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1. Introduction.

It is well known that, following the classical procedure of Cauchy, the theory
of analytic functions of a complex variable z(=x + 7¢) is effectively developed
if one starts with a definition according to which the functions under considera-
tion possess a unique derivative in an open set O {in the z-plane) and on the
basis of this definition establishes the two fundamental Cauchy contour-integral
formulas?!; with the aid of the latter formulas a great number of essential pro-
perties of analytic functions can be established. If in the above definition the
open set O is replaced by a set K, which is not necessarily open and which, in

fact, may be without interior points, one would obtain, of course, a very general

! The conditions with respect to the derivative can be somewhat lightened (GoURsAT, MOXTEL,
BESIKOVICH, MEXCHOFF and a number of others).
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class of functions of a complex variable, much more vast than the class of
analytic functions. The first highly important development in this direction is
due to E. Boren!, who made a significant extension of the class of analytic
functions by his introduction of the »Borel monogenic» functions; these functions,
according to definition, possess continuous unique derivatives over sets of a
certain description (not necessarily open) and for these functions Borel established
existence of two integral formulas analogous to those of the classical Cauchy
theory. The next significant advance was made by W. J. Triirzixsgy?, who
introduced functions called by him ’gereral monogenic’. These are defined as
follows. Let (K) be a simple rectifiable curve forming the frontier of a bounded
domain K. Let E be a closed set contained in K + (K). According to the
definition, given in (7), f(z) =wu(z, y) + V — 1wz, y) is general monogenic in E
of w, w, the first partials of w and w and the second partials of, say, w are finile
continuous in E, w is uniform in E, 4u=o0 (in E)® and w is in E harmonic
conjugate of u. In consequence of the developments of (7) it can be asserted
that such functions, together with their first derivatives, are representable in
E K as follows:

(1. 1) ﬂ@=hww:[fmg@—wqmnym

(a:a—i-l —1b; h(e) analytic in K),*

(1. 14) £ () =19 e ffd_ v

where q(x, y) is continuous in K + (K) and q(z,y)=o0 in E.

These are the fundamental formulas of the theory of general monogenic
fonctions. In (7') it has been shown that numerous regularity properties (differ-
entiability, uniqueness properties of various descriptions, ete.), of the functions

under consideration, will present. themselves if

' E. Bogrer, Legons sur les fonclions monogenes . . ., Paris, 1917.

* W. J. TritrziNskY, Théorie des fonctions d'une variable complexe définies sur des ensembles
généraur, Annales de 1'Ecole Norm. Sup., t. §5—Fase. 2; pp. 119—19I; in the sequel this work will
be referred to as (T).

3 4= 0* 0*

0w+(ﬁ

* In (1. 1) a snitable determination of the logarithm must be used.
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(1.1) g(x, y)—~>o0 sufficiently rapidly as the point (x, ) (in C(E)= K+(K)—FE)
approaches the frontier of CO(FE); also if,

(1. ii) having covered C(E) by the sum of a denumerable infinity of circular
domains, of radii 7,, 7, ..., we have 7,0 (as »->o) sufficiently rapidly.

The purpose of the present work is to study functions of the form

dp

o [[eeemann ]2

where z(=x + <y) 7s the variable of integration and u 7s an additive functions of

sets', absolutely continuous or mot®, with respect to which the integrations are
performed. ;

Analytic functions®, »Borel monogenic> functions and »general monogenics
Junctions (of (T)) are all included in (1. 2).

It is easily seen that functions of the form

b

(1.3) e w (Zlbwl convergent)

v

are representable by integrals of the form of the second one in (1.2) with
singular. Functions of the form (i.3) have been studied by Borei, Denjoy,
T. CarrLeEmaN, A. Beurrine and a number of others.

In the sequel it will be also shown that functions f(a) which in a closed set
G are representable as limits of uniformly convergent sequences of analytic functions
are representable by integrals (1.2), at least when G satisfies certain conditions
(to be stated precisely in the sequel).

Our investigations will bé mainly regarding functions of the form

(r.4) ffzd_"a

! Throughout, any set mentioned will be implied to be Lebesgue measurable. Regarding
additive functions of sets and integrals with respect to such functions see S. Saks, Theory of
the Integral, Warszawa-Lwow, 1937, in the sequal referred to as (8).

? An additive function of sets X, u(X), will be said to be absolutely continuous on a set G,
it for every set X < G, with meas. X = o, we have p (X} =o0. If an additive function u(X) is
not absolutely continuous on & then u{X) is the sum of an absolutely continuous additive func-
tion and of a singular additive function (on G); ¢f. (S; p. 33). An additive function of sets
$(X) (X < G) will be said to be singular on @ if for some set E,, << G and with meas. E,=o,
we have 3(X) = &#(E, X) for all sets X < G. Thronghout this work, set-functions will be implied
to De additive. ) S

# The statement with respect to analytic functions is seen to be true in consequence of
certain remarks hy BoREL; ef. BorEL, loe. cit.

9—38333. .Acta mathematice. 70. Imprimé le 29 novembre 1938.
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Of importance for our purposes is the notion of symmetric density, forth-
with called density. Let S(e,, 7) be the closed circular region with center at e,
and radius 7. Density, o(a,), of u at the point ay will be the limit (as r-o0), {f
ot exists, of

-
(19 | [rar1=eten

art
Slag, 7)
In consequence of a theorem of LuBEsGUE, ¢(e,) exists (and is finite) for almost
all ;. In most cases the points of interest in the developments of this paper
will be those at which the density is zero.

Let «, be a point for which ¢(e,) exists. Descriptively we shall term the
speed with which ¢(q,, 1) — ¢(a,) (as »—0) rarefication of u. The faster ¢(«,, 7)
approaches the limit (as »—o0) the greater will be said to be the rarefication of
p# at ¢, Similarly, one may talk of »rarefication» of u in appropriate neigh-
borhoods. of sets.

Our investigation will be largely based on the principle according to which
the greater s the rarvefication of p (u in (1. 2)) the more regularity properties wall
the corresponding functions (1.2) possess. More precisely, various degrees of
rarefication of u will be determined to secure prescribed regularity properties, of

various types, of the corresponding functions (1. 2).

2. Functions Representable by Integrals (1. 2).

Let G be a closed bounded set. Let O(d) (8 > o) be the set of points at distance
< d from G. Thus, O(6) is an open set containing G. Let

(2. 1) 6,>6,> ; d>0w=1, 2 ..); limd,=o.

Suppose there is on hand a sequence of functions {f,(a)} (v =1, 2, ...}, file) ana-
lytic (uniform) in O(d,) (v=1, 2, ...), converging uniformly in G. By hypothesis,
then, there exists a function f(a) such that

(2. 2) | Fle) = fola)] = & (¢ in G;v=1,2,...),

with &,—~0 (as »~>). We shall examine the possibility of representing f(a) by
an integral (1.4), with u an absolutely continuous set-function.
Write
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(2‘ 3) Ay (0{) :f'"y (a) - ﬁ"a‘——l (CZ) (1’ =1, 27 s .f;'o(a) = O)

where 0=, <#n, <mny < ---. It is noted that a,(e) ¢s analytic in O(ds,) and

that, in view of (2. 2),

(2.32)  Na@|=lhlo—s@+ 1/ —f@se, + e =

(eny=10; =1, 2, ..., & in G).

The sequence {n,} will be so chosen that

(2. 4) D

converges. Let 0(d) designate O(d) + frontier of 0(6). It is then observed that

0 (9, is a closed subset of 0(d,). In O(d,, av () is analytic. Hence

w+l) »+l)

(2. 5) la. (@) = g. (@ in O(da

sir)i V=1,2, ...}

By a known property of analytic functions we may take
(2. 5 a) q—ub{a in O(GnH) ] of |a. (e |}——|a,. )|,

where a, is some point on the frontier of 0(d,, o

Let 8% = S(a’; 0a,,,) be the closed eircular domain with center at o’ (¢’ in G)

and radius d,,,,. In consequence of the definition of O(dy,., )
(2. 6) s < ()(d,,,ﬂ)
For « in S, consider the function
wy (@) = a, (@) — a, (&) (e in G).

In consequence of (2.6), (2.5) and (2. 3a) one accordingly has
(2. 7) Jw, (@) < g0 + (a in S2);

moreover, w,(¢’)=o0 and w,(e) is analytic in S?, i.e. for |« —o'| =< d,,,. By

(2. 7) with the aid of the Lemma of Scuwartz it is inferred that

I ’ 3 p
(2. 7a) |ew, (e)] = 3 (g + p)|e — &' (¢ in S2).

Ty 41

' u. b. here denotes 'least upper bound’.
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Whence, by (2. 3 a),
la, (@)] = | wi (o) + a. ()] = |20, (@) | + [an(e)]

I ) .
§6 (v + p)la—d'| +n, (¢ in S2).
Pyt1 :

Therefore
(2. 8) lay(@)| =27 (Je —d'| = 7; ¢ in G),
provided one takes

. Yl d\"v+1 !
(2' 3 a’) Ty = s +E (< 6vw+l)'

Clearly (2.8) will hold in the set (—)('tv), contained in O(6,,,,). There exists a
sequence of integers {m,} (m, = ny11; my < my < ---) so that 0(dn,) < O(w)
(=1, 2, ...). Since a,(¢) is analytic in 0(ds,) and since O(dn,) < 0(z,) <
< O(dn,,,)(cf. italics subsequent to (2.8a)) ome accordingly may state the

following.
In 0(dn,) av(a) is analytic and

(2. 9) |as ()] < 29, (@ in O0m,): v=1,2,.. Nv=—t4, + &n,_);

moreover O (0m)> 0(0m) > -+ and lim O(0n,)=lim O(dn,)= G. TFurthermore,
(2. 10) Sla)= Z a, (a) (¢ in &),

where the series converges uniformly and absolutely in G; the series n, + 0, -+ -
converges for a suitable choice of the sequence {n.}.
Now the set O(d

is contained in the open set O(d‘,,,v). Hence there exists an open set O, which

) together with its frontier, that is the set O (dw,.,),

My t1

contains O(dn, ,), whose frontier consists of a number of polygons,

P,
and whose closure 0, = 0, + P, < O (0m,). Accordingly P, will be at a positive
distance, say /,, from the frontier of O(dn,). We shall have

(2. 10a) aula) = — f‘ﬁ(ﬁ)‘gz

Z—
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for @ in O, in particular in O(dn,,,). Take o <2, <. Let O, , denote an open
set containing O,; the frontier of O, , consisting of a number of polygons
(2. 11) P, ,,

parallel to the polygons P, and at the distance from the latter equal to o,
o0=9¢9=2X. One has

(2. 11a) (@) — —— f @)z (@ in 0,)

Z—«a

v, 0

for all ¢ such that o =< ¢ = 1,. As ¢ varies from o to A, the polygons P, , will
move, always remaining parallel to P,, from P, o= P, to P, ;, thus describing

the set

(2. 12) 4y= 0 3,— 0, + P, ;"

It is clear that o, < 0(6,,1‘,) and that 4, has no points in common with O (dx

(cf. italics preceding (2. 10)); thus

1-*.—1)

(2' 12 a) . A4, <0 (dm‘») -0 (dmvfl)'

With ds denoting the differential of length along P, ,, the differential d 2
involved in (2. 11a) is seen to be of the form

(2. 13) dz=dse sl (z on P, ,);

here @ (z) is a real-valued step function, maintaining constant values interior each
polygonal side of P, ,. Let h,(gp) (=0) be a function continuous for

0=pe=4,.

and not identically zero.> We introduce (2. 13) in (2. 11 a), multiply both sides
by h.(¢)de and integrate between the limits ¢=-0, ¢ = 4,. It is inferred, for

a in O,
ZV
I a(2)
. v A'l‘v = . —_—- TP &) v s
(2. 14) a, (@) 27”f fz—-a(’ hy(@)dsdo
0—=0 'P‘r,g

where

1 . .
The frontier of 4, is 1’,,., ot 1’,,’ i

* It is advantageous to have %, {p) vanish, with suitable rapidity, as ¢ — o and as ¢ — .
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;"V
(2. 14.2) szfh.,(g)dg | (> o).
0=0
On writing, for z in 4,,
1 1 N o )
(2. 14b) b, y) = i gan(e) &0F "y (0) (e=uz+7y)

it is noted that (2. 14) may be written in the form

(2. 15) ff dxd/

for ¢ in 0,. In view of (2.14b) and (2.9) and in consequence of a previous

remark asserting that o, < O(dn,), it is observed that

(2. 16) b )l = - 4 la @ (o) = 25 ),

when ¢z is in 4,. Let L, , denote the length of P, ,. We have
(2‘ I7) L/v,ggL: [< w,oéggl,,]

Whence from (2. 16) with the aid of (2. 14a) it is inferred that

< T /
(2. 18) ff|bv(9c, y)ldxdyznA“ ho(e)dsde
J’V

A’V
Ay Ay
_ _
= [meae [as=2 [ h@Lcde
o= P,.,(, . =0
]"v
Lin, [ | S
<< = ), [0 — —
= A ]hv(e)de —Lum.
=0

For Lt we may take the maximum length of P, (0= 0 = k).
In view of (2.12a) the sets #,(»=1, 2, ...) have no points in common.
Form the function g(z, y), »
o .(in the complement of A4, + 4,+ ---),
9(@,v) ‘—"{ (. P )
by (, y) (in A4; v=1, 2, ...}

Let ¢(4,) = c.{(x, y) denote the characteristic function' of 4,. We then may write

! That is, ¢, = 1 in 4, and ¢, = 0 at other points.



Some General Developments in the Theory of Functions of a Complex Variable. 71

(2. 19) o gl y) = e, y) b, y).
v=]1

With

(2. 19a) gnlx, y) = e, y) b, y),
y=1

in view of (2.15) it follows that

ff(]n x, 1/ Jdxdy _ ff x, 4) by (z, z/)dacdu
Z2—a Z z—a

b (x, yydaxdy
jf Zia Y =gqa,(e)+ - + a,(c)

for « in G (cf. beginning of this section). Whence in consequence of (2. 10) it
is concluded that

(2. 20) _hmffgn xz, ydxdy ff x, Y dxdy (« in G),
zZ— Z—a

if the interchange of limiting processes can be justified. We have, by (2. 19),

Lon(w, Pl = Dlev (@, 9) b (a, y)l*‘?cv(xylb z, y)|=g"(x, y)
=1 =1
(n=1, 2, ...); ¢g"(x, y) is accordingly a function such that
. o in the complement of 4, +4,+ ),
7o) =] ) ’ Rt
L] 6» (2, )| (in 45 v=1, 2, ...);

that is, ¢*(«x, ¥) = |g(x, y)|. This function is summable, if the series

(2. 21) S= ZLvn,

converges. In fact, in the latter case, with the aid of (2. 18) it is inferred that

JJ xydacdy—ij ocg/dxdjfz fflb (x, y)|dxdy

=y f/lbv(x,y)ldxdyéiS
r=1 4;

for all measurable sets X.
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Thus, if (2.21) converges, it may be asserted that there exists a summable
SJunction gz, y) so that

(2. 22) f{ r/z/ﬁd;rdy [[/d_”a (@ in G);
here
X)=ff.f/(x, y)dxdy
X

is an absolutely continuous sel-function.

Definition 2.1. A bounded closed set G will be said to be reqular if the
Jollowing is true. Let O(d) be set of points at distance § (> o) from G. We take
0, >d,> - (0,>0; 6,~0). Let P(d,) denote a set of polygons in O (,)— O (dv+1)
s0 chosen that any funcltion analytic in O(d,) could be represented in O(d,+1) by the
Cauchy contour-integral formula extended over P(d,). We designate by L(P(d.))
the total length of the polygons constituting P(d,). The polygons P(d,) could be so
chosen that the sequence of numbers L(P(3.)) (v=1, 2, ...) is bounded.

It is observed that if G is regular then the polygonal sets P, and the
numbers 4, can be so chosen that the upper bound of the lengths of the P,
0=e=14; v=1, 2, ...) is finite. We then shall have L¥ <b (y=1, 2, ...).
In view of the convergence of the series (2.4) the series (2. 21) will then also
converge and a representation (2. 22) will be valid in G.

We are now in position to state the following theorem.

Theorem 2. 1. Let G be a bounded closed set, regular according to the Defini-
toon 2. 1. Consider the problem formulated at the beginning of this section (cf. the
text in connection with (2.1)). Such functions f{c) are representable in G by inte-
grals of the form (2. 22) (with g(x, y) summable).

Note. This theorem may be extended, following the same type of reasoning
as just employed, to more general classes of sets G and functions f(e), defined
over G. '

Consider now functions f(a) of the form (1.3). As remarked in section 1
such functions are representable by integrals (1.4) with x denoting a éingular
set-function. We shall examine the possibility of replacing u in this representa-
tion by an absolutely continuous set-function.

It is known' that

' J. WoLFF, Comptes Rendus, t. 173; pp. 1056-—57.
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dxdy
(2. 23) @ ; p— ffz —« (8r = S (e 1)

for « on the frontier and exterior the circular domain S (as,7),

o] <. (r, > o).
Accordingly,
by lydxdy _ b

(2. 24) z—a [f z—ua ()’Vﬂnr;’,)

Y
for | — a,] = 7,. Since by hypothesis |b,] + |b,] + . .. converges, the function
(2. 28) 5 b

- 25, fla)= P
v=1

converges except in a set E;, of measure zero. Suppose, as can be done without

any essential loss of generality, the «, (v=1,2, ...) are all interior a finite
circular domain I. We cover I, by a set O consisting of the sum of circular
domains

(2. 26) far —a| < (>0, v=1,2,...).

K can be always chosen so that O < K. On the other hand, the r, can be so
selected that meas. O is however small.
Let fu(z) be the sum of the first n terms of the series (2. 25). In view

of (2. 24)
([, d?& v dy (@in K — 8))
Z — 1/

where ¢,(¢) =2, in 8, and and g¢,(2)=o0 in K—S,. The function f,(z) is

representable as
Z):ffﬂﬂhffg@ﬁ/
z—a z2—a

S8, S Sy, Se

(fa + 2)dzdy _ 9s (&) dz dy (¢in K— (S, + S,)
z2—a ¢ l 2

where ¢g,(z2)=12, (in 8, — 8, 8,),=2, (in 8, — 8, S:), =2, + &, (in5; S,), =0 (else-
where). It is not difficult to see, then, that
10—38333. Acta mathematica. 70. Tmprimé le 29 novembre 1938,
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(2. 27) hila f f P AT i (8,4 Sy + 8,
where g, (2) is defined as follows. When 2z is in S; + S, + -+ + Sz, a number -
of the domains S, (v=1, 2, ... n) will contain 2. Let

Sv,(z), S’Vg(z)) ey Savmx(z) (Wll =m (Z))

constitute the totality of such domains. Write

(2. 27 a) gnle Ilvl o+ Ao “t Augate) (in 8, + S + - + Sy,
| © (elsewhere).
We have
(2. 28) f( )‘_‘llmfn ffqnd‘_ﬂ—lxaﬂi/ (a o K — 0)

The function g, (z) 7s simple’.
Suppose the |b,| - o (as v— o) sufficiently rapidly so that there exists a sequence
{e.} (@»>0; v=1, 2, ...) such that both series

(2. 29) Mole2 e
converge. Such sequences {o,} exist, for instance, when
|6, < av2 e>0;,a>0;,v=1,2,...).

Define g(2) as zero én K — 0. For 2z in O there is a number of domains
S,(» =1, 2, ...) containing z; let the totality of such domains (for z fixed in O) be

S"l(ih 51'2(2)7
In the set O we define g(2) as
(2. 30) 9(&) = A + Ania + - - ..
Take
(2. 31) ry = ho, (h > o)

! That is, it assumes a finite number of distinct values.
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where {o,} is a sequence such that the two series (2. 29) converge. Chosing h
sufficiently small, meas. O can be made however small’. In view of (2. 30} and

since L, = b,/ (7}), it is inferred that inasmuch as the first series (2. 29) converges
(2. 32) Lol = Sl =hy(< =) (¢ in K).
The function g(z), being the limit of the sequence of simple (and hence

measurable) functions g.(z), is measurable. In view of (2. 32) g(z) is summable.
Also, by (2. 27a)

lg (@ =D=M (in K; n=1,2, ...);

moreover, |
9n (Z’ )

g— «

< hy
“le—ef

while the function |z — e¢|™! is summable. Thus,

hmffgn ddedy ff dxd@/ (in K — 0).
z—a z—a

Accordingly, in view of (2. 28) it is possible to state the following theorem.

Theorem 2. 2. Functions f(a) of the form (2.25), with the |b.| approaching
zero sufficiently fast so that the series (2. 29) both converge for some sequence {g,},

szzd_”; | (¢ in K — O),

where n= w(X) 7s an absolutely continuous sel-function. The open set O is the sum
of circular domains S{a, hy) (v = 1,2, ...), with h (> 0) arbitrarily small. Thus,

are representable by

meas. O can be taken however small®.

3. Convergence and Differentiability.

In the integrals (1. 2)
=ty (1, g2 real)

! meas. 0 = wh? Z@i
L4

* The function u depends on the choice of O.
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is an additive set-function, possibly complex-valued. If one wishes to investigate
properties of functions represented by these integrals there is no loss of general-

ity in assuming g real, for one has

(3.1) ff z, 0 du—ff z,a (l;L1+zf] g (2, @) du,,

where
(3. 1) glz,e)=1log (z —a) or g(z,a)=(¢— )™ (integer n > o).

As is well known, a real additive function u is the difference of two non-
negative functions of such kind. Hence we are justified in confining our attention
to ¢ntegrals of the form

(3. 2) f/‘g(z,a)d‘u (ef. (3. 1a); p=o0 or u=o0)

Unless stated otherwise, o will be restricted to a bounded simply connected domazn
K or to some subsets of K, while integrations will be performed over sets X < K
and we shall take u=o or p =< o.

Consider the integral

(3-3) ‘D=ff _,.?f;;[m

where # is a positive integer. For the present « will be thought of as fixed in

K; we shall find conditions to be satisfied by u, in the vicinity of «, in order
that (3. 3) shold converge. Let

I

E:lﬁ (fOl‘ |Z - lZl > 7’)7

(3. 4) Sz, @) =

o (for |z — | =)
Since in (3. 3) u = o and since fy, ,(2,a) approaches |z — «|™ increasing mono-
tonically, as r--o0, it is inferred that passage to the limit under the integral

sign is possible so as to obtain the relation

(3. 5) hmfffm 2@ d“‘ffpd-ﬂa]" D,

It is of importance to secure finiteness of the limit involved in (3. 5). One has

! With a suitable determination of the logarithm.
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(3. 6) fffn,r (z,e)dp =@, , + @),

where

(3. 62) 0, — f f forley)du, @, = f j Fuorleya)du
K5, Sy

and S, = S(a,7) denotes the circular region (with center at @) |z —ea|=7r; r is
taken sufficiently small so that S, < K. In view of (3. 4)

, ' d . 1
(3. 61) v~ | f o 0= s,

@, , increases monotonically as 7->0; we wish to determine a rarefication of
»mass» u(= 0), in the vicinity of the point ¢, which would secure finiteness of
the limit

(3.7) ‘ lim @, , = @,

With #,(> 0) such that S, = S(e,7,) > K one has

, d d
(3 8) Dy, :ffl - _‘u,a |n f‘[lz :‘Ll.a In (O <r= 7'0)7

where S, » = Sy, — Sr. The first integral in the second member above is obviously

finite. The second one satisfies the inequality

(3.9) f Cde 5 by (@),

|z — al )
Tos T v
where
(3. 92) wd= [ [ %0 a=s(e?)=s(e,2))
Jle—al” K v 41
G, -
In ¢,
o ce—a)sl
Y+ 1 v
so that

(3.9b) Aie) < v fnﬂn/fd# = Q%“I“)?#(Gr) :'(‘v*’:bl)n(m — flr1);
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where ;cv———‘u(S(a,%)). Thus

-]

(@) <1 0+ 1 (e — o) = 5 N+ 1 — s
v=1

1 =1

D

v

I

@
< by Z g,
v=1

Whence, in view of (3. 8) and (3. 9) the limit @, of (3. 7) ¥s finite whenever the series

0 i Zren(oled)

converges. The condition of convergence of (3. 10) amounts to the requirement
that u(S(e,7)) should approach zero sufficiently rapidly as »—o0; in other words,
this is a condition of rarefication of mass u in the vieinity of a. If I, converges

Lim »" (S (a, 7;0)) = 0.

The latter fact, however, would imply that (when 7->0 through values r)/» (v =1,

2, ...))
lim @) ,=o0 (cf. (3. 6D)),

r

whenever (3. 10) converges; the integral @, of (3. 3} will then converge for the value
a under consideration.

When studying real parts of integrals

(3. 11) 7 fflog(z—a)dﬂ (e =0 oru = 0)
it is éufﬁcient to examine
(3. 112) ' .(D:fflogl_éi—ald” (= o).

As before let « be fixed in K. Let 7(> o) be sufficiently small so that », <1
and so that the closed circular region S(x,7,) < K. The integral (3. 11a) will
converge if ‘

I
(3. 11b) (Doszlogl—;_ﬂdy

S(a, 7o)
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converges. With o < =, let

I
log

(5. 12) flea—1 el
log - (in (e, 7).

7

(in S(a,r,) — S{e, 7)),

Since f;(z,a) ~ log l ! ' increasing monotonically, as » — o, it follows that
(3 13) limjffr(z, a)du = @, (cf. (3. 11b); S, == 8 (a, 7))
s

We wish to secure finiteness of the latter integral. Now

(3. 132) D, = D, + O,

(3. 13Db) (D}z] ffrdu, (D}'=fff,du.
S8y Sy

On taking account of (3. 12) one has

(3. 13¢) (D;:j] loglz ldy. @; = u(S(a,7) log;.
We observe that @, increases monotonically as » - o; thus

(3. 14) lim @, = @,

where @ may be infinite. Now S,,— S,(r > 0) is a subset of S,, = H, + H, - ...
where

(3. 15) Hv—:S(a,%))—S(a, fo );

moreover, throughout S, log(1/|z —«])= 0. Thus

(3. 16) D, < Zﬂ,

ffloo‘ d‘u<100' +I fjd‘u—‘

o,

where

)(Mv— My 4 1)
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with g, == p(S(e,7,/7)). The series of (3. 16) will converge if

@«

Dlog (v + 1) (e — prosr) = D) log (v + 1) — log o] s

v=1 r=1

converges; this will take place if and only if
(3. 17) T.= 51 §(a,
3' 7 o %lv H ] »

converges, in which case the limit @ in (3. 14) will be finite. The »th term of
the series (3. 17) may be written in the form

(3. 18) Tlgg(%jr_l_) e [7;.- = (S (a, 7—1}0)) log (v + 1)]

Now
1

vlog(v + 1)
diverges. This, together with other considerations, implies
(3. 19) 1i1:1m = Q.
In view of the form of #,, as given in (3. 18), (3. 19) is seen to imply
(3. 19a) lim @, = o (ef. (3. 13¢);1p=r/v(v=1,2, ...).

Whence, by (3. 11b), (3. 13a) and in view of the statement in connection with
(3. 17), it is concluded that the integral @ in (3. 11a) is finete whenever, for the
value a under consideration, the series (3. 17) converges.

In studying the imaginary part of an integral (3. 11) it is sufficient to consider
integrals of the form

(3. 20) f f P o) du w=zo)

where @(z,¢) =angle of z — ¢ and where a suitable determination of ¢ (2, ) is
chosen. For ¢ fixed we may, for instance, extend a cut from e to the right,
parallel to the axis of reals, and take 0 = @ (z,¢) <2n. As a function of #
@(z,¢) will be continuous except along the cut. It is obvious that (3. 20) will
converge whether the set-function g is absolutely continuous or not. The

component (3. 11a) is of greater interest than (3. 20).
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Theorem 3. 1. With n denoting a positive integer the integral

(3. 21) ff% (n= o)

well converge for every value of e (in K) for which the series Ty of (3. 10) converges.
With a suitable determination of the logarithm the integral

(5. 22) [ [roet (= o)

will converge whenever the series To of (3. 17) converges.

We shall now discuss some consequences of this theorem. In consequence

of the definition of the average density g(a,%’) one has

ro\\ _ 77 _{, o
s (w)) = e(w).

Accordingly (3. 10) and (3. 17) may be written as follows:

(5. 23 | ro= i Sr(a ) (n > o),

v

B R To
(3. 24) Ta—”%zvsﬁ)(a,v)
Now, in consequence of a theorem of Lenescur the density ¢(a),
(3. 25) o(@)==1limg(e,7) == limg (cz, 7;"),
. r=0 v

exists and is finite for almost all «. Hence for almost all values of « the series

T., I'x (with 2 ==1) converge.

Corollary 3. 1. The integrals (3. 22), (3. 21) (with n = 1) exist at all points
of K at which the density o(c) (¢f. (3. 25)) is finite; this takes place almost everywhere
in K. The integrals (3. 22) will also converge at those poinis e for which o{e) = o« ,
provided (3. 24) converges*. The integral (3.21) (with n=1) will converge for
points « with density ¢(a)= o, provided (3.23) (with n= 1) converges. If for

! That is, provided ¢{a,7)— ® (as » — 0O) not too fast.

11—38333. .dcta mathematica. 70. Tmprimé le 29 novembre 1938.
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n=2 and for some « in K the series (3. 23) converges, necessarily' o(a)=o0 and
the integral (3.21) will converge.

Note. An integral will be said to exist only if it has a finite value.
We have thus established degrees of rarefication of »mass» u securing converg-
ence of the integrals (3. 22), (3. 21) for a value @, under consideration.
Conditions will be established under which the integral

(3. 26) j f 7il‘ua (integer »n > o)

is differentiable. First we shall assume that there exists a set G- < K, dense in
atself, at every point of which I'y of (3. 23) converges when n is replaced by n + 1.
By Corollary 3. 1 the integral (3. 26) will converge in G. Let «, for the present,

be fixed in . With 8 in G, we have

Se) "‘f(ﬂ) 9z, 8 dpe
o2 =8 ffe—-a — 8

(3-272) g(e,8)=(—@r "'+ — B2 —a)+ +l—Bfle—a?+(—ar

There exist sequences {8} (¥=1,2, ...; B, =) such that 8 is in (¢ and
limB, =«a. We shall have, for a sequence {8,}

)

(3 28) llmd fj llm g ﬂv d‘u‘ ff ZZCZ‘I':_'—I - (1) (a)

whenever the interchange of integration and of passage to the limit, here involved,
is justifiable. It is noted that in the latter case the derivative is unique, that
is, it is independent of the choice of the sequence {8,}. It will be convenient to
designate « by 3. It is observed that every point z of K has associated with
it at least one integer

m(z) = o
so that

(3. 29) ; e — B = |2 — 8] w=o,1, ...
Define E, as the subset of K such that

(3. 30) lz —Bn| =2 — 5] (v=o0,1,...).

! The condition of convergence of (3.23) (with # = 2) amounts to the requirement that g (e, )
should approach zero sufficiently rapidly, as +— o.
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The sets Ey, Ei, Es, . . . may have points in common since the integer m (2), referred
to above, is not always unique. In view of the statement in connection with
(3. 29) every point z of K belongs to at least one set E;. Thus

(3- 31) K=E+E +FE+ .
The sets E,(v==o0,1, .. .), formed by means of the relations

E,—E, E,—E —E, E,=E;—(E,+E), ...
E,v:E:-_“(E0+E1+"'+E'l'—l)7'”

are without common points and

(3,31&) K=E0+_El+...’
while
(3. 32) le—8ul=|z— 81 v=o0,1, ...)

for z in En.
Separating the real and imaginary components it is observed that justifica-
tion of (3. 28) amounts to that of the relations

(3. 33) i f f Frale)dp = f f lim fs,c (2)dat,

where f,,.(2) is the real or imaginary part of

(3. 332) hy(2)= (¢ — )™ (z -~ B) g (2,8) (cf. (3.27a)).

In either case

n—1
I *
(3- 34) Ifra@l=1he)] = D 2= 8z —af—F ki (2).
K=0

For z in En, in view of (3. 32), (3. 34) and since « == §,, one has

(3. 34a) hi(e) = v=1,z2,...)

7
Iz . ﬁm |n+1
If w(z) is defined by the relations

(3. 35) w(2) :ETH—W (forzin Ey; m=o0,1, ...},
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in view of (3. 31a) w(2) will be uniquely specified throunghout K; moreover, by
(3. 34) and (3. 34a), it will follow that

(3. 351) | 7o a2} = 0 (2) (zin K v=1,2, )

In this connection it is to be noted that the above developments were given for
a value «¢ fixed in G (cf. italics subsequent to (3. 26)) and for a particular sequence
{8,} of the type introduced subsequent to (3. 27a); thus, the function wu (2) in-
volved in (3. 35a) depends! on the sequence {8,}. In virtue of (3. 35a), the in-
terchange of limiting processes indicated in (3. 33) is certainly permissible if the

integral

550 [ feirme=3[ 14

converges. First we observe that, inasmuch as 8, is in G so that I';, of (3. 23;

with » replaced by n + 1) converges, the integral displayed in the second member
of (3. 36) exists and is finite (cf. Corollary 3. 1). Whence it is inferred that the

integral in the first member of (3.36) exists as a finite value, if the series
displayed in (3. 36) converges. Let S (ﬂm, - ) be the closed circular region with
center at 8, and radius '—;’ (v=1,2, ...), where r, is the diameter of K. On writ-
ing Hym= EmS(ﬁm, 7—:) one obtains

Em = Z (qu) m Hv-i—l,m)'

r=1

In Hym — Hyt1,m 7o/(v + 1) < |2 —8n|. Thus

1 _—
= ﬂ Inﬂ n+1(’V + )l (in Hy,m — Hyi1,m)

and, with integration extended over H, » — H,11m, it is concluded that

du 1
m = ffléw ﬁmln-ﬁ < TH(V + I)n+1‘u(H,.,m — H@,Jr]’m)'

Whence

! Is, in fact, determined by the 3.
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©

" du .
(3- 37) ] le o Z:;I';,jrl‘ = Z To,m < Mnga Z (v + 1) (H,, ),
Ey, v=1

r=1

where fipy1==(n + 1)77771. Since §, is in G and & has been defined as the set
in which the series I'. (with » replaced by » + 1; cf. (3. 10)) converges, it is
observed that the series of the last member of (3.37) converges. Hence, by

(3. 36) and (3. 37)
(3 38) j f HNdu = ]7/n+1 Z Z v 4 1) (Hy m)-

Since F; Fj =o for J # k, it follows that

H,;H, =0 (for j < k)
and’
(3. 38 a) ZM H, )= u(T%)
where "
(3.38D) T =H,o+ Hy 1+ :Eos(ﬁo, ’70) + ,Els(ﬂl, 7;) +
<§ S(ﬂj, %)T (B0 = a).

By virtue of (3.38), (3.38a) and (3. 38 b) the integral (3.38) has a finite value
if the series

> 2]
= 2 v (7))
=1
converges.

Theorem 3.2. Consider the integral

(3- 39) ff p; i‘ua - (¢nteger n > 0).

Let there be a set dense in itself, G < K, such that in G the series Ty (with n
replaced by n + 1; ¢f. (3. 23) or (3. 10)) converges. Consider scquences 8, (v=1, 2, .. .),
where 8, < G and

lim B, =« (¢ in G; B # a). .
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Designate by T, the part of K consisting of points at the distance < r/v (r, = dia-
meter of K) from the set of points

a, By, B . -

If for every sequence {8.} of the above description, with the same « for limiting
poent, the series '

(3. 40) Dvnu(Ty)

Vv

converges, the integral (3.39) will possess a unique finite derivative at the pont «

o [ [ &

Note. The condition of convergence of (3.40) relates to rarefication »mass»

. question .

g (= 0) in the vicinity of «.

It is of importance to obtain conditions secufing differentiability of integrals
(3.39) in the case when u is an absolutely continuous set-function. Let {8},
with lim 8, = «, be a sequence of the same description as given previously. We
designate by B, the part common with K of the perpendicular bisector of the
segment (¢, 8,). Let K, be the part of K lying to one side of B,, containing
« and B,. We denote K — K, by K,. Tt is observed that

(3. 41) lo—el=le—g] (n K, |e—pl<|z—ql (in 7).
With sets X << K, one may write
X=XK, + XK,.

Thus, if f, .(2) denotes the real (or imaginary part) of h.(2) (cf. (3. 33 a)),

(3. 42) Ifff 2du fjlf” |dy<ffh*./du
—ffhv dy%ffh* 2du,

XI\v

where 15 (¢) is the function of (3.34). On taking account of the form of h}(z)
as well as of the inequalities (3. 41), from (3. 42) it is inferred that
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(3. 43) fflf Idﬂ<fflzfda’|‘nﬂ ff|znd”n+1

_XK

< ndu__+ ’ ndu
|z——a|"+1 Ig_ﬂvanrl
x

Now « and 8, are in G = Gy, where Gniy is the set, < K, in which the series
L) ’.

(5 44 =3 v (s(s.2))
=1

converges. For any particular § in (4. the integral

’ du
n+1
(3 45) (D fflz ﬂlnil

exists and is finite (cf. Corollary 3.1). With u assumed to be an absolutely
continuous set-function, the set-function (3. 43) is absolutely continuous for g in
Gny1. Suppose there exists a set Gny1 < Gny, the set Griy being dense in itself
and such that albsolute continuity of the integral (3. 45) ¢s wniform with respect to 3,
Sor B8 dn Gpy1. Uniformity of absolute continuity, here, is to be construed in
the following sense. Given &(> o), however small, there exists d = d(s), Znde-
pendent of 8 and such that lim d(¢) =0, so that

.4 o3 (X) s ¢ (all § in Gis)

for all sets X < K with meas. X < d(e).
Consider the inequality (3.43) where {8,} is a sequence with the properties

(i) By < Gnia (v=1, 2 ..)
(ii) lim B, =a < Gpyi1.
If we assign (> o), however small, in view of the notation (3. 43} and in conse-

quence of the statement made in connection with (3. 46), the inequality (3.43)
will’ yield the result: :

(3. 47) f [m,a(z)w < 0O (X) + 0 @ (X) = 2,
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whenever meas. X = 6(¢). This property will persist for all sequences {3,} satis-
fying the above conditions (i), (ii). Whence it is observed that the absolute
continuity of the integrals of the first member of (3.42) is uniform with respect
to ». By a known theorem concerning passage to the limit under the integral
sign it will follow that the relation (3.33) is justified (for & in Gyyi); that is,
(3. 28) under stated conditions will be justified.

Theorem 3. 3. Consider the integral

(3- 48) ] f o (¢nteger m > 0; p = o)

z— af

where w 2s an absolutely continuous set-function. Let Gpii= G < K be the set of
points B at which the series T g“ of (3. 44) converges. Suppose there exists a set
Gri1, dense in dtself, such that Gniy < Guir and such that the absolute continuity' of
du

2 — 'a)n+1

(X < K)

is uniform with respect to B for 8 in Guy1. We then have

d w ndu
da (z—a) — a)t!

Note. In the next section there will be given in some detail results con-

Jor all @ in Gayr.

cerning uniformity of absolute continuity.

4. Approximations of Integrals (1. 2) by Analytic Functions.

Suppose u is an additive set-function. The integral

(4. 1) oM X [J Izdu = (X < K; integer » > 0; p = 0)

Tl

will have a finite value for « in the set Gy in which the series I', = I'" of (3. 10)

converges. If we repeat the steps used in establishing (3. 37), replacing En, 8u,
n-+1and Hy, » by X, e, 7 and

! That is, absolute continuity of the real and imaginary parts.
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(4. 2) HW=XS(a, 17“)7

respectively, it is inferred that

(4. 3) OYX) = ha D) (v + I)"—]u(XS<a, 7:)) < ®
r=1
for ¢ in G, and for sets X < K (hy=n+7").
Suppose there exists a function t(v), independent of a, such that

(4. 2) ,L(Ks(a, %)) <t(») =12 ..)

Jor all @ in a set Gn), and such that the series

@w

(4. 4a) Su== D v+ 1)1t (»)

=1

converges. Necessarily ¢(») - 0, as » — % there is no loss of generality, if (for

convenience) t(v) 7s assumed to approach zero monotonically, as v —~ . Since for

X< K
,L(Xs(a, "))) <u (KS(a, “’))
v Y4

in consequence of (4.3) and of (4.4) it is inferred that G (n) < G..

A condition of the type stated in connection with (4.4) and (4. 4a) is a
statement to the effect that the degree of rarefication of »mass», implied by the
convergence of the series I'™ {ef. (3.10)) s uniform for « in G{n). It is clear
that for G/ (n) one may take a finite number of any points Gy; of interest,
however, are cases when & (») actually consists of an infinity of points.

Inasmuch as p is taken absolutely continuous, it can be asserted that, given
¢(>0), there exists 0(e) (6(e) > 0; d(e) > 0 as & ~ 0) so that

(4. 5) p(Y)

IIA

d{e) : (Y < K),
whenever meas. Y =¢.  An integer m(¢) will be defined by the relation'

(4. 52) m(e) = [0 (e) 747,

! [b) denotes the greatest integer =< b.
12—38333. Acta mathematica. 70. Imprimé le 30 novembre 1938,
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where 0 < K < 1 and K is independent of &. We shall take & =< ¢,, where & (>0)

is sufficiently small so that

Y

mle) =1 (0 <& = ¢

In view of the statement in connection with (4.5) and in consequence of (4. 4)
the following will hold. Whenever

(4. 6) meas. X < ¢ (X < K)
the inequalities ‘
(4. 6 2) ; (X S (a, ’3)) = u(X) = 8(e) (all @),

(4.6D) " (XS(«, ’y)) < u(KS(a, ;)) < 1) (@ in G ()

will be satisfied for y =1, 2, .. ..
With the aid of (4.6 a) it is concluded that

(4. 7) S, (x5(a ")) = 0020 (all @),
where

Cole) < Sm(e) + 2 = (o) (=15):
By (4.5 a)
(4. 7 a) d (&) Gule) < An 0% (e) (0<e=e¢).

Thus, since 1 — K >0 and d(¢) > 0 as ¢ > 0, we have
(4. 7 b) lim 6 (&) {n(e) = 0.

On the other hand, by virtue of (4.6b)

(4. 8) S+ =a(x8(a ) = So el =G

v >me) v >m(e)

for « in G(#). On noting that the series, last displayed, is the remainder after
m(s) terms of the convergent series (4.4 a) and that m(e) (cf. (4.5a)) » «, as
& = 0, it is observed that

(4. 8a) lim £, (¢) = o.

&
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By (4.3), (4-7), (4. 7a) and (4. 8), whenever X < K and meas. X < ¢,

(4. 9) . D" (X) < hannle) (all ¢ in G (n)),
where
(4. 9a) () = A 7K (&) + £n (o) (o <K<1; dy= i 3")

(cf. (4. 8)) and
(4. 9 b) l::no] 7 (e} = 0.

We are now ready to state the following theorem.

Theorem 4. 1. Consider the integral

(4. 10) f f du_ (integer n > 0; u=o0)

(¢ — a)

where X <K and p 7s an absolutely continuous set-function. Suppose there exists
@ function t(v) and a set G(n) for which the italicized statement in connection with
‘(4. 4) and (4. 4a) holds. This degree of rarefication of »mass» u, in the vicinity of
the set G (n), will secure the Jollowing property.

The integral (4.10), as function of sets X < K, is absolutely continuous uni-
Jormly with vespect to «, for « in G(n). More precisely, under stated conditions,

whenever meas. X = &, one has

(4. 102) ff ------ ‘ lL;L << iy {€) - e in G(n); hy=nrym).

Here mule) is given by (4.94a) and (4. 8) and satisfies (4.9b). The- function 8 (e),

involved in (4.9 a) is the function so designated in the italics in connection with (4. 3).

Note. More generally, instead of defining m(e) by (4. 5a) we may proceed
as follows. Let

(4. 11) m(e) = [o{e)] {ag(e) >0 for ¢ > 0)
where o(e) is a function such that, as ¢ - o
(4. 11 2) o{e) > o, d(e)o™(e) > 0.

Such functions ¢(e) exists, inasmuch as d(s) > o (as ¢ > 0). The function



99 W. J. Trjitzinsky.
o(e) = d(g)— % (o< K <)
is the one already used. In place of (4.7 a) one has
d (&) Lu(e) < And(e) 0" (e) o <e=g)t
In (4. 10 a) the function n.(e) may be taken of the form
(4. 12) 1 (€) = An 9 () 0™ (¢) + L (e) (cf. (4.5), (4.8)),

with m(e) defined by (4. 11) and o(e) satisfying (4. 171 a).
In view of Theorom 3.3 the following Corollary to Theorem 4. 1 is inferred.

(4. 13) f [t (o)

where w is absolutely continuous. Suppose there exists a function t(v), independent
of @, and a set G (n), dense in ditself, such that

Corollary 4. 1. Let n be an integer = 2. Consider the function

(KS(a 7)) =th) (=1,2,..;ain G),

while the series

/8

Sn =

v

v+ 1) 1)

1

il

converges. This rarefication of >mass> w implies that fla) has a finite unique

derivative at every point of G (n),

(g ./ d;t

When p is absolutely continuous, then density ¢(z) exists and is finite almost

everywhere in K; moreover, ¢(z) will be summable over K. Thus, du may be
replaced by ¢(z)dxdy. Results of the type of those given in Theorem 4.1
assume a particularly simple form in the important special case of (4. 10) when

(4. 14) le(@)| =0 ' (in K)

and »=1. We then have

' We take ¢ = g,, where g, is sufficiently small so that m(e) = 1 for 0 < ¢ = &,.
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(4. 15) | f [z [ e (X < K).

|~ al
Recalling that for the integral (4. 1) we have previously obtained the inequality
(4. 3), it is concluded that

dxdy z ) 7o
(. 16) _/flz—~ IShl meas. XS(a, v)’

=1

the latter series being convergent for all ¢ in K and for all sets X < K. In
place of (4.4) we now derive

(4. 17) meas.KS(a, %Q)gyf'":t(y) v=1,2,...)
for all ¢ in the set G(1)= K. The series (4.4 a) now becomes
(4. 17 a) : 8=tk

v=1

and is seen to converge. With meas. X =< ¢, the inequality (4. 7) could be written
in the form

(4. 18) mZ() meas. XS( v) Zeme) (all ).

v=1
We choose integral-valued m (¢) so that

(4. 19) m(e) > o, em(e)>o0 (as & — 0).

In view of (4.17) ‘
(4. 20) 2 meas, XS( ) Z meas. KS( ,,)

»>m(g) v > m (&)
I 7'5) .
Zar = << et in K).
=7 2 v o e) (@ )
v>mg)

By (4.18), (4.20) from (4.16), (4. 15) it is inferred that, whenever meas. X = ¢,

(4. 21) Iffgdlt—al < bhyn(e) (¢ in K);

here
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T,
nie)=em(e) + (] -0

as ¢ > 0. It is convenient to take m(e) = [e_%]. One then may write (4. 21) in
the form:

1.0,

whenever meas. X < ¢ (X < K).

1 .
< b, &2 (0<é¢=¢g; ain K),

Corollary 4. 2. Consider the integral

s e [

with o(z) summable in K and |o(2)| wniformly bounded in K. Absolute continuity
of this integral considered as function of sets X < K, will be uniform with respect
to « for a in K. The inequality (4.22) will be valid for a in K, whenever
meas. X = &.

Corollary 4. 3. Consider the integral

Ydxd .
(4. 24) f %‘_‘(;a;n” [fz_a (X < K)

X

where n is an integer = 2, ¢(2) is summable in K and |o(2)| = b (in K). Sup-
pose there exists a set G (n) << K and a function t(v) (> 0) so that meas. KS(a, 77")

=tW) w=1, 2, ...; @ in Gn) and so that the series S of (4. 42) converges.
We then have

w0 [ f]e

Jor sets X < K with meas. X =< ¢ (0 < ¢ = &)); here

< bhann(e) (@ in G (n)

(4. 25 a) m(e) = Aaea"(e) + D + 11 ()

v > m(e)

(=13 ol=0; o2 eorl =0 as o)

and m (&) = [o(e)], while Iy = ni7™
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This Corollary is established by noting that the first member in (4. 25) is
equal to or is less than b @"(X), where

v=1

oM (X)= ff I'gé'd;ln = Iy Z (» + 1! meas. X S (a, 7;’)
x

and by replacing in the devélopmeﬂts given in connection with Theorem 4.1 n
and J(¢) by meas. and ¢, respectively.

In the investigation of various uniqueness properties of functions of the
form (1. 4) of fundamental importance is approximation by uniformly convergent
sequences of analytic functions, together with the degree of approximation,
expressed in terms of rarefication of »mass» p. We shall first note the follow-
ing fact.

Suppose w = o s a set-function not necessarily absolutely continuous. Let H be
a closed set < K. At every point of K — H the function

(4. 26) B — f f s

will be analytic. If H is not necessarily closed, h(a) will be analytic at every in-
terior point of K — H.

To prove this statement it is sufficient to demonstrate that at every point
«, of the open set K — H h(e) has a unique derivative. Now ¢, is center of a
closed circular region S(a,, 2d) of positive radius 2 ¢ such that S(e,, 2 ) < K—H.
With {8} (v=1, 2, ...) denoting a sequence in S(a,, d) such that

By # «a, lim g, =«

we consider the expression

hle) = h(By) _ o = 4w
(4. 27) Cap— B A (e, 8 f_[ (& —ag)(z — 8)
H

Justification of passage to the limit under the integral sign, involved in the
relation

(4. 28) tim (e )= [ f )
H

amounts to justification of the equality
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(4. 28 a) lim ff]“’ au(z)du=fflim hy, o (2) d 12,
i w

where /fu, 4 (2) is the real or imaginary part of (z — e, '(z—pB)!. Since
|z— )| > 26, |2—8.]|>6 (z in H), one has

|/z,.,au(z)|<2—d,z (v=r1,2,..,; zin H).

On the other hand, lim h, .(2) equals the real or imaginary part (as the case

may be) of (2 —ea,)~% These considerations are sufficient to justify (4. 28&),
(4.28); the italicized statement in connection with (4. 26) is thus verified.!

Suppose now that u(= o) is absolutely continuous. The density of u, o(2),
exists and is finite in K — K, with

(4. 29) meas. K, = 0.

We then may write (o(z) being summable over K)

(4. 30) fole f ff E _dxady

Suppose there is a set G < G (n) (G (n) the set so denoted in Theorem 4. 1) in which

0(2)=0.2 We then may write

(4. 302) fule) = f [ (;’%%,)7;

this - function will certainly be defined for ¢ in G. Let X, X,, ... be a se-
quence of closed sets < K — @, such that

(4. 31) X, <X,< -
and
(4. 31 a) lim meas. X, = meas. (K — G).

»

We shall write

' If K—H is not connected it might happen that A (e) is equal to distinct analytic functions
in various part of K—H.
? When n = 2 nceessarily 0(2) = 0 in G{(n) (cf. (4. 4) and note convergence of (4. 4 a)}.
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(4. 31b) meas. (K — G — X,) = &;

thus lim e, = 0. The function

(4- 32) pootd) = [ [ 2= ax(x,)

will be analytic in the open set K — X, > G,

(4. 32 a) K—X >K—X,> lim meas. (K — X,) = meas. G.

v

b

In view of (4.31a) and of (4. 30a) and in consequence of absolute continuity it
is inferred that

(4. 33) liwmfn, »(e) = hm o (X,) = @"(lim X,) = @K — G) = f, ()

for @« in G. To obtain informatiou regarding the degree of approximation we

note that
d u

Sale) fn . (¢ in G)

with integration extended over K — ¢ — X,. On taking account of (4. 31 b) and
of Theorem 4.1 it is concluded that

(4. 33a). | fule) — fo, v (@) | < Tuwmales) (¢in G; v=1,2,...),
where nu(e) s specified by the italicized statement in connection with (4.12).

Theorem 4. 2. Let u(=o0) be an absolutely continuous set-function of density
o(z). Suppose there exists a set G < G (n) (G (n) the set of Theorem 4. 1) in which
ele)=o0. The function f.(e) of (4.30) can e approximated in G by a wwiformly
convergent sequence of analytic functions {fn, ()} (v =1, 2, ...) of the form (4. 32),
where the closed sets X, < K— G and satisfy (4.31), (4.31a). The degree of
approximation s given by (4.33a), where n.(e) is the function of (4.12) and

, =meas. (K — G — X,).

Note. Similar results can be obtained with the aid of Corollaries 4.2 and
4.3. Thus, for instance, consider the function

o [t ] 22

13--38333. .Acta mathematica. 70. Imprimé le 30 novembre 1938.
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where ¢(z) is summable and |o(z)] is uniformly bounded over K. Let G be the
'set in which ¢(z)=o0. Let X;, X, ... be closed sets < K — (, such that
(4. 31), (4.31a) is satisfied. Define f,{«) by (4. 32; with »=1). Then, in
consequence of (4. 22),

(4. 35) | fla) — fola)}] < by € r=1,2,...; ain &),

where &, = meas. (K — G — X,)~o0 (as v > ).
When p is not an absolutely continuous function of sets X << K, with the

?

aid of LeeEscur’s decomposition theorem one may write

e [ [ e

X

where p, -+ are (additive) set-functions, the first absolutely continuous, the latter
singular (the integrals are supposed to exist for « in some set < K). We are

thus brought to the consideration of functions of the form

(4. 37) S'L(“):f,/. & | (¢ = o),

(z—a)

the set-function & being singular. There exists a set of measure zero K® < K
so that ‘

(4. 37 ) @Z(X):ff(zd—&a)n:ff(g’d—%w (X < K).

X K®

Suppose there exists a set of positive measure Gn < K (Gn K°=0) such that
(4. 38) I“: = Zv’”"l & (XS (cz, %")) {r, = diameter of K)
y=1

converges in Gn. DBy Theorem 3. 1 the integrals (4. 37), (4. 37 a) have finite values
for @ in G,

Since density of additive singular set-functions is zero almost everywhere,
in consequence of Corollary 3.1 it is concluded that the function s, (a) (cf.
(4. 37)) is defined and is finite almost everywhere in K. Hence meas. Gy =

meas. K.
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There exists an open set O << K° of measure as small as desired. Let us

take meas. O < meas. G,,. Let {H,}(»=1,2, ...) be a sequence of closed sets,
such that
(1. 39) H <H,< ..., H-=0 (as v—>x).

We then have K — I, open and K — H, - K — O (as v >®). The function

o e[ [

is analytic in K — H, and, by (4. 30) and (4. 37 a),

(4. 41) lim s, (e) = @ (lim H,) = @*(0 K°) = @"(K°) = s, (a)
for @ in G, — 0. Since G, K°=0 and since 0 > K° O cannot be contained
in G(y; however, the sets G, and O may have points in common. One has
meas. (G, — 0) > 0; in fact, by appropriate choice of O it is possible to arrange'
to have meas. (G, — 0) arbitrarily near meas. Gn.

In consequence of a theorem due to Egororr', given & (> 0), however small,
there exists a subset G" < G, — O with

(4. 42) meas. (G, — 0) — meas. G" =< ¢,
such that
(4. 42 a) Sn,» (@) = 50 (@) (as v > ©)

uniformly for ¢ in G". By suitable choice of O and of ¢ it can be arranged to
have (4.42a) satisfied, as stated, for « in G" < G,, with meas. G* arbitrarily
close to meas. Gy,

Theorem 4. 3. Consider a function sn(a)defined by (4. 37) (= o) denoting a
singular set-function. Let K° < K be the set of measure zero for which (4. 37 a)
holds (for sets X < K). Suppose there exists a set Gn < K,

G K° = o, meas. (I, > 0,

wn which the series I'™ of (4. 38) converges. Gaven &(> 0), howeter small, a sequence
of analytic functions, sn,»(@) (v=1,2, ...), and a set G™ < Gy, with

1 Ct (S; p.18).
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meas. (G, — G") = ¢,
can be found such that

Sn,v(a) —> Sn (a) (asv - OO)

wniformly for « tu G The functions s, .,(a) may be taken in the form (4. 40), the
H, being closed sets satisfying (4. 39) and O, < K° denoting a suitable open set of
sufficeently small measure.

We continue to adhere to the notation so far introduced. Suppose there
exists a set G(n) < G, — O in which the rarefication of »mass» &, specified in
connection with (4. 38), is maintained uniformly; that is, suppose there exists a

Sunction 1 (v), independent of a, such that the series

(4. 43) S =Dy + 17 (y)
=1
converges® while
{4. 432) «9(1(8(&, %))éz(w) p=1,2,..)

Sor all a in G (n) (compare with (4. 4)).
In consequence of (4. 33a) and since, for sets X < K, we have

a(XS(a, 7—“)) =39 (KS(«, ’—"))
v v
it is inferred that

(4. 44) o' (X) :ffﬁl_ﬁj;ﬁé Jzﬁi(i‘"*‘ 119 (XS(“’ L:))

y=1

= ha Sh (cf. (4. 3) and (4. 43); X < K)

when « is in G (n). If sn.(e) is defined by (4. 40), it is to be recalled that (4. 41)
will hold in G, — O; since G(n) < G, — O we shall have a fortiori

(4. 45) Bim ¢, (@) = s (@) (¢ in G ().

v

In order to investigate the character of convergence we form the difference

! v is replaced by v+ 1 in order to conform with (4. 4a).
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ff (l‘l?'
Snla) — sn,q(
Z_(Z

One has
(4. 452) . | sn(e) — 80,0 (@)| = @2 (0 — H,) (cf. 4. 44)
for @ in G (n) and v=1, 2,
For ¢ in K
(2. 46) & ((O — H,) S(a, %)) =3(0—H,)=E k=12, ...

On the other hand, by (4. 43 a),

(4. 460) s((()wff‘.)s(' k))<3(KS( k))gf(v) k=12, ..)
when « is in G(;Az). Inasmuch as H,— O (as »—0) it follows that
(4. 46 b) lim &, = o;

moreover, the & as well as z(») are independent of «. By (4. 45a), (4. 44; with
X =0 — H,) and (4. 46), (4. 46a) we have

(4-47)  lsale) = s () =h [Z Z] k+l”‘13((0~Hw)S(a, 7}:))

k=1 k>k(»)

k()
= ?zvn[ (B + 1)"1E, + 2 (k + 1)~ 1(7»)] =l ) (ain (7 (n)),

k=1 k> k()

where the integer %(») (= 1) is at our disposal. Now

o

") n
(b + 1) < 2k )

ol
I

1

thus

(4. 47 a) L)< 3/:& )+ D (b + )t () = L)

k>k(v)
The integer £(v) (v==1, 2, ...) will be chosen so that

(4. 48) £,k (v) >0, k() o (asv > ).
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For instance, one may take
(4. 482) k) =& o<y<r)
for » =, (v, sufficiently great)’. With (4. 48) satisfied, in consequence of con-
vergence of the series S, (of (4. 43)) it is concluded that
lim {(») = 0.

Theorem 4. 4. Consider a function s,(e¢) as given by (4. 37) with 3(= o)

singular. We note that for a set K° of measure zero (4. 37a) will hold. Let

0> K" be open and of as small measure as desired. Designate by H,, < O, a
sequence of closed sets such that

H<H<H<.. . lim H, = 0.

Suppose there exists a set G {(n) < K — O such that there exists a function t(v) for
which (4. 433) s satisfied (in G(n)), while the series (4. 43) converges. The

o v (@) = [I | f (;_%)—n

will be analytic in K—H,; H{EK—H)=K—0>G{). For « in G

Sn,v (@) > s (@) (as v— o) wniformly. In fact,

(4. 49) |sv(@) —sus(@]| <) (ein Gu); v=1,2,...)

Sunction

Here L(v) is defined by (4. 47a), with &, == 3(0 — H,) and with K(y) satisfying
(4. 48); lim {(»)==o.

We shall now proceed to derive approximations by analytic functions follow-
~ing a modification of the above methods.

Let (= o) be a set function not necessarily absolutely continuous. Suppose
there exists a set G{(n) < K so that for some function #(») (independent of «),

(4. 50) y.(KS(a, t’))gt(v) (v=1,2,...; ain G(n)),
Zﬁ;) Sn= D+ 1) ty)

¥

! For v £ v, definition of k(¥) is immaterial.
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converges. It is noted that, with X < K|

cor e Sl )

In the last member above the first integration displayed is over X S(e,d); the
second inegration is over X (K — S(e,d))(d > 0). When 2 is in the latter set

|z — a«| > d; thus
2)
o " [f du < 6" u(X).

(4. 52 [ e =

On the other hand, in consequence of developments previously given,

(4. 53) lff(”.,..|gh;%<v+ i (XS((: a)s(a %))—hnH"( X/6)

(cf. (4. 3)), with X replaced by X S(¢,d) when « is in G(#). For v =1, 2,

u(XS(a,é)S(a,%)) [ (KS( v)<f()

[# (K 8(a,d) = t(»(d)),
provided « is in G (»); here

A

- L
(4. 54) v =[]
v (4. 53) with the aid of the subsequent inequalities it is inferred that

g

(4. 55) Hy(X/0) = 4(” + (@) + 30+ )T ER)
=1 4r>4'(j~

where »g is at our disposal. We have

(4. 55 2) 2" (14 g S Kot

Take »g, integral-valued, so that

(4. 56) ‘ yg—> 0 ; 2t (v(d)) >0 (as d—0).

! Under (4. 54) 6 = 7,/v(d) and S{e, 8) < Slet, 7,/ (6)).
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One may take

(4. 56a) vs = [t (d))77"] o<y <)
Thus, for ¢ in G (n),

(4. 57) HY(X/8) S kvt (v (8) + 2w + 121 (0) = 0, (6).

r>rg
Since (4. soa) converges, in view of (4. §6) it is concluded that
(4. 57a) 6. (0)~o0 (as d—0).
By (4. 51), (4. 52), (4. 53) and (4. 57) we have, when « is in G (n),
(4. 59) | 02(X)] < 0= 1 (X) + ha 0 6).

Suppose 6,(d) is a suitable continuous function of J (6 < d =< d,; 0, sufficiently
small) such that

(4 .58a) _ 6. (8) = 6. (9) (0 < d = dy);
moreover, we chose 6,(d) so that Iidm 6,(8) =o0. By (4.38), for ¢ in G (n),

(4 59) |0(X)| < 6w (X) + hbald) = Fo(X,0)  (o<d=4)
If n(X)=¢, where g (> 0) is sufficiently small, there exist values J such that
(4. 60) _ 0w (X) = ha0,(9);

let d(n (X)) be the greatest of these values. Now, in (4. 59) the first member is
independent of 46, which is accordingly at our disposal. Thus, with the above
choice of ¢,

(4. 61) | @7 (X)| < Fa(p (X)) = 27" u(X) = 2 /n 6.()
(@in G(n); d=24d(u(X)); X<K)
In view of (4. 60) 6(u(X))—>o, as u(X)—>o. Thus
0, (0 (1 (X))o (as u(X)->0)

and, in consequence of (4. 61), the same will be true of F,(u(X)).
When ¢(»)->0 (as »-> ) monotonically' and sufficienly rapidly so that, for
some 4, one has

! The monotone character of ¢{») is merely for convenience and is otherwise not essential.
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(4. 62) W+ 2t + 1)+ 0+ 3t 2) + = Wt (v)
in (4. 57) we may take 0,(d) of the form

6, (8) = Knv" t (v (8)) + Auv™ t{v),

where » = v4 satisfies (4. 56). Now

Thus, defining ¢(») for » positive and not integral-valued so that ¢ (v) is continuous
mongtone for all v > o, we have

(4. 62a) tHr (o) = t(r"*d_‘d) = t(;) (" = 1y — ),

provided o < d =, where §, is suitably small. Let us take vy =1»(d)'. Then,
by (4. 62a), it is inferred that

’

(4. 63) 0 (0) = 23" () £ (9 (3)) = Jn 17 61 (’5) — 6, (0)

(#' from (4. 62 a); Ay = kn + An (cf. (4. 62), (4. 532)); 0 <0 = 4,).
Since, by hypothesis »"#(») >0, as v~ o, it is clear that
lim 6, () = o;

moreover, 6,(d), as given by (4.63), is continuous in . Furthermore, (4. 6o)
now assumes the form

(4. 64) w(X)= It (’5) Ky = 277,

With u(X) =< g/(g > o sufficiently small), this equation has a unique solution
d =0 (u(X)) and

(4. 62) Pup(X) =207 u(X) =210 (5) 0= o0e(x)

for o <d =9, and u(X)=¢,

! This vg will satisfy (4. 56).

14 —38333. Acta mathematica. 70. Imprimé le 30 novembre 1938.
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When ¢(») is continuous monotone, such that (4. 62) holds the following is
observed. The faster ¢(»)—>o0 (as v— ) the greater will & (x (X)) (cf. (4. 64)) be;
that is, the slower will

d(n (X)) ~o (as 1 (X) —~ o)
and, by (4. 65), the faster will I, (¢« (X)) > o (as u(X) —~ o).

We have accordingly established the following result regarding »continuity» of

@"(X) (cf. (4. 51)), considered as a function of sets X < K.

Theorem 4.5. Let u(= o) be a set-function, not necessarily absolutely continons.
Suppose there exists a set G (n) < K such that for some monotone continuous function
t(), satisfying the statement in connection with (4. 62), inequalities (4. 50) hold for
a in G (n). With @ (X) defined by (4. 51) (integer n = 1), one has

(4. 66) 0 (X)] < Fy (X)) = 2 501 (’5)

(@en G(n); hp=Tlydyr? (cf (4. 63)); 77 =1,— )

Jor sets X < K. In (4. 66) 0 = d(u(X)) is solution of the equation w(X) = I, t(3’ 671).
The faster t(v) —~ o (as v — =), the faster will I, (u(X)) » o (as n(X)—~ o).

Note. Inequality (4.66) gives degree of »continuity» (with respect to sets
X < K) of integrals @"(X). Under stated conditions, this continuity is uniform
for @ in G (n). The last sentence of the theorem may be interpreting as signify-
ing that the greater is the rarefication of »mass» u in the neighborhood of the
set G (n) the greater is the degree of continuity (point-set continuity) of @ (X)
for « in G (n). In (4. 66) this dependence has been made explicit.

Under the conditions of the aborve theorem the density o (2) of the »mass> u will
be zero in G (n) when n= 2. In any case, suppose a set (7 () exists in which
¢(2) =o0, while (4. 50) holds for « in (+ (n). Let O denote a suitable open set

(4. 67) K>0>K-G(n)

of measure as close as desired to that of K — G (»); we have

wes) fu (@) = @2(K) = @2(0) (et. (4. 51).

Let H < H,< ... H,< 0, be closed sets such that lim H, = (. The funection

(4 68 &) ,ﬂ),'v <a) = LDZ (Hv)
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is analytic in K — H,. We have
lim fo,,(e) = @O (lim H,) = @ (0) = f(c)

for « in "= G (n)— O' 1If meas. G(n) > o then the set O can be so chosen
that meas. G" > 0; in fact, one may arrange to have meas. G* arbitrarily close
to that of G (n). To investigate the degree of approximation of f,(a) by fu(e)
we write

|fale) = fun ()| = | @2(0) — @3 (H,)| = | @2 (0 — H.} |
By (4. 66) (with X = 0 — H,)

(4. 69) | file) = fue (@)] < Fufu (0 — 1))
for « in G".

When a closed set G (») exists such that for some #(») (4. 50a) converges,
(4. 50) holds, while ¢(z) = o (in G (»)), then the set O introduced in (4. 67) can
be taken as O = K — G (n); furthermore, we then have G* = G (1) and inequalities
(4. 69) will continue to hold.

Theorem 4. 8. Let u( = 0) be a set-function not necessarily absolutely continuous.
Suppose  there exists a set ((n) such that for some function t(v) the conditions of
Theorem 4. 5 are satisfied. Consider the function fy(e), as defined by (4. 68). ful{a)
may be approximated by analytic functions as follows.

Let open O, satisfying (4. 67), be of measure as near as desired to that of
K— G(n). When G(n)is a closed set we take O = K — G (n). Let H < H, < ...
be closed subsets of O; lim H,= 0. The functions fy, ,(c)= @"(H,), analytic in

K—H, (v=1,2, ..., converge wniformly to f(e) for « in G*= G(n)— 0. In
Jact, for « in G%,

(4. 70) | | fol@) = fo, o (@) < Fu(u(0 — H.) r=1,2,...),

where Fo(u) s the function defined in Theorem 4. 5. When u is absolutely con-
timous, Theorem 4. 2 will hold, as stated, with inequalities (4. 33 a) replaced by

(4. 70a) [fale) = for (@] < Fale(K—G—X) (=12 ... cinG);

here G, X, are sets so denoted in Theorem 4. 2.

! 1In faet, for every a for which the integral @” (0) exists.
[12
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5. Approximations by Rational Funetions.

In a paper by J. Wovrrr' are found the following results regarding re-

presentations of analytic functions by series of the form

Ax
(5 I) IZ*C{](’
where
(5. 1) S(4)= D 4«l:
converges.

Suppose f(z) is analytic in an open bounded set D). Let I); be any open
set whose closure D), = D, + frontier of D, < . Form an open set ./ > D,

with frontier consisting of a finite number of polygons P, such that A=d4+P<D.
Let d(>o0) be the distance from P to the frontier of D. Construct polygons
P, parallel to P, exterior to « at distance d2" from P. Designate by . the
open set having P, for frontier and containing 1),. The function f(z) is
representable in 1), by a series (5. 1) with S(4) (of (5. ra))<2M L. Here M is
the upper bound of | f(z)| on the P, (» =1, 2, ...) and L is the upper bound
of the lengths of the P, (#=1,2, ...). The «; are on the P, (n==1,2, ...),
a finite number of «; being situated on each P,.

The above result of Wolff can be applied to obtain representations for fune-
tions which are limits of analytic functions. In this connection we shall in-
vestigate functions f(«) of the type referred to in Theorem 2. 1. We thus have
a closed bounded set G and a sequence of functions f,(a) (v =1, 2, . ..), where
fo(@) is analytic (uniform) in the open set O(d,) > . Here O(d) is the set of
points at distance < ¢ from . We have O0(d,) ~> G (as v - «), inasmuch
as we take d, >d,> - (d, >0), lim d,=o0. Consider f(¢) such that in &
|fl@)—file)| = es(v=1,2, ...; & >0 as v—>o). Under these circumstances a
sequence {m,} can be found, m, < m, < ---, as well as functions a,(¢) such
that the following is true (cf. (2. 9), (2. 10)).

In O(dn,) av(e) is analytic (aniform),

(5. 2) |, ()] = 29, (n0(n,); v=1,2,...);

. 4
1 J. WoLFF, Sur les séries Zz—f—, Comptes Rendus, t. 173; pp. 1327—28.
%K
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0(6m1)>0(6”12)>7 0(6712,,)"(};

(5. 22) Fl))= S fin )

and the series

(5 Zb) 27711

converges’,

Subsequent to (2. 10) we introduced an open set 0, > O (dn,, ) with frontier
consisting of a set P, of polygons, while 0(d,, ) > 0,= 0, + P,. With 1,(> o)
denoting the distance from P, to the frontier of O (dn,) we take 0 < 4, <1, and
from an open set 0,,,> 0, (0 £ ¢ = 4,), the frontier of 0, , being a set P, , of
polygons parallel to P, and at the distance ¢ from P,.

~

Let L,, denote the sum of lengths of the polygons constituting P, , and let

fiA
1A

(5. 3) L, = upper bound L,, (o ).

Y
The polygonal sets P,,, formed for 0 = ¢ = 4., are in O (dw,) — O(d.,,,) < O(dn,);
hence by (5. 2)

(5. 4) |a. (@) | < 29, (on P,y 0= 0 =)

Applying the results of Wolff, referred to above, to the function a,{c) it is
inferred that

(5. 5) () = ) 2rn (¢in 0 (3m,,,))

Oy, n—«&

where, in view of (5. 4) and (5. 3),

(5 Sa’) 2,4‘14,1&'<477va,

n

moreover, it is observed that the a,, are on the polygons P,, {0 < ¢ = 4,), the
limiting points of the @, (n=1,2, ...) being all on P,o=P..
Let the set G be regular according to Definition 2. 1. Then

(5. 6) Ly,=L<w» v=r1,2, ...).

In consequence of (5. 2a) and (5. 5)

G.7) @=33 A = 3

. ' E denotes E + limiting points of K.

a[\——ll
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for « in G. Here {ax} = {4, ., {ex}={a, |, the ax are not in & and, in
view of (5.5 a),

(573) Zlal{lzz,ZJAm,nl<4277WL1/:S-
K ’ n v

v

In consequence of (5.6) and since the series (5.2 b) converges; it is seen that
S converges.

Theorem 5. 1. Let G be bounded, closed, regular (cf. I)eﬁmtzon 2.1). Suppose
fla) 4s in G the limit of a wniformly convergent sequence of analytic functions, as
stated in  the beginning of section 2. For e in G we then have the representation

(5. 8) fle)= > &,Taija (ax not in G),
K
where
(5. 8 a) 2 |ax]
K
converges.

Note. This theorem can be extended to certain more general classes of
functions. However, we shall not undertake such an extension at this time.

We now turn our attention to Theorem 4.2. With the aid of this theorem
the following result can be proved.

Theorem 5. 2. Let u(=o0) be absolutely continuous. Suppose there exists a
set H < K tn which the density of u is zero and which is such that for a function
t(v), independent of «,

(5. 9) S, = 2 v+ 1y 1t(y) - (integer n = 1)

v

converges, while |
(KS( ))éf() w=1,2,..5ain G
v

Consider the function

(5. 10) f] yi"a — @' (K) = @ (K — G).

In a set G < G of measure arbitrarily close to that of G fu(a) can be approximated
ungformly by finite sums

! That is, the indicated sequences (one simple, another double\ constitute merely a rearrange-
ment one of another.
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K

o) = % . i G
(5. 11) r(a) jé“‘aj (a5 not in G).

When closed sets X, < K, — G, where K, = K, can be Jound such that meas. X,
— meas. (K, — G) (as v > %) while

(5. 12) ' K —X,>K — X, v=1,2, .. )4
the set G’ can be replaced by Q.
To prove this theorem we note that, according to Theorem 4. 2,

(5. 13) [ /(@) = fo, o (@) | < hun(es) v=1,2,..; ain G),
where 7, (¢) is given by (4. 12), (ef. (4. 11a), (4. 11), (4. 8),

& = meas. (K — G — X,,)
and

S, » (@) = 0" (X,,) (closed X, < K— G),

with X; < X, < - and & — 0 (as » > «); moreover, 7, (&) > 0 (as » > o). The
function f, ,(«¢) is analytic in the open set K — X, > @. Let D, consist of the
points of K— X, at distance > £2~" (£ > o) from X,. The set D, will be open
and D, < K — X,. By choosing £ sufficiently small the measure of

G¢'=1[ 6D , (' < G)

can be made as mear as desired to that of G. 'Thus, if meas. G > 0 one may
always arrange to have meas. G’ > 0. Assign &{> o), however small; by Wolff's
theorem there exists a sum #, .(e¢) of form (5. 11) such that

(5. 13 a) Lfo, o (@) — 72, (@) | =
for « in D,. By (5.13) and (5.134a)
(5. 14) [ fo(@) = s e (@) | < [ fule) = fo, o (@) | + | frr, 5 (@) = 12, (0) ]

&
2

<hatples) + - =Z ¢ (¢ in G D),

[N

provided that » =»(e) is taken sufficiently great.® When (5. 12) is satisfied we
may replace D, by K, — X,:1; (5. 14) will then hold in G.

! F = closure of E.
* It is to be noted that 7,(s,)~0 (as v~ o).
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In view of (5.14), given ¢ > 0 (however small), there exist a sum 7.(e) of
the form (5. 11) such that
| fole) — rele)] < & ' {« in G < G).

Here G’ is the product of the GD, (v=1, 2, .. .), unless (5. 12) is satisfied when
one may take G’ = G. This completes the proof of the theorem.

Theorem 5. 3. Lel 9 (= o) be a singular set-function. We have 3 (X)—93 (X K°)
Jor sets X < K; here K° < K and meas. K® =o0. Designate by 0> K° an open
set of as small measure as desived. Let G(n) < K — O be a sel such that for a
Junction ©(v), independent of «a,

(5. 15) Sp= v+ 1)z (integer n = 1)

3

converges, while
1‘}(KS (a, %’)) =z(v) (r=1,2,...;ain G@n).
Consider the function

(5. 16) )= [ [0 0n0) = @)

K

In the set G (n) sa(e) can be approximated uniformly by finite sums of the form
(5. 11) (@5 not in G (n)).

To prove the above we recall Theorem 4. 4. The closed subsets H, (v=1, 2, .. )
of O, referred to in that theorem, will be defined as follows. H, is to be the

part of O at distance z% from the frontier of 0. Applying Wolff’s expansion

to the function sy, () = @"(H,), analytic in K — H,, it is observed that, inas-

much as

K, —H,>K,— Hy1 (K, = K)

there exists a sum 7, .(«) of the form (5. 11) such that

N o

(5. 17) | $n, v (@) — 15, ¢ (@)] =

for ¢ in K — H,;1; in particular, (5. 17) will hold in
H(K_Hv+1):K— 0

Now, in view of Theorem 4. 4,
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|sule) — s o (@)| < I E(») v=1,2..)
for @ in (I (n); here [(») >0 as » = »  Thus, by (5. 17),
lsule) = 1o ()] = sn (@) = sn, (@) + s, o (@) = 14, )]

<h i)+ S=e (v = (e))

&
2
when « is in (K— O)G(n)= G (n).! Such an inequality is obtained for every
¢(> 0), however small. This establishes the Theorem.

Using the above methods or suitable wmodifications of them, numerous further
results along the lines of Wolf’s expansions can be obtained.? The methods so far
used appear to be adequate for the treatment, in the essential particulars, of

problems of this type.

6. Continuity.

The real or imaginary parts of the integrals studied in this work as fune-
tions of ¢ are semi-continuous in one sense or other. In any perfect subset of
a set where a function, under consideration, can be uniformly approximated by
analytic functions such a function will be, of éourse, continuous. Such approxima-
tions were involved in Theorems 2.1, 4.2, 4.3, 4.4, 5.1, 5.2, 5. 3. The purpose
of this section is to investigate the »degree of continuity» of the classes of
functions considered in this paper. First, limits of convergent sequences of
analytic functions will be considered. For this purpose it will be convenient

to obtain a funection

6. 1) w="hie 2)

effecting a conformal transformation of a domain D (¢), in the z-plane, on the
interior of the unit circle in the w-plane. In this connection D (e) is taken to
be the domain containing the real interval (0, 2a) (« > o) and bounded by two
cirecular ares, (, and (), extending from z=o0 to z =2« above and below the

axis of reals, respectively. €, and C; are to be ares of the circles

(6. 2) le—(a—i)|=V@ T =R, |e—(a+il)|=R (b > o).

! Since K — 0> G{n). )
2 One may go to the definition of the integrals involved and make use of uniformity of
absolute continuity of the integrals (for & within certain sets, supposed to exist).

15—38333. Acta mathematica. 70. Imprimé le 30 novembre 1938.
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respectively, while b is to be chosen so that the line x = a intersects Cy and C

at points which are at the distance 2¢ from each other; that is,

_L 2_ 2 :L 2 2
7;-—28(11 &?), R Ze(a 4 &%

and B —b=2¢ The tangents at z=o0 to (, and C; make an angle 7 (which
we take positive) with the positive direction of the real axis,

2a¢
The function ’
z
3 LI

will transform D (¢) on the interior of the angular region W (¢), in the z-plane
(6. 3a) — < anglez <7

The z-interval (o, 2a) will go into the positive axis of reals in the z-plane, the
z-points 0, a, 2a going into the z;-points o, 1, o, respectively. The further

transformation

(6- 4) Zy = 29 ‘ (G — )
will map TV (e) on the z,half plane’

(6. 4 a) —%<angle 22<g

the z,-points o, 1, ®© going into the z,-points o, 1, o, respectively. The half
plane (6.44a) is finally mapped on the interior of the w-unit-circle by means of
the transformation

- S i
(6. 5) w=he, 2) P

The z,-points o, 1,  will go into the w-points — 1, 0, 1, respectively. By (6. 5),
(6. 4) and (6. 3) we have

(6. 6) w=he 2)= e—(2a—2y

2%+ (2a— 2)°

)

where 6= n/(217) and v is defined by (6. 2 a).

! We take the determination for which 29 >0 when 2, > o.
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Let G be a closed bounded set containing the closed interval I (0=ae=2a).
Suppose f,{e) is analytic (uniform) in O(d,) (notation of section 2), where d, >0 and

6.7) 0 >08,> -, & >0 - (as v > o).

Let the sequence {f,(«)} converge uniformly, for « in &, to a limiting func-
tion f(a). Thus,

(6. 8) |fle)—fild)| =& (¢ in G; v=1,2, ... lime =o0).

Inasmuch as the f,{(¢) and f(e) are functions satisfying the conditions stated at
the beginning of section 2, the statement in connection with (2.9) and (2. 10)
will hold, the series

(6 9) 2 N (771: = én, + ‘E"'av—l)

being convergent. To secure convergence of (6.9) one needs merely to make a
suitable choice of the sequence (n.,). If we write

(6. 10) grle) = ay(e) + ay(a) + - + av(a),
in view of of (2. 10) it is observed that
(6. 10a) g (@) > f(a) (as v > o)
uniformly in . It is to be recalled that

()= o (&) = i, (@) o) =05 1= 0)
(cf. (2. 3)) is analytic in O(dn)(v=1, 2, ...) and
(6. 10b) la@] =29 (« in 0@n):

here {m,} is a subsequence of {n,} specified subsequent to (2. 8a). We have
my Zn(v=1, 2, ...) and O(dn,) < O(d,). By (6. 10)

(6. 10¢) g (@) zj;lw(a) v=r1,2...).

Thus, in view of (6. 10) and (6. 10 b)
[/, @ =la @]+ - +la @l =20+ + - )

for « in O(dn,). Since the series (6.9) converges we accordingly have
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(6. 11) [ £, (@) =S NCEL O((Fm,,)),
this being true for v=1, 2, ..., moreover,
(6. 11 a) | fle) = fo, (@) | = en, (@in G;v=1,2,...).

Since the interval I, 0 < ¢ =< 24, is in G and since O (dm,) contains all points
at the distance = d,,6 from G, it is clear that

(6. 12) 0 (6n,) = D (6n,) =12, ...)
Suppose f(a)==o0; then by (6. 11 a)

(6. 13) | fon, ()| < &0, =12, ...

If we apply the transformation

(6. 14) w="h{(0n, @) (cf. (6.6) with &= dn,)

the region D (dn,) will be mapped on the interior of the unit circle in the w-plane.

The function

(6. 15) Foie) = fo, (@)
will be analytic for |« ] < 1.and, in view of (6. 13),
(6. 15 a) | Fo o) = | fu, (@) = en, (v==1,2,...;

moreover, inasmuch as (6. 11) and (6. 12) are satisfied, one has

(6. 15 b) | E(w)| = S (Jo| < 1).
Thus
(6. 15¢) | (o) = I (0)| = S + e, (Joo] < 1)

Whence, applying the lemma of Schwarz to the function

, Iy{w)— I, (0
Ga- ('IU) = *-(;SJ—_{:;;“( )

T

it 18 inferred that .
| Gy ()| < o] (L] < 1);
that is,

(6. 16) | 1%, () — I ()| = (S + &a,)| 0] (lee] < 1)
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Let g be the upper bound of S+, (v=1, 2, ...). In view of (6. 16) and
(6. 15 a) it is then concluded that

(6. 17) L2 ()| = Iy (w) — F (o) + | £ (0})]
= qlw| + e, (lee] < 1)
for v==1, 2, .. .. Going back to the «-plane, with the aid of the transformation

(6. 14) by (6.135) and (6. 17) we obtain
(6. 17 a) [/, (@] = gl (0m,, )] + &n,

for ¢ in D(dm,). Such an inequality will hold for »=1, 2, . ... In particular
(5. 17a) will hold for o< e < za. By virtue of (6. 17a) and (6. 11 a)

6.18)  |fl@)| =/, (@] + | fle) = fo, (@] = g B (In,, @)| + 220, = ws(e)

Jorose=z2a and for v=1, 2, ... (¢f. (6.6) with ¢ = dn,).

With f(«) taken equal to zero at « = a, the »degree of continuity> (along I)
at @« =a of the function f(e) will be characterized by the speed with which
Jfle) >0 as « > a (along I). One may also measure the »degree of continuity»
as follows. Given (> 0), suppose /(¢)(> 0) can be found so that | fla) — f(a)]
(| f(@)] in the present case) is =& for a—I(s)=a=<a+1(e). The slower
I{e) >0, as &+ o0, the greater will be the »degree of continuity» of f(a) at «
(along I).

We shall write

(6, ‘19) a=ua(1 + ), éz%i‘g
Then, by (6. 6), one has

I B ORI — T N 20
(6. 20) h(On,, «)= CF c—=o0o(y) = 2o () tg t(y) = gy o

Let us take, for instance, v <« < 2a; then 0<<{ <1 and {— 1 when a - «.
Let &(> o) be assigned (< 2¢). Designate by » = »(¢) an integer (taken as small
as possible) such that

(6. 21) En,y =

L

Consider now the function (6. 20) for v =14, If one takes { so that
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> 1l/o =z 7, —_ !
(6. 22) 1>L=qle)e, qle) g ° o (),
the inequality
I— Cd<£ =gy
(6. 22 a) a7 T Ss {0 =100()

will be satisfied. By (6.22a) and (6. 21) one then will have
(6. 23) wy (@) = e,

where w, (¢) is the function so denoted in (6. 18).
With the aid of (6. 19) it is inferred that the condition (6. 22) is equivalent to

1—12—8 =zg>o0 (h(e) = q(e%; 6= (),
that is, to
(6. 24) <o = T}?Ts) =a+ (e (cf. (6. 22}, (6. 20)).

FGIES (a<a=a+11e).

It can be shown that the same inequality will hold for a — I'(¢) = « < a.  Whence,
in consequence of (6. 24),

(6. 25) lfl@]=e (a—l{e)=a=a+ ()
where
(6. 25 ) P =t (=g o o) gle) trom (6. 22)

o(¥') being defined by (6. 20) while v' is the integer specified in connection with (6. 21).
When ¢~ 0, h(e) > 1 and I(¢) > 0. Now, since 1 < 1 + h{e) < 2,

(6. 25 b) alt —h(s))>z'(e)>;i(1 — () =1"(e).
By (6. 20)

i_g by O, (b, independent of &).

Thus, in view of (6. 22) and (6. 25 a)
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and, by virtue of (6. 25 b),
(6. 26) I'(e)>1"(e) > A0m,e=1(e) (v=1r(e), A independent of ¢)

for 0 <e=¢, In view of (6.26) and (6.25) it is inferred that (6. 25) holds with
U (&) replaced by Adm, e (v=1(e)).
By (2. 5) (with 2. 3) we have | /s, (&) — fo,_ (&)| = ¢, (in 0(d,,, ). On taking

account of the statements subsequent to (2. 8a) it is observed that for m, one
may take the least integer (= #,+1) such that

M O,y
(6 27) ‘ Jm., = q‘]:,’; (nv = 81),,, + 811,“__1) .
We are now able to formulate the following theorem.
Theorem 6. 1. Let G be a closed bounded set. Let {f,(e)} W==1, 2, ...) be

a sequence of functions, f,(a) being analytic (uniform) in O(0,) (notation of section 2);

g >d> -+, d, >0, lim d,=0. Suppose that in G this sequence converges wii-
v

Jormly to a imiting function f{a); thus,
| fle) = fr(@)] = e (@in Gyv=1, 2, ... lime=0)

The degree of continuity of f(e) in the neighborhood of a point g, interior an in-
terval I belonging to G, can be specified as follows.

Let {n,} =1, 2, ...) be a sequence such that e, + &n, + - - converges." One
has | fu, (@) = fo,_ (@] = g0 (in 0 (3n, L) Jor v=1,2, ... Weform a subsequence

lmay (v =1, 2, ...) of {n}, with m,(= n,+1) designating the least integer such that
(6.27) holds. Given &(> o), however small, one has

(6. 28) 1) — flag) | = e
Jor all a, on I, such that
(6. 28 a) le —ay] S hedne =1(e) (& > o, independent of ).

Here m(e)=m,, where v is the least of the integers v(=1, 2, ...) for which
en, = &/4.°

! Such a sequence clearly exists since lim &, = o.
) v

? There are infinitely many integers v for which the latter inequality holds.
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Note. If one could manage to carry out the technical steps possibly better
results could be obtained, if one replaces D(J) by the set of points at distance
< d from the interval I, under- consideration, or by a rectangle enclosing I.
We then would have to employ mapping functions distinct from that of (6. 6).
If rectangles are used one is brought to the consideration of elliptic functions.
The function (6.6) is preferable on account of its simplicity.

An examination of Theorem 6.1 makes it apparent that the »degree of
continuity» of the limiting function f(e) depends essentially on sequences {e,}
(which determine sequences {».}), {¢.} and {d,}. If we consider the function /(e)
of (6.28a) the following is observed. If ¢, > % (as » > =), the slower ¢, > »

1

the slower will the m, -> ! and the slower will dy() (with m (e) = m,) ~ o, as

& — 0; the same will be true for /(¢). Thus, the slower ¢, - © (as » - %), the
greater will be the degree of continuity of f(e).> The slower d,, 0, as v = o,
the slower will the m, - % and, again, the greater w2l be the degree of contimty
of fle). In a similar way one may examine how the speed with which ¢, — o,
as » - «, is reflected in the degree of continuity of f(a).

With f,(e) v=1, 2, ...) and f(e) satisfying the conditions stated in con-
nection with (6.7), (6.8), it is of interest to consider the important special case
when the sequence of upper bounds of | fi(e)| (én O(d,+1)) is bounded. In this case,
there exists a finite number M, independent of ¢, such that

(6. 29) | /(@) = M (@ in 0(d,+1))
for v=1, 2, .... We then have

| fo, (@) = fo, (@) | = 2 M (¢ in O (dy+1)).
Since (_)(d,,,w_H) < 0(d,+1), the latter inequality will hold in 0(6,;1, 1), as well. The

numbers q,, referred to in the theorem, may accordingly be replaced by 2 M and
the sequence {m,} may be defined as a subsequence of {i,} such that m, is the

least integer satisfying the inequality

Ul 6111‘
On, = 5 Mffi (my = ny41)
(=1, 2, ...); m, may be defined as the least integer such that
(6 30) 6'"1' = b nv 6111,+1 (17” - 8”w + 8"'v~1)’

! With a suitable choice of m,, to satisfy (6.27).

? One would expect this intuitively.
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where b is the reciprocal of the greatest of the values 2 M + 7, (v=1, 2, .. ).!
We have m; <my; < ---. By definition of m,, just given,

dmv = I)’I],, 6”r+1 < dnl,,_1~

Increasing » by unity it is inferred that
(6 30 &) dmw+1 = bnv+1 6:71,+Q < 6m¢, .
In view of (6.30a) it is concluded that

1{e)>blenyi10n,,, (v =1"; ef. (6.28a)),
where o' is defined as stated subsequent to (6.28a). Now

Not1 == &n, ;T & > & ;

thus,
l('?) > blssn,. d"v+2 (11:’)),).

Accordingly we are able to formulate the following Corollary.

Corollary 6. 1. If the sequence {f,(a)} (v =1, 2, ...), referred to in Theo-
rem 6.1, possesses the additional property (6.29) the degree of continuity of the
limiting function fla) can be specified without the aid of the subsequence {m,} of {n,}.
In fact, with oy denoting an interior point of an interval I < G, the following can
be stated. Given &(> 0), however small, we have
(6. 31) |.fle) = flao) < e
Jor all a, on I, such that

(6. 31 a) le—agl = Ay een, 0n,,, — () (A, > o, independent of &).

In (6.31a) v=1', where v' is the least of the integers v(=1, 2, ...) for which
&n, = &/4.

Note. Esxcept for a constant factor, I(¢) in (6. 31a) is of the order of

(v =19 =1(s)).

! Tn consequence of the definition of b one has by ¢ < d . Hence m, > n,, > 0,
i My +1 LR ¥ r+1 v

16—38333. Acta mathematica. 70. Imprimé le 30 novembre 1938.
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The faster ¢,, - 0, as v -~ oo, the smaller will »" = #(¢) be for a given ¢ and the
greater will be d,,,, (with v =v(e)). Thus, the faster e, — 0, as v > %, the
slower will 7(¢) (of (6.31a)) =0 (as e > 0) and the greater will be the degree of
continuity of f(a) at ay (on I). It is also clear that the slower d,, — o (as v—> )
the greater will be the degree of continunity. It is to be noted that the indicated
dependence between the rates of decrease of the sequences {e¢,} and {d, ], on
one hand, and of the degree of continuity of f(a), on the other hand, has been
made quite explicit for the case under consideration.

We shall now investigate the dependence of the degree of continuity of
functions of the form

(6. 32) Sola) = ff (7“’_1_.!‘&)11 (integer n = 1; u = 0)
Fy

on the rarefication of mass w. Offhand, such a dependence is to be expected.
Let us assume first that u is an absolutely continuous set-function and that
there exists a set G(n) < K, dense in itself, such that for some function #()

(independent of «) y(KS(a, ’;’)) =tl) (=1, 2, ...; e in G (n)), while the series

S, of (4.4a) converges. In consequence of Theorem 4. I one then will have
for sets X < K

(6. 33) 2= [ [ p<hond in 60)

whenever meas. X < ¢; 7. (¢) may be defined by (4. 12). As previously we let 7,
designate the diameter of K. With ¢, ¢, in G () and |a — ¢;| = d, one has

(6. 34) Julao) == fu(a) = f . j . ((_z:al,)" - (E“‘_I"a?;) du

=( f IE f f e

S, =K S(ay, 20), K,=K~—S5,

where

Since meas. S, = 47w d% by virtue of the statement in connection with (6. 33) it
is inferred that
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(6. 35) lff[ B dul = @ (S) + D (S) <2 humn {470 8°).
S

On the other hand, it is observed that
ro>|e—ay|>2d, ry>lz—el>0 (zin KY
so that the integrand displayed in (6. 34) will satisfy the inequality

I I

(g—ay)® (2—a)

. |(Z . a)n~1 RIS (Z — 0!0)"_1
IR B e

<|a— ey| w2 g2 (z1in K,);

accordingly,

(6. 36) Uf [..]du

Thus, in view of (6. 35) and (6. 36), from (6. 34) we infer that

<|a— a}0, 07 (00, =n27" %1 u(K))

(6. 37) [ /o (@) — fu (“)l < 2l (4 7w 0%) + 0, 67" o —

for ¢,¢, in G (1) and |a — «,| = 4.

Let us assign ¢ (> 0), however small. There exists a d(¢)(> o) so that

&
4 ha

(6. 38) nal(47w0°) = (o< d=d(e));

such values 0 exist since 7, (u) > 0, asu — 0. One may define d(¢) as the
greatest value for which (6. 38) holds, as stated. Let

[,
Then
(6. 39) 0,072 (e) e — | = Z- (for |e — ap] = 1(e)).

Whence, by (6. 37), {6. 38) and (6. 39)

(6. 40) | fo (@) — fule)| < & (@, ein G (i),
whenever
(6. 40a) o — o] = 1(e) (cf. (6. 38a), (6. 36))

this being so for all & such that o < ¢ = &,
Thus the following theorem has been proved.



124 W. J. Trjitzinsky.

Theorem 6. 2. Consider a function f,(e) defined by the integral (6. 32) with
u(= o) an absolutely continuous set-function. Suppose there exists a set G(n) < K,
dense in itself, so that for some t(») the series S, of (4. 4) converges, while

(KS(a —1/—)) Sth)v=1,2, ...) in G(n). The degree of continuity of fule) in

*
G (n) can be specified as follows. With e(o <e=yg,), however small, one has

| /o (@) — Fu (@) | < &, whenever ay, « are in G (n), while |« — a,| = 1(e). Here
1(e) = ed™ (e} /(2 6x) (0w from (6. 36)), where d(e) = 0 (ase -~ 0). One may determine
d(e) as follows.

There exists a function d{&) (cf. (4. 5) so that w(X) = d(§), when meas. X =§
(d(&) > o0as&—>0). Choose a(§)(> o) so that

ole) > o, d{fjg®le) >0 (ask > o)
Let' m{t) =[6(})] and write
Ln() = 2 4+ 1)), () = 2d(§) e (§) + L0lE)

r>m(§)
(}'":7% 3", With the aid of mu(E) we define d(e) as the greatest value such that
(4 v 8%) = &/(4 hn) (o< d=d(e).

Note. With the aid of the above theorem it is easy to show that the
faster d(§) ~ o (as £ > o) and the faster the series S, converges® the slower will
I(e) (if suitably defined) - o (as ¢ — o); that is, the greater will be the degree of
continuity of fu(e).?

Consider now a function

dxdu
(6. 41) (@) ff oty

where ¢(z) is summable over K and |g¢(z)] is uniformly bounded in K. Corollary
4. 2 will be applicable, giving the inequality

S

' 1. e, m (&) is the greatest integer =g &)

* That is, the greater is the rarefication of »mass» g, particularly in the neighborhood of the
set G (n).

¥ Note that the faster d (§)— o, the faster can o () be allowed to approach « (subject to the
condition d (&) " (&)~ o (as § — 0)); the smaller will £, (&) be.

M Z —u . 3 rd
7 (395( l/ bl £ 12 (C{ 11 I\)

\\
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whenever meas. X = &§(>o0). Thus, for the case of f(a), as given by (6. 41),
Theorem 6. 2 may be applied with G (») replaced by K and hy . (§) replaced by
b &% Hence the following result.can be stated.

Corollary 6. 2. Let f(a) be a function of the form (6. 41), where |o ()] = b
(in K) and ¢(2) is summable over K. Given ¢(o < & = ¢,), however small, we have
| fuleo) — fule)| < &, whenever ey, ¢ are in K and

e —ay) S 1(e) =¥ & (0" > o, independent of &).

Consider now functions of the form

(6. 42) (e) ff~ = Q" (K) (% = o, integer n > 0),

7-&

where < is a singular set-function. We have, for sets X < K,
o (X)= o' (K°X) (meas. K°==0).

Let G (n) < K be a set such that, for a function 7 (#), the series

(6. 43) Sn= Zv,(” + 1) e ()
converges, while ,
(6. 431) (KS( v)) =10) =12 ..;ain Gl

Suppose ¢, is a limiting point of G (n) and let « be any other point in G (i)
such that

(6. 44) fe —ay] =6 (0 > o).

We form the difference

R i

where

o ffm:ff (over S{ay, 2 d),
.ffm - jf (over K — S(C;O, 26) = K®).
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Under (6. 44), |2 — ;7' < 1/(26), |z —«|™* << 1/0 for z in K and

(6. 46) i( RS < e — ay|rad™" (Fhy=1ur""127" zin K').

(z — «) (o — a)

Thus

Bt
(6. 47) ij l <|a - a|rad—" (ra = rh 9 (K); cf. (6. 46)).
Since, with integration extended over S(«g, 2 d),

ff(“ ff d-9 A dd
I"_“ol , |/"C‘|u7

in consequence of (4. 44) it is concluded that

oo |[["

where

(6. 482)  O,(c,ap) =9 (S(a(,, 2 6) S(ao “W)) + 3(8(%, 24) S(a, L"))

=l Z (v + 1710, (e, ¢)

v

Since & = o and since ¢, is in @ (1), by (6. 43a) one has

9 (8 {aq, 2d)),

(6. 49) '9(5'(“0’ 25)3(“‘” ?a)) = 0(S(“031n )) =7(»)

for v==1,2, . ... Similarly, on noting that S(«, 2d)8

—

7o\ .
a, 0) is a subset of

14

Sy, 2d) and of S(a %), it is concluded that

(6. 492) #(Slen 2 ‘”S(“’ v)) = 3(s(a *)) 10

(v=1,2, ...), inasmuch as ¢« < G (n). We note that

S(a,, 2d) < S(ao, w')

where
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. 50) = =5F

accordingly

3(S(ay 20) = & (S (ao, :—0)) = 2 (v(9)).

- Whence, by (6. 49) and (6. 49a), the 6, («, a,) of (6. 48) satisfy the inequalities

(6. 51) 0, (e, a, é{
for v =1, 2, .. ., provided |¢ —ay| = d. In consequence of (6. 51) and (6. 48)
N [T N
1>1J
vd
=2h{w(d) -.LZ('V + 1)1y (6))),
v=1
where
(6. 52a) w(d) = Z(v + 1)1y (v)
>y

and vy is an integer at our disposal. Now 2" '+ - + (1 + v 1 = K, V5

Thus, for «, ¢, in G (n) and |a —a,| =9,

(6. 53) Uf”~-|§zhng(a),

with

(6. 534a) §(6) = Kpviz(v(0)) + 0 () (cf. (6. 50), (6. 52a)).
To secure the relation lim {(d) == o0 we choose »s so that

(6. 54) vit(r(d) ~ 0, vs—>o (asd > 0).
One may take

(6. 54a) ve = [z v (d))77"] o<y <)

! [b] = greatest integer = .

* Note that ®(d), being the remainder after vy terms of the convergent series (6. 43), will
— 0 when y; — 0.
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It is of advantage to have (6. 54) satisfied in such a way that {(d) > o (as d ~ o)
as fast as possible.
By virtue of (6. 45), (6. 47) and (6. 53)

=[S e s

(e, ¢y in G(n); |e — a] < d).

(6. 55) Is‘n “0 — Sn a

Assign (> o), however small. Let 6 = d(¢) be a value (which it is advan-

tageous to take as great as possible) so that

In view of (6. 55) we then have

(6. 57) | s {eg) — en (@) ] < & (@, & in G (),
whenever

(6. 572) |“—“0‘§l(6>:$56%(8)4

For e ¢, l(e) < 6.

Theorem 6. 3. Consider a function sq,(a), as given by (6. 42) with I a singular
set-function. Let G (n) < K be such that for some t(v) (independent of &) Sa of (6. 43)
converges while (6. 43a) holds. The degree of continuity of s.(e), for « in G (n),
depends on the >varefication» of &, as follows. Given &(= 0), however small (¢ = &), we
have | sulee) — su (@) | < &(a, @y i1 G- (1) whenever |« —ao| < 1(e); 1(e) may be defined
by the following succession of steps.  Define »(8) by (6. 50) and then define vy (inte-
gral-valued) so that (6. 54) holds. We take w(0) of the form (6. 52a) and (d) of
the form (6.53a)t. Let d=d(¢) be the greatest number such that Z(0) = &/(4 hn).

One then may write

)= -2 6™ (e) (ra from (6. 47), (6. 46)).

7. Functions Determined by Values on an Are.

Let u(= o) be a set-function not necessarily absolutely continuous. Suppose
there is a set G = G'(1) closed, such that density ¢(z) of w is zero in G, and

! Kn is introduced subsequent to /6. 52 a).
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such that conditions of Theorem (4. 6) hold for this set. Vanishing of density
in G implies that

9

- /,L(KS(a, %’)) -0 (as v >0 ; ain G).

L2
‘ 0

Accordingly, what is assumed is the following. There exists a continuius monotone
Sfunction t(v) such that

(7. 1) tM:Z@, lim 0(») = o,
while

(7. 1a) ty + 1)+t + 2)+---§/’L'~q~g{) v=1,2,...)
and

(7. 1b) ,LL(KS(a, 7—3)) =t{) (¢in G; v=1,2,...).

G+ being closed, in Theorem 4. 6 we take O = K — G. The closed sets H, will
be selected as the parts of O at distance = ry/v from the frontier 0. We have

(7. 2) H <Hy,< - lim H, = O.
Funetion
du
(7. 2a) ﬁ@-lez
- H,

is analytic in K — H,,
(7. 2b) K—H>K—H,> -; K—H,—~@G (asy = w0),

and it approximates the function

7-3) fla) = f f = f f —

as follows:
(7. 3) el =| [ [ ] < Ftuto =i
ein G; v=1,2,...),

where Fy(u(X)) ¢s defined as stated in Theorem 4. 6. One may also replace the
last member in (7. 3') by certain other expressions which can be easily inferred
from the developments of section 4. ‘

17—38333. Acta mathematica. 70. Imprimé le 1 décembre 1938,
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Let A B be an arc in G and let o, be a point on A B so that for a point
$ (in @) the segment (¢, J,) is in G, while this segment is limit from both sides

of segments (£, 8) (8 on A/.];) lying in G. We designate by N, the set of points
at distance <r,/» from the segment (¢, J,). It is clear that

(7. 4) N, < K- H,.

Suppose that for » = v, frontier of N, intersects 4 B in unique points 4, B, (45 on
A, B,on ¢, B. Designate by I', and I the closed regions (which, except for
B, and A4,, are in N,) bounded by the contours B, 2, «, B, and 4 5y, ¢4,

respectively. There exists a segment 2, B, (B, on «y B) for which the angle' 8,5, «,

is maximum, under the condition that the segments (5o, 8) (8 on ayB) be in G.
Similarly is defined a point A, on A,¢,, We designate by I, the domain,
< N,, bounded by the contour

I =B, A, B
On writing

(7. 5) angle B, {, 4, =7 K, *

and on noting that I, << N, it is inferred that

(7. 5a) o< K, < Ci
We introduce now the function

(7. 6) , qv (@) = exp. {{(« — &) exp. (—V =1 @y)| V5 }
(p, = angle of the bisector {, I, of the angle B, {, 4,).

A function of this type (but independent of ») has been previously used by

T. CarrLEMAN in his important investigations of series of the form

bn

n © T Un

Subsequently, this function (in the form (7.6)) has been employed by W.J.

TrarTzINskY in his investigation of »general monogenic» functions® The essent-

ial feature in our investigations is that this function varies with K, (v=v,, v,+ 1, .. .).

! This is an angle forming part of I').
* This is the angle forming part of I', + I')'.
8 W. J. TRIITZINSKY, loc. cit., section 8.
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We have
§— . x 1 .
(7:68) g =langle [le — L) exp. (V=1 g5 = — L angle (e £44)
for « on ({,, ), provided D, is on «,B,, and
2 . -
(7.6 1) Ger =" — 5 angle (a, { B.) « on (&, )

when D, is on e, 4..
Let () (> o) be defined as a continuous function (v = »,) which for integral
values » (= »,) satisfies

(7. 7) o (v) < least [angle (¢, {, 4,); angle (&, &, B,).

In view of (7.5) we then have

(7. 8) “>Kz2ob (v =y m+ 1, ...
By (7.7) and (7. 6a)
¢a, P é '72}:‘ (}’;ﬁ (C{ on (go’ ao))
and ‘
(7 9) cos = coSs [Z J— w(lj,)] > 3 (UL’V)
' P v = 2 K, x K,
(@ on (Lo, a); v =19, v+ 1,...).0

Consequently, by virtue of (7.6), (7. 6a) and (7. 9),

1Ky

(7. 10) |gs ()| > el a0 (o on (&, <)
where
(7. 10a) wpy=2 2l

—

Suppose the function f(a) of (7. 3) is zero on A B. Then bj‘ (7.3)
(7. 11) | £ ()] <7 @) (¢ on ﬁ; v = ).

On the other hand, whether f(e) is zero on 4 B or not, one has

! vy, sufficiently great.
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(7. 12) FAGIESE ( on (& 44), (& Bs)).
In fact, when « is on the stated segments ¢ is in G; by Theorem 4.5

| (@] =10 (H))| < Fi(w(H) = h (r = 95 @ in G),

where & is independent of o and ».

Form the function
(7. 13) Ty (e) = fo(a) g9 (a) (cf. (7.6))

with ¢(> o) at our disposal; 7, () is analytic in I', (domain introduced preceding

(7. 3)), since
I'n<N,< K—H,.

By (7. 11) and (7.6) from (7. 13) it is inferred that

(7. 14) [ 7% ()] <7 () exp. (s BVEY) (B = max. | 5,—3] (8 on A B);
v=vy, v + 1, ...; ¢ on Z-I\)’]

Now |¢.{a})] = 1 for a on (§, 4.), ({, B,). Hence, by virtue of (7. 12),
(7. 14a) | 7. ()| < R (on (&, A,W)’ (&, Bs)).

In consequence of the maximum property of amalytic functions it is observed
that inequalities (7. 14), (7. 14a) imply

(7. 1%) | T, ()| < h + +(») exp. (6 RV¥+) (¢ on (&g, ay));
this will hold for » =y, v, + 1, ..., inasmuch as (§,, &) lies in I', (v=wy, v, + 1, .. ).
By [7.15), (7. 13) and (7. 10)
(7. 16) I @ =1T.(@]lg;°] < exp. {— o]a—LFA0)} -

[k + () exp. (o RV5)] (& on (&, ).

Restrict « to a sub-interval ({° «,) of ({,, «,) so that

(7. 17) et (f > 1; @ on (&, )

|« —
Then, with g = R/¢/,
exp. la — | = exp. ¢ (e on (£° a,)).

Whence (7. 16) is seen to imply
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(7. 18) | fole)] < [h + 7 (») exp. (6 RVES)] exp. (— o g+ A ()
(@ on (L% ap); v=wy, 9, + 1, ...}

Designate by ¢ (») (> 1) any function which approaches infinity (when » > o),
however slowly. Define ¢ =0, by the equation

(7. 19) | exp. (o g/ v A () = 9 (v).

With this choice of ¢ it is observed that the second member in (7. 18) will —o

(as v > o), provided

(7. 20) r(v) exp. (6, RV5v) = B (v==wy, v+ 1,...),
where B is some number independent of »; that is, (7. 20) would imply that
(7. 21) lim £, (¢) = fle) =0 (& on (Z° ap)).

In view of (7.19) it is noted that (7. 20) may be written in the form
(. 22 FO)S By b)=, L6)= L

Condition (7.22), securing (7.21), amounts to a requirement that »(y) =
== I (1 (0 — H,)) {cf. (4.66) for definition of I} should approach zero sufficiently
rapidly as » - ., In view of the definition of F| this is seen to be a condition
requiring a sufficiently high degree. of rarefication of »mass» u in the neigh-
borhood of the set G. We shall now proceed to replace (7.22) by a more

explicit condition. In view of (7.22) we shall have (7. 21) whenever
(7. 228) r() = B )t (1) = 2 0); = w).

Now, by (7.22), (7. 10a) and (7. 8)

(7. 23) V)=

2

(v 2z y; ag=mwa'lz; gy=(9')"; o) from (7.7)).

In an extensive variety of cases the function w (v} of (7.7) may be taken of
the form

(7. 24) o (y) = - ()" > o, independent of »):
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the function A,(v) of (7.23) is then of the form
(7. 24 a) Ay(¥) =00 (b, >1; b>o0)!

Turning our attention to »(») of (7.3), in consequence of Theorem 4.5
we have

(7. 23) r{v)=2h, ;t(;) (r" =ry— dy; dy(> o) small)
where J = J, satisfies the equation
(7. 25 9) wl0— 1) — =1 (5) (. (7.1), (7.1 ).

Let v—=t_1(u) be the inverse of the function w=1t(v). Then

r_1 i
5, 72 (h)
and, in view of (7.25a), it is observed that (7.22a) holds (for some B) if

(7. 26) 7 (Z”) = B gyt (v =1, vy+1,...).

1

The faster u=1{(») >0 (as » > ), the slower will #_;(u) > © as u > o. The
first member in (7.26) will approach zero (as » - o) whenever ¢(») vanishes
sufficiently rapidly (as » - «); for example, this will be the case when t(») =
=exp. (—#). In any case, w,f—1(w,/h,) cannot tend to zero (as » - ) as fast
or faster than u,. In fact, to be able to satisfy (7.26) at all, one should have

(7. 27) w = B g p() o= ),

where 1 (») (> o) is some function such that lim y(») =o. If (7. 27) holds, (7. 26)
will be satisfied provided

¥ (v) f_(;i) =S¥
that is, (7. 26) will follow from

(7. 27 a) - ("i) = w—l— (v = ).

Inasmuch as t(») is a monotone function f—;(u) is monotone increasing (as w—o0);

' b, b, are expressible in terms of g,, I, @, in an obvious manner.
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moreover, u, = u(0— H,) -~ o monotonically as» > . Hence (7.27a) will be
satisfied if

i =(50) bz

Whence we observe that (7. 26) and, consequently, (7.21) will hold if

(7. 28) b, t(ﬁ;)) =u(0—H)=B oy >yl) =y, p+1,...)
where Y (v)(> o) is some function such that lim v (v) = o (2, (v) from (7. 23) 01 (7. 24 a),
as the case may be). ’
Examples of set-functions p(= 0) can be given so that (7.28) holds as stated.
It is observed that (7.28) constitutes a condition regarding rarefication of
»mass> f¢ in the vicinity of the set . In particular, (7.28) implies that #(v)
should approach zero (as » > o) sufficiently rapidly.

Theorem 7.1. Let p(=o0) be not necessarily absolutely continuous. Suppose
there exists a closed set G in which the density of w is zero, while there exists a
continuous monotone function t(v) such that the statement in connection with (7. 1),
(7.1a), (7.1b) holds. Define sets O and H, as stated subsequent to (7.1b). Let
AB be an arc in G and lot @y be a point on the arc so that, for a point L, (in G),
the segment (ay, §o) 48 @0 G and @s Umit, on both sides, of segments (5, 8) (8 on @)
lying in G. Let A, and B, be points (situated on the arc) referred to in the italics
subsequent (7. 4). Let @ (¥) be the least of the angles ay, 5, A, and ), &y B,.

Whenever the function
- du
ra= [,
3

vanishes on A B it will necessarily also vanish on the sub-interval (£°, «,) satisfying
(7.17), of (&, @), provided

g t(',—l’l(—”)) =u(0—H)sB oWy (v=wv,; B, > o)

Here o (v) (> 1) > » {(as v > =), however slowly,

hol) = oot (90 =o'y > 1)
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and limy{p)=o0. When o{¥) s of the form V' /v we may take dy(v) = byb? (sust-
able b, b;; b > o0, b, > 1).

Note. If f(e)=o0 on AB then fle) will also vanish on certain polygonal

lines situated in G, provided that the sides of the lines may be taken in succes-

sion in the role of the arc ;1.1\)’ of the theorem in such a manner that the con-
ditions of the theorem hold with respect to the next side of the polygon. The

set I” (A?), consisting of all such polygonal lines, whether originating from AB
or from any side of the polygonal lines, referred to, is connected in a certain
sense. The class of functions {f{c)}, for which the inequalities of the theorem
hold (as stated, with reference to all sides of the polygonal lines in question)
possess the property that the members of the class are uniquely determined

throughout F (frI;’) by their values on AB. Throughout F(frl\)’) the functions
of the class are quasi analytically continuable in the indicated sense.
With the aid of the developments regarding continuity (cf. section 6) it is

possible to obtain theorems of the same type as 7.1 but with the arc iB
replaced by sefs non-dense (in fact, one may take non-dense denuwmerable sets) on
AB' The methods to be used in establishing such theorems are substantially
those of this section and of section 7 of (7). In these pages we shall not go
into the detailed development of the indicated procedure.

The conditions obtained in the theorem wmay be etablished in an essentially
different form. For this purpose let us recall again the definition of the sets
H,, referred to in (7.2), and consider the difference

(7. 20 e ffl_’—= S, o)

here
d
(7. 29a) A,,i(e) = [[25{0} (H,,i = Hyri — Hypi).
i,
One has
JLi <}z — i 1 ‘
vriﬁlzL af (¢ in G)

for z in H,; Thus

. N —
' With 4B taken rectifiable and such that length of 4 B,—o0, as v—o0.

* The latter scction deals with the stated problem for the ease when the functions under
consideration are general monogenic, according to TRJIITZINSKY.
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yv{k?/‘fd;u*— !l'( v+ Hv+l—l)

for « in . Whence, in consequence of (7. 29),

H/\

(7. 30) 4., (

ll/\

(7. 31) |.fe) — ‘I;Z v+ Ju(Hy4i— Hosi)

(r=wy, »,+ 1, ...; ¢ in G).
Sinee H; 1 — H; < O — H;, it is observed that (7. 31) implies

1

Fae) @AW G e — )= )
LOZ (0 + 1) u(0— Hy) =) (¢ in G).

We now may repeat the argument subsequent to (7. 3) replacing r(») of the
last member of (7.3) by the function 7*(») from (7. 31 a), thus obtaining the

condition
(7. 32) () = B o™ (cf. (7. 23))
where ¢ (v) is the function referred to in (7.22a). This requires that u(0 — H.)

should approach zero (as » -> o) rather rapidly. Thus, to begin, it is justifiable

to assume that

(7. 33) )=y (0 — H,) (v =)

A condition of the form (7.32) is then satisfied if
(7 333’) (O H><B ¢()~7u (V:”Os 1}0+IV"')'

In (7.33), (7.334a) one may replace »*(») by +'(») (cf. (7. 31a)) and O — H,
by r+1 7 Hwn

Corollary 7. 1. Under conditions of Theorem 7.1 the functions in question
will possess the stated wuniqueness property also when inequalities (7. 28) are replaced
by the condition (7. 33 a).

18—38333. Aecta mathematica. 70. Imprimé le 1 décembre 1938.
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8. Quasi-analyticity in the Ordinary Sense.

Let (= 0) denote a set-function, not necessarily absolutely continuous, such
that there exists a closed set G < K satisfying the following conditions. We have

(8. 1) G < Gn) (h=1,2,..),
‘where G (») is a set satisfying the conditions of Theorem 4.5. More precisely,
we assume that there exists a monotone continuous functions t(v) such that

(8. 2) w42t + 1) + @+ 3ty + 2) + - =)

. ve=1,2 .. 50=1,2, ...
while

(8. 2a) (KS( W))_S_t() (v=1,2,..;cin G).

It is not difficult to see that, under ( (8. 2 a), the function

(8. 3) f(a):ffzfg‘a*ff;—?*m (0) (O0=K— Q)

is indefinitely differentiable in &; in fact,

(8. 3a) [ (e) = ,,fff ilinm = nl @1 (0)

=1, 2, ... «in G).

As in the preceding section let H, denote the part of O at distance = ry/y from
the frontier of O; thus lim H,= 0. The sets K — H, will be open and

K—H>K—H,>  —~0G.
In K — H, the function

(8. 4) fole) = j ' f }_M;

a,
will be analytic. For n=o0, 1, ... and for « in G we have
. 5) i) o=t [ (%“i) — @ (0—IT)
O0—H,
(@in G; v=1, 2, ...).

' In G density of u will be zero.
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Thus, in view of Theorem 4.5 (in particular, of (4 66)),
(8. 5a) AR f(n ) < 0l Foir(0(0— H)) =72 (v)
(¢in G; v=wy, v, + 1, .. ;n=0,1,...)

inasmuch as (8. 1) holds. We shall now investigate the form of 7, (»). By Theo-
rem 4.5 (with » replaced by » + 1 and X replaced by O — H,)

(8. 6) ra@)=mnl2hyp 01 ¢ (}6’) (" =r,—dy; (> 0) small),
where d = d,,, satisfies .

(8. 61 (0= H) = = Wt )

and

(8. 6b) Toir = hng1 dni1 72 dpyr = Kpyqr + 7/

(Kn41 from (4.55a); 2 from (8. 2)).
From (8.6a) we have

I v
(8. 6¢) | = (hﬁz l),

where ?_; is the inverse of the function f. Substituting (8. 6a) and (8.6¢) in
(8.6) one obtains

(8. 7) (V) = My 1241 ( hul ) (mn = 22! (")),
n+1

Inequalities (8. 5 a) (with (8. 7)) are useful in the study of indefinitely differenti-
able functions f(c) of the form (8. 3).

Let S(R,7) (R> 1, » < 1) be the closed region of the following description.
From the origin O we draw tangents 0 A”, O B” to the circle |z — 1}=7; the
points A", B” on the circumference |z| = R. Designate by A’, B’ the points
of tangency with |z — 1]|=1 of the lines 04", O B”, respectively. S(R, ) is
the connected region containing O and bounded by the greater arc A” B” of
|2]= R, by the smaller arc A’ B" of |z — 1| = r and by the segments A" A", B’ B".

The following important result of E. Borrr' will be needed.

»If one writes the following Mittag-Leffler expansion of 1/(1 — 2):

(8. 8) =3 G,

I —z

! E. BoreL, Sur les séries de polynomes et de fractions rationnelles, Acta mathematica, vol.
24, pp. 301—381; particularly see pp. 354—358.
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where
(8. 8 a) Go(2) =gole) =1, Gul(2)=gu(2) — gnal?)
({n
= 2 9n, 2 (an =pt 4+ o+t n)
i=0
with

nt  n8 ndn

AV NN
(8' 8 b) gn (2’) = Z Z Z (_}ili,—?}—l_——l*liﬁ (j—z) )

=0 ;=0 ;=0

it can be asserted that

[

32 Ry}

(8.9) S Gule)| < M (R, r) = Blsrr] P

=9

for z in S(R, r), convergence of the series being uniform.»

The above result of Borel will be used in order to obtain conditions re-
garding »rarefication» of mass u under which Mirrac-LrrrLer (for short, M.-L.)
development of f(e) will be possible around a point ¢, in G, along lines in G.
This, incidentally, would establish quasi-analyticity in the ordinary sense (i e.
unique determination by values of the function and of all of its derivatives at
a point).

On writing

4y (@) = fo(a) = fra (@) r=1,2,..fole)=0)

that is,
(8. 10) A= [ [ A (v=1,2,.. . Hy=o0),
z—a
H,—H,
one has
(8. 104a) Sfla)= 2, 4s(e) (¢ in G).

Let «, be fixed point in G and suppose there exists a segment («, L) in G
When o is on (e &) and # is in H, — H,—1 (in fact, if z is in H,), recalling
the definition of H, in consequence of certain developments previously given by
TryrrzinskyY?, it is concluded that the point

(8. II) u:a/_ﬁ)
Z‘_ao

! Cf. TRITTZINSKY, loc. cit., section I0; in particular the text in conmection with (3, ..., (12).
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will lie in S(R.,r,) where, with ¢,, 6, denoting suitable constants independent of »,
0z

(8. 12) R,=o0,v, r,= o (a,, 3, > 0).

We then have
1 I 1

T 2 G’n lt

r—a Z2—ay 1 —u 4——6{071 .
where, in view of Borel’s result,
(8. 12a) ZI Gu(u)]| < ]l[(o1 v 4) =M, (e on (e, &p), zin H,).

n=0 )
Consequently
(8. 13) ffa—aOZG"ud”_ZH"' — ),
H,—H, n=0 n=>0

with

du
H, (e — o) = Gy () —"~
z—a,
v—l

inasmuch as the second member of (8. 13) is uniformly convergent; (8. 13) con-
stitutes a M.-L. expansion of A4, (¢) around the point «, along the segment

(@y, Lo). Since for «, and # in the indicated sets

IZMaOIEQa

v
we have
[ Huo (e — )| = 71 ff | G ()| dpe
i(}w—Hl._l

and, by (8. 12a),

(8. 14) D Hoo (@ — a)| § - ffZlGn w)|du

< Mou(H, — H—) (¢ on (e, 5).
0
If the series
(8. 13) 8= v M,u(H, — H—) (cf. (8. 12 a))

converges, the double series
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Z -E[n, ¥ (a

n,»

will be absolutely convergent on (¢, <,). We then may rearrange terms, obtaining
by (8. 10a) and (8. 13),

(8. 16) f(a):i i Hnu-(a—ao):i i

o
= S Hile— ) (con (e, 23
where "
(8. 162) Hn(a—ao)sz G (1 ;ii‘fc-[(; (from (8. 11))
0

inasmuch as

2 (H,— H,—1)= 0.

By (8. 8a) and (8. 11) from (8. 16a) we obtain

an . oy ) « ) '
I{n( - gn z[ff Zi_—a_ z+1:| Cé — C(O)l == Z gn,i'[’*jl?';o (Cl — ao)".

Consequently (8. 16) is a M.-L. development of f(«) around e, (along (ay, o))
Thus, the following fact has been established. If the series (8. 15) converges, f ()
may be expanded in a M.-L. series around a,, along (a,, 5,) in G; we then have
Sle)=0 on (ay&,), whenever

0 = flag) = ™ () = ¥ (ae) =

Using the definition of M, given in (8. 12a), in view of (8. 9) it is concluded
that, for a suitable ¢(> o),

M, < (g, v)@™ v =)

Thus, (8. 15) will converge if

(8. 17) w(H, ~ Hy ) = 2o )™ = K () (v = %),

pot
while

(8. 17 a:) Z Sn (8” > O)
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converges. Now
H,—H _,<0—H,_,.

Hence (8. 17) will hold if
(8. 18) w(0— H,—1) = K@) (v = vy; cf. (8. 17)).

It is observed that if one takes ¢ sufficiently great the factor s,/v in K(»)
may be deleted.

A modified method will be now applied. Suppose [ (¢, =o(w==0,1, .. )
for a fixed point ¢, in G. As before suppose there exists a segment (a,, {,) in G.
For ¢ in (a,,&,) in view of (8. 5a) we shall have

(8. 19) LA (o) | < (2) =z n=o0,1, ).

A M.-L. expdnsion of f,(«) can be given by (8. 13) if one replaces the set
H,— H. , by H,; thus,

. . I > ¥ A > 7,7 _

(8. 20) j.l,(a)—fj Z_%Z G lae) d,u—z Ho g — a,)

H, n=0 n==0
where

(g — @) — ) e
(8. 20a) H™ (@ — a) ffGn (u)z .

H,

By (8. 8a)

Golu) + - 4 Gn (1) = gn (1)

and, in view of (8. 20),

(8.21)  fole)=Tim Py, (e — ), Poslc— ag) = f f g
n — Wy

z
H’l’
om (ZM ) fln fvl) aO ?
— é)km [f[(g — ao)i“] (& — ) =%hn, e (a — ap)';
Hy
here
(8. 21a) hn,; = coefficient of 2% in ¢, (2) (cf. (8. 8 b)).

Formula (8. 21) will certainly hold on (a,, ), inasmuch as this segment is in G
and every point of it is an interior point of the set K — H, in which f, () is
analytic.
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The Mittag-Leffler coefficients hn; are really summability factors. One has
lim hy; =1 and

n

0<hn:<h (h independent of u,17);

thus, by (8. 21) and (8. 19),

(8. 22) | Poole —ay)| < h Z 75 (1}):—'

=1

(z=]e, —Z|; « on (e, &) in G).

The »:;(») are given by (8. 7). In this connection it is noted that in view of
(4. 55a) (cf. (8. 6b)) one may take

Ky = 3n+1.

n+ 1
Thus, in (8. 6b) one may put

Aps1 = ————g"*! (suitable g > 3).

Taking the expression for h,., from (4. 10a), in consequence of (8. 6b) it is
inferred that one may take

(8 23) h;H—l — gn-l—l.
Whence
(8. 24) re(v) = 201 ()~ oy 141 (ﬁ)

so that by virtue of (8. 22) one has

o .
2h . W[z}
. 23 | Prle = el < oo =20 Sty (22 (2)

i=0
for « on (e, &)

We shall now seek a value N (v) such that

(8.26) D | Ga(w)] < L (2 in SRy, 712)),
n>N{(7) v :

where Ry, 1, are given by (8. 12). Borer has solved this problem (with R, r, re-

placed by any numbers R (= 2), » > 0) in the case when the second member in

! Tnasmuch as f—1 (u) — ®, as v — o0, we have lim On,» = ®,
n
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(8. 26) is equal to unity, by utilizing certain results from a memoir of MiTTac-
Lerrrer’. Following Borel's method?, with obvious modifications, we obtain

(8. 26 a) N({)=a,»* (a; > o, independent of »).

In view of (8. 20), (8. 20a), (8. 21)

(8. 27) Sol@) — Puola — o)) = — D\ Gulw)du (u from (8. 11)).

m>n

'}'——ao

v

Since in (8. 27) u represents a point in S(R,,7,), in consequence of (8. 26) it is
inferred that

) = du
(8. 27a) |fila) — Puwle — )| = ffganm u ffl’ ool

du K .
> 2
fflz_aol (n = a,»?)
for a on (g, &)

By virtue of (8. 25) and (8. 27a) one has

(8. 28) I/l =1 Pw s (o — )| + [ (@) — Puro (@ — )]

< ow,» + ~1:~, (»" = least integer = a, »%).
Thus
(8. 28 a) li:n Sole)=fle)=0 (on (&g, 5,) in @),
provided |
(8. 29) liin Ow,» =0 (5’ from (8. 28), (8. 26 a)).

In view of (8. 25) condition (8. 29) will be satisfied if

Ay 3
. ey . T
Dbt 5y g7 4] >0 (as il L 7)

that is, if |
o [Ty E—1 (10 g7 10w )14 > o (as » - o).

! MirTAG LEFFLER, Sur la représentation analytique d'une branche uniforme . . ., Aeta mathe-
matica, vol. 23, pp, 43~8o.

* BoREL, loc. cit., pp. 356—358.

® This is so because g > 1 and ?—1 () increases monotenically as 7 (> o) — o.

19—38333. Acta mathematica. 70. TImprimé le 1 décembre 1938,
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If @ (> o0, independent of ») is suitably chosen the latter condition will certainly
hold whenever

(8.30) o) = rt-1{ug™)" >0 [e(r) = (av’)"; uy=n(0 — H,).

The relation (8. 30) secures quasi-analyticity, just as the inequality (8. 18).
The two conditions, though both relating to rarefication in the vicinity of the
set (7, are of a substantially different form.

There exist set-functions p (= 0), not identically zero, for which (8. 30) is
satisfied.

One may write (8. 30) in the form

tma (e g™) = - o 0) T (0(v) > o).

r
Ty
Now, u,g~® - 0 (as » > ) and, thus, the first member will approach infinity;
hence the second member must approach infinity. Whence

(;L(L))IW) =0, () (0, (v) > o).

On the other hand, the preceding inequality may be written as

™ g—c(v,\ =t ( [0 (,,) ‘u;—lll/c(l') L )

7

Combining the latter two inequalities one obtains

(8. 30a) g ([0 () et I) = us = 0(v) o, ()]

31
[e(v) = (@»®)*; o= (0 — H,); vZ=w; o{) >0, 0,() >0 (asy > o).

Theorem 8. 1. Let u(=0) be a setfunction, not necessarily absolutely conti-
nuous. Suppose there exists a monotone continuous function t(v) such that (8. 2)

holds, while in a closed set G one has (8. 2a). Consider functions

f(a)=£fzd_”a=];f;(ff‘a (0;1#—(;).

Let H, denote the part of O at distance = r,/v from the frontier of 0. If «,

denotes a point in G and the segment (a4, L) s in G then f(a) can be expressed,
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on {ay, Co)y n terms of the values of the derivatives at «,

S ) (v=o0,1, ...,

with the aid of @ convergent MitTac-LEFFLER expansion, provided that for v = v,

(8. 31) w(H, — H,_)) = % (6, )~ o
(Z 8y convergent; s, > 0; suitable o,(> o), o(> O)).

This condition 4s also satisfied whenever (8. 18) holds and it implies quasi-analyticity
in the ordinary sense of the corresponding class of functions f(a).

The latter property is also {mplied by the inequalities (8. 30a), where g(> 3),
a (>0), 7, (>0) are suitable constants and o(»)(> o), o, (v)(> o) are functions
approaching zero as v —> ®.

A number of developments along the lines of this section have been
previously given in a significant paper by R. Caccrorrori’; the results obtained
by the latter are essentially different from ours.

9. Determination by Values on Sets of Positive Linear Measure.

We designate by G a closed bounded set, in the a-plane, containing a closed
interval I (0=« =2a). Let O(d)(d >o0) denote the set of points at distance
< ¢ from G. If 0, >d,> - (d, >0, lim J, =o0), one has

0@)>0()>-; 0()~—~G (as v > ).

Suppose [, («) is .analytic (uniform) in O(d,) and the sequence {f.(a)} converges wni-
Jormly in G; designating by f(a) the lmiting function, we have

(9. 1) | fle) = fo(@)] < e (zn G; lim &, = 0).
Let us suppose also that

(9. 2) FAGIES (@in 0(6,41); v=1,2,...),

where S s independent of ».
Let D(g), in the a-plane be the domain so designate at the beginning of
section 6. The funection

' R. CaccroppoLi, Le funzioni monogene generalizate definite mediante integrali doppi di
Cauchy, Rendiconti del Seminaro Mat. della R.U. di Padova (1934); pp. 1—26.
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(9. 3) | w="h(e, ) = @ lzaaf (a =£),

' + (2a— a)f 27

where tg7 = 2a¢/(a® — ¢*), will map D(¢) conformally on the interior of the unit
circle in the u-plane. The interval (o, 2 @) and the points 0, @, 2 « (in the «-plane)
will go into the interval (— 1, 1) and the points — 1, 0, 1 (in the «-plane) respectively.

We shall now examine the conditions under which the class of functions
fle), under consideration, has the property (P) consisting in unique determination
of the members of the class when the functional values are known on a set I’
of positive linear measure, situated oun an interval in . It will be supposed
that [ is on the interval {a, 2 «); this entails no loss of generality. It is con-
venient to formulate the problem as follows.

With I' denoting a set of the above description, we wish to find conditions
under which vanishing of fla) on I' implies vanishing of f(«) on I > T, awhere

(0. 4) meas. I" > meas. I".

Thus, suppose that
(9. 5) fley=o0 (¢ on T).
Inasmuch as f(«) is continuvous, I’ és to be taken closed. Whence, on writing

(9 6) IL = (Cl, 2 d)v 0= Il - I‘v

it is observed that

(0. 6a) 0= Z I(a, &) (I (eh, o) = (b, &); a; < af)

=1

where the non-overlapping intervals (¢, ;) are open' and are all in I,. In so

far as meas. I > 0, one has

{9.6b) meas. 0 = ¥ (ai — ) <a.

9. 7) If(@) = fr@)]| =fi ()] = e (@inI; v=1,2,...).
The function

(9. 8) _ w==nh(d+1, ) (cf. (9. 3) with & = d,+1)

! Except, of course, that in some cases there are extreme semiopen intervals.
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transforms D (d,+1) on the interior of the unit w-circle. Now f,(«) is analytic
in 0(d,) > 0(d,+1) > D(d,4+1) because 6,+1 < 6, and (o, 2 @) is in G; thus, applica-
tion of the transformation (9. 8) to f,{«) will yield the function

(9. 8a) Jold) = F, (i),

analytic in w for |w|< 1. In consequence of the inequality (9.2) we also have
(9. 8b) FAGIEL Jul<i;v=1,2,....

I' is on («, 2 @) and whence is carried over by (9. 8) into a set I''" situated
on the interval 0 =w =< 1. Similarly O is transformed by (9. 8) into an open
set O of the form '

(0. 9) 00 = S 10i6), i 0)  (T(wib), wf () = (i ), o),

where the ;(»), w/ () are points in the w-plane corresponding to the points
«, ai of the aplane, respectively. Consideration of the form of the function
(9. 3) leads one to the conclusion that the following is true for the points just
referred to (if one keeps v fixed). If «, «, are points of the set {«, '}, such
that @, < «, then the corresponding w-points, w, and w,*, will also satisfy the
tnequality w, < w,.

We have

(9. 9a) 10 4+ 0 = (o, 1).

In consequence of (9. 7) and (9. 8 a)

(9. 10) |Fol)] < e (win IW; y=1,2, ...
The set I'™ is in the interval 0 =w =< 1. One has
(9. 11) meas. " > o;

we shall now apply a theorem due to A. Brurring?, which stated in a restricted
form, requisite for our purposes, is as follows.
»Let I’ (w) be analytic for |w|< 1 and suppose

(9. 12) |Flu)|= S (Jew] < 1).

! Belonging, of course, to the set {w;(¥), w] ()} GG=1,2..).

% A. BEURLING, Etudes sur un probléme de majoration, Thése, Upsala, 1933 (pp. 1--109).
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Designate by E a set of values o =1 = 1 for which
(9. 12a) wl) = min | Fl{on(Jw|=r) (r<1)lSe  (o<e<S)

Then for |w]|=r(0 =7 < 1) one has

pir)
(0. 13) Fel=e(25)7
where
(9. 13 ) plr) = 4 arc tg b+ (0 =1 — meas. E)>.
7T I+ Or

We apply this theorem to F(w)= F,(wr). In view of (9. 8b) S of (9. 12)
will be the number so denoted in (9. 8b). In consequence of (9. 10) one may take

(9. 14) E=I" s=¢,.

The theorem will then yield the following result:

(©-15) | 7, ()| = &7 S7in = 2, () (for fu| = »r < 1),
where
4 T B
152 py(r) = ~arctg | / = 0, = 1 — meas. I'""")),
(9 15 a) Pa(r) - ] o (
(9. 15 D) 0, = meas. 0;“'] :2 (w;f (1:) — {v)).

In particular, (9. 13) will hold on the interval (—r,#) (0 <r < 1).

Going back to the variable ¢ on taking note of (9. 8a), from (9. 15) we
obtain

(9. 16) LA (@] = 4. () (e on I (1)),

where I(r) is the a-interval corresponding to the w-interval (—,7). It is con-

venient to arrange to have I(r) independent of »; let us say
(9. 164) I0)=(,2a —n) (0o <y <a)

where 7 is independent of » and is however small. In (9. 16) we then have

e _ _la—nl —
(9. 16D) r=1,= —h(01, 1) =h{0vs1,2a — 1) = Ga s+ qp =1

as can be seen by considering (9. 8), (9. 3); here
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(9. 16¢) o=oy)= L tez(v) = 24,0_6““
@ —0y41

In view of (9. 16) and since lim f, (¢) = f(a) ¢t <s inferred that, if (9. 5)

holds, we have

(9. 17) fle)=o0 o<n=ae=z2a-1),
provided
(9. 18) lim 4, (1n) = o (cf. (9. 15), (9. 16 b)).

Vv

We shall now proceed to find conditions securing (9. 18). It is noted first
that, in view of (9. 16¢) and inasmuch as lim d,+1 = 0,

PV

(g. 19) o (v) =0, (v) 672, (0" = a,(v) =0”"; v =,

where o' (> 0), 6" (> 0) are independent of ». On the other hand, by (9. 16b)

e = . 2a
(9 20) 71/——€(;(_;_)T; (= ";‘r]"~I>I .
For n small { is arbitrarily great. One has
{9. 20a) 0<1p<< I, ¥y —~1 (as ¥ — ).

Consider now 6, of (9. 15b). It is of importance to observe that (9. 6b)
holds. A constituent interval (<, of) of O is transformed by (9. 8) into a constituent
interval (w;(v), wi (v)) of O". We shall compare the length of the latter interval
with that of the first. In consequence of (9. 8) with the aid of a mean value
theorem it is inferred that

(9. 21) o <wi(v) —wi(v)=1N(0vs1, &) — h(Bss1, @) = BV (0,41, &) (e — @),

where
(9. 21) «=a;<@=a, < =24
Now
' a —1{s g — g)oi*)-1
(9. 22) B (0,40, @) — 40T 20 — T

@ T (34 — a))?
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for o<« <<2a; this function attains its maximum (for 0 < « < 24) at « = «;
from « =a to @« = 2a it is monotone diminishing. Hence on account of (9. 21 a)

it follows that
Ry 41, &) < BY(0y 41, @)

and, by (9. 21),
{9. 23) 0wl @) — i () < BV (0ys1, @) (0 — o).

Now, in view of (9. 22),

(1) , i 4a (T('l’) 70M_1 < 4 O"(”V) a(v) —1
(9- 23 a) WY (8y41, “) e [I ¥ ;/,‘_7)]2 =", 7

za
=Za=2a;y=—1+ " 0=y=1)
o

Fora+ =a=z2alo< <a) we have

—
Y=y, = a + > <1 \7o independent of »)
k=l
and
(9- 23 b) R 8y 41, ) = 4*‘;(1)) 7o) @+ =a=2a)

If I' contains the interval (a,a + '), in place of (9. 21a) we shall have
a+ Sdi<ag=a,<d =2a

and, by (9. 23), (9. 23 b),

i e — i)

Wl () — ) () < i‘%@

thus, in this case,
(0. 24) S =) - wib) < f‘%@ yiVmeas. 0 (cf. (9. 6b)
and, inasmuch as y, <1 and ¢(») -~ o (as v - ®), we shall have

(9. 24a) lim 6, = o.

Suppose now that I" contains an interval, say (a,a + ') (with o < < a)!,
or deleting this condition note that 6, < 1 {cf. (9. 11))>. We shall now obtain an
explicit form of the condition (9. 18). By (9. 15 a)

! There is no essential loss of generality in this choice of the interval.
2 Obviously 6, = 1 in any case. It is sufficient for our purposes to have 0, < I merely for
an infinite subsequence of values ».
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N2 . Ot
(9. 24 b) 1 — po(r) = p Are sin o (Qv . 01')

Using the definition of ,(r), given in (9. 15), we write

0230 hb)=tog (1) = (1 =) log (i) — po(r) log 5.

&n

Ly

By (9.20a) and (9. 15 a)
lim p, () =1

in any case. Whence, by virtue of (9. 235), it is concluded that (9. 18) will hold
if A,(») > » (as » > «); that is, if

As (v).= arc sin (Lj&) log (\I) > o0 (as » -> o0).

I+ g, &n,

In so far as (1 —g,)/(1 + ¢,) > 0 (as ¥ > =), the above condition is equivalent

lim %—ﬂ log (_I_) = 00 ;

to the relation

v (I + 01/) (I + 7},) &n,
that is, to |
(9. 26) | " lim (1 — 6,)(1 — n) log (;) — .

Here, in view of (9. 24 a), the factor (1 — #,) may be replaced by unity, whenever
I' contains an interval, as stated. On taking account of (9. 20) it is observed
that (9. 26) may be replaced by the formula

n

lim (1 — 6,) =% log (—I) = o0,
which may be written as

— 1 o )
(9. 27) &n, = €XP. (i? (v) g"“')) (v = )

(tp(w)(> 0) - «, however slowly; {= —1 + 2@ 1)-
n
To obtain (9. 17) it is sufficient to have (9. 27) satisfied merely for an infinite

subsequence of values ». By (9. 19) it is sufficient to have
20—38333. Acta mathematica. 70. Imprimé le 1 décembre 1938,
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- e (o) i

Theorem 9. 1. With the notation introduced at the beginning of this section,
consider functions f(a), defined over a closed set G, which are limits of wniformly
convergent sequences {f,(a)} of analytic functions, as stated in conneetion with (9. 1)
and (9.2). If fla)=0 on a closed set T, of positive linear measure, situated on an
interval, let us say (a, 2a) (@ > 0) (the interval (0, 2 a) lying in G), then fl«) will
necessarily vanish also for

o< n=a=2a—7 (n however small),
provided (9. 28) holds. In (9.28) L= —1 + 2a/np>1, W) >0 and
Y ) > o (as v — <),

however slowly; 1 — 8, (0 =<6, < 1) denotes the measure of the closed set I'™ obtained
by applying the transformation (9. 8) to the set T.

In the case when I' contains an interval (a, a + ) (' > o) we have 6, ~ o
(as v — ) and one may replace 8, in (9.28) by zero. We have the inequalities
0, <1(@=wy, % +1,...) in any case. (This may be established, for instance,
with the aid of a known theorem on conformal transformations, applied to linear
sets of positive measure.) '

Note. This theorem gives a condition under which there is on hand a class
of functions possessing the uniqueness property (P), referred to preceding (9. 4).
The above developments suggest a method of analytic continuation.

With G closed, G < K, write O =K — G. As in section 7 let us define H,
as the part of O at distance = ry/v from the frontier of 0. We shall have (7. 2).
Let u(= o) be a set-function not necessarily absolutely continuous and consider func-
tions of the form

(9. 29) Sfle)= [j Z’Lﬁ;{ jf;%fta (0),

the density of w being zero in G; that is, functions considered in seetion 7. On
writing

(9- 292) fola) = @ (H,),

we obtain
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fl&) = fula) = @ (0 — H,)
and, by (7. 31 a),

(0. 30) |fle) — £ le)] = 7' () =, (=05 @ in G).
On the other hand,

o 59 o= [ [ <2 fanro (Lot
H, H,,

for « in K — H,.1, inasmuch as |z — a| = ry/y — 7o/lv + 1) (z in H,).!

We may now repeat the reasoning made earlier in this section, with &, of
(9. 1) replaced by +'(») of (9.30). However, S of (9.2) will now depend on »,

(9. 32) S§=8,=nrr

and we shall write

(9. 33) MM:K«m,ng

The notation (9. 33) is consistent with that introduced preceding (9. 1), if the
convention is made that the set (¢, now under consideration, contains the frontier
of K.2 Suppose that there exists an interval — which without any loss of
generality may be taken as (0, 24a) (¢ > 0) — in the part of G exclusive of the
frontier of K. It is then inferred that, if f(e) =0 on I',’ necessarily

(0. 34) fle)=o0 o<n=e=2a—nr1),
provided
(9. 35) lim 2, (n)=o0 (cf. statement with (9. 17), (9. 18)).

Here, in virtue of (9. 15) and (9. 32),

By () = &1 P02 0] 20,0

and »(») (cf. (9. 16 b), (9. 16 ¢) with dwlz;@fl) is of the form

t

o0 L (-2 im).

! The statement in connection with (7.2 a), (7.2 b) will apply.
* This is not a very essential point.
8 I’ a set of the type involved in (9. 5).
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where
(9. 36 a) o (v) = oo () v @ =ql)=d";vzv)

moreover (cf. (9. 15 a), (9. 24 b))

V=24 arote Voo 1 — polr)=2 o (LT _ Ot
Pulry) = , arc g Vo,, 1—p,(r,)= —arc sin (I : 01’) (Qv P—— &)

with 6, having the same significance as before. Thus, if 6, <1 (v = »), (9. 33)
will be satisfied if

tog (;) =1 = .0l og (1) + 1) tog (1) = 22 ) g » > =

&y r
(as v > »). Now p,(rn) > 1 and 1 — p,(r,) is of the order of

2 1—o

7r1+?,y

2 _— .
(1 + 6,)(1 + 1)

Whence it is observed that it is sufficient to have

18t —n) (1) _ .
- L+ 0 log . 2log v —> .

Furthermore, it is observed that by (9. 36) and (9. 36 a)

I

= S
BRSO

1+ 0,

= (1—mn)

(9. 37) =, = A0 (2, > o).

N |-

Hence (9. 35) will hold if

The latter condition can be expressed by saying that the first member above is
= Y (») (> o) where ¥ () > , however slowly; that is,

tog (I) =7 L i)+ leg) v =)
1 v

€y
or
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I

(9. 38) ¥ (v) = & = exp. U o —) A (@ (@) + log 'v)}

(zo= 27” (cf. (9.37)); o” from (9.36a); A={(">1;v= ”0)' |

1

In view of the definition of +'(v), given in (7.31a), u(H,+, — H,) should
approach zero (as » -~ ) rather rapidly. Thus we may assume first that

I

(9. 39) = D i+ Nu(Hiw — H) =

Yo ¢

iz

1

vu(H,p— H,) (K, > 0; v=v,).
K, :

Accordingly it is observed that (9. 38) will take place if

(9. 40) w(Hypr — H,) < %’ exp. {—- _h A* (@ () + log v)} = h(»)

for v = »,.

Theorem 9. 2. Let G and O be sets and let f() be a function as described
tn the atalics preceding to and in connection with (9. 29). Suppose G contains an
interval 4.  Wathout any loss of generality one may take o4 =10, 2a){a > o). Let
I' be a closed set of positive linear measure, situated on the interval (a, 2 a).

If fle)=o0 on I, then necessarily fle)==o0 for o <y =a = 2a — 1 (y however
small), provided the rarefication of »mass» is such as specified by (9. 40). In (9. 40)

K,>o0, k= Z,Tﬁ, W) (> 0) > + whawerer slowly; A, > o s from (9.37);
1 .
A=0">1 ( = ?;]Q —1; 0" from (9. 36 a))

The 0, in (9.40) have the same significance as in Theorem 9.1 and these
numbers have the same bearing in connection with the stated result as indicated
at the end of Theorem 9. 1.

Note. This Theorem furnishes a condition of rarefication of »mass» under

which there is on hand a class of functions

= [ [,

with the uniqueness property (P) (referred to earlier). It is clear that the
condition (9. 40) will insure this property on every interval # < G, provided that

cert.aiq obvious conditions are satisfied by the constants involved in (9. 40).
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10. Applications to Functions of the Form (1. 3).

The results of the preceding sections can be conveniently applied to func-
tions represented by series (1.3). Thus, we consider functions

(ro. 1) S(e) = _ b

G, —

(Z | 0. | convergent),

where the 5, may be complex, b, =1, + V —11,. We thus have

J— e by
(10.2)  Sl@=8(e)+ V=180, SH=3 "0 Ki=3 "
ah ! al?
T ki .
SI—SII_—SIQ) Sll_Zﬁv’;_a’ Slz_Zp’,Q—a
a1 a?
_ B 5 % _ v
) S2 Sz, 1 SQ] 2, SQ, 1 2 1 — av Sz, 2 2 Ve 2 — o’
where
(10. 2 a) apt=zo, ay*zo, ay'z=o, ay®=o
and the series :
(10. 2 b) a bj=12)
Vv

converge. Conversely, inasmuch as |b,|=|0:| + ||, it is inferred without

difficulty that convergence of the four series (10.2b) implies convergence of

(10. 3) ' pAL2E

Consider functions of the form

(10. 4) g9(e)= > e (afW >0; D convergent),

where as a matter of convenience, entailing no essential loss of generality, the
B, are assumed to be in K (the bounded domain so designated throughout this
work). As a singular integral ¢(«) of (10.4) may be expressed as follows:

dd . . .
(10. 5) g(@)= —— (z variable of integration).

Z—a
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Here 9= 3(X) (X < K) is a singular set-function such that, for sets X < K,
we have

(10. 5 a) HX)=HXE)=a + an, + (= o),

with F, denoting the set of points {8} (v =1, 2, ...) and (8, 8., . . )" denoting
the totality of points in X I,

Definition 10. 1. With X denoting a set << K, the expression
(10. 6) : &(X)a,

is to be formed as follows. Let 8., B, ... denote the totality of all points B, (from
the series (10.4)) which are in X; the expression (10.6) will stand for the sum

(10. 6a) Ay, + oy S+ (the a, from (10. 4)).
The following relationship is immediate:

(10. 7) H(X)=6(X)a.

Also, with the series (10.1) in view, one may write

(10. 7 a) S(X)|b ) =10, + b + -,

where »), v,, ... are subscripts of all the points «, which are in X. The follow-
ing inequalities ‘will hold:

(10. 8) S X)ahi =S (X)|b] (¢, 7 =1, 2).

It will be sufficient to demonstrate this for i =j5=1. We observe that (10. 7 a)
will hold as stated. In the series S;; of (10.2) the @, ; represent certain points
which constitute a subset of the points a,. Of the 8, 1 certain ones, say

(IO. 8&) ﬁm,,l, ﬁmg, 1y« v oy

will be in X; the points {10. 8 a) will constitute a subset of the points «,, @, .. ..
Whenee the numbers

1,1 1,1
apt, apt ...

will form a subset of the real parts of the numbers

buy b .

1 Of course, sequences (v, v,, ...) depend on sets X.
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and, accordingly,

S(X)abl=akl'+alt+ - =R |+ R | + -

= b |+ 0] + - =8(X)] 0],
which is the desired inequality.
Conversely, since | b, | = |BL| + |05 1],
(10. 9 SX)[0] = S(X) (3] + S(X) 011,

Now
S(X)|b =8 (X)ay + S(X)a)?

and there is a similar relation for the last term in (10.9). Thus
(10. 10) BX)|W]|=S(X)a'+&(X)al? + S(X)a>' + @(X)dﬁ"".
In consequence of Theorem 3.1 the following result may be stated.
(L) The series (10. 1) converges for e'verg/‘ value o, in K, for which the series

(10. 11) i@(KS(a, %“;))lbvl

m=1
convergest.

In fact, if (10. 11) converges then in view of (10. 8) the four series

(10. 11 a) N @(KS(a, ;‘l’))alﬂ ((,j=1,2)

m

will also converge. Now, by (10. 2),
S(a) = (S]’ 1 Sl‘ 2) + ]/;MI_ (SQ, 1 SQ, 9)

and, by virtue of the statement made in connection with (10. 5)

v g

(10. 12) S, jle) = f Z—% (97 =z o, singular set-function),
K

where 97 is formed as indicated in (10. 5 a). In view of (10. 7) the series (10. 11 a)

may be written in the form

! Here S{e, ¢) denotes a circle of center & and radius g.



Some General Developments in the Theory of Functions of a Complex Variable. 161

Y 94,7 To S g e
(10. 13) % 9 (KS(a, m)) (¢, =1, 2).
Applying Theorem 3.1 it is accordingly inferred that the series S ;(e) (¢, =1, 2)
all converge for every « for which (10. 11) converges; the same will be true for
S(e). Thus the truth of the statement in connection with (10. 11) has been
verified.

By (10. 10)

(ro.14) D @(S(a, :ﬁ)) 6, = Tyale) + Iy a(e) + o1 () + Iy, 2(a)

n
where

= o iJ S s 1
(10. 14 a) Iy % @(S(a, m)) a (i,7=1, 2)

provided the four series Iy ; converge; in the latter case, of course, the series
(10. 11) will converge. In view of the formula (10.7)

2
] - ry T
= i, J ) — 270 g 4
(10. 13) I 2 9 (S(a, m)) % e (a, m’)

Here ¢%J(a, ri/m) is an expression which, for m — %, will approach ¢"7(«), the
(symmetric) density at « of 9%/ almost everywhere; moreover, inasmuch as the
97 are singular set-functions, the densities ¢/ () will be zero almost everywhere.
This is a consequence of a fundamental result of LeBescur. Thus, there exists
a set E, of zero measure so0 that the series I ; (¢, j = 1, 2) all converge in K—E,.
In view of (10.14) the series (10. 11) will also converge in K — E,, Whence we
have proved anew the following known classical result.

(IL) Series (10. 1) converge almost everywhere.
We have obtained more than what is implied by the above statement; that
is, there is on hand some information as to the location of the points of con-

vergence; in consequence of (I.) the series (10.1) converges at « provided
(10. 16) & (S (a, ;7‘?’))|by| -0 {as m — )

sufficiently fast. It is of interest to note that (10.1) will converge even at

! For m sufficiently great KS (oc, :—ﬁ”) = S(a, :7;’) if & is in K.

21—38333. Acta mathematica. 70. Imprimé le 2 décembre 1938.
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points « at which the four densities ¢"/(a«) of the set-functions 97 are infinite,
provided that

Y
o (0,’ ~°) SS (as m — =)
m

not too fast; a precise statement regarding this fact is an immediate conse-
quence of (L.).
With the aid of Theorem (3. 2) one may study the problem of diffirentiability
of series (10.1). We shall not go into the formulation of the results of this type.
Regarding the degree of continuity the following can be established with
the aid of Theorem 6. 3.

(IT1)  Suppose there is a set G <K so that for some function v(v) (> 0),
independent of e,

(10. 17) c (S (a, ;‘;)) [ b,] < 2 (m) (m=1,2,...; e in @),

while the series

(10. 17 a) : D (m)

converges. Then, given & (> 0, however small), we shall have

(10. 18) ; | S{e,) — Sle)] < e (¢, ¢y in Q)
whenever ‘
(10. 18 a) Iaba(,'él(i-);

I{e) (-0, as ¢ >0) is the function so denoted in Theorem 6.3 and essentially it
depends only on T(v).!
In fact, in view of (10.8) and (10.7), it is observed that (10. 17) implies

(10. 19) &"J(KS(a, %z))) = 7(m) (m=1,2,..; ain ()

for ¢, j=1, 2. These inequalities enable application of Theorem 6. 3 to each of
the four functions (10. 12). Thus

! We may take I(g)=gd%()/(2r,), where d(¢) is defined as follows. Let ' be the greatest
integer =1r%(24d) and v; be the greatest integer =< z(»)~7 (0 <y <1). Form the function £(3)=
d g Y

=K,vgt(0)+e(vg+ D+ elvg+2)+--+; d(e) is such that {((e)) < e/(4 k). Other ways of defining

() can be inferred from the considerations of section 6.
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é

(r0. 20) | Si,5(eo) — S, 5(e) | < " (@, @ in G)

for | — | = 1(e/4). Now

Sleg) — Sle) = (w1 —wi,2) + V—1 (3,1 — wa, 9),
where
wi, = 8i, j (@) — S, j(e).

Consequently, by virtue of (10.20) it is concluded that
| Slag) — S{a)| = Jwen, 1| + |ewr, o + |ewa, 1] + |20, 2] < &

for «, @y in G, provided (10. 18a) is satisfied.

Sections 7, 8, 9, regarding uniqueness properties, may be applied with the
purpose of “investigating such properties for functions of the form (10.1). We
shall confine ourselves to the application of section g. Of interest for our
present purpose is Theorem g.2. The following result is deduced.

(IV.) Let G be a closed set, G < K. Write O =K — G and define H, as
the part of O at distance = ry/v from the frontier of O. Suppose G contains an
interval 4, say A4 =10, 2a) (a>0). Designate by I a closed set, linear meas.
I > o, situated on (a, 2a). Noting that the 6 of Theorem 9.2 satisfy the inequa-
lities On, < 1, it 4s observed that the class of functions (10. 1) for which

(10. 21) S(Hpy1— H)| 0| = h{m)  (h{m) fiom (9. 40); m = my,)
will possess the property that its members will be wwiquely determined on
o<n=a=2a—0)

by their functional values on T
In faet, in consequence of (10. 8) and (10. 7), it is deduced that (10. 21) implies

(10. 22) 90 (Hpyp1 — Hy) < h(m) (m = my)

for 7,5 =1, 2. Accordingly the conditions of Theorem 9.2 will be satisfied for
each of the four functions (10.12); whence the S;;(a) (¢, j = 1, 2) will have the
desired property and the same will be true for S(«).

Following the indicated lines, many further applications of the results of
this work to series of the form (10. 1) can be carried out.

—_————,—



