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Introduction

If we embed an (n-—1)-sphere in an n-sphere, the complement consists of two
components. Our problem is to describe the components more exactly.

For n=2, there is a classical theorem of Schoenflies which says that an arbitrary
simple closed curve in the two-dimensional sphere S* separates S® into two components
whose closures are both topologically equivalent to a disk. The Riemann mapping
theorem yields, moreover, a conformal equivalence between the interior of a simple
closed curve and the open disk.

The reasonable conjecture to make would be that some analogous result holds
for all dimensions; more precisely, that the complementary components of an (n—1)-
sphere embedded in n-space are topologically equivalent to n-cells. .

A classical counter-example (in dimension % =3) to this unrestricted analogue of
the two-dimensional Schéenflies theorem is a wild embedding of S? in 8% known as
the Alexander Horned Sphere [1]. One of the complementary components of this
embedding is not homeomorphic with the n-cell, and, in fact, not simply connected.

One’s intuition shrugs at this counter-example, attributes its existence to the ‘pa-
thology of the non-differentiable’, or whatever, and persists in believing the statement
true—at least for mnice imbeddings. In particular, the Alexander Horned Sphere
embedding can be made neither differentiable nor polyhedral.

Under the assumption that the two-sphere §® is embedded polyhedrally in S2,
Alexander [1], and later, Moise [4], proved that the closures of the complementary

components of 8% were topological 3-cells.

{*) A research annouiicement has already appeared in Bull. Amer. Math. Soc. 65, 1959.
1— 61173047, Acta mathematica 105. Imprimé le 11 mars 1961
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My aim is to prove that if 8" ! is embedded nicely in S”, the closure of the
complementary components are n-cells. The word “nicely” is defined in section 1, and it
includes the class of differentiable embeddings as a special case. However, it is yet
unknown whether the class of polyhedral embeddings is also included as a subclass
of nice embeddings.

The main theorem is proved in section 2. A corollary, the Open Star Theorem, is
given in the last section. It states that the open star of a vertex in a triangulated mani-
fold is homeomorphic with Euclidean n-space. This is a weak partial result towards
what is known as the Sphere Problem. The Sphere Problem asks whether or not the
closed star of a vertex in a triangulated manifold is combinatorially equivalent to a
closed n-cell, I". It is not known yet whether the closed star is even topologically
equivalent to I".

I am thankful to Professor R. H. Bing, Professor Ralph Fox, and John Stallings
for suggestions yielding improvements in the presentation of the proof of the main
theorem.

1. Section of terminology

The Euclidean n-space, or the Cartesian product of » copies of the real line R,

will be denoted R". A point z € R" is thus an n-tuple of real numbers (x,, ..., z,) and

We use the following notations.

The standard n-cube I"={x € R"|||z||<1}, I'=1.

The standard n-sphere 8"={x € R""'| ||z||=1}.

The standard n-annulus A"={zx € R*|1<||z||<2}.

The standard n-stock St¢* is obtained by attaching two copies (4"), (4™), of A"
via the identification:

{r€ (4|2, =2} & {z €(A™),| 2= — 2}

The n-annulus has two boundary components, each homeomorphic with 8" I
shall refer to {x € R"|||x||=1} as the internal boundary component, denoted in 8 4™,
and {x€R"| | x| =2} as the external boundary component, denoted ex 8 4". I shall
also need names for standard homeomorphisms of "' onto each boundary compo-
nent. Denote by i: 8" !—>in § A" the identity homeomorphism, and by ¢*: §" ! —
ex 9 A" the radial projection homeomorphism.

Similarly, 1 shall need a name for the external boundary component of Si".
Call it ex §S8t". Call the two internal boundary components w; and w,. Let 7, 7,

be standard identity homeomorphisms of 8"~! into each internal boundary component.
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Let T be some fixed homeomorphism of ex 85S¢ onto S"!, for instance:

-2
(w—l— L. ﬂ) for z€(A™);, nex 88¢", x={x}, ..., 2,)

(@) 4’ 27772
T(x)=
2
(Zc%, %2—, ,%) for x€(4"), Nex 28t", x=(2y ..., Ty)-

If X and Y are topological spaces, X~ Y will signify that there is a homeo-
morphism between them.

If X is a manifold, 0 X will refer to its boundary, and int X will be the space
X—-0X.

If X and Y are topological spaces, and f: 4 — ¥ a continuous map, X U,Y or
Y U, X will refer to the topological space X U Y with the equivalence relation x ~ f (x),
equipped with the identification topology. There is no ambiguity arising from reversing
the order of X and Y; where it is absolutely clear which attaching map f is meant,
X U;Y may be referred to as XU Y. And further, in the course of the proof, iter-
ated identifications X, U, X, Uy, ... U, X, will be used. Where no confusion can arise
I shall dispense with the parentheses necessary to indicate the precise order of iden-
tifications.

By CX, the cone over a space X, is meant the space X x[0,1], with X x0
identified to a point. By a subcone C;X is meant the image in 0 X of XX[0,t] for
0<it<1.

A similarity transformation S: C X — C X is a map S of the form S (X x¢) =X xS (¢),
where S: [0,1]—>[0,1] is a monotonic continuous function such that 8 (0)=0.

Finally, a FEBuclidean similarity transformation is a mapping T of R"—> R"
which is of the form:

T: v —Ax+b, where bER" and 1 is a positive number, for x € R™.

DEFINITION: An embedding z: "' R" is mice if one can extend z to a
homeomorphism 7z*: IX8" ' — R" (i.e. &* (0X8" ) =5 (S""")) such that

(i) #* ((—1)x8"') is contained in the bounded complementary component of
7* (0% 8"~1) [this requirement is made for convenience only] and

(ii) 7" is linear in the neighborhood of some point of (—1%, 0)x8" 1~ A< R".
(This requirement, also, is phrased in a manner which saves words in a future ap-
plication. Manifestly, there is no loss of generality inicurred by assuming that the ‘linear
point’ lie in that restricted territory.) Linear is meant in the sense of a map of a

subset of the vector space R" into itself.
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2. The main theorem

The main theorem to be proved is the following:

THEOREM. Let 8" ! be nicely imbedded in S™. Then the closures of the comple-

mentary components of 8" are homeomorphic to the n-cell.

Outline of the proof.

(A) In the class of m-manifolds which bound (z—1)-spheres (in a nice way),
a multiplication is defined. Intuitively, one takes two such manifolds M, N and
attaches them to the interior boundaries of an n-stock, forming a new manifold,
M- N, which again has an (n— 1)-sphere boundary. Complications exist in the defini-
tion since we must prove that the final space M - N is well defined. For, a priori, M - N
depends strongly on the homeomorphisms used to attach M and N to the interior
boundaries.

(B) (Lemma 2) M-N=N-M.

(C) If M 8", one can construct a manifold N for which M-N~I" (N is
roughly the complementary manifold 8" —int M.)

(D) Let B*=M-N-M-N ...U oo where oo is the one-point compactification of

the rest, then (Lemma 3) there are two ways of viewing B*.
(a) B*=(M-N)-(M-N)..Uoo
and since M-N~I", Be=I"1I" ... oo,
from which one easily deduces that B*~I"
(b) B*=M-(N-M)-(N-M)..Uo0
and since N-M=M-N by (B),
Be=M -I"-I" ..U oo
from which one easily finds that B*~ M.
(B) M~I" for by (b) M ~B*, and by (a), B*~1I".

The proof.

The Semi-Group X. Let X be the collection of couples M= (M, @), where

(i) M is a compact n-manifold with boundary embeddable in Euclidean n-
space in such a manner that it has an (n—1)-sphere boundary &M nicely em-
bedded in R";
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(i) ®: 8M — 8! is a homeomorphism.

If MeX, M= (M, @), I will denote M by |M| and ® by @, when it is helpful
to do so. Call |X| the set of manifolds M satisfying condition (i) above. Two ele-
ments T, M €X will be called equivalent (denoted: M~ M) if there is a homeo-

morphism h: || —|M’'| and a commutative diagram:

IR Y

| Dy [ Doy

an—-1 o1
8Pt < 87

The object of real interest is the set of equivalence classes of X, under the
relation defined above. Denote this set by X. A multiplication is defined in X as

follows: If M, N are representatives in X of equivalence classes of X,
m-n-= (I ml Ur;(bm Str Un‘l’n | n I’ 7).

Notice that this is just a definition of what is commonly known as “addition
of manifolds”. The reason for carefulness is that at present we cannot prove that
the naive definition of ‘“manifold addition” is independent of the attaching homeo-
morphism. This is, in fact, the only reason that the elements of f{ were chosen to
be couples (M, @) rather than just topological spaces.

In order to justify the definition of 1M we must prove the following two

lemmas.
LeMma. X 43 closed under this mulliplication.

We have to show that | -] satisfies (i). The proof is however simple and
can be omitted.
I might also include the remark that it is not strictly necessary for the proof

of the main theorem.

LemmA. The above multiplication is well-defined on the equivalence classes of X,

and hence yields a multiplication in X.

All one need show to prove the lemma is that if M is replaced by an element
M’ € X equivalent to it, M- and M -H are again equivalent.
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By the definition of equivalence, 1 and M’ satisfy a commutative diagram:

alm|o|m|
Dy \q)m.=¢mon
v A\
Sn—l Sn—l

where % is a homeomorphism %: |M’'|—|M] and

M- H= (M| Voo, St Upoa, | 7], 7)
= (Iml Unoq)moh N U-;,oq)nlnl, ‘L’).

The homeomorphism H: |M'-N|—|M-N| defined as follows:

{H/St” U | | = identity
H/|M|=h

yields the equivalence. H is thus defined on |’ N|; clearly it is defined compatibly
with attaching maps and is a homeomorphism. Finally, H/2| M’ - H| is the identity

homeomorphism yielding the commutative diagram:

a|m'-n|>ﬁ:iea|m-n|

Iz T
v

gm—l Sn~1
We stated that X is a semi-group, or, in other words, the multiplication defined
above is associative. This could easily be proved from the definition. However, it is
not needed for the main theorem, and so I shall not prove it.
Let J€X be the couple (I, :) where «: 91" — 8" ! is the identity map.

Leuma 1. If M€|X| and f is a homeomorphism of @M onto in 8 A", then
MU, A"~ M.

Lemma 1. If MeX, then M-T=M.

Proof of Lemma 1. Intuitively the situation is clear. M €|X| is so defined that
OM has an annulus neighborhood, 4”. Since .M is an (n — 1)-sphere nicely embedded
in R", 9 M = (S" *x0) where ¢ is a homeomorphism of, say, " 'x[0, 1] into M. Let
A" be the annulus o(S" ?'x[0,1])in M, and denote by M* the closure of the
complement of A% in M. Then M =M*U A%, and M U,A"=M*Uy 4A* U, 4™
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A homeomorphism from M to M U; A" can be obtained by leaving the comple-
ment of A* fixed and stretching it over itself and A" To define such a homeo-

morphism u: M — M U;A™ formally, let u be the identity on M* and define u from

o(s, 20)€4*, 0<ti<}{,

A* t A*U A‘n b ,t ESS
0 1 y ule(s;t)) {(fg(s,o), 4t—1)ed", }<t<l

Lemma 1’ follows immediately from Lemma 1, since
|m-J|=|M| V.o, St" U, I") and q),,,.‘,=z.
There is a homeomorphism k: St*U,, I"— A", sending 7; to ¢ and 7 to *'. Thus
|1 91= 11} U, 0, 4"
and @y.,=1*"'. Furthermore, 4 of Lemma 1 yields a commutative diagram:

alm|-£.a\m-J|
) V‘I’ma

énAl Sn«l
LeMMa 2. m-n~n-m.
The essential point of the proof is contained in a statement concerning St".

Leuma 2'. There is a homeomorphism R* of the standard n-stock which interchanges
the interior boundaries by a rigid Euclidean motion, and leaves the external boundary
pointwise fixed. Further,

T/wi=1,1" T/wy=1,72""

Lemma 2’ is obvious, and Lemma 2 follows immediately, for there is a homeo-
morphism T: |- H|—|N-M]| ie.

T: |M|Urioy, St" Ui, | B = | M| Uryo0y, S Uryo, | U1,
such that
T/St"=R*
T/| M| =identity
T/|N| =identity.

It is merely a verification to show that 7T is well defined, and yields an equivalence

between M-N and N-M.
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Levma 3. If |[M-N|~I, then |M|~I", | N|~1"

Let A4* be a topological space composed of an infinite number of annuli 4;
attached side by side, compactified by a single point co. 4% is to be thought of as
embedded in the Euclidean space. (See Fig. 1.)

Any two adjacent annuli 4;U 4;,; form an n-stock. Denote, as above (Fig. 1),
the n-stocks Ay 1 U Ay by B and As U Agiya by Bi. Let w; be the internal bound-
> B, and

ary of 4,. There are Euclidean similarity transformations ¢, o; bringing iy .
i

b1 o Bi. Let »; be the euclidean similarity transformation bringing w, to w;. Further,

B, is to be identified with the standard n-stock, and w, with 8"~',
We attach a copy M; of M =|M| in each ws-1 by a homomorphism

>

vgy_y W2i-1

oM g, "1

and similarly a copy N; of N=|H| in each wx by a homeomorphism

>
Vg4

oN ¢”> gr-1 w2;.

Let B*” be the ‘filled-in” space A“[iJNiUMj and Bi=BUM,UN;
?
Bi=pi UN,UM;,;. From the definition of f;, fi, it is clear that

Bi~M-N|~1I7,

and, using Lemma 2, Bi~|N-M|~ I
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1) B®~I"

Let K be the union of the external boundaries of Bi, compactified by oo,
K= U ext 9 U oo.
iz1

K can be considered as a subset of 4 and hence of R". As a subset of R", ext 98’

bounds & cell, ¢;, and it is clear that

V= U CiU oo
i=1

is homeomorphic to a cell, V~I"
There is a homeomorphism IT from ¥ onto B®. II is defined to be the identity
mapping from K<V to K< B®. This defines Il on d¢; for each i

II: 7} c; —> 0 Bi.
Since both ¢, and B; are topological n-cells, one need only prove a simple lemma.

Leuma (a). If 11 is a homeomorphism of oI"—oI", then Il can be extended

to a homeomorphism
Ir*: 1" — I

Proof. Consider each I" to be the unit ball in R", and extend II radially. There-
fore, one can extend II to each ¢;. This yields a homeomorphism I1*: V- B*. Thus
B¥~ V&I,

al) B°~M.

There is a second way to decompose B™:

BwZ(AIUMI)U (UlAiUM;UN;)U oo,

i>1
or B*=(4,UM)U (U fi U o).
LeMma (b). A4,V (U BiU co)mA™
Proof. Let K'=A4,U ext 3p; U oo,

considered as a subset of A and hence of R". Each ext 8 ; bounds a cell ¢; in R™. Let
V'=K'U(Uci), V'<R™

It is clear that V'~ A4".
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Fig. 2.

Define a homeomorphism II’ of ¥V’ onto 4,U (U,Bi)U o as follows. II' maps
K'SV to K'SA4,U(UB)U o by the identity map. This defines II’ on each dc;.
i

IM': dci — o pfi.

Since we know that ¢; ~I™ and f;~I", the above Lemma (a) allows us to extend IT’

to a homeomorphism of each ¢; with each ;. This yields the homeomorphism

O*: V' — A4, U(U;Bi)U o,
proving- Lemma: (b).
We have obtained B”~ M U A". Lemma 1 applies, yielding

B*~MU A"~ M.
(I) and (II) yield a proof of Lemma 3, for
I"~B*~M.

The argument is symmetrical in |M| and |H|, and so both |M| and |H| are to-
pological cells.

We can now complete the proof of the main theorem.

Let M and N be the two complementary components. Let g: §*~'— 8" be the
nice embedding. Then one can assume that there is a map o: Ix8"!— 8", and,

moreover,

o([—1,01x8" HY)aM, o(0, +1]xS" )= N.

Let M*=M—-po([—} 0]x8"").
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Then M*~M. To see this apply Lemma 1, after noticing that
M=M*Uo([—} 0JUS"
and that o([—%, 0]xS" ')=A4 is topologically an annulus. Then
S"=M*YAUN~MUAUN.

Since ¢ is linear in the neighborhood U of a point in [—§, 0]x8"", let A be a
standard simplex in U. Then 4 —int A is homeomorphic with the standard n-stock by
a homeomorphism u:

St"—> A —int A.

s
Also, g(A) is a standard simplex in S, and so 8" —int g (A)~I". Therefore,

I"~M Ugou(St")U N.

Let f=ploo /oM, g=utop '/ON.
Then I"=M U;,StU,N. Or, if one sets
m=(M, f), n=(N, g),

then |m-n|~1m
But Lemma 3 applies and

N=|H|~I", M=|M|~1I"
proving the theorem.

The differentiable case

The main theorem merely states that a topological equivalence between the
closure of the interior component of a nicely embedded sphere and the standard cell
can be obtained. This raises the question whether or not a diffeomorphism between X and
the unit cell can be obtained when the embedding S" ' — S” is assumed to be a diffeo-
morphism. That any differentiable embedding S"™! — 8" is nice in the above sense
is a standard lemma (See Thom [3]). The methods of the proof can be refined, in
this case, to yield a homeomorphism between X and I™ which is actually an equi-
valence of differential structures except at the point co. More precisely, one can ex-

tend the given embedding
®: gI"=8""1 > 5"
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to a homeomorphism o*: I* - 8*

that is a diffeomorphism except at oo [4].
In fact, this is the best one can hope for. Milnor [5] has exhibited a diffeo-
morphism ®: 8% — 8%< .87 which cannot be extended to a diffeomorphism ®*: I — &,

The simplicial case

If one assumes that @ is a simplicial embedding it is unknown whether @ is

nice in the above sense. Assume, then, that ® is a simplicial, nice embedding

8" 1-—4>8" Then it is an open question whether or not ® can be extended to a
simplicial homeomorphism ®*: I" — 8", Unlike the differentiable analogue there is no
counter-example to this.

Moreover, it is a simple matter to refine the above proof to yield an extension
®* which is simplicial except at oo. This means that there is an infinite triangula-
tion Ty of X — oo and an infinite triangulation 7', of I"—® ! (o) such that with
respect to each of these triangulations ®* is simplicial, and 7'y is compatible with
the triangulation of X — oo inherited from X, and 775, is compatible with the triangula-
tion of I"— @ (o) inherited from I”. /

Some further generalizations

Let X be the semi-group of knot types. X is the set of equivalence classes of
combinatorial imbeddings of 8! in S®. Two imbeddings are equivalent if one can
be brought to the other by a combinatorial automorphism of S* onto itself.

The definition of addition of knots is standard and the set X forms a semi-
group with respect to this operation. It was an observation of Fox that the con-
struction used in the main theorem could be also used to prove that X has no in-
verses, a theorem due originally to Shubert.

This remark can be generalized:

Define an imbedding ®: S* — E™ to be invertible if it satifies (1) and (2) below.

(1) @ is linear on some open set of S¥, which may be chosen to be the lower
hemisphere, by obvious shifting. If two embeddings ®, ¥': 8 — E" satisfy (1), then
there is a natural way to “add” them, obtaining an imbedding denoted ® +¥": §*— E".

(2) There is a W, satisfying (1), such that f=® +¥: §*— E" extends to a homeo-
morphism

f*: Dk+1 . E",

where D**! is the (k+ 1)-cell, and S* is considered as its boundary.
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™~ A

IxK
Ix K

|

Fig. 3.

The interior boundary of the (j+ 1)st copy of I x K 1s aitached to the exterior boundary of the j-th.

TaEoREM. If ®: 8~ E" is invertible, then © can be extended to a homeomorphism
@*: D+t gr.

A proof and applications of this fact will be given elsewhere.

3. The open star theorem

By a ftriangulated manifold will be meant a simplicial complex that is topo-
logically locally Euclidean. The closed star of a vertex v in a triangulated manifold
M will be the subcomplex of M consisting of all simplices containing v. The open

star of v is just the interior of the closed star of v.

THEOREM. The open star of a vertex in a triangulated n-manifold is topologically

equivalent to R".

Proof. Let K denote the boundary of the closed star of a vertex ». Then the
open star of » can be considered to be just CKUKxIYKxIy ... where the at-
taching maps are as in Fig. 3.

Choose o, an n-dimensional simplex with v as vertex. Let ¢’ be a simplex con-
tained in ¢, and similar in shape to ¢. Then &(¢’) is an (n—1)-sphere nicely em-
bedded in .

Let U be a neighborhood of v homeomorphic with R", disjoint from y, 9, the
opposite faces of v in ¢ and ¢'. I assume that ¢’ has been chosen sufficiently near
o so that ¢’ intersects U and that U< OK.
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Fig. 4.

Choose a point p€ int ¢’ NU. Since U is Euclidean space, there is a homeo-
morphism A: U— U, such that A is the identity homeomorphism outside of a suffi-
ciently large sphere Sc U, and A{p)=v. The homeomorphism 4 can be extended to
a homeomorphism of CK —>C K by defining # to be the identity outside S. 4(2(0"))
is a sphere 2, which contains v in its interior. If p is the face opposite », A(y)=1y.

Choose a sufficiently small subcone ¢’ K of CK so that C'K lies entirely in the
interior of 2. The region between C K and int C' K is topologically K xI. Therefore
2cKxI, and there is a copy, 2;, of 2 embedded in each KxI contained in the
open star. See Fig. 5.

LevMA 4. The closed region A between 2; and 2;_, is topologically an annulus.

One could obtain Lemma 4 by first proving the simple but technical corollary

to the main theorem:

Let @, ¥ be two nice embeddings of S*™' into S™ such that ® (8" 1) N W (8"™!) is
empty. Then the closure of the complementary component of ® (8" )UYW (S™) which
has @ (8" 1)U W (8" ) as boundary is topologically an annulus.

I content myself, however, with a direct application of the main theorem.
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Fig. 6.

Each EJ-COKICQ (Kx1I), is the image of 2=21(6¢") under a similarity trans-
formation 7;. Both Z; and 2;_; are contained in 7;1(¢) and
2;=1;A(00"),
2 1=T_1A(00).

Since A is the identity transformation on y, y<dc¢’ is mapped linearly onto
v;=1;A(y) in 2, and also onto yi 1=T;-1A(y) in 2;_1. Thus y;, ;4 are linear sim-

plices.
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Fig. 7.

LeMMA 5. There is an n-cell (pictorially it is a tube) D contained in A and inter-
secting y; and y;_1 on (n—1)-cells A; and A; 1 respectively.

The construction of D is straightforward, and I shall merely sketch the method
by which one may obtain such a D.

First a point 2; €y; can be joined to a point z_; €y;_; by an arc Cin A. Take
an open neighborhood of ¢, and in it, replace ¢ by a polygonal arc C. Finally take
a closed regular neighborhood of ¢ in A, D. Since 9; and y,, are hyperplanes
(locally) one can modify D mnear z; and 2; ; to yield D, a regular neighborhood which

intersects y; and ;-1 at (n—1)-cells A;2 2, A;j1d%_1.

LEMMA 6. 0(A—D) is an (n—1)-sphere nicely embedded in ;A (o), where ©; A (c)

is considered to be a simplicial n-cell with simplicial structure transported from ¢ by ;1.

The proof of Lemma 6 is straightforward and tedious, and so it is omitted.

We now prove Lemma 4.

Consider A" to be d¢’xI. Define a mapping & bringing 8¢'%0 to 2; by 7,4,
and d¢'x1 to 2;_; by 7;_;A. Construct a tube

D' coo'x1I
from 7 Ajcd6’ X0
to ih Aj1c@o' X1,
in such a way that the closure of

o' xI—-D'

is topologically an n-cell, D".
0 is already defined on
3’[;—1 A/ Uo Tj“.ll A 1,

but undefined on L'=aD —7;," AUt h A
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Our problem is to extend § to a homeomorphism § of
oo’ x{0}u{l}cL

to >,U2,1UL,

where L=0D—-A;UA;_;.

Since L and L’ are both homeomorphic with 4""!, and §/9L is a combinatorial
homeomorphism of 9L onto 8L, the problem is merely to extend a given combina-
torial homeomorphism & from 94" onto itself to a combinatorial homeomorphism
of A"! onto itself. This requires checking that the two homeomorphisms obtained
by restricting & to each of the components of 94" ' behave compatibly with re-
spect to orientation, and then applying Theorem 1 of [6]. In this way ¢ is extended
to L.

By Lemma 6, ¢(A—D) is a nicely embedded sphere, hence the closure of the
interior of 9(A — D) is topologically an n-cell. Now 8/8 D" maps the boundary of an
n-cell onto the boundary of an n-céll and so can be extended to a homeomorphism
of D”. Similarly /60D’ can be extended to a homeomorphism of D’ onto D. § is

therefore a homeomorphism of 4™ onto A.

Proof of the open star theorem.

CKUIXK),
7
can be regarded as A{e" YU A
which is topologically I"UAT U 43U ...

when the interior boundary of A4f,; is attached to the exterior boundary of A7, and

the interior boundary of A7 is attached to &I". Hence
CKU (KxI)~R"
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