)) ndJt+1 ■

J Br(x) \_J r Q _For fixed r∈Rn, let Γ f°o do T,'
^=[jr ∙
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We claim that

dr Γ
∙n~l+1 ≤Jo

To prove this, we note that
(2∙15) l√0 dρ 

g∏-Z÷l -p
<c1[Iιy(x)]p'.

Similarly, by (2.10)
(2.16) r>0 ρ-z(p-l)-l *1P

Clearly, for any fixed Λ>0,
-∕a

Jo
I rl^1 p^ 1dr∙swρrlpφ(r).
R r>0oApplying (2.15) together with (2.16), we get

dr <cι[Iιy(x')]p Rl-∖-c2Rl^ p^.

Choosing R=[Iι'y(x)]1^l^p 1^, we have
rl 1φ{r) dr <C'I∩{x).

We have proved that W⅛⅛ <clι^f{x).

Thus, for all r∈Rn,
Iι(Iιl')p' (x)<cl∏(x).The proof of Step 1 is complete.

Step 2. (f) => (e). Suppose (2.8) holds and ⅛7<00 a.e. If, for some ⅝∈Rn, Λ7(^o)<∞5 then
Ml(i∏y>∖xo') < cil(iny∖x0) ≤ cλ7(^0) < ∞, 
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where Mi is the fractional maximal operator defined by (2.2). Hence, for any cube Q, rro∈Q,

[ (Iι'^i)p' dx < c∣Q11 ~lfnI∩(x0) < ∞. 
JqThis implies that I∕7∈Ljβc. By (2.8)[7z(7∏)p,]p, ≤ c(¼)p, < ∞ a.e.Setting d7=(Λ7)p dx and integrating the preceding inequality over an arbitrary cube Q, we get

[ (Ir∂p'dx<cy(Q) <∞.
JqThis obviously implies

[ {I∏q)p'dx<cy(Q),
Jqand, by a result of Kerman and Sawyer [14],7(Σ^) ≤c∙cap,Efor all compact sets E. The proof of Step 2 is complete.

Step 3. (e) => (d). Suppose that (2.7) holds. Let us prove first that f (IiJe)p dx< ∞ for any compact set E. Assuming EcB={χ-.∖x∖<R}, we have
[(Ii7e)p'dx ≤c( f (Iιη)p,dx+ [ (¼B)p,cfoΛ
J U2B √(2B)c )

( t C dr 1< c< cap2B + [7(B)]p ∕ —-7—><∞.^^ I ¼∣≥2H |z|(”-/)p JTo show that (2.7) implies (2.6), we need some facts from the non-linear potential theory. The non-linear potential of a measure 7∈M+ introduced by Khavin and Maz’ya in [16] is defined by
vpn=ιl(i∏r'-ι.

Lemma 2.2. ([16], [22]) For any compact set EcRrι. there exists a measure 
v=ve such that(i) suppz∕C2Γ,(ii) z√(B)=cap E,(iii) ∣∣M∣^ ,=capS,P(iv) Vpιv{x)>l quasi-everywhere on Rn,(v) Vpιv(x)<K=K(pfl,n) onWl,(vi) c⅛p{Vpιυ>t}<At~σ cap 7? for all t>0, where σ=min(l,p-1); cap( ∙ ) = cap( ∙ ,hlp), and the constant A is independent of E.
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The measure ve associated with E is called the capacitary (equilibrium) mea­sure of E.

Remark 2.1. In what follows one can replace Vpιfy by the potential
(2∙17) 7(5r(aQ) 

pn-lp

p,-l dr
r

<c∙Vp∩{x).0As was shown by Hedberg and Wolff (see [2]), Wpι is a good substitute for Vpι in many problems. In particular, the estimate (vi) holds for Wpι with σ=p-1.We will need the following lemma.
Lemma 2.3. Suppose 0<l1m<n. Suppose y and vtM+ . Then(2.18) Iι(Lmvd'y) ≤ c[Iι(Zm7dυ) +Imv∙Iι'y∖.

Proof of Lemma 2.3. By Fubini’s theorem
Ilami'd'rt(x) = j' ∕ ^n-m=∣ dvV) I K(x,y,t)d-γ(y),

where K{x1y1t) = ∖x-y∖l~n∖y-t∖m~n. It is easily seen that
f K(x,y,t)d'y(y)< [ K(x,y,t) d'y(y) + [ K(x,y,t) d<y(y)

J J∖y-t∖<∖t-x∖∕2 J∖y-t∖>∖t-x∖∕2

yn-l <2n~m

Hence
h(Imvd^ ≤ 2"-7i(∕m7<∕p)+2n-ro∕∏∙∕mp.The proof of Lemma 2.3 is complete.Now we are in a position to complete the proof of Step 3. Let E be a compact set and let i∕=ve be its associated capacitary measure. Theny (Ii7e)p'dx < f [Iι(Iιφd'γE')]p'dx,

where φ=(Iιv)p ~1. Applying Lemma 2.3 with l=m,y-^fE and dv=φdx, we get (2.19) [a∏Ey'dx<c∖ [(Ilφ)p,(IlyE)p'dx+ [[Il(φI∏E)]p'dx} =c(Ai+A2).
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To estimate Aι, we choose an arbitrary r>l and apply Holder’s inequalityA1 ≤ ∣∣Λ7E∣lζzzr' {I(I∏eY'(Iιφ)r'p'dxγ .

Recall that by assertion (v) of Lemma 2.2 one has Iιφ(x)<K=K(n, l,p) for all 
xeRn. Then

I (InE)p∖hφ)r'p'dx (jny'dx ∖tr'p,-1dt.

By (2.7) and assertion (vi) of Lemma 2.2
Iiφ>t

{Iι'y)p'dx < c∙cap{7)∕ > t} c rι — cap E, 
tσwhere σ-min(l,p-1). Hence∕(Λ7s)p, (Iιφ)rpdx < c∙cap E ∣ tr'p'~σ~1dt.

Choosing r,>σp,, we obtain(2.20) A1 ≤c∣∣Z∏β∣∣^z∕'(cap.E')1''r'.
PLet us get a similar estimate for the term A%. By dualitysup ∕ Iι{φl∩β)gdx r∣k.≤ι JA⅛p'= ι

IIAp≤ι
sup 

l∣p∣kp≤ιSuppose first that p>2. We set s=p∕(p-2)>l. Then l∕p÷l∕p+l∕s=l. Ap­plying Holder’s inequality for the three functions, φ, φγ = (Iι7EYp~2^p~v> and 
φ2 = (I∏Ey^p~l^Iι9, we get
(2∙21) A∖,p' ≤∣Ml>7<'∕∕ supI∣9∣∣lp≤i ∖Iιg∖p{InYl dx

By Lemma 2.1 ^ll⅛ = ∣∣A<'zp = (capS)1∕P.From (2.7) and the trace inequality for the measure (7∏)p dx it follows that
supI∣0∣∣lp≤i ∣y ∖Iιg∖p{In)p'dχ

1/p
≤ c< ∞.
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Thus(2∙22) A2 ≤c(cap^)^∕^∣∣Zz^∣∣⅛7s.

PSince p≥2, we can choose r'=p∕p,>σ∕p, in (2.20). Then, combining (2.20) and (2.22), we have
A1+A2 ≤c(capjE7)^∕P∣∣zz^∣∣P,α-^∕p).

PWe have shown above that ∣∣7∏e∣∣lp,<∞ for all compact sets E. Thus (2.19), together with the preceding estimate, gives
∣∣Λ7E∣∣Lp, ≤c∙capE.In the case 1<∕><2 we estimate the right hand side of (2.21) in a different way. We set s-p∕(2-p) with l∕p' + l∕pf÷1∕s=l. Using again Holder’s inequality for the three functions,

Ψι=φp~1, φ2 = {φ∖Iιg∖^p and φ3 = ∖Iig∖p~1Ily,we obtain(2∙23)
Al/p ≤ ll⅛7ll⅛p suP ( ∕ l∙Mp(Λ7)p,⅛) × sup ( f ∣⅛∣pφpdA

l∣9∣kp≤ι U J IM∣lp≤iU JAs above ∣∣φ∣∣Lp = (cap^)1∕p, and, by (2.7) and the trace inequality,
sup 

l∣0∣lLp ≤1

{∕ ∖ιlg∖p(inγ'dx ≤ c < ∞.

Let us show that 
(2.24) sup l/s

> ≤ C

as well. Since v is the capacitary measure, its non-linear potential is bounded: ½,z^(rr)≤K for all z∈Rn. Then, for any compact set eCRn, we have
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By Steps 1 and 2 of the proof applied to the measure p, the preceding estimate implies y*(Jιv)p dx ≤ c∙cap e

for all compact sets e. Hence, by the trace inequality for the measure (Jιi∕)p dx, we get (2.24). We have proved that, for l<p<2,
Ä2 ≤c∣∣φ∣∣pp = c∙cap E.Together with (2.20) it gives(2.25) IIW∣ζ, ≤c{capE+||/m||£>(capE)1∕r'}.We have already shown that ∣∣I∏e∣∣lp, <∞. Moreover, we may assume that ∣∣Λ7je∣∣l ,≥capFλ (Otherwise, the desired estimate (2.8) is obviously true.) Then it follows from (2.25) that∣∣∕∏β∣∣ζ,≤c(capE)1∕p'∣⅛∣∣ζ∕∖Since r>l, we have ∣∣Λ7B∣∣L , ≤c∙cap^∙

PThe proof of Step 3 is complete.
Step 4. (d) ≠> (b). This is easy. For an arbitrary EcRn let Iιu>l on E; u≥0, 
uELp. If (2.6) is valid, then by Holder’s inequality7(-E)≤ j Iιud-y = ∕ uI^Edx< ∣Hlp∣∣Z∕7b∣∣lj√ ≤c∣∣w∣∣Lp(capE)1∕p'.Now it follows from the definition of capacity (see (2.1)) that7(B) ≤c∙capE,,which concludes the proof of Theorem 2.1.

Remark 2.2. Let l<p<∞, 0<Z<n∕p, and ^=l÷l∕p,. Then assertion (e) of Theorem 2.1 can be rewritten as(2.26) Vqi∕y(x) ≤ cl∩{x) a.e. where Vqι-Iι{I∩)q ~1 is the non-linear potential of 7.We observe that one cannot replace Vqι in (2.26) by the corresponding Hedberg- Wolff potential Wqι (see (2.17)). Note that Wq∩{x)<cVqι'y{x), but the converse is true only for l>(2-q)∕n [16]. Unfortunately, this is not the case when g=l÷l∕p' and Q<l<n∕p.In fact, the inequality Wqι(x)<clι'γ(x) follows from the estimate 
y(J3r(x)) <rn~lp, (x∈Rn, x>0),which is weaker than the trace inequality.
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where the suprema are taken over all compact sets EcRn.

Corollary 2.4.
Iιv a.e. Then

Suppose l<p<∞ andθ<l<u∕p. Suppose'γ,vζM+ andlιy<

?(£) v(E}sup----- — ≤ c sup-----—cap E cap E
Corollary 2.4 follows from assertion (e) of Theorem 2.1.The analogue of Theorem 2.1 for Bessel potentials (see Theorem 1.2 in the Introduction) can be proved in a similar fashion, and we do not go into details here. Note only that condition (1.10) can be replaced by

Jι{J∏)p' ≤ cmax(l, J∏), since Jιl=f Gι(x)dx. Hence, we can restrict ourselves to the set {x:Jr∏(x)≤l} in (1.10), as well as we can consider only the sets E of diamF∕≤l in conditions(1.3),  (1.8) and (1.9) (see [22]).
3. Some corollaries and examplesLet us show that we can put Mι∕y in place of Iιy in assertions (c)-(f) of The­orem 2.1. For (c) and (d) it is easy, since by a result of Muckenhoupt and Whee- den [23](3.1) y (¼)p'<fa <c∣ (Mn)p'dxwith the constant c independent of 7; the reverse inequality is trivial.We will need the following lemma, which shows that many operators of classical analysis are bounded in the space of functions f such that(3.2) I ∖f∖qdx <c∙cap E

Jefor all compact sets E, (1<<∕<∞), if they are bounded in Lq-spaces with Mucken­houpt weights.Recall that a weighted analogue of (3.1), namely(3.3) ∕ (Jι7)qwdx<c y(Mιτ)qw dx,holds for l<q<co and w∈√4oo, where Aoo is the union of the Muckenhoupt classes 
Ap, l≤p<∞, [23]. In particular, (3.3) is true for all √4χ-weights w such that(3.4) Mw(x) <A∙w(x) a.e.,where Mw=Mιw for Z=0 is the Hardy-Littlewood maximal function. Moreover, the constant c in (3.3) depends only on Z,Q,n and the constant A from (3.4).
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Lemma 3.1. Let 0<q<∞, l<p<∞, and 0<l<n∕p. Suppose that a function 

fζLi°c satisfies (3.2) with cap( ∙ )=cap( ∙, hlp). Suppose that, for all weights weA±,

(3∙5) qwdx<K I ∖f∖qwdxRn
with a constant K depending only on n,q, and the constant A in the Muckenhoupt 
condition (3.4). Then

(3.θ) ( ∣p∣9cfe≤
E

C∙capE

for all compact sets E, with a constant C depending only on l,p,n and K.For g=Mf and q=p, Lemma 3.1 is due to I. Verbitsky. (See [22], where it was used to derive an analogue of the Sobolev inequality for the spaces of functions defined by (3.2).) The idea of the proof is the same in the general case and we give here only a sketch of the proof.
Proof of Lemma 3.1. Suppose v=ve is the capacitary measure of FcRn and 

φ=Vplv is its non-linear potential. Then, by Lemma 2.2,(i) φ(x)>A quasi-everywhere on E∖(ii) φ{x)<B=B{n,p, I) for all τ∈Rnj(iii) cap{φ>t}<ct~σ capE, (σ=min(l,p-1), t>0), with the constant c inde­pendent of E. We need one more property of φ [22]:(iv) Mφδ{x)<cφδ{x) a.e., with a constant c independent of E, where 0<6< 
n∕(n-1) for l<p<2-l∕n, and 0<⅛<(p-l)n∕(n-⅛) for 2-l∕n<p<oo. (Note that the bounds on δ are exact. If we use the Hedberg-Wolff potential Wpιυ instead of 
Vpιu, then one can show that (iv) holds for all 0<⅛<(p-l)n∕(n-lp).)Now, it follows from (iv) that φδeA±. Hence by (3.5)
Applying this together with (i) and (ii), we get

∖g∖qφδdx<c

By (3.2) and (iii)
c rι

<-^capE.
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Hence

f ∖g∖qdx ≤ c∙cap E∙ f tδ σ 1dt. 
Je JqClearly, for all Q<l<n∕p1 we can choose δ>σ=min(l,p-1), so that 0<Z)< 

n∕(n-l) if l<p≤2-∕∕n, and 0<δ<(p-l)n∕(n-lp) if 2—l∕n<p<∞. Then
rB
I tδ~σ-1dt0which concludes the proof of Lemma 3.1.We observe that Lemma 3.1 is also valid for Bessel capacities cap(∙,Hp), 0<Z<∞ (see [22]).In Section 5 we will need the boundedness of the Riesz transforms Rjf= 

f*Xj∕∖x∖n+1 (j = l, 2,..., n) in the spaces of functions defined by the capacitary con­dition (3.2).
Corollary 3.2. Let l<p,q<∞ and 0<l<n∕p. Then

sup Je \Rjf\9dx cap E ≤ csup fE ∖f∖9dx cap E (j = l,2,...,n),
where the suprema are taken over all compact sets in Rn and cap( ∙ )=cap( ∙, hlp). 

Proposition 3.3. Suppose l<p<∞, 0<∕<n∕p, and yζM+. Then the fol­
lowing three conditions are equivalent.(a) For all sets E(3.7) ∕* (Jι^)p dx<c-capE.

Je

(b) For all sets E

(3∙8) dx < c-apE.I (Mrfy>'

E(c) The maximal function Mr< is finite a. e. and(3.9) Mι(Mιyy>' <c∙Mly.
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Proof. Applying Lemma 3.1 with g=I∩, f=Mι∕y, and q=p,, we see that (a) is equivalent to (b).Let us show that (a) implies (c). Note that the latter can be restated as(3.10) [ (Mly)p'dy<c-∖Q∖1~l∕nMly(x)

JQfor all xEQ. As in the proof of Theorem 2.1, we set 7=71 ÷72 (71=72Q and 72=7(2Q)c) and have
I (Mriγ'dy<
QBy Theorem 2.1, (a) implies that, for xeQ,(3.11) [ {M∩γy'dy<c [ (W'dy<c-^2Q)<c-∖Q∖1-^nMn(x).

jq jqTo estimate the second integral, note that
M∏2(y) = sup2∕∈Q' 7(Q'∩(2Q)c)∣Q,∣i-Z∕n

If y½Q,∩Q and Q'∩(2Q)c≠0, then clearly Qc5Q,. Thus, for yζQ,

Mιyi(y)< SUp ,Jz⅛∕^≤C∙SUp ∣Jzn¾n∙Q':QC5Q' ∣<√ ∣1 l/n Q'Z>Q ∣<√T 'Then
∕ (Ml,y2)p' dy<c∖Q∖ sup [7(Q,)∕∣QT-z7p'
Q Q,DQ≤ c∣Q∣1-⅛7(x) sup \Q'\l/n[^Q')/\Q'\l-l/n]p'-r.

Q,It follows from (a) that y(Q)<c∖Q∖1~lp^n, so that the last factor on the right hand side is finite. Combining this with (3.11) we get (3.10).It remains to prove that (c) => (b). It follows from (3.9) that
[ [Mι(Mιjy,]p'dx<c [ (Mn)p'dx

JQ JQ
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for all cubes Q. Letting d∕γ=(Mιy)p dx we have

I (Mlηy, 
Q

dx<cy(Q).Applying again the result of Kerman and Sawyer we get7(S)= [
Je

(M∏)p dx ≤ c∙cap E.The proof of Proposition 3.3 is complete.Let us consider some simpler conditions sufficient for the trace inequality to hold. It was shown by Fefferman and Phong [9] that (2.3) is true for the measure 
d^(x)=g{x) dx (<∕≥0) if there exists t>l such that(3.12) 2-^yw⅛<c.∣Q∣-⅛t∕n.
We observe (see [14]) that this result is a consequence of two known estimates: Sawyer’s inequality for the fractional maximal function [25](3.13) ∣∣Wlkp(γ) ≤c∣l∕l∣Lp[sup∣Qlwn-17(Q)]17p, and the Adams-Hedberg inequality [2], [12](3.14) ∖Ilf∖ <c(Mltf)Ut(Mf)1-1't where t>l and Q<l<n∕t. Actually, it follows from (3.12) and (3.13) that(3∙15) \\Mltf\\Lp{gtdx}<c\\f\\Lp.Hence by (3.14) and the boundedness of the Hardy-Littlewood maximal oper­ator, we have the Fefferman-Phong inequality

∕ jn gtdx γ∕tp(3-16) μ√⅛,⅛⅛)<c∣∣∕∣∣1,(l^,.wn) .
Combining (3.16) with our Proposition 3.3, we obtain the following corollary.

Corollary 3.4. Let^ζM∖l<p<(×),andQ<l<n∣p. Then the trace inequal­
ity (2.3) holds if there exists t>l such that(3.17) [ (Mι^f)p'tdx <c∖Q∖1~lpt^n

Jq

for all cubes Q.It is of interest to note that condition (3.17) is stronger than the original Fefferman-Phong condition, and applies to measures not necessarily absolutely con­tinuous with respect to the Lebesgue measure.
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Proposition 3.5. Let d^=gdx, g>Q. Under the assumptions of Corollary 3A, (3.12) implies (3.17).
Proof. Suppose (3.12) holds. Then, by Holder’s inequality,(3.18) 7(Q)<c∙∣Q∣1-zp∕"for all cubes Q. Using the preceding inequality, it is easy to see that (3.17) is equivalent to(3.17') [ (M∏<3)⅛≤c∙∣Q∣1→≠l .

Jq(See analogous statements in the proof of Proposition 3.3 or Theorem 2.1 based on the decomposition d'y=χ2Q d7÷(l-^2q) d7.) For xeQ we have
[M∩Q(x)}p't = sup Ix∈⅛, _ f ~\PtI g(y) dy

Q'r∖Q
-it≤sup ∣Q,∣<r∈QL -∣*(p'-i)

Then, by (3.18),
[M7q(x)]p't ≤c sup ∣Qz∣ 1 f g(y)dy

xeQ, _ JQf∩Q

t

= c[M(χQg)]t.

Since the maximal operator M is bounded in Lt(Rn), t>l, we have
∕ (M∏Q)p'tdx<c [M(χQg)]tdx<c ∕ gtdx.
Jq J JqNow it is clear that (3.12) implies (3.17'). The proof of Proposition 3.5 is complete.We observe that, for t=l, Corollary 3.4 is not true. In other words, we cannot restrict ourselves to cubes E=Q in assertions (c) and (d) of Theorem 2.1.

Proposition 3.6. There exists a measure ,y with compact support such that

(3.19) (∕z7)p' dx<c-∖Q∖1~lp∕n 
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for all cubes Q, but the trace inequality (2.3) does not hold.Note that a similar example for assertion (b) of Theorem 2.1 is well known. By a theorem of Frostman, there exists a measure υ with compact support e such that y{Q)<c∖Q∖1~lp^n1 but cap(e, hlp)=0, which contradicts the condition ι×(e)≤ c∙cap(e, hlp). Unfortunately, the energy of the measure v in this example is infinite; ∣∣Λ^,e∣∣¾=∞∙ Hence it does not satisfy condition (3.19).To construct a measure claimed in Proposition 3.6, we setcfy(x) = p(xγβφ(x'} dxr dxnwhere

x = (x',xn), x, = (xi,...,x„_i),
η(xn)=l for ∣xn∣≤1, η(crn)=O for ∣xn∣>l and
(3.20) . ex ∕ l^'l1-n(log(2∕k'∣))→, ∣√∣≤1

φ^} = φfW) = ∖ n , ,. 1I 0, k I > i∙Let l<p<∞, n≥2, and l = (n-V)∕p. We claim that, for l÷l∕p,<β<p the estimate (3.19) is true, but the trace inequality is not valid.For 0<r<l, set Er = {χ-.∖x,∖<r, ∣zn∣≤ 1}. It is known [20] that for Z=(n-l)∕p the capacity of the cylinder Er, cap(Er,hlp) = (fog2∕r)1~p.Then 7(Er) Jiχ>∣≤r∣jT κ 1°g(2∕∣^∣) βdx' ( 2\p_/3 
capEr “ C (log(2∕r))1-^ ~ ∖ r ∕For β<p, (log(2∕r))p~^→∞ as r→0. Thus the trace inequality is not valid.Now suppose l-∖-l∕p,<β<p. (Clearly, such β exists for any l<p<∞.)We show that(3.21) for fy'∣ ≤ 2; for ∣√∣ > 2.It is easily seen that

φ(t,) dt, dtn
-f∣2 + fyn.^∣2)(n-Z)∕2

f°° _______________dtn_______________
J-00 (fy,-t,∣2÷∣χn-tn∣2)(n-zV2

≠t,)dt, -cb ∣χ∕-f∕∣n-Z-l C ∙
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For ∖x,I ≤2, we have

— Bi 4- B⅛ 4- B%.By direct computation we get ( 4 ∖wy∣z-"+1 ( log ]—τ ) ^∣z-"+1 flog ∣⅛) β

I {hl)p,dx
Q

( r ∕ ∆, ∖(i-r<c∣Q∣1H ∕ ∣√∣α-n+1)f>'(iogτ⅛ ) p'dx'+ ∖x'∖^pdx'- l⅛'∣≤2 ∖ ∖x'∖j ⅛l>2

∕ 4
Bz<c∖x'∖l-n+i logΓ7i

Combining these estimates we see that
Λ7(z) ≤c∖x'∖l "+1

l-∕3

If ∣√∣>2, we have
M(*)≤√1 ∖

J-ι -ψ'∣≤ι φ(t,) dt, dtn (∣Z,∣2 + [xn -⅛n∣2)("~
<c∖x∖l~n [ φ(t')dt'.

J∖t'∖<lSince β>l, we have
which gives (3.21) for ∖x,∣ >2.Using (3.21), we see that, for any cube Q
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Recall that Z=(n-l)∕p. Thus pf(n-1 — l)=n-1 and l∕n=l-lp∕n. Since β> l + l∕p, and (n—Γ)pf>n-1, both integrals on the right hand side of the preceding inequality are finite. We obtain that

[ (J∏)p'dx≤c∖Q∖1-Wn
JQwhich concludes the proof of Proposition 3.6.

Remark 3.1. It can be shown that, for the measure
dy = η(xn)φβ{^') dxf dxnconstructed in the proof of Proposition 3.6, the trace inequality holds if and only if 

β≥P∙The estimates of I∩ given by (3.21) are easily seen to be sharp. In fact, on the support of 7, Bq = {{x,xn) : ∖x,∣ ≤ 1, ∖xn∣ ≤ 1}, we have I∩(x)^c∖x'∖l~n^1 (log ∣A∣∙)1 z3.For x^2Bq we clearly have I∩(x)^c∖x∖l~n. Using these estimates and tak­ing into account that Z=(n-l)∕p, one can show that, for β>p, condition (f) of Theorem 2.1 is valid.
4. Positive measures as multipliersRecall that hlp and Hp are the spaces of Riesz and Bessel potentials, respectively. We define the class of multipliers for a pair of potential spaces as, f l∣7'M∣l∕√→⅛ = 7∈T>' : sup -ji-jj—l < ∞ I ueτ> ∣P∣∣hj∙A similar definition is valid for Bessel potentials.A complete characterization of the classes

M(hf→hlp) and(as well as multipliers of some other spaces of differentiable functions) is due to Maz’ya and Shaposhnikova [22], mostly in the case when Z∙m≥0. For Z∙m<0, some sufficient conditions were given.In this section, we characterize positive measures which are multipliers for a pair of potential spaces when Z∙m<0. (Since by duality M(h^→hpl)=M(hlpf →hp,m)1 we can assume m>0 and Z<0.) As in Sections 2 and 3, we give full proofs only for 
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Riesz potentials. The case of Bessel potentials requires minor modifications (mainly in the case when m>n∕p or l>n∕pf∖ but we do not give the details here.Let l<p<∞, 0<m<n∕p, 0<l <n∕p,, and 7∈M+.Then, clearly, 7∈M(h^→hp z) if and only if
(4.1)
(Note that, by duality, hlpf = (hpl)*, where l∕p+l∕p, = 1, 0<l<n∕pf.) Letting u—Iif and v=Img in (4.1), we restate it as
(4.1') Iιfdmgdy ≤c∣∣∕∣∣lp∕∣∣^∣∣lp,
where the functions f and g may be assumed to be positive. By Holder’s inequality

Iιf∙Imgdy ≤ c∣ IΛ f II Lpf (7) l∣lrm^∣∣Lp(7) *
Suppose that(4.2) 7(E) ≤ c∙cap(E, hlp,∖, "γ(E) ≤ c∙cap(E,, h™)for all compact sets E. Then it follows from the trace inequality for the spaces hlp, and hlm that (4.1,) holds, and hence 7∈M (hrp→hpl).For p=2 and m=l, (4.2) is also necessary in order that 7∈M(⅛2→⅛2 *)∙ (See [22].) Indeed, letting f=g in (4.1') we see that it implies the trace inequality

ll⅛∕l∣L2(7) ≤c II∕IIl2 ∙Thus, y{E)<C'CapE for all compact sets E.Unfortunately, conditions (4.2) are not necessary when p≠2 or Z≠m. (See an example at the end of this section.) However, it follows from Theorem 2.1 that, for 
p=2 and l=m, (4.2) is equivalent to∕ (J∏)2dx ≤ c∙cap(E, hz2).

JeIt is this condition, rather than (4.2) that can be extended to characterize positive measures 7∈M(∕1^→∕1^) in the general case.
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Theorem 4.1. Letl<p<∞, 0<m<n∕p, 0<∕<n∕p,, and 'yeM+.

Then if and only if the following two conditions hold:(4.3) [ (Inydx<c^E,h^

(4.4) [ (∕ro7)p'dx <c-cap(E,hp,).l
Je

Proof It follows from (4.1,) that 7∈M(h^→h~z) if and only if y flι(lmgd'y)dx <c∣∣∕∣∣z,p,∣∣p∣Uj,.
By duality, this is equivalent to(4∙5) ∣∣Λ(Wd7)lkp ≤c∣∣5∣l¼,for all gELp, g>0. Changing the roles of Iιf and Img, we get in a similar fashion that (4.5) is also equivalent to(4∙6) \\Imaifd^\\Lp,<C\\f\\Lp,for all feLpf, ∕≥0.We recall that by Lemma 2.3(4.7) Iι(Irng d^f) ≤ c[Iι(j}Irn∕γ)H-Im9*∙⅞z*y]∙Thus ∣∣Λ(∕mpc∕7)∣∣ip ≤c{∣∣∕z(5Zm7)∣∣Lp + ∣∣7m<z∣∣z,p(i∕)},where dv=(Iι'γ)pdx. Suppose that assumptions (4.3) and (4.4) hold. Then it follows from (4.3) that(4.8) ∣∣7mp∣∣Lp(ι∕) ≤ c IIpI∣lp ∙Similarly, it follows from (4.4) that∣∣∕J∣∣Lp,(σ)≤C∣l∙∕‰, 
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where dσ=(Im--∕)p . The dual form of the preceding inequality is

\Wfda)\\Lp<c\\f\\LpM.Letting ∕=(∕m7)1-p'g, we getL(∕dσ) = Λ(5√m7) and ∣∣∕∣∣Lp(σ) = ∣∣p∣∣lp.Thus
l∣Λ(p∕m7)l∣Lp ≤C∣∣ff∣∣Lp.Combining this with (4.8) we obtain (4.5). We have proved that (4.3) and (4.4) implyConversely, suppose that yζM(h^→h~l). Then (4.1') is valid which implies(4.5) and (4.6). Letting f=g=χq in (4.1'), we get7(Q)∙∣Qpn∣QI~mzn≤c [ hf-Imgd1<c\\f\\Lpl\\g\\Lp=c\Q\.

Thus(4.9) 7(Q) ≤c∣Q∣1-<i+"l>∕τifor all cubes Q. Similarly, substituting f=XQ and g=XQ in (4.5) and (4.6) gives(4.10) [ (Iz70)p⅛<c∙∣Q∣1-rop∕n5 [ (ImyQfdx<c-∖Q∖1-lp^n.
JQ JQ(In fact, it is easily seen that any one of the preceding estimates implies (4.9).) As in the proof of Theorem 2.1, (4.10) together with (4.9), implies

[ (Iιy)pdx <oo‘ f {Irn^p'dx<∞
JQ JQfor all cubes Q. Setting g=χQ{Ir∏χ)p -1 we see that

llffl∣Lp = [ Jm^rip'dχ < ∞.

JqBy (4.5) we get(4.11) [ [Iι{Imgdχ)↑pdx<c[ (Imχ)p'dx.
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Clearly, for z∈Q, we have

sup ∖Q'∖l∕n~1 ∕ Imgd1 = Ml(Imgd'γ)(x)<chJmgd'γ)(x).
xeQf JQfBy our choice of p,

∕ Imgd'γ= ∕ gIm^!Q' dy> ∕ (∕m7Q')p ⅜∙ 
JQ, J JqThus(4.12) sup ∣<2'∣i∕"~1 [ {Im'yQ>)p'dy<Iι{Imgd'y'){x')
xeQ, JQfor xeQ. Now from (4.11) and (4.12) it follows that(4.13) [ sup(|Q'|z/n 1 [ (Jm^!Q'')p'dy∖ dx <

Jq χeQ, I Jq∏qi J
c [ (Im'y)p'dx.
JqLet us show that we can replace Ir∏tyQ' by Irn7 in the preceding inequality. We have

[ (Im'7)p'dy<c [ Jmy1)p'dy+c [ Jm72)p'dy,
J Q∩Q' JQnQ' JQ'where d71=χ2Qd7 and d72 = (l~X2Q)d7∙ Then by (4.13)

p(4.14) I {Im^ι)p'dy dx<c 
QnQ'To estimate the second term note that, for x,yEQ, and ⅛∈(2Q,)c> we have 

∖t — τ∕∣x∣f-τ∣. Hence
Consequently,

(4∙15) sup \Q’\l/n γ (Im∕y2)p'dy<c sup ∖Q,^n[Imy2(x)]p'
xeQ' JQ' χ<EQ,≤c[Zm7(z)]p'-1∙ sup ∖Q'∖llnImy2(x).

χeQ'
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Let diamQ'=r. Making use of estimate (4.9) we getsup ∣Q'∣vnΛn72(z) <csup√x∈Q, r>0 7(-⅝(0) 

ρ∏-m+ι dρ<c ∞,
with the constant C independent of τ∈Q. This, together with (4.15), implies

p
I sup I
Q χeQ' L

I (jm'72jp'dy dx<c
Q,nQCombining (4.14) and (4.16), we obtain

I [Mι(χQ^]pdx<cu{Q∖
Qwhere dι∕=(Im7)p dx. Applying again the result of Kerman and Sawyer [14], we conclude that the trace inequalityI∣Λ∕IIlp,(1∕) ≤c∣∣∕I∣lp,holds. Thus assertion (b) of Theorem 4.1 is valid.Substituting ∕=Xq(Λt)p~1 into (4.6), we derive in a similar way that, for 

dσ=(Iι^)p' dx
[ [Mm(XQσ)]p'dx <cσ(Q)

JQfor all cubes Q, which implies assertion (b). The proof of Theorem 4.1 is complete.
Corollary 4.2. Under the conditions of Theorem 4.1 it is true that 

yeM(hp→h~l) if the following two relations hold(4.17)(4.18) Wm7)p(a0≤c(-fm7)p, 1(^)<∞, α-e.,7m(¼)p(≈) ≤c(¼)p^1(x) <∞, a.e.

Proof. It follows from (4.17) and (4.18) thatΛ[Λ(∕m7∕]P ≤ cll(lmrf < ∞, a.e., 
Im[Im(Ir∂p]p' < clm(ln)p < ∞, a.e.By Theorem 2.1, this gives 
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for all compact sets E. Applying Theorem 4.1 we conclude that yeM(hp→hp z)∙ For p=2 and l—m, the assumptions of Corollary 4.1 coincide with the estimateΛ U∏)2 ≤ cl∩ < ∞, a.e.By Theorem 2.1 the preceding condition is valid if and only if7(1?) ≤ c∙cap(F∖ hl2).As mentioned above, this is equivalent to yeM(hl2→h2l).

Remark 4.1. If p≠2 and Z≠m, conditions (4.2) are not necessary for 7∈ 
M{hγ→h~l).To show this one can use the same idea as in Proposition 3.6. For p≠2 we set 
l=(n-~E)∕pf and m=(n-l)∕p. Let dy=η(xn)φ(x') dx'dxn where φ(x,) is defined by (3.21) with β=2 ; η(xn) = l for ∣ατn∣≤ 1 and η(xn)=0 for ∣rrn∣>l. For

Er = {x = (x',xny.∖xf∖<r, ∣rrn∣≤l}, 0<r<l,we have cap(E,r, ∕φ)x(log(2∕r))1^p and cap(Er, ⅛)x(log(2∕r))1^p [20]. Then7(ffr) J∣ar'∣≤r M1~ra(log(2∕∣√∣))~2<⅛' ∕ 2λp^^2cap(Er, ∕zj^) - c (log(2∕r))1-p ~ ∖ r∕Similarly 7(⅛) >√1n 2f~2cap(Er,hlp,) ( δr∕
Letting r→0, we see that for p≠2, one of the conditions (4.2) is violated. In the opposite direction, one can use estimates (3.21) (see also Remark 3.1) to show that, for l=(n-l)∕p' and m=(n-l)∕p, conditions (4.17) and (4.18) are valid. Hence, 7∈Λf(Λ^l→h~z), but (4.2) is not true.Setting p=2, l=(n-2)∕2, m=(n-1)∕2, (n≥4), one can construct an analogous example showing that (4.2) is not necessary even in the case p=2, Z≠m.There is another generalization of the fact that yeM+∏M(fιl2→h2l) if and only if the L2ι-trace inequality holds.
Proposition 4.3. Letl<p<(X), 0<l<n∕p, andyeM+. Then yeM(fτlp→hp,l) 

if and only if(4.19) IIΛ∕lk2(7) ≤c∣l∕l∣z,p∙



Capacitary inequalities for fractional integrals 109
The proof is the same as for p=2. By duality, yeM(hlp→hpfl) if and only if

'vdy ≤∣h⅜ι>∣∣^.
Substituting u=v=Iιf in the preceding inequality, we see that (4.19) holds. Conversely, it follows from the Schwartz inequality that

-υd^f ≤c∣∣ti∣∣l2(7)∣∣v∣∣l2(7).
Applying (4.19), which is obviously equivalent toMl2(7)≤c∣∣⅛>we get that yeM(hlp→h~ll).Note that, for p<2, by a result of D. Adams (see [3]) (4.19) holds if and only if

7(Q)<c∖Q∖2^p-l^for all cubes Q. For p>2, we arrive at the “upper triangle case” of the trace inequality considered in [21]. According to the Maz’ya-Netrusov result (4.19) is equivalent to 
(4.20) t

z∕(i)

2∕(p-2)
dt < ∞,

where p>2 and z∕(t)=inf{cap(E, hlp)∙.v(E)>t}, t>0. A non-capacitary characteri­zation of the trace inequality in the “upper triangle case” based on different ideas was given by Verbitsky [26].
5. Applications to partial differential equationsIn this section we outline possible applications of the trace inequality and ca­pacitary estimates found above to some elliptic partial differential equations. We mention here only simple cases of several model problems without any attempts of generalization. However, we treat both linear and non-linear equations, sometimes in the non-Hilbert case p≠2, so that the elements of non-linear potential theory used in the proofs above are essential.Some of the applications are known (see [20], [3], [14] ), and we discuss them briefly, emphasizing interesting connections with other parts of Analysis. Note that 
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even in this case known results are stated in a new analytical form; all criterions are close to being necessary and sufficient, and many particular cases can be derived easily from them.We start with a few problems for the Schrôdinger equation(5.1) Lu = -∆u-γu = 0,with 7∈M+, related to the trace inequality(5.2) ∣∣u∣∣i,2(7)≤ const-1∣ Vu∣∣l2,or, equivalently,(5.2') ∣∣Λu∣∣i,2(7)≤ const ∙∣∣u∣∣l2,where I± is the Riesz potential of order Z=l. Note that (5.1) and (5.2) are obviously connected through the equation(5-3) (Lu,u) = ∣∣Vu∣∣22-y ∣u∣2⅛γ.

We would like to mention the following problems for the Schrödinger operator:(1) Spectral properties of L.(2) Positivity of solutions.(3) Unique continuation property.Problem 1 has been studied in great detail from the point of view of imbedding theorems since the work of Friedrichs (see [18], [20], [9], [11], [14] ). It follows from(5.3) and our Theorem 2.1 that if L>0, then(5.4) ∕ι(∕ι7)2(rr) ≤c√ι7(z) <∞ a.e.Moreover, there exists a constant cn>0 such that if (5.4) holds for c<cn, then the Schrödinger operator is positive. A sufficient condition for L>Q is given by1 1 r Ÿ/2p(5∙5) (iÖi ]Q{I^2PdXJ ≤c'W1'n

for some p>l and all cubes Q, if c<cn. As was mentioned above, (5.5) is a refined version of the Feffermann-Phong condition applicable to measures 7 not necessarily absolutely continuous with respect to the Lebesgue measure. Many other applica­tions to distribution of eigenvalues, semiboundedness, discreteness and finiteness of the negative part of spectra, etc., can be found in the cited literature.
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The second problem has attracted attention of specialists in partial differential equations as well as in stochastic processes. A necessary and sufficient condition for existence of positive solutions to the Schrödinger equation (5.1) for positive potentials 7 was given by R. Khas’minsky [15] in terms of the Brownian motion (see also [7] and the papers cited there). It was shown later that Problem 2 reduces to Problem 1 under minor restrictions on the potential 7, not necessarily positive. (See Agmon [4] where the case of general second order elliptic operators on Riemannian manifolds is considered; 7 is assumed to be in Lpθc, p>n.)We note that a standard substitute u=ev yields that Problem 2 is equivalent to the existence of solutions of the n-dimensional Riccati’s equation(5.6) —∆v = ∣X⅞∣2+7.As was pointed out by K. Hansson (see Proposition 5.2 below), one can obtain directly a criterion for existence of solutions of (5.6) in the following form. There exists a constant Cn>0 such that, if(5.7) 7(jE,) ≤ C,∙cap(El, ⅛2)for C<Cn and all compact sets E, then (5.6) has a solution (in a weak sense) in Rn. Conversely, if a solution exists, then (5.7) is valid.Problem 3, first considered for the Schrödinger equation by T. Carleman (see [6], [13], [25]), is related to the inequality(5-8) ||u||i2(e) ≤c∣∣∆u∣∣1,2(e-i)where ρ is an arbitrary non-negative weight. It is easy to see that (5.8) is equivalent to (5.2) with dy=ρdx1 for any weight ρ. Hence again the solution can be given in terms of condition (5.7).Next, we obtain coercive estimates for solutions of the equation(5.9) -∆11 = 7,where 7 is a measure from Λf(∕ip→⅛^1), l<p<oo. (Similar results are also valid for the equation —∆u+w=7 if we replace hlp by Hp and use the corresponding Bessel capacity.) The proof is again based on Theorem 2.1 and Lemma 2.3.
Proposition 5.1. Let and let u be a solution of (5.9) such that(5.10) I ∣u∣ dτ = o(rn+1) asr→oo.

J r<∣x∣<2r
Then the following properties are equivalent(a) 7∈M(⅛∣→∕1^ 1).(b) Vw∈M(⅛∣→Lp)∩M(7ψ→Lj,,).(c) DlueM(h1p→hp1) for all I, ∣Z∣=2.
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Moreover, the following estimates hold

(5∙11) V ll^ul∣M(⅛ι→Λ-1) ≤cl(ll^7wl∣M(hi→Lp) + ∣∣Vu∣∣M(hi,→Lp,) 
μ∣=2

≤c2∣∣Δω∣∣M(Λi-→∕ι-1)≤c≡ ΣL ιι^w∣∣M(⅛1→⅛-1)∙
μ∣=2

Proof. Suppose ^fζM(hp→hp 1). Then by Theorem 2.1(5.12) [ (Iγ^f)pdx <c-ea,p(E,hp), [ (Z17)p'dx <c-ca,p(E,h1pl).
Je JeLet 77∈C00, 77(j7) = l for ∣sr∣<l and η(x)=0 for |æ|>2: Put ηr(x)=η(x∕r). From (5.9) it follows

—∆(ηru) = ηr^-2VηrVu-u∆ηr,which yields 77r n =/2 ⅛ 7—2 V77r V w—ιz∆7∕r ).After integrating by parts this is rewritten as
ηru = I2 (⅜7)+/2 (u∆ηr) - 2 div I2 (uVηr).By differentiating we obtain that on the ball ∖x∖<r∕2 there holds the estimate∣Vu∣ ≤c(n)(l17+r~n~1 f ∣u(y)∣⅜)

∖ Jr<∖y∖<2r ∕where the constant c(n) depends only on n. By using (5.10) and taking the limit as r→∞ we obtain the estimate ∣Vzu∣ ≤c(n)∕17.Now (5.12) implies
(5.13) I ∣Vu∣p⅛r ≤ c∙cap(E∖ ∕zp), ∣ ∣Vιz∣p dx <c-cap(E,hp,).

J E J EWe have proved that Vu∈M(∕ip→Lp)∩M(∕z^,→Lp∕). Thus, (a) => (b).
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Now suppose VueM(hp→Lp)∩M(h?f →Lp,). Then by a theorem of Maz’ya and Shaposhnikova ([22], Section 1.5), DlueM(hp→hp1) for all ∣Z∣ =2 andl∣ni^t∣∣M(ħl→⅛-1)≤c(l∣Vu∣∣M(Λl→L^))+l|v^t∣∣M(⅛lz→Lp,)),from which we conclude that (b) ≠> (c).The implication (c) => (a) is trivial, because if DlueM(hp→hp1), then —∆u= 7∈AI(hp→h^1). Obviously, estimate (5.11) follows from the above argument. The proof of Proposition 5.1 is complete.Now let us consider two non-linear problems(5.14) —Δu = u9+λ7 on Ω, u≥0,,(5.15) —Διι = Q!∣Vu∣ρ÷7 on Q;(5.16) u = Q on 9Ω,where Ω is a bounded open subset of Rn with smooth boundary and 7 is a positive measure with compact support on Ω. Moreover, 1<q<∞, λ and a are positive constants.The semi-linear problem (5.14), (5.16) was treated by Baras and Pierre [5]. A necessary and sufficient condition for existence of solutions (in a weak sense) was given in terms of a certain non-linear functional. Later Adams and Pierre [3] showed that (5.14) has a solution, for sufficiently small λ>0, if and only if, for all compact sets E,cΩ,(5.17) 7(S)≤c∙cap(E,⅛p),where p=qf. The proof is based on capacitary estimates and certain weighted Lp- estimates, as in our Lemma 2.3.The generalized Riccati’s equation (5.15) was considered by K. Hansson. The proof of the following result is to appear.
Proposition 5.2. (K. Hansson) If the problem (5.15)-(5.16) has a solution 

(in a weak sensé), then for all compact sets EcΩ(5.18) 7(e) ≤ c∙cap(E, hp).

Conversely, (5.18) implies that (5.15)-(5.16) has a solution for sufficiently small 
a>0.Hansson’s proof of the second assertion is based on our Theorem 2.1 and an iteration procedure. Clearly, both (5.17) and (5.18) can be given in a different form by using results of the present paper.
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