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Homogeneous Fourier multipliers
of Marcinkiewicz type

Anthony Carbery and Andreas Seeger(!)

1. Introduction

Let me L>°(R?) be homogeneous of degree zero. Then m is almost everywhere
determined by hyi (£1)=m(&1,£1). For k€Z let Iy=[27F"1 27ky[-2—F —2-k-1]
and let hy and h_ satisfy the condition

ds 1/r
(1.1) sup( |sh’i(s)[’—> < 00.
kez \J 1y s

Rubio de Francia posed the question whether a condition like (1.1) is sufficient to
prove that m is a Fourier multiplier of LP(R?), 1<p<oo. An application of the
Marcinkiewicz multiplier theorem with L2-Sobolev hypotheses (cf. (1.3) and (1.5)
below) and interpolation arguments already show that the answer is yes, provided
r>2. Recently, Duoandikoetxea and Moyua [15] have shown that the same con-
clusion can be reached if r=2. On the other hand, since characteristic functions
of halfspaces are Fourier multipliers of LP, 1<p<oo, a simple averaging argument
shows that the condition h’€L! implies LP-boundedness for 1<p<oo. Our first
theorem shows that the weaker assumption (1.1) with r=1 implies boundedness in
LP(R?), for 1<p<oo.

Theorem 1.1. Suppose that hy and h_ satisfy the hypotheses of the Marcin-
kiewicz multiplier theorem on the real line, that is

(1.2) sup /, Idha(s)]< 4
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for Iy=[2"F"1 27Fu[-27k —27k=1] Let meL®(R?) be homogeneous of degree
zero, such that for & €R, m(&1,1)=h4 (&) and m(&,—1)=h_(&). Then m is a
Fourier multiplier of LP(R?), 1<p<oo, with norm <CA.

One can obtain a stronger result for fixed p>1 using the space V? of functions
of bounded g¢-variation. Given an interval I on the real line a function h belongs to
V4(I) if for each partition {zo<z;<...<zn} of I the sum Zfl\;l |h(zy)—h(zy-1)|7
is bounded and the upper bound of such sums is finite. We denote by ||h||¥,
the least upper bound. Then the following result is an immediate consequence of
Theorem 1.1 and the interpolation argument in [8].

Corollary 1.2. Let m, hy and Iy be as above and suppose that

et oo +5Up [|htllve(zi) < 00

Then m is a Fourier multiplier of LP(R?), if ]1/p—%|<1/2q.

A slightly weaker result can be formulated in terms of Sobolev spaces. Let
B be an even C*° function on the real line, supported in (-g-, %)U(—%, —g) and
positive in (1/v/2,v/2)U(—v/2, —1/v/2); we shall assume that ", ., 32(2*s)=1 for
57#0. Let LI (R?) denote the standard Sobolev space with norm ||h|| s =||F~1[(1+

€[2)2/2h]||,- Then LL(R)CV, if a>1/q and therefore we obtain

Corollary 1.3. Let me L™ (R?) be homogeneous of degree zero and hy (&)=
m(&1,+1). Suppose that ¢>1 and that

1
(1.3) sup [|[Bh+(t)llLem) <oo, a>-.
teR q

Then m is a Fourier multiplier of LP(R?) if |1/p—4|<1/2q.

We now compare these results with more standard multiparameter versions of
the Hérmander—Marcinkiewicz multiplier theorem. In order to formulate them let

Dfg = F (141" Fg]

and, for 1<g<oo, let HL(R") be the multiparameter Sobolev space of all func-
tions g, such that

lgllna ®ny == IIDT - DrgllLe(mn) < 0.
Let 8 be as above and denote by ((;) a copy of 3 as a function of the ¢;-variable.
Then if ¢>2 the condition

1
(1.4) sup ”,B(l)@...@ﬂ(d)m(tl',...,td')llan(Rd) <oo, a>-=-
tE(R+)d q
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implies that m is a Fourier multiplier of L? for |1 /p— % | <1/q. For g=2 the proof of
this result is a variant of Stein’s proof of the Hérmander multiplier theorem (see [25,
Ch. IV]) and the general case follows by an interpolation argument as in [9]. If we
apply this result to homogeneous multipliers and set

(1.5) m(g', £1) =gx(¢), ¢ eR™?
we obtain by a straightforward computation

Corollary 1.4. Suppose that r>2,
(1.6)

sup “D%’Y'Dg ’D;ly—l [ﬂ(1)®...®,8(d_1)gi(t1 ey bg—1 - )} '
t€(R+)d—1

1
Lr(Rd4-1) <00, 7> ;’
and that the condition analogous to (1.6) holds for all permutations of the variables
(81,--,84—1). Let m be homogeneous of degree zero and related to g4 by (1.5). Then
m is a Fourier multiplier of LP(R?) if ]1/p——%|<1/r.

In two dimensions Corollary 1.4 says that if a>1/q, ¢>1, and Bg+(t-)€
H24(R), uniformly in ¢>0, then m is a Fourier multiplier of LP if |1 /p—%|<1 /2q.
Corollary 1.3 is stronger since a compactly supported function in H2(R) belongs
to HI(R).

We are now going to discuss variants of Theorem 1.1 in higher dimensions.
First if g+ €HL(RIY), a>1/q and if g+ are compactly supported in [%,2]‘1—1
then the homogeneous extension m is a Fourier multiplier of LP(R?) if |1 /p—%|<
1/2q. In fact by a simple averaging argument one sees that the condition g4 EH}+€
implies that m is an L' multiplier and the general case follows by interpolation.
We remark that if a<|2/p—1| the condition g+ €H% (any ¢) does not imply that
m is a Fourier multiplier of LP. Relevant counterexamples have been pointed out
by Lépez-Melero [22] and Christ [7].

Perhaps surprisingly, the situation in higher dimensions changes if one imposes
dilation invariant conditions as in Theorem 1.1. One might want to just replace
hypothesis (1.2) by the hypotheses of the Marcinkiewicz multiplier theorem in R4~!
([25, p. 108]). However this assumption is not sufficient to deduce that m is a Fourier
multiplier of LP for any p#2 (see Section 3 for the counterexample involving the
Kakeya set). However, we do have

Theorem 1.5. Let meL®(RY), d>2, be homogeneous of degree zero and
let g1 be as in (1.5). Suppose that ¢>2, and

1
(1.7 sup ”;8(1)®~~®ﬂ(d—1)g:|:(t1','--7td—1 ')||Hg(Rd—1) <00, a>-.
te(Ry )41 q
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Then m is a Fourier multiplier of LP(R®) if |1/p—%|<1/2q.
Interpolating Theorem 1.5 with Corollary 1.4 (with p close to 1) yields

Corollary 1.6. Let me L®(R%), d>2, be homogeneous of degree zero and
let g+ be as in (1.5). Suppose that 1<p<3 and

sup ”'D?'Dg D) [ﬂ(1)®...®ﬁ(d_1)gj:(t1 Sy td—1 )] ||L2(Rd—1) < oo,
te(Ry )41

'y>l a>g—1
2’ D

and that the analogous conditions obtained by permuting the (s1, ..., S4—1)-variables
hold. Then m is a Fourier multiplier of LP(R?).

In particular if SUP¢e (R, )d—1 ”:3(1)®~~®18(d—1)g:|: (t1 5y ta—y - )”H?X(Rd—l) <00
and 1<p<§- then m is a Fourier multiplier of LP provided that a>2/p—1. This
result is essentially sharp: in Section 3 we show that in order for

sup ||ﬂ(1)®...®ﬂ(d_1)gi(t1 ey bd—1 - )”'HZ(R"—I) < o0
te(Ry)4-1

to imply that m is a Fourier multiplier of LP we must necessarily have a>2/p— %-&—

1/q if 1<p<3 and a>1/q if $ <p<2.

In order to prove more refined results on LP(R?), d>3, p close to 1, we shall
use multiparameter Calderén-Zygmund theory. It turns out that it is useful (and
easier) to first prove a result for the multiparameter Hardy space HP(R%), 0<p<1.
The Hardy space HP is defined in terms of square-functions invariant under the mul-
tiparameter family of dilations §;z=(t121, ..., taxq), t€ (R4 )% Again we formulate
the multiplier result using localized multiparameter Sobolev spaces invariant under
multiparameter dilations. In order to include a sharp result also for p<1 we want to
admit values of ¢<1 in (1.2). To make this possible the definition of H¢ has to be
modified. We may always assume that 3 above is such that y-, ., 6%(27"s)=1 for
s#0. Let 1, =p%(27"-) if r>1 and Yo=1-3, . ¥r. For n=(ny,...,ng-1), ni >0,
i=1,...,d—1 set ¥, (&, ...,§d_1)=Hg=_11 ¥n, (&). The decomposition

g= > tUnxg

n€(Ng)d-1

is referred to as the inhomogeneous Littlewood-Paley decomposition of R%~!. Then

1/2
(g, i)

n€(Np)d—1

(1.9) ||gan(Rd-1y~v|
Lq(Rd—l)
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for 1< g< o0, and for ¢<1 we define H% (R%~!) as the space of tempered distributions
for which the quasinorm on the right hand side of (1.9) is finite. In this paper we
shall always have a>1/q; in this case H% is embedded in L*°. This and other
properties of the spaces HZ may be proved by obvious modifications of the one-
parameter case; for the latter we refer to [27].

Theorem 1.7. Let meL>®(R%) be homogeneous of degree zero and related
to g+ as in (1.5). Suppose that 0<r<1 and

2
(1.10) sup  [|Ba)®--@Ba-1)gx(t1 -,y ta—1-)lpg (ra-1) <00, a>-—1.
te(Ry )41 T

Moreover, if d>3, suppose that

(1.11)
sup HD?’D% D) L [By®.-®Ba—1)g+ (1, -y ta—1 )] ||L2(Rd—1) < 00,
te(Ry )41
1 1
77T
and that the analogous conditions obtained by permuting the (si, ..., Sq—1)-variables
hold. Then m is a Fourier multiplier of the multiparameter Hardy space HP(R?),

r<p<oo.

Note that in two dimensions Theorem 1.7 is a natural extension of Corol-
lary 1.4 to HP-spaces in product domains. The examples in Section 3 show that
in higher dimensions additional assumptions such as (1.11) are necessary. When
d>3, Theorem 1.7 with r=1 serves as a substitute for Theorem 1.1. Notice that if
r=1 condition (1.10) involves mixed derivatives in L' of order d—1+¢, and condi-
tion (1.11) involves derivatives in L? up to order (d—1+¢)/2. In comparison the
hypotheses in Corollaries 1.3 and 1.6 involve L? derivatives up to order (d+¢)/2 if
pis close to 1. As a consequence we obtain the following analogue of Corollary 1.4,
formulated in terms of the standard oneparameter Sobolev space L.

Corollary 1.8. Let meL®(R?) be homogeneous of degree zero and related
to g+ by (1.5). Suppose that g>1 and that
d-1

sup ||ﬂ(1)®...®ﬂ(d_1)gi(t1 e td—1- )lng(Rd—l) <00, a>——-.
te(R4)d-1 q

Then m is a Fourier multiplier of LP(R?) if ]1/p—%]<1/2q.

The counterexamples in [22], [7] show that the statement of the Corollary is
false in the range |1/p—3|>1/2¢. However in view of Theorems 1.5 and 1.7 one
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expects the following sharper result. Namely suppose that for some g€ (1, 2]
1
(1.12) sup  [|B)®---®Ba-1)9+(t1 5 s ta—1)|lng ma-1) <00, a>-,
te(Ry )41 q

and in dimension d>3 suppose that
(1.13)

sup “'D?'Dg D3_2 [ﬂ(1)®...®ﬂ(d_1)gi(t1 ey tg—1 - )] ||L2(Rd—1) < 00,
te(R+)d—l
1 1

> =, a> -
2 q

as well as the analogous conditions obtained by permuting the (si,..., 84—1)-vari-
ables. Then m should be a Fourier multiplier of LP(R9) if |1 /p—%|<1 /2q. In
order to prove this one is tempted to use analytic interpolation and interpolate
between the LP°-estimate of Theorem 1.7, for pg close to 1, and the L*/3-estimate
of Theorem 1.5. One would have to find the intermediate spaces for intersections
of L? and L9 Sobolev spaces. However the intersection of the intermediate spaces
does not need to be contained in the intermediate space of the intersections (for
related counterexamples see [26]). It is actually possible to prove the result for
|1/p—%]<1/2q (assuming (1.12), (1.13)) by another approach. One has to use a
general theorem for analytic families of operators acting on various kinds of atoms
the proof of which relies heavily on multiparameter Calderén-Zygmund theory. We
do not include the technical proof here but refer the reader to [5].

The paper is organized as follows: In Section 2 we prove Theorem 1.1 using
weighted norm inequalities and variants of the maximal operator with respect to
lacunary directions. Examples demonstrating the sharpness of our results in higher
dimensions are discussed in Section 3. The proof of Theorem 1.5 is in Section 4; it
relies on weighted norm inequalities which involve variants of the Kakeya maximal
function. In Section 5 we prove the Hardy space estimates of Theorem 1.7.

As a convention we shall refer to the quasi-norms in H? and H% as “norms”
although for p<1 these spaces are not normed spaces. By M,, 1<p<oco, we denote
the standard space of Fourier multipliers of LP. It will always be assumed that
the even function S€C° defined above satisfies Y, .,[6(27s)]*=1 for s#0. If
ae{l,...,d} and k, k in R® then we shall use the notation k<k if k; <k; for all i€a.
Similarly define k>k etc. C will always be an abstract constant which may assume
different values in different lines.

2. LP-estimates in the plane

In the proof of Theorem 1.1 there is no loss of generality in assuming that m
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is supported in the quadrant where £; >0 and £5>0. By a limiting argument as in
Stein’s book [25, p. 109, it suffices to prove the theorem under the formally stronger
assumption

1Al oo -+sup / I1(5)| ds < A.
k€Z J 1y,

Let 8 be the smooth bump function defined in the introduction (supported in
+[2,%]). Let yeC*°(R*\{0}) be homogeneous of degree 1 such that y(¢)=1 if
|€&1/€2]1€ 2, 4] (in particular on the support of 3®0) and such that v(£)=0 if
151/§2|¢('}I’4) Set

hise(§) =7(E)R(277€1/82)-

Then we may split

m= [Bofmy)(2" -, 25 ),

keZz2

where

€1/€&2
(2.1) mi(€) = B(&1)B(&2) hey —k, (61/€2) =ﬂ(€1)ﬂ(§2)/0 ky—ky (8) ds.
and h,, is supported in (i,4), for all x€Z. Also set

T ] (€) = [B00mi) (27 &1, 2526,)] £ (€).

Then by standard multiparameter Littlewood—Paley theory and duality, to establish
Theorem 1.1 for p€(2,po), po<0o, it suffices to obtain an inequality

(2.2) / |Ti f|?w < CA? / | 129w

for a certain operator w—Mw which is bounded on LI(R?) for (po/2)’ <g<oo. By
our assumption on h,

(2.3) wp / I ()] ds < CA.

s
»
We denote by £ the standard Littlewood—Paley operator, such that

L F(€)=B(2M£1)B(2"&:) f(¢)
and define the operator Sis by
f(6), if2%&/&>s, &0, &£2>0,

0, otherwise.

510
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Then from (2.1) we see that

8
T @)= [ ety 1o (o) b
1/8
Then, if w>0 is a weight we apply the Cauchy—Schwarz inequality to obtain

(2.4) /Ika(I)l2w(x) dm‘SCA/ | LSty —ka,s f ()2, g, (5)] ds w(z) da.

Let M), M) be the Hardy-Littlewood maximal functions with respect to the
coordinate directions and let M, ; be the Hardy-Littlewood maximal function
with respect to the direction perpendicular to {&;2%&;/€3=s}, i.e. in the direction
(1,—27*s). Then using weighted norm inequalities for singular integral operators
due to Cérdoba and Fefferman ([13], see also [18]) we see that the expression on the
right hand side of (2.4) is dominated by

8
Cad [ 11(2) Mgy Mo [ /1 (M 0 21B (9)] ds| @)

where a>1. Now the proof of (2.2) is completed by the following

Proposition 2.1. Let, for a>1,

Wowo(z) = sup /, (M 10%)Y(2) A ()] dis

where I = [—é, 8] and

sup /|)\,,(s)|ds§B<oo.
x€Z JI

Then M, is bounded on LP(R?), a<p<oo, with norm <Cp .B.

Proof. Since
ma(w) SBI‘I/Q[Sml(w“)]l/“

it suffices to prove that 91, is bounded on LP?, 1<p<oco with norm C,B. If a>1
then 9, will be bounded on LP, p>a, with norm SC;;;’:B.

We follow arguments by Nagel, Stein and Wainger [23] as modified by Christ
(see [2]). Let ¢: R—R be smooth, even, nonnegative, with ¢(0)>0 such that ¢ has

compact support in [_Elﬁv “216] Let

Y(&1,8€2) = P(§1+E2)
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and define for »€Z o
PLw(€) =1(2"€1, 277 £6)D(8).

It suffices to show that for 1<p<oo, N being an arbitrary positive integer

< CpBllwllp,
P

(2.5) “ sup /sup]Pisw| [Ax(s)| ds
I l€Z

—~N<x<N

where C), is independent of N. Then an application of the monotone convergence
theorem allows to pass to the limit. We note that for fixed » and 1<p<oo

/supl sw | Ase(s)] ds
I lezZ

by the LP estimate for the one-dimensional Hardy—Littlewood maximal function
My, s. This means that we know a priori that the left hand side of (2.5) is bounded
by BCp(N)||fllp (with Cp(N)<C,N) and it remains to be shown that C,(NN) can
be chosen independently of N. In what follows we define Cp(NN) to be the best
constant in (2.5).

We first consider the case 2<p<oo. Since the L*-estimate is trivial it suffices
to prove the L? inequality. We smoothly split ¢ into two parts, 1=1°+! with 1!
supported in the unit ball and 9° supported in the cone {f; |&1+E&2]/1€ IS%} We
correspondingly define the operators P10 and PL!. Note that there is the pointwise
inequality

(2.6) <C/”sup| wl“ [Ax(s)|ds < CpB||wllp

(2.7) |PLlw(z)| < CMyMayw(z)
which implies

(2.8) <CpBlwllp, 1<p<Loo.

p

sup/ sup |PLlw| |\ (s)| ds
»x JI leZ

Concerning PL? we have
|Priw(z)| < CIMayMayw(@) + M sw ()]

and therefore

(29) H [ sup P Inc(s)ds

< CpoB|wllp
P

for 1<p<oo. Note that

o2t 82t N =x(-, 277 ) (2t 527 )@,
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where ¥ is smooth, homogeneous of degree zero, identically 1 on {&; |&1+&2|/|€|<4}
and zero on {¢; |1 +&2|/|€|>8}. Define the standard angular Littlewood—Paley op-
erator R, by

R F(6) =x(61,2776:) f(€).
Then

(2.10) Py =PLOR, w

and, as a consequence of multiparameter Littlewood—Paley theory and the Marcin-
kiewicz multiplier theorem,

(2.11) [[ (; IRxf|2>l/2

Now by (2.10)

<C|fllpy, 1<p<oo.
D

(2.12)  sup
#€Z

2\1/2
<E l:/ sup|Pf;2R,fw]|)\,,(s)[ds] )
1 1€Z

s

/suplPlOwll)\ (s)|ds|<
1 lez

and using (2.9) we see that the square of the L2-norm of the right hand side equals

Z zS2};[/I“?lelgIP,I;SR,{M”Q[)\,{(s)i dsr

<CB?Y | Rew|l3 < C'B2|lwl3.

/sup[Pl’gR,{wH)\,{(s)lds
1 1€z

We have proved

(2.13) <CBlwly, 2<p<oc.

P

sup [ sup L2 )lds|

»€Z €Z

By (2.8) and (2.13) we see that

We now assume 1<p<2 and begin with the observation that for any sequence
{wi} of weights we have
(2.14)
p)l/P
P

(=l

sup[ 00, (| Mse(8)] ds , l<p<oo.

p

1/p
<G ()
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This is immediate from (2.9). Next positivity of P!, implies that

<
P

sup [ sup Pl \e(s)] ds
I 1

<3

sip/l SIllp'Pf{ [sup Iwu]||)\ s)|ds

(2.15) »

< BOP(N)Hsup Iw,{al
by the definition of Cp(NN). From (2.15) and (2.8) it follows that for 1<p<oo

(2.16)

sup / sup | P10, A (s)] ds
»€Z JI leZ

< Cpa BC(N)fsupljl|
p

Now if we interpolate (2.14) with (2.16) we obtain for p<q<oo

(2.17) -
(3 ),

#€Z
Using (2.12), (2.17) and (2.11) we obtain for 1<p<2

< CpaBC,(N)'~ -p/q

(Z . I")l/q

/ sup | PL0uw, A (s)] ds
I l€EZ

p

sup
»€Z

o\1/2
“( 5 [sup [P Rl ()] ds] )

(o)

< Cp s BCH(N) P2 |wllp.

/ sup | PLOw| |\, (s)| ds
I

lez

p

2.18
(2.18) < C,2BCy(N)I-7/?

p

Finally it follows from (2.8) and (2.18) that
CP(N) < [C;;"‘Cpﬁcp(N)l_p/z]

which implies that Cp,(N) is bounded by a constant depending only on p but not
on N. This finishes the proof of the proposition. O

3. Examples in higher dimensions

We show in this section that Theorem 1.1 and Corollary 1.4 have no immediate
analogue in terms of localized multiparameter Sobolev spaces in higher dimensions.
Our examples imply the sharpness of Theorems 1.5 and 1.7.

Let LP(L?) be the space of functions f on R*=R% ®R% such that

p/2 1/p
Hflle(Le)=</[ If(w’»w”)lzdw”] dx’) < o0.
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For a bounded function m on R? we denote by |m||s, the operator norm of the

convolution operator T' defined by Tf=mf and by lm||az,, the norm of T' as a
bounded operator on LP(L?). By a theorem of Herz and Riviere [19)

(3.1) Imllas,,, < Cllmla,
for 1<p<oo. We shall use the following

Lemma 3.1. Let {m,.} be a sequence of bounded functions in R%. Let x€
C*°(R%) be supported in {€";3<|¢"|<2} and equal to 1 if 1—e<|¢"|<1+e for
some €>0. Let

’m(él, 5”) — Z X(2—6K€H)mx(§l)
and define T, by fx\f(&):m,{(g)f(f). Then for 1<p<oo we have the inequality
1/2 1/2

() (Zis)

Proof. Let 8y€C> be supported in {¢”:1—e<|¢"|<1+¢€} such that

< Cplimllag,, (e
Lp(R41)

Lr(R% ).

180l L2 (re2y = 1-
Let
gre(@',2") = 2% f.(2') Fa, [Bo (2707 ) (2")

then by an application of Plancherel’s theorem in the second variable it follows that

| (2}{: lgxl"’)l/? @ |fx|2)1/2

Next let L,, denote convolution in R% with fl;}z [Bo(277-)]. By Littlewood-Paley
theory we have for 1<p<oo

3 Lt @ I9x|2>1/2

— (27T)_d1/2
L (RY)

(3.2)

Lr(R%1) '

(3.3)

<G,
)

LP (R LP(Rd).

Now

(Smsr)”

1/2
— l' (Z/Iﬂo(z—Gxg//)z—Bszf%|2d£//>

1/2
(Z U:E; [mx-;er [LxLxgx]][2)

(Z L.Fpi [mfRd [XJ: L; ng

”

Lr(R%) LP(R41)

= (2m)%/?

Lr(L?)

2>1/2

= (2m)%h/?

LP(Lz)’
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where the last identity holds in view of the support properties of 3y. By Littlewood-
Paley theory
2)1 /2

H <§ L. Fri [mfRd [E ngj”
> 7 LP(L?)
fl:_t‘} [m]:Rd [ E ngj]]
J
E L;g;
j Lr(L2?)

(sat)

J

<G,

LP(L?)

< Cpllmli v,

< Cplimlla,,

Lr(L?)

(Z |fj|2)1/2

J

= Cpllmllas, (2m) /2 0

Lr(R71) .

We now show that the restriction ¢>2 (corresponding to %§p§4) in Theo-
rem 1.5 is necessary. In what follows we denote by LP(L?) the space of functions in

R3 with
/2 1/p
1l can) = ( Il [ / !f(xl,wz,xs)|2dwz] dmws) <oo

and correspondingly define My;.
Fix N>>0 and let

N
(34) gn(s1,82) =Y n(N(s1—a.)X(27%s2);
=2
where
2N
(3.5) e =14+—,
»”

and ne C™ is nonnegative, equal to 1 in [—%, 1] and supported in [—3, 4]. Similarly
X is as in Lemma 3.1, supported in +(3,2) and equal to 1 in £(1/v/2,/2). Then

(3.6) sup |81y ®B)gn (51+, 82+ )|lma mzy < CNTH4,

s$1,82>0
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Lemma 3.2. Let m(yy be the homogeneous extension of gy defined in (3.4),
(38.5). There is a positive constant ¢ such that

eN/2=2/p 4<p<oo,

3.7 m 2
(3.7) lImenylla,. -{ c(log N)/4, p=4.

A comparison of (3.6) and (3.7) shows that in the case p>4 the condition

sup |[|B(1)®B2)g+ (51, 82+ )ll1gmz) <00
81,82>0
does not imply me€ M, for the homogeneous extension m if a< % +1/q—2/p (it does
not even imply meM,yy). Similar statements follow by duality for 1< p<%. This
yields the sharpness of Theorem 1.5. By interpolation an improvement of the HP
estimates would lead to an improvement of the LP estimates and this implies the
sharpness of Theorem 1.7.

Proof of Lemma 3.2. Let $;€Cg° be supported in
z %). Let x be as in Lemma 3.1 supported in {|&]€(
e (5, 1)} Let

and equal to 1 in

3 §)
44
, )} and equal to 1 in

(
46
575

M (€1, 83) = B(E3)n(4N (€1/€3— )

and
N

wny(§) = Z X(27%&)m.. (&1, E3).

=2

In view of the properties of 7, x, X and the Marcinkiewicz multiplier theorem
() gz < CpllmylImgy, 1 <p<oo.
Now assume 4<p<oo. Let
R, = {(%1,23); |21 —ews| < 1073N, |,z — 23] < 10’3}.

For £ €supp m,,, € R, we have |z1£; +23€3|<m/4 and therefore

| / M (€1, E3)e @1E1F383) g, dey

2l/mx(ﬁl,fa)COS($1§1+x3§3)d€1d§3 >cN?

for some fixed positive constant c. Let

R, ={(21,23); 1074 N/2 < |21 — o3| <1074N, 1074 /2 < |a,ewy — 23] <1074},
R}, = {(w1,23); |21 — 03| < 107%N, o1 — 23] <1074}
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and let x,, be the characteristic function of ﬁ,{. Then

F muFx.]>c, z€R:.

By Lemma 3.1
N 1/2 N 1/2
(3 el <yl | (3 1ol .
=2 LP(RQ) =2 LP(R2)

Now one verifies that

()], e

In view of the overlap of the rectangles R}, we have for some small constant ¢; >0,
and for |z|<e; N and for |z|<cN we have

1/2
<Z|f_1[mxfxx](x)|2) ~ NY2(1+|z]) 1/

and consequently

“ (Z If‘l[mxfszQ)m p

This implies the assertion. O

%

~

{ N1/2 if p>4,
NY2(log N)Y/4 if p=4.

Next we consider the class of homogeneous functions m in R? with the property
that the restrictions hy to the hyperplanes {£; 3=+1} satisfy the hypotheses of the
Marcinkiewicz multiplier theorem in the plane; that is

Al < A,

é}i(sl, 82) d81 S A,

881

sup sup/
J1€N 82 JI;;

(3:8) sup sup/
I;

J2€N s1

sup //
jEN? I, x1Ij,

J

Oh
53—2(81, s3)|dsy < A,

02h

— ds1dss <A
881882 91652 = 4

(s1,82)

where I}, etc. is as in (1.1). We show that (3.8) is not sufficient to guarantee me M,
for any p#2. The argument here follows Fefferman’s solution [16] of the multiplier
problem for the ball (see also [14], [21]).
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Let a={c,. } be an arbitrary sequence of numbers in [1, 2) and let m,. be defined
in the first quadrant such that
L, 1<&/6<as,

(3.9) m;f(sl,gs):{ ) ey

Let
ma=Y_ B(2&/E)ma(é1,&).

Suppose the assumptions (3.8) imply meM,, for some p#2. Then a limiting ar-
gument as in [25, p. 109] would imply that m, is an LP multiplier with norm
independent of the choice of {a,. }rez and by (3.1) a corresponding statement on
LP(L?) would follow. However we have

Lemma 3.3. The inequality

IFH maF fllle 2y S CN o2

does not hold independently of a if p#£2.

For example if we take for a an enumeration of the rationals in [1,2) then
mq € Mpo if and only if p=2.

Proof. Arguing as above the assumption m, €M, implies a vector-valued esti-
mate for directional Hilbert transforms, namely

(S]], = (5e)

where H,, is the Hilbert transform in the direction (1, —ca,.). But as in [16] the
existence of the Kakeya set prohibits such inequalities for p#2 (unless further re-
strictions on the family of directions (1, —c,.) are made). O

b

L (R2)

Lr(R?)

4. Weighted norm inequalities in higher dimensions

We deduce Theorem 1.3 from a weighted norm inequality; the procedure is
analogous to Stein’s proof of the Hormander multiplier theorem (see [25, Ch. IV]).
Here, however, the positive operator which controls the problem is not the Hardy-
Littlewood maximal operator but a multiple iteration of variants of Kakeya-type
maximal operators. The main step of the argument is contained in Lemma 4.7; one
proves a weighted inequality for a variant of Cérdoba’s sectorial square-function.
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For i=1,...,d—1 let R,(f;d) be the family of all rectangles with the dimensions
1x 2™ centered at the origin in the x; —x4 plane and let ﬁﬁf;d) be the family of all
parallelograms of the form {(z;, z4); (2% x;, 2¥¢24) € Ry} where Rg eRﬁfgd) and k;, kq
are integers. Let

M,(Li’d)w(xl, iy Td)

1
sup f/ lw(xh~~,$i—1,$z‘—yi7$i+1,--~,$d—1,l’d—yd)|dyidyd-
ReRE:Y IRl Jr

M,(Li’d) is a variant of the Kakeya maximal function, invariant under the dilations
(x5, w4)— (2Fix;, 2F¢24). The proof of the L2-estimate in [10] can be easily modified
to yield

1M Dwllz < Cnillwlla;

for a more singular variant see also [11].
Next, for n=(nq,...,n4—1) define

Mo = MM o M

and, for NeN, let MY =M, o...o M,, be the N-fold application of the operator M.,,.
Finally, if M(;, denotes the Hardy-Littlewood maximal operator with respect to the
variable z; let s

MDY =Mgyo...oMg oMY o Myo...oMg).

Theorem 4.1. Let 7>% and suppose that

(4.1) sup Hﬁ(n@...@ﬂ(d_l)gi(tl e td—1 ‘)“Hgy(Rd—l) <B,<oo.
fE(R+)d’1

Let m be the homogeneous extension of g+ and define T' by f‘}(f)zm(ﬁ) f (&). Let
0<e<y—3, let N(g) be the smallest positive integer >3+2/¢ and define M. by

Mw = Z 2—e(n1+...+nd_1)ﬂg(e)w.

nENg_1

Then for s>1

(4.2) / |Tf(g;)|2w(m) dx < OE,SB'y / If($)|2(9ﬁg [ws])l/sdx.

Proof of Theorem 1.5. Since the operator wr (M. (|w|*))}/* is bounded on
L4, g>2s/(1—¢), the weighted norm inequality (4.2) and duality imply under the



62 Anthony Carbery and Andreas Seeger

assumption (4.1) that T is bounded on LP, for 2<p<4. The general result of The-
orem 1.5 follows then by interpolation, using the technique in [9]. O

Before we prove Theorem 4.1 we recall a few facts about vector-valued weighted
norm inequalities. First if Hy, Hs are Hilbert spaces and K is a convolution kernel
in R, with values in the space B(H;, Hy) of bounded operators, then K is called a
regular singular integral operator if

()| B(ky 12) < O,
IK(@)|8(H,m,) < Clz| ™1,
IK(z—y)—K ()|, 1) < Clyl°|2| 778, 2| >2]y| >0;

here 0<6<1 is fixed. By a vector-valued version of a theorem of Cérdoba and
Fefferman ([13], see also [18, Ch. IV.3]) there is an inequality

(4.3) /I’C*f(w)l’}12W(w) deCa,p/lf(w)l’}’{l(M(Iwi”))l/”(w) dx

where 1<p<oo, o>1.

Littlewood—Paley functions can be associated with regular singular integral
operators. Let EC(?°(%,2) then it is straightforward to check that the operator
{Fotrecz— Y FLB(2%| - |)F f] is a B(I?,R)-valued regular singular integral oper-
ator. Likewise the adjoint operator f—{F~1[3(2”| - |)F f]} ez is a B(R, 12)-valued
regular singular integral operator. Here [2 may refer to a space of sequences with
values in a Hilbert space.

Next let k€Z? and denote by L£j be the standard Littlewood—-Paley operator
with multiplier Hf=1 B(2%:|&;]). Then a repeated application of (4.3) yields

Lemma 4.2. For 1<p<oo, s>1 we have the inequalities

> L

keZd

p/2
/ (Z |ckf|2) w(2)do < Cup [ I @P (M) o-co M) (@) da

k€Zd

P p/2
w(e)da <, | (Z |fk<x>|2) (Moo Migy o))" () do,

kezd

/

We need also the following pointwise estimate concerning a square-function
involving translates of a fixed Schwartz-function 7. It implies LP-boundedness for
p>2, a result which is due to Carleson. A proof of the pointwise estimate can be
found in [24], see also [12], [18].
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Lemma 4.3. Let n be a Schwartz function in R? and let A€GL(d,R). Then

ay YA FE oy [HELUE

keZd

Proof of Theorem 4.1

There is no loss of generality in assuming that m is supported in {£;¢;>0,
i=1,...,d}. Setting

d
(4.5) ¢ =[] 8&)

=1

we decompose

m(€) =Y mi(2M&, .., 25¢)
keZzd

where

me(§) = d(§)gr(€1/8d; - €a-1/8a)
and g has compact support in (%,2)‘1_1. Note that gx=gx if k;i—kq=k]—k/,
i=1,...,d—1. We introduce a further decomposition using the dyadic smooth cutoff
functions ¥n=v,, ®...0%y,, , (cf. the second definition of the space H% in the
introduction). We decompose

46) Mm@ = > GOk Un(€1/srrbar/E)= Y  HEMIE).

ne(No)d_l ’nG(No)d_l
We may write
(4‘7) Gk *Un =97$*1/Jn
where —
gITcL =0k *"/)n

and Jn={/3n1®...®17"nd_1 is similarly defined as v, (say, with Jni supported in
+[2mi=2 2ni+2] equal to 1 in supp ¥n,). Let us note in passing that in view of the
support properties of the Fourier transform of g we have the following version of
Sobolev’s imbedding theorem

(4.8)

sup gk (", Sdy41, oo Sa=1)llpo(rery S C2Martr ¥ Ana= /P gh|| 1 paiay,
Sdy+15--58d—1
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see the argument in [27, p. 18].
Let T} be defined by

(4.9) TRF(€) = [pmp) (251, ..., 2560) ().

Let 0<e'<e, say €'=¢/2. An application of Lemma 4.2 shows that it suffices
to prove the inequality

(410) Y / TP L f(2) 2eo(2) dr

kezd
SC’Nz(n1+...+nd—1)(1/2+g')”92”2 Z /iEkf(:c)izMﬁw(:c) dz, N>2+§.
kezd

In order to avoid complicated notation we shall assume d=3 in what follows. This
case is entirely typical of the general situation in higher dimensions.

In order to use the homogeneity of the multipliers we have to introduce finer
decompositions of gf. For py=2m=3 2m=341 . 2m+3 and pp=2m2=3 2n2=341
oy 2m2t3 et
(4.11) Uy = (Uzlq ) UEQ) =(27"v,27 ")
and

_7l 2 _ 1 —n3—1 1 —ni1—1 2 —ng—1 2 —ng—1
I, =1, xI; =[u, —2 Uy, +2 | x[uy, —2 yUs, +2 ].

Furthermore let

on1+3
cIl =R\ U Iil =R\ [%_2—n1—1,8+2—n1—1],
I/1=2"1"3
2n2+3
=R\ |J I2=R\[f-27""18+27 "]
V2=2n2—3
Setting
Iin(8) = /I gP (w)ihn (s—u) du,
OE 92 (u)hn(s—u) du,
Il xeI?
(4.12) 1
Gris () = 97 () n (s —u) du,
It xIZ,
0k (s) = gr (W) (s—u) du,

cflxcr2
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we split
s guasa s prats
(413)  Tp= Y > Th4 D> TEi+ Y TRI+T,
v1=271-38 py=2n2-3 v=271-3 vp=272-3
where
T,?y F(&)=gp, (217081 /63,2578 85 /£3)p(2M &1, 25265, 259 83) £ (€),
(4.14) kulf(ﬁ) G (2 7Ragy Jg5, 282 ha gy 163) (2R €1, 25285, 220 65) £(€),
T2 F(6) = g2 (20, f6g, 2oty [£3) (241 €1, 2725, 2506) (€),
TPOF(€) = ap (207006 6, 22006, [£3) (281 €1, 2265, 2°065) F(€).
We set
k= sup lgn (w)!,
b, = uelsgjri . lgn ()],
(*15) bez— sup  |gk(u),

u€ I xIZ,

bp=sup |gh(u)l.
u€ell xe[?
Since the Fourier transform of g7 is supported in [—2m1+3,2m1+3] x [—2n2+3 gn2+3)
suitable variants of the Plancherel-Polya theorem (see [27, p. 19]) and the Sobolev
embedding theorem imply

2n1+3 2n2+3 1/1‘
(4.16) ( DY [bm’) <G/ gnll,, 0<r<oo

vy =271"38 py=2n2-3

with the appropriate interpretation for r=o00; moreover we have

on1+3 1/r
( > [bz,’,l,]r> <C2"/"sup ||gp (-, 82) ()
S2

v =2m1-3

(4.17) <C2AmAm/7\gh| 1 (2

and a similar statement with the s; and s, variables interchanged. Also by (4.8) by
is bounded by C2("1+n2)/7||gn]l...
We need pointwise estimates for the convolution kernels K7, , K Zui, K22 K0

kvo?
™! T2 T"’ , Tespectively.

of the operators Ty, Ty, Ty,
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Lemma 4.4. Let e,=(u} ,u2,,1), e, ,=(u},,0,1) and €2 ,=(0,uZ,,1). Let

vy

Wiy (z) =277 (14 [(ew, 7)) TN (1427 |y ) ™ (14272 2o )~V
Wi (@) =27 (1+(eb,, o)) ™ (1427 |24 )~ (14 |z2]) ™
Wi (@) =27 (1+(e2,, 2)) ™ (14|21 ) N (14272 |za]) 7Y,

Wi (@) = (1+|z1 )™ 1+ |z2]) ™ (14 |zs]) ™.

Let
UI?V,N(x) = 2—kl—k2—kswﬁu(2_klxl7 2_k2x2a 2_k3$3)

. n,1 7,0
and similarly define Uy, v, U,w2 ~s Ugn- Then

|07 K, (2)] SCbez,,Z_k”l_kﬂz—ka’YsUgw (),
IO’YKE;l (-T)l < C7an,1 2—n2N2—k1’Yl—k2’Yz—k3'y3 Un ,1 N((IZ)
|(97 kuz( )I < C’Yan 22—n1N2—k1‘Yl k2v2—k3vy3 Un 2 N(x)

IOZKZ O(CB)I < CWNb'k‘2—n1N2—n2N2—k1'u—kz’yz k”sU,Z,?,(x).

(4.18)

Proof. First consider K},. Using the homogeneity of the multiplier and the
decay properties of ¢,, we see that

(419) |8M0 (e, V)™ [qs(e) /, o (u)im (9- —up, g—uz) du]
’ 2N1n1 2N2n2
B+2m|g /& —ul DM (1+2m2]6y /6 —u2 )M

SO(NI)N21N37 )

Using integration by parts we obtain

ohithaths| K7 (2M12), 2% 3y, 2% 25)|
<O [ (4276 sl )M (102765, ) Mg W 0
SCNWn(x).

In view of the compact support of ¢ we get the same estimates for the derivatives
of the left hand side and the desired estimates for K}, and its derivatives follow.

The estimate for K,’:’O has nothing to do with homogeneity: By the decay
properties of @ we have

1032 072 0% (5)] < Cow 2~ MmN (1431 ) ™ (14 [s2) 7
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and hence

|07 072022 16(€) 0k (€1/83, €2/E)]| < Cy2~ (it

The desired estimate for K ,?’0 follows by integration by parts. In the proof of the
estimate for K}"! we replace (4.19) by

|N1‘9N2 wV£> [¢(§)gkul(51/€3,€2/§3)]|

SC(Nl,Nz,Ns,M) ZV(1+2n1|§1/§3 u |)M

9N1n19(N2+N3—M)neg

and argue as above. [

In what follows we shall denote by ﬁ a function which is similar to 8 but
equals 1 on the support of 3. Next let x€C§°(R) be supported in (—3,3) such
that 3 oz x2(- —2)=1. Again let x€C§° be defined similarly to x but equal to 1
on the support of x. We define the operator A}, by

AR (€)= x(2™ (25161 —ub, 2965))x (27 (28265 —u2, 29 £3)) B2 (2% 63) £ (€).

Lemma 4.5. There is a weighted norm inequality
(4.20)

/ DL (@)l do < 02 2ok / 32 AR Ll ) M)

1 2 )2 ,0
Proof. Set S, =TpA%Y, Sy, =TolAr, Sp2 =Tp2A7, and Sp'=
TP A7, Then

(4.21) TeLef= [Z Stut Y St +Z Sz +s;;;0] n Cif.
v ® 3%

Let Hp,,,, HY ku oy HY ,w ., and H,':,;O be the convolution kernels of the operators S,
S,c,,ﬂ1 S,w“2 and S7°, respectively. Fix N (say equal to 100) and let Up, =U, k1,100
etc. The proof of Lemma 4.4 shows that

b
HE <C = Ug,(z),
o< O = (=) o)
7,1
< —naN kpa
l Icup.l( )|—0N2 (1+|“1 V|2) ku(z)

n,2

b,
<Oy2mN M2y
l kl/;tz( )l— N (1+|u2 V2|2) ku( )

|HZO (z)| < Cn2~™ N2~ Npryp ().
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We observe that ||UJ,||1 <C is bounded uniformly in v, n, k. Therefore

l::luu Z,,ka(.’li)

Scz,,:; (1+|/~‘1—I/1|l2b)z(u1|_|_m2__l/2| (/Uky . Z)dz>1/2
X (/ |AD, Lo f () 2L, (z—y) dy)1/2

<c (Z‘Z (1+[N1—'Vlll2b (1'+|u2_u2|)
( /lA LLef () PUR (z—y) dy)1/2

_C(Z leuF) <;/IAZu[lkf(Z/)|2U£u(x~y)dy>l/2

1/2

2)1/2

where for the last inequality we have used (4.16). Using also (4.17) we derive the
same inequality for the other three remaining terms in (4.21) and obtain
(4.22)

1/2 1/2
(Z TP Lk f(w)[2) < C2tmHn2)/2|grl ( / D AR LR f (W) PUR, (z—y) d’y) :
k k,v
Finally there is the pointwise estimate
(4.23) sup UL, x|w|(z) < CMpw(z)
kv

and (4.22) and (4.23) imply (4.20). O

Proposition 4.6. There is the weighted norm inequality

(4.24) Z / AL fuo(@)Pw(z) do

< O, 2t 3 / |fe(@)PMNow(z) dz, No>2+1/e"
k
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Proof. It is convenient to introduce a decomposition in the &3- varlable which
will give the factor of 22¢'("1+72)  We define for (A1, Ap) €Z? operators V% by

Vi F(€) = x2(25 65— 21 Ay ) x 2 (2R 65— 272 \g) £(€).

Observe that A7, is a sum of no more then O(2¢' ("1%72)) operators Vi< A?, where
ome’ N\ e (207 20) and 272¢ )\, € (210, 20) Therefore it suffices to show that for those
A the inequality

(4.25) / Ve A7, fu(e) Pw() de
<t Y / fu(@) PMNow(z) de,  No>2+1/¢,
k

holds. In order to show (4.25) we first prove an inequality for an analogous problem
in two dimensions.

Lemma 4.7. Let 61 and let m,u, o be integers such that m>0, 27™pue
(20, 20) and 2™ pe (210,20) Let B}, ana be the operators acting on functions in
R? defined by

BrJ(e) = x(2™(E—2""ués)) F(£),
Crs () =x* (2™ (63—2700)) F(£).
Let I<max{1,mé}. Then

~

3 / |BrC f(2)Pw(z) dz < C S / |BT=LOmS f(2)PM{D w(z) da.
© o

Proof. Let
Ryup=1{6 16 -2 " pea] <27 | —27 1| < 27141,
Rup={&6—2"pks| <272 (g —27 o <271

Let ¢’€R,s, and suppose that |u—p/|<2772. Let a,— =27 (u—p'),0). Then
& —ay_w€Ry,. Thus B
Ryro Cap—p+Ryp.

Define

TZ‘J JE=x@ (G -2 (=) -2 ) X2 (E2-27 ) F(6)-
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and define 6’;"‘5 similarly as CZ,"‘S (with x replaced by ¥). Then

Y IBRCTif(@)P<C Y Y ICre BT, Co B f(w) 2.
© [

An integration by parts argument shows that the convolution kernel of 5‘;"533‘ is
bounded by Cy times

om 2m6

m,6

Yl ) = @, D @42, e )Y

ife,=(1,-2""u), e;’;:(2"m,u, 1) and if 2=™p~1. Now the argument which led to
(4.22) and Lemma 4.3 show that for fixed y’

3 / |G BT, Omé B f(3)|2(z) da

|p—p/|<t

<Cyv Y. / Tk o O Br ™! f (@) Pwiy’ *|w| () da

<Cn / IC’Z,"‘SBI’;'f_lf(:c)]2 qul;l}1)<l wl’fé’s*wlﬁ;‘s* |w|(z) dz.

The asserted inequality is an immediate consequence. [J

We now conclude the proof of Proposition 4.6. First, since the maximal oper-
ator M,(n1 ) is invariant under two-parameter dilations there is a scaled variant of
Lemma 4.7. Also we can apply Lemma 4.7 twice, in the ;1 —z3 and in the zo—z3
plane; the same applies to the scaled variant. We obtain the inequality

3 / Ve A7, fu(@) (@) ds< CY / Ve AP (@) P Mo () da
k,v

kv’

if I=(ly,12) and 1, <my€’, lo<nge’. We iterate and apply this inequality N times;
here N<1+1/¢’. The result is an estimate of the left hand side of (4.25) by an
expression involving a scaled version of the square-function in Lemma 4.3 (with
A=diag(2%,2%2)). Namely if I'%), is defined by

o 2
TAf©) =[]b3@me (2R g5—27m0 X)) (2™ (25 & —27™wy))] £ (£)

i=1
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we obtain the inequality

> / Vi A fu@)wle) de <Oy S [ IS @MY ula)da,
k,v,\’

1
£

from which (4.25) follows by an application of Lemma 4.3. O

The asserted weighted norm inequality (4.10) now follows by an application of
Lemma 4.5 and Proposition 4.6. This concludes the proof of Theorem 4.1.

Remark. The weighted inequality in Proposition 3.6 implies

(gme)’]

kv
with C.=0(A'/¢) as e—0, some A>1. The geometrical arguments by Cérdoba [12]
show that in fact C.=0(e™?) for some a>0. It would be interesting to find positive
operators N, being uniformly bounded on L? such that

< C2mFm2)e | £l

/ |AD, L1 f (@) Pw(z) di < C~2ag(mtna)ze / (@) PN, [w](a) de

An analogous problem is to find weighted norm inequalities for radial multipliers
and associated maximal functions in R?, with a positive operator AV. In this context
weighted inequalities with a nonpositive A have been proved in [1].

5. HP-estimates

The purpose of this section is to prove Theorem 1.7. The proof relies on a
result on multiparameter Calderén—-Zygmund theory obtained by the authors in [4]
(extending earlier results by Journé [20] and Fefferman [17]). There it is shown for
a large class of singular integral operators T' that the boundedness of T on certain
scalar and vector-valued rectangle atoms implies the boundedness on HP.

To be precise let R be an interval in R? (i.e. a rectangle parallel to the coor-
dinate axes), and let @ be a nonnegative integer. In what follows, Q will always
be >[1/p—1] (the largest integer <1/p—1). Then a is called a (p, @, R) rectangle
atom if a is supported in R, if

/ la(a)|2dz < |R|*-2/"
R
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and if for m=1,...,d
r r
/ A(Z1,y ooy Ty Tt 1y ooy )T v Ty ATy oo T, =0, 71,007, =0,...,Q
m

for almost all (41, ...,24); furthermore assume that the analogous cancellation
properties hold for all permutations of the variables z1, ..., zq4.

Now let R‘=R%* @®R%, and let I be an interval in R%. Then we need the
notion of an L2(R%)-valued (p,Q, I) rectangle atom. This is simply a function a
supported on I x R% such that

// Ia(x',x")lzd:c"dm’ < lfll_z/p

and such that for m=1,...,d;

T T
/ A(T1y ooy Tony Tt 1y ooes Ty 41y ey Td)TL: won Tyt ATy ... ATy, =0,
m
71y ey T, =0, ..., Q

for almost all (z41,...,%4); furthermore assume that the analogous cancellation
properties hold for all permutations of the variables z1, ..., zg, .

Now let T: C§°(R?)— (C$°(R?))’ be an operator with Schwartz kernel K, with
the property that K(z,y) is locally integrable in {(z,v); z;#y:,1=1,...,d}. Let ®
be a smooth bump function on R supported in [1,4] such that > ;2 _ ®(27!s)=1
for s#0. For 1=(ly, ..., 14, ), 1<d1 <d, define the operator T by

dy
7'(0)= [ Ko, [] 0@ o-ul)f0)dy

Theorem 5.1 [4]. Let 0<p<1, s>d(d+1)/2 and Q>[1/p—1], M >2. Suppose
that

(1) T is bounded on L?(R?) with operator norm <A.

(2) For all dy€{1,...,d—1}, for all LEZ%, for all intervals I in R with
sidelengths 251, ..., 2%41 | for all L2(R4~%) valued (p,Q,I) rectangle atoms a and
for alll=(ly,...,14,), [;>1, i=1,...,dx

di \~S/P
(51) “TL+ZCL”Lp(Rd11L2(Rdz)) SA(Z lz> .

=1

(3) The condition analogous to (5.1) is valid for every permutation of the vari-
ables x1,...,x4.
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(4) For all LEZ4, for all intervals R in R® with sidelengths 251, ...,2L4, for
all (p, Q, R) rectangle atoms a and for all 1=(11,...,13), l;>1, i=1,...,d—1

d \~s/p
(5.2) ||TL+la“Lp(Rd) S A (Z l7,> .

=1

Then T extends to a bounded operator from the multiparameter Hardy space HP(R?)
to LP(R®) and the operator norm is bounded by CA. Here C depends only on p, d
and s. If T is translation invariant then T is bounded on HP(R?).

We now consider convolution operators T' given by Fourier multipliers m via
1/“? (€)=m(€)f(€). For keZ™ let Ty be the operator with Fourier multiplier
m(§) H?;l B(2*:¢;). Variants of the standard Marcinkiewicz multiplier theorem on
HP-gpaces follow from Theorem 5.1 and

Proposition 5.2. Suppose that 0<p<1, a>1/p—% and let Q, € be such that
Q>[1/p—1] and 0<2e<min{a—1/p+3,Q—1/p+2,1}.

(1) Suppose that 1<d; <d—1 and
(5.3)

sup sup “ﬁ(l)®~~®,3(d1)m(t1 ‘,...,tdl ',gdi_’_l,...,gd)”".‘g‘(n’dl) < 0.
te(R4)% (€4y41,-,€q)ERIT

Then for all LEZ%, for all intervals I in R% with sidelengths 251, ...,2L41 | for all
L?(R4~%)-valued (p, Q, I) rectangle atoms a, for all 1=(ly,...,1g,), l;>1, i=1,...,d;
and for all ke Z4

dy
(54) “ (Tk)L+la”Lp(Rd1 ,LZ(Rd_dl )) S OA H 2—€(li+lki|) .

i=1

(2) The inequality analogous to (5.4) holds for every permutation of the vari-
ables z1,...,Z4.
(3) Suppose that

(5.5) sup |81y ®...®Baym(ts -, .- ta- )|z mey <oo.
te(R+)d

Then for all LeZ®, for all intervals R in R® with sidelengths 211, ...,2L4  for all
(p, Q, R) rectangle atoms a, for all l=(1y,...,l4), l;>1, i=1,...,d, for all k€Z?

d
(56) |0 allorey < CAT ] 27 H1RD,

i=1
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If (5.5) is valid then m is bounded and (5.3) and the analogous conditions
obtained by permuting variables are also satisfied. In particular (5.5) implies that
T is bounded on the multiparameter Hardy space HP(R®) and the operator norm is
bounded by CA.

Proposition 5.2 is proved by standard arguments, see for example the proof
of [4, Proposition 5.1]. The last conclusion of Proposition 5.2 follows of course by
Theorem 5.1. The reader should note that the multipliers in Theorem 1.7 generally
do not satisfy the assumption (5.5), even in the two-dimensional case.

Proof of Theorem 1.7. We may clearly assume that p<1. Again since charac-
teristic functions of half spaces with boundaries parallel to the coordinate axes are
Fourier multipliers of multiparameter Hardy spaces there is no loss of generality in
assuming that m is supported in {;£;>0,i=1,...,d}. We use the notation intro-
duced in the proof of Theorem 4.1. Let T be as in (4.9) and set T"=3_, 54 T¢.
We shall show that 7™ is bounded on HP(R?) with operator norm bounded by

(57) Cs sup ||g}§||Lp(Rd_1)2("1"'""""““)(2/”_1)(1+n1+...+nd_1)(s+d)/p.
kezd

Since
D sup [lgh lpra-ny2 TG (L 4 tmg ) 4O
ne(Ng)d—1 k€2
<C: sup |\gkllyz ifa>2/p—1
keZd

the conclusion of Theorem 1.7 follows.

We have to verify the hypotheses (5.1) and (5.2) of Theorem 5.1 for the oper-
ator T™. The mixed norm inequalities are a straightforward consequence of Propo-
sition 5.2. In order to see this let

Fr(§) =h(€1/8a s Ea-1/€a)

where h is compactly supported in [%, Q]d—l. Then for >0 one has the inequalities
(5.8) sup 181y ®--®BayFu( -, €a)llrz (ra-1) < Cllhllrez ra-1)

d
and

(5.9) sup 181)®---®Bay Fr (€1, lrez re-1)
1

Ihllre my, if d=2,
<CS |hllpz ra-1y+5up,, Yps IDF .. DE_ DEDE,, .. DG hls1, )|l ra(ma-2),
if d> 3.
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It is straightforward to verify (5.8) and (5.9) if « is a nonnegative even integer and
the general case follows by analytic interpolation. Note also that by a version of
Sobolev’s imbedding theorem HE(R~!)CHZ (R4 ) if p<2 and S>a+(1/p—3).
Using this and (5.8), (5.9) we see that (5.3) is verified for the case dj=d—1. The
other cases follow similarly. An application of Proposition 5.2 implies (5.2).

The main work in the proof consists in the verification of (5.1). Assume that a
is a (p, @, R) rectangle atom and R is an interval of dimensions 2% x...x2L4. Then
we shall prove that

d
(5:10) (7)< CarsttraedV [[ ettty N >2(3-3)

=1

for some £>0 and also
(5.11) (TR *al, < C2lmitFna-D@/p=D)gn||,.

We shall use (5.11) only if max;{k;—L;}, max;{l;}<Cp(1+3_,n;) where C, is a
large fixed constant while (5.10) is a remainder estimate. In fact applying the
Sobolev inequality (4.8) with d; =0 we see that (5.10) and (5.11) imply

> (@)
kezd p
d
SO( Z 9(nit+...4+nq—1)(Np+1) H2_5P(li+|ki—Li|)”gZ’“£
max{|k;—L;|,i=1,...,d}> =1

e 1 (2N+2/p)(ni+...4+n4-1)

+ >
max{|k;—L;|,i=1,...,d}<
e ' (@N+2/p)(n1+...+n4_1)

: 1/p
x min {2+ +na )R-, et (Np+D) T g-eplistki=Lal) } gn Hﬁ)
i=1
(2/p—-1) (1+n1+..‘+nd_1)(s+d)/p
(li+..+1g)s/P

Sc2(n1+--~+nd—l) “ggllp

and it follows that 7™ is bounded on H? with norm not exceeding (5.7).
The verification of (5.10) is easy. Simply observe that

wg[qg(g)mk’n(g)” S072n171+~~~+nd~1’)’d—1(27741’Yd+”'+2ndﬂ1’7d)

and an application of Proposition 5.2 yields (5.10).
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We now verify (5.11) and assume for convenience d=3. We show that (using
the notation introduced in (4.15))

(5.12) I(T7,) " allp < Chy, 2m ) W/p=Digny,,
(5.13) (T ) Hallp < Oyl 2 /P~ D= | grl,,
(5.14) I(To2) Hall, < Cnbja2~™ N2 0/P=D g,
(5.15) I(T7°)Hall, < Cybg2= MmN gny) .

Using (4.16) and (4.17) with r=p we see that (5.11) follows from (5.12-15). We
shall only verify (5.12); the remaining cases are similar or simpler.

We divide the rectangle R (which has dimensions 201 x2L2x2%3) into
H?—_-l max{1,2L=%} congruent intervals R} of dimensions

min{2L1, 2%} x min{2%2, 2%} x min{2L2 22}
and centers y,. Let be af=ax RY and let
RLH {2; 282 < g — | <oli+hi+2 j_1 9 3}.
Then it is easy to check that if yesupp a; IERL+l then for L, s in Lemma 4.4
UI?V,N(x‘y) ~ UI?V,N(CU—Z/Z)

and therefore by Lemma 4.4
(5.16)

1/p
IR @) %ally < C(Z n Kzu¢L+z>*azrrg)

<Cont, (Z | vtnta-piosita- y)uak(wwyrdx)w

< CN2(n1+n2)(1/P—1)bZV (Z/ » 9~ (n1+na+ki+ka+ks)(p—1) [UJZ/N(l’—yf:)]pdw
R
I

1/p

P
| [kt ayateisssni-n )

Using Holder’s inequality we see that

3 1/p
(5.17) 2(L1+L2+L3)(1/p—1) (Z H[min{l, 2(ki—Li)(1—p) }]”ag”ij

poot=1
< C2L1+L2+Ls)(1/p—1) llall: < C|R|1/”_1/2Ha||2 <C'.



Homogeneous Fourier multipliers of Marcinkiewicz type 77

We perform the linear volume preserving change of variables
ki—ks, 1 ka—ks, 2
(v1,v2,v3) = (T1, T2, 27~ "y, 11 4+272 72Uy, 2o+ 23)

and see that for N>1/p

REH

C 2~k1—n1 2—k2—n2 2—k3 d C/
< <C.
<C | TR TR TR S

Therefore if k; —L; <0, i=1,2, 3, the desired estimate (5.12) follows from (5.16) and
(5.17).

In all other cases we use similar arguments together with the cancellation prop-
erties of the atom. For example assume ki <Lq, ko <Lo, k3<Lj3. Since

/ / al, (y1,Y2,Y3)y1 ' ¥5° dyrdyz =0

for almost all y3 for 0<r;, 72 <@ we see, using Taylor’s formula, that

1(1-5)@ g \@+!
(KR, ®ri1)*ay (x1, 2, 3) = A ( Q!) /(87:;;)

x (KR, @111) (21 —91, @2~ 42, 23~ Uk )3 +5((Uh )3 —v3)) (k) —us) ¥+ af () dy ds

and using Leibniz’ rule and Lemma 4.4 we see that

,(KI?V@L-H) *a‘l]:(xl? x2, 173)|
< C28s(@D max {27 R(@HD), 9~ Rt QEDITT, 2y )0, a1

Similar considerations in the other cases (where we use that a} has cancellation
in the y; variable whenever k;>L;) lead to

3
I(KT, @211)*allp < Cn ] [lmin{1, (274 4257k 9*

i=1

1/p
iy (30 [, 2kt 0Dl ooy dalafl?)
“ w

As above it is easy to check that for N>1/p
/RkH 2‘(n1+n2+k1+k2+k3)(l’—1)[U’?V’N(w_y;:)]p dx

< C'min{1, 2k Fh—Fi=my min(1, 22+l —ke=na} min{] gletls=hka},
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Therefore

|(KE, @r+1)*allp

3
< C2(mtn2)(/p—1)pn H[min{l, g(Lstli=k) /Py min(1, (275 2L —ki)Q+1Y)

i=1

1/p
w9 (ks-+ha+ko)(1/p—1) (Z llak ll'f)

u
< Cg(nl+n2)(1/P—1)bzv2(L1+L2+L3)(1/P-'1)

3 1/p
x (Z ot 2 T [minga, 2<Lf-'°i><lfp~1>}1p)
" i=1

< C2(mtm)A/p=Dpn | pI1/P=1|g)
< O(m+n2)(1/p-1pn

This proves (5.12) and concludes the proof of Theorem 1.7. O
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