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The present paper contains a generalization of the Kister~-Mazur theorem which says
that any microbundle over a finite dimensional simplicial complex contains a (up to bundle
isomorphism) unique fibre bundle. Precisely, we prove this theorem (or a relativized
version of it) for microbundles over arbitrary topological spaces, provided the microbundle
admits a trivializing partition of unity on the base. In particular the theorem applies to
any microbundle over a paracompact space. At present this is a work that aims at gen-
erality and completeness rather than applicability, since so far the Kister—-Mazur result
covers most of the interesting cases. From a purely esthetical point of view, however,
the latter has certain defects. The natural objects to study among the microbundles over
a simplicial complex are the piecewise linear microbundles. For such one should of course
expect sharper results. Recently Hirseh, Mazur and others have shown that a piecewise
linear microbundle contains subcomplexes which are piecewise linear bundles and that
any two such are piecewise linearly isomorphic [5]. On the other hand, in the category
of topological microbundles it seems unnatural to put any restrictions at all on the base
space.

The condition about the existence of a trivializing partition of unity has already
been introduced on bundles by Dold, who calls such bundles numerable, cf. [3]. Any (micro-)
bundle over a normal base space covered by a locally finite family of trivializing open sets
is numerable. Products, sums and “pull-back’s” of numerable (micro-)bundles are numer-
able. Dold also shows that the numerable bundles have the good properties shared by
bundles over paracompact spaces. In view of his work it almost seems desirable to redefine
(micro-)bundles as numerable (micro-)bundles. In any case it has been convenient to do
s0 here. By definition (micro-)bundles in this paper are always numerable.

Besides the techniques purified in [3], an inductive process of Mazur for extending
homeomorphisms on open sets in R? plays a fundamental role in the sequel.

A preliminary report on this work has already appeared in {6]. The present paper
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contains the proofs and generalizations of the results announced there. A final word
about the generalization from the paracompact to the numerable case. This generalization
is not trivial. One reason is that while paracompact spaces are rich on continuous real
valued functions, such functions have to be explicitly constructed by means of a single
trivializing partition of unity in the numerable case. Another is that a fundamental result
such as the germ extension theorem for trivial bundles does not seem to be valid in the
general case. It goes through for “numerable” germs, however, which is all one needs.
On the other hand, the advantages of working in the numerable case will be obvious in
the proofs.

I am pleased to acknowledge my dept to Professor M. Hirsch who introduced me to
the subject of microbundles and started me on the trail to this work, and to Professor

E. Spanier for his encouragement during the work.

1. Preliminaries

In the following X denotes an arbitrary topological space. A partition of unity on X
is a family of continuous functions 77,; X —~[0, 1], j€J, whose supports W,=n;"(0, 1] form
a locally finite cover of X, and whose sum Xz, is everywhere equal to 1. (Note that the
supports are open subsets of X.) Partitions of unity will be written (7z;, W,);e .

It A4 is a subset of X, a halo of A is a set containing the support of some function
7t: X [0, 1] which is 1 on 4. Thus a halo of 4 is a neighbourhood of 4. Conversely, if X
is normal and 4 is closed, every neighbourhood of 4 is a halo.

Given a partition of unity (7z;, W;);e; on X there is a derived partition of unity (515, W3),es
defined as follows: Form the function s =sup,¢,7r;. Then sz is continuous (since it equals
a finite supremum of z;’s over any sufficiently small open set) and positive. Let ;=

max (77;—m/2, 0) and define 7; =7,/X7,, j€J. The functions z; have supports
Wi = {z|m,x) > }x(x)}, jE€J.

If x is any element of X, only finitely many 7; are different from 0 at x, hence there is a
particular j such that s(x)=mn,(x). Then z,(x)>37(x) so that x€ W,;. Thus (W), is a
cover of X. Since for any j we have W< W,, in fact W;< {z|mn;(x) = (@)} = W,, (W));es

is certainly locally finite. This gives

1.1. LeMmMmA. To any partition of unity (7, W,);e; on X there is a derived partition of
unity (;, W;),e; which is a shrinking of (7t;, W,);es i0. W, W, for all j in J.
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If (7;, W;);e; is & partition of unity on X and K is a non-empty subset of J, write
Ag=2egm; a0d We=U ;e x W;. Then W is the support of 7.

Sometimes the term partition of unity will be used also on a family of functions
7;: X ~[0,00), j€J, whose supports form a locally finite cover of X and whose sum is
everywhere positive, while the families above are referred to as normalized partitions of
unity. Of course, every partition of unity (in the wide sense) can be normalized by dividing
with its sum, as in the proof of 1.1.

An R%bundle, 0<q, is a diagram of maps and spaces

X—-EF-2X

such that ps=1idy, for which the following is true.

1. There exists a collection 4 of homeomorphisms ®: pU~~U xR? (called local
trivializations), where U =Uy is an open set in X, such that the composite maps

UxR2 L U 2.1

% 51y 2. U x Re

are, respectively, the projection to the first factor and the injection to zero slice.
The family (Ug)pe, is a cover of X.
2. There exists a partition of unity on X subordinate to (Ug)ge4 (i-e. whose supports

form a cover refining (Ug)pe 4)-

Given two local trivializations ®,, @, over open sets U,, U,, their composite ®,®;*
(whenever defined) is a homeomorphism on (U, N U,) x R? whose restriction to any fibre
maps origin to origin. Thus, if G(RY, 0) is the group of homeomorphisms on R? keeping
the origin 0 fixed, then there is a map f,:U; N Uy~ GRS 0) defined by @01 (z, v)=
(, for(x)v). If G(RY, 0) is equipped with the compact open topology, then f,, is continuous.
An (R, R")-bundle, 0<n<g, is an R%bundle such that all the maps f,; actually take
values in G(R% R”, 0), the subgroup of homeomorphisms that map R" onto R" (where
R" is identified with the set of elements (x,, %, ..., %, 0, ..., 0) in R?). Any (R% R")-bundle
containg a canonical subbundle with standard fibre R™ The two form a bundle pair in

- the definition of [9]. Bundles will be labelled by small greek letters &, 7, ...

If 4 is the collection of local trivializations of an R% or (R? R")-bundle, then there
is a unique extension 4 of 4 which is maximal with respect to conditions 1 (or its refined
version) and 2. As usual we agree to identify two bundle structures which are defined by
collections 4, A4’ with common maximal extension.

13 — 662903. Acta mathematica. 117. Tmprimé le 9 février 1967.
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Let D? ¢=0, be the closed unit disk centered at the origin in R% and let 8% be the
(¢ —1)-sphere which is its boundary. A D%bundle is defined like an R%bundle except its

local trivializations are of the form
O:p U~ Ux DA

An S8%bundle is defined similarly, but is not required to have a zero section as part of
its structure. More generally a bundle with fiber ¥ is defined similarly to an S%bundle.
All bundles in this paper will be R%bundles, D?bundles or §¢bundles, though. The stand-
ard trivial R%bundle (or (R% R")-bundle) over X is denoted £%(X) or simply &?

zx0 o
e X —XxR*—H X,

The standard trivial D%bundle over X is denoted 6%X) or 4% (In general though we
shorten £l and ! to £ and 6.)

The structure group of a bundle (cf. [9] Ch. 2, sect. 7) will play a modest role in our
considerations. They will always be subgroups of G(R 0), G(D% 0) or G(89. In section
4 we make some use of the following two lemmas. The notation is the obvious extension

of the one introduced above.

1.2. LEMMA. Let Z and C<Z be compact or locally compact and locally connected. Then
(Z) (and (G(C)) is a topological group in the compact open topology, and the restriction map

r:G(Z, C)~ Q(0) is o continuous representation.

The first part is verified in [2] (Theorems 3 and 4). As for the second it is an easy

consequence of the definition of the compact open topology.

1.3. LEMMA. Let Z be locally compact and locally connected with one point compactifica-
tion Z', and let {oo} be the complement of Z in Z'. The restriction map r:G(Z', Z)~ G(Z) is an

ssomorphism of topological groups whose inverse is the canonical extension j:G(Z)—~G(Z', o).

This follows from Theorems 1 and 4 in [2].

Given two bundles &, 7 over base spaces X, ¥ (not necessarily of the same fibre type),
a bundle map of £ into 7 is a map of total spaces @ : F - F sending fibres over X into fibres
over Y. If £ and 7 have zero sections as part of their structure, @ is required to respect
these in the obvious way. Finally, if £ and % are (R?, R™)- and (R¢ R")-bundles, © is in
addition required to map subbundle into subbundle. Every bundle map ® covers a map
®': XY of base spaces. If X equals Y, then @ will usually be the identity map. In
this case @ is called an embedding, respectively an isomorphism, of bundles if it imbeds

E in F, respectively maps F homeomorphically onto F. It is then clear what an automor-
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phism is. We write ©:£—>7, respectively ®:fan if @ is a bundle map, respectively an
isomorphism, of £ to 7. 1f £ is a bundle over X, any map }:Z X induces functorially a
bundle f*¢ of the same type over Z and a bundle map f:f*¢—¢&. If A< X, the bundle in-
duced by the inclusion map is written £|4, and if @:£-7 is a bundle map covering the
identity, we write ®@|A4:£|4—+n|A4 for the bundle map defined by ©.

Later we shall need the following

14. Lemma. Let F: X xR?>R be a positive continuous function such that ||v|| <|[v’||
smplies F(x, v) < F(x, v') for any x€X. Then the map V' : X x R?—X x R? defined by ¥(x, v) =

(z, F(x, v)v) ts a bundle automorphism.

Proof. We show that ¥ is bijective. Since V' is fibre preserving, it suffices to show
that ¥ maps « x R? bijectively onto x x R? for arbitrary z in X. Suppose », v" are such
that F(z, v)v=F(x, v")v’. Then v and ¢ are linearly dependent. By the order preserving
property of F v equals v'. Hence V" is injective. To conclude that ¥ is surjective, we have
to show that given v’ there is a v such that F(x, v)v=v’". Since this requires v =’ for some
scalar £, we have to show there is a ¢ with tF(x, tv')=1. Since the continuous function
t—>tF (x, tv') takes the value 0 and values larger than 1 (for ¢ sufficiently large), by the
connectedness of [0, o) it takes the value 1 for some ¢. Thus ¥ is surjective as well.

Clearly ¥ is continuous. We show that ¥~ is continuous. Let ((x,, »,)) be an ultra-
sequence in X xR? such that (¥(z,,v,)) converges: lim, ¥(x,, v,) =¥ (2, v,) say. We

have to verify that ((z,, v,)) converges to (z,, v,). By assumption lim, z, =2, and
lim, F(z,, v,)v, = F(2o, v,),.

Let t,= F(x,, 0)>0. By the continuity of F there is a neighbourhood W, of z, such that
| F(x, 0) — F(z,, 0)| < ty/2 for 2€W,. Thus z€ W, implies F(z, 0)>1,/2 and therefore also
F(x, v)>1,/2 for any vER In other words F|W,xR? is bounded away from 0. Since
ultimately ((x,,v,)) is in WyxR? and since (F(z,,v,)v,) converges, this implies that.

ultimately (»,) is in some compact subset of R? and so converges, lim, v, =v, say. But.

7 Yy
W@y, vy) =lim (2, v,) ="V (2, v0), thus vy=vg and so Lim (x,,, v,) = (g, vy)-

In this proof an ultrasequence simply means a generalized sequence which for any
given subset of the space is eventually either in that set or in its complement. It is easily
checked that a map f:X =Y is continuous at € X if and only if for each ultrasequence

(z,) converging to x (f(x,)) converges to f{x).

1.5. LEMmMmA. Let & be a bundle over a space X x I and let &), &, be the bundles over X
induced from the inclusions X x0c X xI, X x1<X x 1. Let V be a halo of @ set A in X
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and assume that &|(V x I)=(&| V) x I. There is an isomorphism & £, which is the identity
over some kalo V'<V of A.

Except for the relativization with respect to V, Lemma 1.5 is a consequence of Theo-
rem 7.8 in [3]. However, the proof of Theorem 7.8 actually works for the relativized version
appropriate for the conclusion of Lemma 1.5. (Warning. A bundle map in [3] is a stricter
concept than in this paper.)

An R%-microbundle, 0 <g, is a diagram of maps and spaces
X--E’~X
such that ps =idy, for which the following is true

1. There exists a collection 4 of homeomorphisms ®: VaU x R? (called local trivia-
lizations), where U =Ug and V = V4 are open sets in X and E, such that sU< V and
pV < U and such that the composite maps

UxReELy-2.p
U—-V-2.UxR?

are, respectively, the projection to the first factor and the injection to the zero slice.
The family (Ug)ge4 is a cover of X.
2. There exists a partition of unity on X subordinate to (Ug)ee 4

Again the collection A4 of local trivializations can be extended to a unique maximal
collection 4, and we agree to identify microbundle structures which are defined by collec-
tions 4, 4’ with common maximal extension.

Corresponding to the concept of (R?% R")-bundles there is a refinement of R%micro-
bundles which will be called (R? R")-microbundles and which we now define. Given two
local trivializations ®,: V,~U, xR, ®,:V,~U, x RY, their composite ®,®;* (whenever
defined) is homeomorphism of some open neighbourhood of (U; N U,) x 0 in (U; N U,) x R4
onto another, whose restriction to any fibre maps origin to origin. Consider the slices of
these neighbourhoods that lie in (U, N U,) x R*. An (R?, R")-microbundle, 0 <n<gq, is an
R%microbundie all of whose maps ®, ;! sends R -slice onto R"-slice. Any (R?, R")-miero-
bundle contains a canonical submicrobundle with standard fibre R®. It is constructed as
follows. For every local trivialization @:VaU x R? of /_I (the maximal extension of 4
respecting R"-slices) form the restriction @":V'~U xR" and the space E'=U V' If
X B2 X is the given microbundle, B’ is a subspace of E containing the image of s. The
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maps induced from s and p then defines an R*-microbundle X S E'%X with local trivia-
lizations @', ® running through 4 (say). Microbundles will be labelled by small greek
letters u,v, ... R%bundles and D%bundles are obviously microbundles, and so are S¢
bundles provided they have sections.

Given a diagram X>E%X with ps=idy, a microbundle neighbourhood of sX in E
is a neighbourhood E’ such that XLEZX is a microbundle, s’ and p’ being induced

from s and p. We consider some examples.

1.6. For any X there is the standard trivial microbundle ¢%: X=X x R*%X,¢>0. A
partition of unity for this bundle is defined by the single constant function z: X {0, 1]
with value 1.

1.7. Let X be a denumerable set and let x,€X be a fixed element. Define a topology
on X by requiring U< X to be open if U is empty or contains x,. Then X is connected,
and so any continuous function f: X R is constant. Consider the standard trivial micro-
bundle ¢: X X xR—+X. Let U, cU,<... be a strictly increasing infinite sequence of
open sets exhausting X and let E= U U,; x(—1/i, 1/i). Then F is an open neighbourhood
but not a microbundle neighbourhood of X x0 in X xR« In fact if £ was a microbundle
neighbourhood for X x 0, then there should exist a partition of unity (=, W;) of X and
homeomorphisms ©,: V,;~ W; xR as prescribed by the local triviality condition. For all §
define f;: W ;>R by f,(x) =pr,®; '(z, 1). Then f, is a positive continuous function and hence
so is f=2m,f,: X >R, where 7,f; is defined to be 0 outside W,. Then, on one hand, fis
constant, on the other hand, the set {(z, #)|(z, )€ X xR and ¢ <f(x)} must be contained in

E. This is clearly impossible since U cannot contain proper product sets over X.

1.8. Let X be paracompact. Then any neighbourhood Z of X x 0 in X x R? is a micro-
bundle neighbourhood.

Recall the definition (and notation) of a germ of continuous maps between topological
pairs (cf. [8] p. 65). We now adapt the definition of bundle mapgerms in [8] to our case.
Given R%microbundles u:X->E%X, »: YLFPLY a germ ¢:(E, sY)=(F,tY) is a bundle
mapgerm or simply a mapgerm, if the following is true: There is a microbundle neighbour-
hood V of sX in £ and a representative ® of ¢ on ¥ such that ® maps each fibre in ¥V
injectively into some fibre in F. For (R?, R")-microbundles we require in addition that @
map the R™-submicrobundle of 4 in V into the submicrobundle of ». If X =Y and ¢ covers
the identity map, then ¢ is called an isogerm. If moreover y =», then ¢ is called an aufogerm.
For every non-negative integer ¢ there is a category of R%microbundles and mapgerms

and, for fixed X, a subcategory of R%microbundles and isogerms over X. In the latter
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all morphisms are isomorphisms as will follow from the results of section 3. If x is a micro-
bundle over X, any map f:Z --X induces functorially a microbundle f*u of the same type
over Z and a mapgerm [:f*u=u. If A< X, then the microbundle induced by the inclusion
map is written |4, and if v:u=v is a mapgerm covering the identity, we write »|A:
u|A=v»|4 for the mapgerm defined by ». A subset 4 of X is trivializing for u if there
exists a (global) trivialization of |4, V~A4 xR? (assuming that 4 is an R%microbundle).
The trivialization defines an isogerm u|A =¢%(A4) so that p|A gets isomorphic to the
standard trivial microbundle.

Next we give an important example of autogerms on the standard trivial bundle.

1.9. Let X>E%X be a trivial Ré%microbundle with two global trivializations
D E.~X xR k=1, 2, fixed throughout this section. We want to show that the maps
®,D;!, O, D;! define autogerms on ¢%(X). Since X is not assumed paraéompact, this is
not at all obvious. In fact we will show that there exist positive continuous functions
Q12 01 on X whose associated neighbourhoods N(g,,), N (Qm) (defined below) are con-
tained in the domains of ®,@; !, ®, ®;?, resp. The interior of any functional neighbourhood
of X x0, however, is homeomorphic to X x R? by a fibre preserving homeomorphism which
is the identity on some smaller functional neighbourhood. Such a homeomorphism is
certainly a microbundle trivialization of ¢%(X). It follows that the maps ®,®;' define

autogerms.,
If f: X —~R is a positive continuous function, define N(f), N() and N(f) by

(@, V) EN(f) = (2, v) EX x R? and ||v|| <f(z),
(z, v) EN(f) < (2, v) € X x R? and ||v]| <f(z),
(%, v) EN(f) = (2, v) €X x R? and ||v|| =f(=).
Then N(f) is a closed neighbourhood of X x 0 in X x R¢ with interior N(f) and boundary
N(f). If f is constant equal to 1, write N(f) =N(1)=N. Thus N =X x D¢ D?=D%1) being
the closed unit disk centered at the origin in R% In general N(t)=X x D%t) for any real
number ¢>0. (Later we shall also make use of these definitions in the case where f takes
values in the extended real halfline [0, c<].)
Define continuous realvalued functions ©;; on the domain of ®,®;1, 4, j=1, 2, i+{, by

0=, v) = ||pry @, 0; (=, v)||.

Moreover, let N;=®,(®;'N N ®;'N) and N, =®,((®1'N N ®;'N) U (@7'N n D;'N)),§=1,2.
Then N, is a neighbourhood of X x 0 in X x R? contained in N N domain ®,®;?, and N,
is contained in the boundary of N, in N. Also, for any € X, N,|« is a compact neighbour-
hood of (x, 0) in N |z with boundary N;|x.
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Finally define the realvalued funetions g;; on X, 44, by
0:5() =inf {0,,(z, v)|(», v) EN,, = fixed}.

Geometrically, g;;(z) is measuring the minimal radius in the cross-section of N; over z.
We claim that g, is a positive continuous function and that N(p;,)< domain ®,®;".

Since ©,; is continuous and positive on the compact set N;|« for any =, o,(z)>0.
Hence g,; is positive. We show that g, is continuous.

First notice that if W is a neighbourhood of a point z in X, then N,|W is a neigh-
bourhood of N,|x in-N,. Moreover, the collection {N,| W} where W runs over the neigh-
bourhoods of # forms a fundamental system for N,|« in N,. To see this let M =X x B,
where B is some open ball of radius >1 at the origin in R?. Then, varying Band W, {M | W}
forms a fundamental system of N[z in X xR% Thus {®; (M| W)} forms a fundamental
system of neighbourhoods of ®; (N |z) in B, =1, 2. But then {O7 (M| W)n O (M| W)}
forms a fundamental system of ®;'(N|z)N®;'(N|x) in B (O7'(N|z) N @1 (N |x) being
compact) whose trace on ®;'N N ®;'N is {O7(N|W)n ;' (N|W)}. Thus

{OIUN[W)n DY (N | W)},

- W varying, forms a fundamental system of ®; (N |x) N @z (N |x) in ®;’N N @;'N. Since
O (DY (N|W)N DY (N |W))=N,| W, the claim follows. The statement ramains true if N;
is replaced with IV, everywhere. In fact the latter follows from the former or from a similar
direct reasoning. Since pr;N;=X, this means that pr;: N,~ X is an open map.

Let 2, be any element of X. By the compactness of N,|w,, given ¢ >0 there is a finite
collection of open balls B;, B,, ..., B, in R? centered at some v;, v,, ..., v, With (g, v,) EN EA
and a neighbourhood W, of z, in X, such that N,|z,= W,x U B,<domain ®, ®;'and
such that for (z,v) €Wy x B, |O(, v) — O(zy, v;) | <e, k=1, 2, ..., 7. Then N,; N (W,x UBy)
is a neighbourhood of N,|, in N, (not necessarily filling N,| W,) and so there is a neigh-
bourhood Wg of z, with N,| Wo= N, 0 (Wyx U B,). It follows that for (x, v) € N,| W, there
is an integer s with |0,;(x, v) — Oz, v,)| <&, Le. 04(y) —e <O ylwy, v;) —£<Oy(x, v) <
© (g, v5) +&. Therefore 2 € Wq implies g,;(z,) —& <p;;(z). On the other hand, any (x,, v,) €
N,|x, has a neighbourhood U, in N, such that (z, ) €U, implies @ ;(, v) < Oz, v,) +e.
Since pr,: N,—X is an open map, W”=pr, U, is a neighbourhood of #, in X. It follows
that for € Wy 04(x) <0,,(zy, 9o) +¢. In particular if (z,, v,) was chosen a point of minimum
of O, (V,]|z,), 015(%) <oi(w,) +&. Thus, given >0 there exist neighbourhoods W, N W of
%, such that w€ Wy Wy implies |o;(x) —p,;(2,)| <e. Hence p,; is continuous.

By definition N(g;;)< N, domain ®,®;*.
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Finally, if f: X -~R is a positive continuous function, let us show that there exists a
fibre preserving homeomorphism ¥': N(f)~X x R¢ which is the identity on N(f/2). We
may assume that f is bounded by 1/2, say. Form the map F: X xR*—R

1, ol <f(=)/2
F(w,v)=1 2/H) (f@)— o) + @/f@)?) (o]l - (2)/2),  Ha)/2<]v]| <Hx)
1/f(=) f@) <[l

Then F(x,v) satisfies the conditions of Lemma 1.4. Therefore the map (z, v)— (x, F(x, v)v)
is a bundle automorphism of £%(X) which sends N(f) onto N and is the identity on N (f/2).
Compose the latter with a bundle isomorphism N aX x R? which is the identity on N(1/4).
This composite gives V.

The discussion above could easily have been generalized by starting with a tubular
neighbourhood N () =X x D4(¢) of radius ¢>0. This would have given a positive continuous
function p(, f) of two variables such that for ¢ fixed N(o(-, t))< N(t)< domain ®,®;".
The following is really a special case of this situation. The proof is easier than that in 1.9

and will be omitted.

1.10. LEMMA. Let O be a bundle embedding of a trivial bundle e4(X) tn itself and de-

fine the realvalued functions g, 6p on X x (0, 00) by
0o(x, t) = inf {||pr,®(z, v)|||vEDUE), =,t fized}
oz, t) = sup {|pr, ®(z, v)| ]vED"(t), z, t fixed}
Then gg, 6o are positive continuous functions.

Note that if @ is only defined on a neighbourhood of X x D%(t) for some ¢t >0, then,

of course, the lemma remains valid when gg, 0o are considered as funections on X x (0, ¢].

2. The germ extension theorem

This section is concerned about representing autogerms on the standard trivial R?-

bundle by automorphisms.

2.1. LEMMA. Let ¢ be an autogerm on a trivial bundle ¢9. There is a bundle embedding

of &% in itself whose germ s ¢.

Proof. Let X be the base of ¢? and let ® be a representative of ¢ defined on a micro-
bundle neighbourhood E’ of X x0. Let (r;, W,);c; be a trivializing partition of unity for
E'. Then there are local trivializations @,: V,~W,;xR%, j€J, with V,= E'. Since ®;" is a
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bundle embedding of ¢%(W,) in itself, by Lemma 1.10 there is a positive continuous func-
tion f;=pg-1(+, 1) on W, such that N(f,)< V,<E’. Form the function f=2Xmn; f;, where
7y f; is defined to be zero outside W,. Then f is positive and continuous on X, and N(f)
is a neighbourhood of X x0 contained in E’. We may assume f bounded by %. Let F':
X x R?—R be the function constructed in the end of example 1.9 and let ¥, : N(fy~ N be the
homeomorphism (z, v)+ (x, F(x, v)v). Finally, let ¥',: N~ X xR? be some bundle isomor-
phism which is the identity on N(}). Then ®¥;™¥;! is a bundle embedding of & that
coincides with @ on N(f/2).

Notice that the proof relies heavily on the existence of a trivializing partition of unity
for B’ and fails to cover the case where ¢ is just an autogerm in the sense of Milnor. We
next complete the above result by showing that any bundle embedding of ¢? has the
germ of an automorphism. The proof is based on the Hirsch-Mazur induction technique.

2.2. LEMMA. Let ® be a bundle embedding of a trivial bundle 7 in itself. There is a

bundle automorphism @' on & such that germ ®' = germ ©.

Proof. Let X be the base of ¢ Using the map pg(-, 1): X »R as we did with f in 1.9,
we construct a map F’: X x R?—R such that 1,

\Fl(x: ’l)) = (z, F’(x: ?))’U),

is a bundle automorphism of ¢ with germ the identity, which maps N(ge(:, 1) onto N(2).
Then ¥’ ® =®d, is a bundle embedding with germ ®; =germ ® and such that ®, N(1) > N (2).
We now proceed by induction. With @, as described and ®,=®, suppose we have con-
structed embeddings @;, @, ..., @, :e? =% n =1, such that

I: ®NG>NGE+1), i=1,2, ..,m,
II; ®|NG-1) =0, |NGi-1), i=1,2 .,

Since @, is defined on N(n+ 1), by Lemma 1.10 there is a positive continuous func-
tion gg-1(+, n): X - R measuring the minimal radii of ®;*N(n). Let g = min (951 (-, n), n —3}).
Then (I;nN(g) < N(n). "

Similarly, ®, defines a positive continuous function o4 (-,7n41): X —~R. Let h=
max (o, (+, n+1), n+2). Then ®,N(n+1)= N(h).

Now, let ¢, H:X xR?—R be the positive continuous functions

g(x)/n, o] <n
Gz, v) =1 (o]l —n) + (@@)/n) (e +1—v])), n<|o]l<n+1
1, n+1<|v|,
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1, o] <n
Hiw,0)=1 (ba)/n+ 1) (|2}l —n) + (o +1=]lof)), n<flvfl<n+1
h(z)/n+1, n+1<|v|.

Then the maps
Wz, v) = (z, G(z, v)v), Oz, v) = (x, H(z, v)v)

are bundle automorphisms (Lemma 1.4) such that WN(n)=N(g), ¥YN(n+1)=N(n+1)
and ¥ equals the identity outside N(n +1), and such that ®N(n+1) =N (k) and O is the
identity on N(n). Finally let I': X x R?~> X x R? be the map which equals ©,¥-1@,' on
®,N(n+1) and the identity outside. Then I' is clearly a bundle automorphism. Moreover,
since N(k)=®,Nn+1)U(NH)—-P,N(n+1)) and 'O, N(n+1)=0,N(n+1), we have
[N (%)= N(h). Define @,,,, to equal the composite embedding I'OD, V. Then @, satisfies

the induction conditions:

Iyt @, Nn+1)=T00,¥Nn+1)=T00,Nr+1)>2T00,N(n)>'ON(nr+1)
=TN(k) = N#)> Nn+2).

II,.;: Y (z,v)EN(n), then ¥(z, v)EN(g9) and so ®,¥(z, v)€D,N(g)< N(n). Therefore
OO, ¥ (x,v)=0,¥(x,v) and TOD,¥F (z,v)=T O, ¥ (2, ). Since @,V (z,v) €
Nn)c®,Nn)<®,N(n+1), I'0,¥(z, v)= 0,V 10, D,V (z, v) = D, (2, v). Thus
D, (@, 0) = (2, 0).

Hence, by induction there exists a sequence of bundle embeddings ®,, @,, ...: X x R¢—
X xR with germ ®, =germ ® and such that ®, satisfies I, and I, i=1, 2, .... By the
conditions I, there is a limit bundle map @': X x R?—~X x R? defined by @' | N(:) =@;| N (3),
t=1, 2, ..., which is clearly an embedding, and by the conditions I; @ is epic and therefore
actually an automorphism. Finally germ ®’ =germ @, =germ .

Combining 2:1 and 2.2 we get the following important result.

2.3. GERM EXTENSION THEOREM. Lel ¢ be an autogerm on a irivial bundle £°.

There is a bundle automorphism on & whose germ is .

In particular the germ extension theorem applies to the transition autogerms of
example 1.9. In fact the proofs show that if ®,;®; is a representative of such a germ on
€% then there is an automorphism @ on &% which coincides with ®,®;! on some functional

neighbourhood N{f) of the zero section.
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3. The microbundle representation theorem

The result below is an important step in the inductive arguments to follow in this

section.

3.1. LeMMA. Let & be an Re:bundle with a trivializing partition of unity (7, W,)i_1,2,
and let ¢ :& = & be an isogerm to the trivial bundle. Let ®,:&| W,~e?| W, be a trivialization of
& over W, whose germ is ¢|W,. There is a trivialization D: &g of & whose germ 1s ¢ such
that ®| W, — W=, | W, —W,.

Proof. Consider the isogerm ¢ | W,:&| Wy=¢&?| W,. Since £]| W, is trivial, by the germ
extension theorem there is a trivialization ®,:§|Wy~e?| W, whose germ is ¢| W, With
(7i, W3)-1,2 the derived partition of unity of (m;, W)io1.s, let A=W,—Ws, U=W, N W,.
Then 4 and U are subsets of W,, and with 7z =1 | Wy, wehave A =m—(1)and A<n~1(0,1]< U.
Since {W,—W,, W,} forms an open covering of the base, it suffices to construct a trivia-
lization ¥, of &| W, such that germ ¥, =germ ®, and ¥,| 4 =®,| 4. Translate first the
whole problem to W, xR? by means of ®,. Thus we have to construct an automorphism
W, =1, @51 of s(W,) such that germ ¥';=germ identity and V5|4 =@, ®;'| 4. Write @’
for @, @;'|U. There is a map I1: W, x R?—>W, x R? defined by Il(z, v)=(x, n(x)v) which
is a bundle automorphism over 7-1(0, 1]. Define ¥; by

, {H'l(I)’H on 7 1(0,1]x R?

identity  outside.

Then ¥ is bijective, and it is bicontinuous except possibly over the boundary of 7z-1(0, 1]
in W,. Suppose ((x,,?,)) is a generalized sequence in 7-1(0, 1] x R? converging to some
point (z,v) in the boundary in Wy xR? (thus (z, v)€U xR?). Then ultimately I(x,, v.,)
belongs to the neighbourhood of W, x0 (and of (z, 0)) where @' equals the identity. But
then Wi(x.,, v,) =(x,, v,). Thus lim W¥i(x., v,) = (x, v) ="F3(x, v) showing that ¥'; is contin-
uous also ab (x, v).

Suppose that ((x,, v,)) is a generalized sequence of elements from 7=1(0, 1] x R? such
that (‘Fé(xy, v,)) converges to some element ¥z, v) =(x, v) in the boundary. We have
Y, vy) =2y, Lm(x,) pry®'(z,, 7(z,) v,)). Since 1/m(x,) >oo, pry,®'(z,, n(x,) v,) >0 and
so ®'(x,, w(z,)-v,) ->(x, 0). Since @’ is a trivialization defined on all of U x RY, this implies
that 7(x,)v; ~0. But then ultimately ®'(z,, n(z,) v,)=(x,, 7(x,)-v,) and therefore ulti-
mately ¥z, v,)=(z,,v,). Thus lim (%,,v,)=lim¥i(x,, v,) =¥z, v) = (z, v) showing

that W3~ is continuous at Fi(x, v).

3.2. CorOLLARY. Let & be an Ri-bundle, and let $:&=-¢% be an isogerm to the trivial

bundle. There is a trivialization @ :§&~v? whose germ is ¢.
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Proof. Let (7, W,)e; be a trivializing partition of unity for £. By the germ extension

theorem (or by the lemma above) for any j€J there is a trivialization of & over W,
E|Wmed(W))
whose germ is ¢| W,. Consider then the collection of pairs (K, ®) where K<J is non-

empty and @:&| Wxae(Wy) is a trivialization of £ over Wy with germ ¢| Wg. Order this
collection by defining (K, ®) <(K’, @’) if the following two conditions are satisfied:

(a) K<K'.
(b) If x€W, and ng(x)=ng (z), then D|z=0'|z.

It is clear that this relation is an ordering i.e. that it is reflexive and transitive.
Suppose (K,, ®,), r € R, are the members of a linearly ordered family of pairs. Let K= U K,
and let 22 € Wy. There is a neighbourhood V(z) of z in Wy meeting only a finite number of
W, with i€ K, say 14y, s, ..., 3,. Let » be such that all i}, %,, ..., 4, is contained in K,. Then
for (K,, ®,) <(K,, ), 7x,| V(#) =g, | V(x) and so @, V(z) =D,| V(x). In other words, if
V is a sufficiently small open subset of Wy, then ultimately all @, coincide over V. It

follows that there is a well-defined isomorphism @ =lim @, :&| Wiase?(W). Thus the pair
(K, @) belongs to our collection, and it is moreover an upper bound for the family (X,, ®,),
r€ R. It follows that the collection of pairs is in fact inductively ordered and so contains
maximal elements. Let (K, @) be such an element. If K +J, let j€J —K and write K'=
K U {j}. Form the partition of unity (w;, W,);—1., on Wy with @, =sg/mg., 705 =77k Then
W,=Wg and W,=W; and so the bundle &| W satisfies the conditions of Lemma 3.1
with @, equal @ in (K, @) above and ¢ equal ¢| W.. It follows from 3.1 then that there
is a trivialization @’ of &| W whose germ is ¢| Wy such that (K, ®)<(K’, ®'). Since
(K', ®')+(K, ®) this contradicts the maximality of (K, ®). Therefore we must have
K=J, and so ®:£ave? is the trivialization claimed.

We are now ready to prove the result towards which we have been heading.

3.3. MICROBUNDLE REPRESENTATION THEOREM. (a) Let y be an R&-microbundle
over some space X. Let V be a halo of a set 4 in X, and let n be an Re%-bundle over V contained
in w| V. There is an Ré-bundle & over X contained in w such that £| V' =n| V' for some halo
VeV of A.

(b) Let &, & be Ri-bundles over X contained in the microbundle u such that & | V' =&,| V'
for some halo V' of A in X. There is a bundle isomorphism & ~&, which is the identity over
some halo V"< V' of A.

Proof. Let (7w;, W,);c; be a trivializing partition of unity for u. Consider the collection
of all triples (K, &, (@,)), where K is a non-empty subset of J, £ is an R%bundle over W,
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contained in y| Wx and (®y) is a family of trivializations ®p:&| WxredW,), k€K. Order
this collection by defining (X, &, (&) <(K’, &, (®y)) if the following two conditions are

satisfied:

(a) K<K'.
(by If z€Wg and mg(r)=mg(x), then
Elz=&|v and O |r=0|z forany kEK with z€W,.

Clearly this relation is an ordering. We show that the ordering is in fact inductive.
Let (K, &, (©])), r€R, be the members of some linearly ordered family of triples. Let
K=K, and let x € Wg. There is a neighbourhood V(z) of  in W, meeting a finite number
of Wy with k€K, say ks, ks, ..., k,. Let r be such that all &y, k,, ..., k, belong to K,. Then,
for (K, &, (®7)) succeeding (K,, &, (®])), zx, | V() =7k, | V(z) and so &|V(x)=&|V(x).
If moreover V(x) is contained in W) for some k€K, then @3] V(z)=>%| V(x). It follows
that there is a bundle &£=lim, &, over W contained in y| Wy with trivializations @, =
lim, @}, over W, k€ K. Obviously (K, &, (®,)) is an upper bound for the family (X,, &,, (D)),
r€R. Thus, by Zorn’s lemma the collection of triples admits maximal elements. Let
(K, &, (D,)) be such an element. We show that K =J which will prove that £ is a bundle
over X contained in y.

Suppose K =J and let j€J —K. Since W, is trivializing for g, there is a bundle
over W; contained in x| W, and a trivialization ¥';:n~e(W,). Then ({j}, , ¥';) is a triple
in our collection. We glue together (K, &, (@,)) and ({j}, n,'¥;) to a larger triple, thereby
reaching a contradiction: Since £| W, N W andn| W, N W, are both contained inu| Wen W,
their total spaces have a non-empty intersection E. It follows from example 1.9 that E
is a microbundle neighbourhood of the zero-section in &| W N W,. Therefore its identity
map determines an isogerm &[ W N W;=n| W0 W,. Since # is trivial, by Lemma 3.2
there is a bundle isomorphism ©:5| W N W,am| W N W; with germ the identity. In
particular & W0 W, is trivial and so, like 5| W0 W, gives rise to a trivialization of
uover WeN W, Again by example 1.9 there is then a positive continuous function p on
W N W; such that ¥'; E> N(p). We may suppose that @ is the identity on ¥;'N(p). Let
K'=K U {j}. Then {(ng, W), (7;, W,;)} forms a partition of unity on Wy except for
normalization. After normalizing (so that, keeping the same notation, 7, +7,;=1), form
the derived partition of unity {(wk, Wg), (r;, W;)}. Let Fy, F; be the subsets of W
defined by

wE€EF<2€EW, and mg(r)>mg(x)

Z€F;<z€W, and m(x)>m,x)

and let A=F,NF, Since Fyc Wi Wk, Fgis a closed subset of W.. Similarly F;and
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A are closed in Wy.. Clearly FgU F;=Wg. Let &x=&|Fy, n;=n|F; and @' =0|A. Form
the bundle £’ =, U g.n; which is the disjoint union of &5 and #, identified over 4 by ©'.
That this is a bundle in the definition of section 1 follows from the fact that it has (7, W ))ic -
as trivializing partition of unity. Indeed, consider a trivialization ®,:&|W,~e%(W ) for
1€K and let @z, O,; be the restrictions of @, to W, N Fy, W, N F; respectively and let
©;; be the restriction of ® to W, N F,. Then the pair @z, @,;0;;' defines a trivialization
O; =Dz U o D;0; of & over W,. Moreover, when restricted to &'|W,—W,=£|W,— W,
this trivialization equals ®;| W,—W,. Similarly one shows that there is a trivialization
@, of & over W,. We should like to finish the proof by concluding that the triple (K’, &', (/)
is larger than the maximal triple (K', &, (®,)). Unfortunately the former does not belong
to our collection since (because of the identification by ®) & need not be contained in
#| Wy The part of & corresponding to where @ is the identity is contained in p| W
however, as is the part of &' over Wy —A. Let m: W, —[0, 1] be the continuous function
that equals 1 —(wgxn;)/(gm;) on Wi N W] and 1 outside. Then A<zx(0). Pick an order
preserving homeomorphism [0, 1]a/[0, co] of [0, 1] to the extended real half-line and let
7T be the composite of 7z with this. Then 7., is 0 on 4 and oo outside Wix N W;. Let g,
W —[0,00] be the continuous function that equals mzm;0 on WiN W, and 0 outside.
Finally let go =7, +0.- Then g, is a positive continuous function on Wy to [0, oo] that
takes the value co outside W; and is less than g on 4. It follows that W-1N (9;,] W,)is
the total space of bundle 5" over W, contained in 5 and contained in & | W, as well (since
® operates as the identity on the common part of £ and %" over 4). Thus there is a well-
defined bundle & =(&|Wx—W;)Un"=(&|Wx— W) Un" over Wy contained in £’ and in
p| W, such that & |We—W,; =& |Wx—W,;=E| Wg—W,. This bundle has (;, W)cx as
trivializing partition of unity. In fact, an obvious modification will change ®; restricted
to &”| W to a trivialization @7 : & | W~ W,),i €K', such that O} | W,— W, =D/ | W, — W ;=
®;|W,—W, for i€K. Then the triple (K’, &, (d7)) is in fact a member of our ordered
collection, which strictly majorizes (K, &, (®,)). The contradiction shows that K =J and
so £ is a bundle contained in g. This proves the first part of the theorem in the case where
4 is empty.

Suppose finally that over some halo ¥ of a non-empty set 4 in the base a bundle
is given contained in 77| V. Let  be a function on the base to [0, 1] which is 1 on 4 and 0
outside V. Without loss of generality we may suppose that ¥ actually is the support of .
Let W be the open subset of all x for which y(x)<}. Then there is a non-negative real
valued fonction s with support W such that w+mx=1. Let (7;, W;);¢; be a trivializing parti-
tion of unity for the microbundle x and let (y;, V,),c; and ('), be a trivializing partition

of unity and a family of corresponding local trivializations for the bundle 7. Form the
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subset K<J consisting of those indicies & for which W, meet W and the disjoint union
LU K. Then the two families (y,, V});c, and (mmw, Wi 0 W), together form a trivializing
partition of unity for pu. With respect to this we have the admissible triple (L, 5, (v))),
which is then majorized by some maximal triple (LU K, &, (®,)). Let V' be the subset of
V on which > 3. Then ¥’ is a halo of 4. By definition of the ordering &| V' =5|V’ and
®,| V' =¥,| V' for I€L. This completes the proof of (a).

The proof of (b) is now easy. Let &, &, and V' be as described under (b) in the theorem.
Then we have a microbundle ji=u x I over X x I and #,, ¢, €I with 0<¢,<t, <1 such that
| X % [0, t,] contains & x[0,t,], @&|X x[t;, 1] contains &, x[t,, 1] and ji| V' x I contains
(&1] V') x I =(£,| V') x I. Therefore we have the bundle & x [0, t,] U (&,| V) x T U &, x[t;, 1]
over a halo X x[0,t,JU V' xIUX x[#,1] of Xx0UAxITUXx1 in X x I, contained in
A X x[0,8]U V' xIUXx[t, 1]. By (a) there is a bundle £ over X x I contained in g
which restricts to this given bundle over any sufficiently small halo of X x0U A xIU
X x1. By the compactness of I any halo of X x0U 4 xIU X x1 contains a subset of the
form X x0U V"xIUAx1 where V"<V’ is a halo of 4 in X. Part (b) follows now from

Lemmas 1.5.

Remark 1. Note that the proof of the representation theorem actually gives some
more information than announced in the theorem. Thus under (a), if (y;, V)¢, is a trivial-
izing partition of unity for % with associated local trivializations (¥')),c;, then there is a
trivializing partition of unity (¢, Uy)ex U (9), V1) 1ez for & with associated local trivializa-
tions (®,),eguz such that (¢, Uplker is disjoint with ¥’ and @,|V,n V'=¥,|V,n V' for
all € L. By (b) any solution £ admits such nice trivializations provided V' is small enough.

Remark 2. The relation “£ contained in u” could everywhere have been replaced with
“& microbundle isomorphic to 4’ in Theorem 3.3 (together with the other obvious changes);
the proof is easily modified to take care of this case. In particular (b) can be given the
slightly strengthened form: Let &, &, be R%bundles over some space X and let ¢:&, = £, be
an isogerm. Let ®':&,| V' ~&| V' be an isomorphism of &, to &, over some halo V' of A in X
whose germ is | V'. There is an isomorphism @ :& ~v&, whose germ is ¢ such that ®| V' =@’ | V"

over some halo V'< V' of A.

Remark 3. Theorem 3.3 above is stated in its relativized form, relativization taken
with respect. to subsets in the base. We could however equally well have relativized with
respect to subsets in the fibre or carried through both relativizations simultaneously, i.e.
stated the representation theorem for (R R").microbundles and (R R*)-bundles. In fact

the proof of Theorem 3.3 with the preceeding lemmas go through with nominal changes



208 PER HOLM

to give this refined result. Notice also that remarks 1 and 2 hold for the refined represen-
tation theorem.

Theorem 3.3 has the following immediate consequences (by Lemma 1.5), cf. [8] p. 58.

34. CorovrLLARY. Let u be a microbundle and let fo= f, be homotopic maps to the base

of p. Then fau~fiu.

In fact if for some halo ¥ of a subset 4 in the domain of f,, f, we have f,~f rel V,

then fsuafiu by an isogerm which is the identity over 4.

3.5. COROLLARY. (a) Any microbundle over a contractible space is trivial. (b) If u is
a microbundle and f is a map to the base of u, then u can be extended to a microbundle over

the mapping cone O, if and only of f*u is trivial.

We give a final application of the techniques used to prove 3.1 and 3.2. As above the
proof and the theorem actually hold for (R? R")-bundles, 0 <n <gq.

36. THEOREM. Let £:X > E2 X be an Ribundle. Let V be a halo of a set A in X,
and let H:B|V x I—>E|V be a fibre homotopy relative to sV from s|V p|V to idg|V such
that H, is an embedding of &|V into itself for ¢>0. There is a fibre homotopy H':E x I —~E
relative to sX from sp to idy such that H; is an embedding of & info wtself for t >0, and such
that H' coincides with H on E|V' x I for some halo V'<V of A.

Proof. Let (m;, W));e; be a trivializing partition of unity for & with associated local triv-
ializations @,:&| W, e(W ;). For each j€J there is a fibre homotopy H,: E|W,;x I ~E|W,
corresponding under ®; to the homotopy (W;xR%) xI—>W;xR? that maps (z, v;{) to
(z, tv). Clearly H;:s| W, p|W; ~idg| W;rel sW;, and (H,); is a bundle embedding of &| W,
into itself for ¢>0. More generally, consider the collection of pairs (K, H) where K is a
non-empty subset of J and H:E|W,xI—~E|W, is a fibre homotopy relative to sWy
from s|Wx p| Wy to idg| W with H,; an embedding for £>0. Then this collection is non-
empty. Order it by defining (K, H)<(K’, H') if the following conditions are satisfied

(a) K<K’
(b) I e€E|Wyx and mg(ple))=ng(ple)) then H(e, t)=H'{(e,t) forall $€I.

This gives an inductive ordering and so each pair is majorized by a maximal pair. Let
(K, H) be a maximal pair. We show that K =J. If K=+J, let K'=K U {j} where j€J —K.
From H and H; construct a homotopy H': E| Wy x I —~E| W as follows. From the parti-
tion. of unity {(mg, Wg), (%;, W)} on Wy (normalized if necessary) form the derived parti-
tion of unity {(w%, Wx), (7, W,)}. Define H' on E|Wx N W] by
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H,(H(e, t/nk(p(e)), mx (p(e))) for mx(p(e) >t

H'(e, t)={Hj(e, 9 for n%(ple)) <t

Then extend H’ so that it coincides with H on Wi — W, and with H,on W; — Wg. Clearly
H' is well-defined on E|Wy x I and everywhere continuous except possibly at the points
(¢, 0) with p(e) in the boundary of Wy in W,.. However, H and H, are both defined and
continuous in a neighbourhood of e x I for such a point e. Since H,(H(e x I), 0) =H e, 0) =
H{e, 0y =s(p(e)), for any neighbourhood U’ of s(p(e)) there is a neighbourhood U of e in
Wi W, and an >0 such that H(U x [0, e])< U’, H{U x[0, e))< U’ and H(H(U x I) x
[0, ))<= U’ (using the compactness of I). It follows that H'(U x [0, £])< U’ which shows
that H' is in fact continuous also at (e, 0). Obviously H’ is a fibre homotopy relative to
sWg from s|Wg p| Wy to idg| Wg. It is easy to see that H; is open, hence a bundle
embedding, for £>0. Therefore (K’, H') is a pair in our ordered set strictly majorizing
(K, H). The contradiction shows that we must have K =J. This proves the theorem for
A =4. The case where A4 is non-empty now follows by a trick similar to that in the proof
of the representation theorem.

By the Theorems 3.3 and 3.6 every microbundle contains a neighbourhood contract-
ible along .the fibres to the zero section. By an argument of Milnor this implies that

composite microbundles are isomorphic to Whitney sums and vice versa ([8], p. 12):

3.7. COROLLARY. Let u:X>E2X, v:E->E' % E be microbundles whose composite
pov is defined. Then pov~u®s*y. Similarly, if p, u' are microbundles over X, then

pOu ~pep*y’.
Proof. From their definitions the microbundles u@®u’ and pop*u’ are in fact identic.
To show the first part of the corollary we may assume that u (and ») is a bundle. Then,
by 3.6 sp~id; and so p*s*vaw. Thus povapop*s*y =u®s*u.
Notice that if x and v are actually bundles, their composite, although a microbundle,
need not be a bundle. By the representation theorem, however, it does contain an essen-

tially unique bundle which could be called the composite bundle and which is bundle iso-

morphic to the Whitney sum of bundles u®s*u.

4. Sphere bundles and Thom spaces. The Hirsch-Mazur theorem

For any integer ¢=>0 let R?< 8§ be a fixed embedding of R? into its one-point com-
pactification §% the g-sphere, and let oo denote the complementary point of R? in 8

Any bomeomorphism of (R 0) extends uniquely to a homeomorphism of (8%, 0,c0). By
14— 662903, Acta mathematica. 117. Imprimé le 15 février 1967.
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Lemma 1.3 this correspondence is an isomorphism G(R?, 0)aG(S9, 0, oo) of topological
groups. It follows that to any R%bundle £: X > E-% X there is a functorially associated
Sebundle &.: E,** X over the same base with two sections sy, ., and that & is naturally
imbedded in &, with zero section s corresponding to s, and total space E corresponding
to B,—im s,. The bundle & is constructed as follows. Let (f;) be the family of transi-
tion maps of £ arising from the collection of all local trivializations @& | Vased(V). Thus
Fow: VN W—GR, 0) are continuous maps defined on non-empty ¥V N W by fyylz)v=2'
if and only if (@, ®')(x, v)=(, v’). Then the relations fyy fyw=fyw holdon UNV N W
for any trivializing sets U, ¥V, W with non-empty intersection. Composing with the isomor-
phism G(RY, 0)~G(S9, 0, 0) give continuous maps fywe: ¥V N W —~G(8% 0, c0) such that the
corresponding relations [y, ' fyweo =/ rweo hold. Then the usual gluing process applies to
give a space K, and a continuous map p.,: B, —~X with fibres homeomorphic to S? and
with two sections sy, s. Clearly there is a natural fibre preserving embedding E—~E,,
under which the sections correspond as described. This defines £,,: B o> X as an S%bundle.
(Obviously a partition of unity trivializing for & is trivializing for &, and conversely.)
Therefore &, is a bundle related to £ as claimed. By the natural embedding we may and
will consider £ as contained in &,

Next consider the standard embedding Y<CY of a compact space Y into its (un-
reduced) cone C'Y. A homeomorphism «€G(Y) extends to a homeomorphism Caz€CY),
and the correspondence C:G(Y)~G(CY) is a continuous representation. It follows that
to any bundle : E-% X with fibre Y there is a functorially associated bundle {,: E¢ e x
with fibre ('Y, and since any homeomorphism Cu keeps the cone top point fixed, {; has
a canonical section s;: X —E,. Observe that E; can be naturally identified with Z,, the
mapping cylinder of p. Under this identification p. corresponds to the canonical retraction
Z,—X. In the case where ¥ =8%1, ¢>1, identify C8%! with D? by the standard homeo-
morphism. Then {; (with its zero-section) is a disk bundle. Note that the embedding
81 D9 induces an embedding £ <.

Let R?c D9 be a fixed embedding of R? onto the interior of the ¢-dimensional unit
disk such that origin corresponds to origin. Then R sits in both D? and 8% and the identity
map on RY extends to a homeomorphism D984 18 by which the two spaces will be
identified. Any homeomorphism on D? maps boundary to boundary and interior to interior
according to the theorem of invariance of domains. By 1.2 the restriction homeomorphisms

G(D?, 0)—GF(8%1) and G(D?, 0)—G(R, 0) are continuous.

Consider a ¢-dimensional disk bundle 5:X > F2X. The structure group is G(D O)
and the restriction homeomorphisms define associated bundles 4: F —»X and #: X—»F—»X
with fibres §7-2 and R? respectively, called the boundary bundle and the ¢nferior bundle
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of 77. There are natural embeddings of 7 and # in % induced from the inclusions §%-*< D¢
and (R? 0)< (D% 0) by which % and # are identified with subbundles of 7. Finally the
canonical homeomorphism G(D? 0) -+ G(89, 0, o) which maps «: D?—~D?to o/S%1: D891 —
D981 iy continuous and so defines an associated S%bundle 7/p with two sections s,
and s,. This bundle may be considered obtained from % by collapsing the boundary in
each fibre. Since this collapsing does not affect 7, % sits in 5/p.

4.1. LeuMa. There is a natural bundle isomorphism n|pai),, which is the identity on 7.

Let &: X 2> E 5 X be an R%bundle. For any pair of subsets (4, B) in the base X define
the Thom space T¢(4, B) to be the pointed space

Te(4, B) =px'A/(sA4 U pes' B),

the collapsed subset s, 4 Upx'B serving as base point . In the classical case where £
is an orthogonal bundle the Thom space T, of £ is usually defined as follows: Pick out a
disk bundle %: X 5 FZ X contained in & (by means of some riemannien metric on &, say).
Then T is defined to be the pointed space F|F. This determines T’ up to a base point
preserving homeomorphism. In fact we may form F/F by first collapsing the boundary
of each fibre in ¥, which gives the total space F/p’ of 5/p’, and then collapsing im §,,
in F/p'. By Lemma 4.1 the result is base point preserving homeomorphic to f‘oo/im Sop =
T;(X, 9). But # is G(RY 0)-isomorphic to £ by the microbundle representation theorem
(in fact # and & are O%isomorphic), and so 7' (X, @) is base point preserving homeo-
morphic to T;(X, J). Altogether Ty~ T¢(X, 9). It follows that our definition is an exten-
sion (and relativization) of the classical one. Notice that the classical definition breaks
down because there is no way of constructing disk bundles in a general R%bundle. In
fact W. Browder has recently shown that there exist R%bundles even over finite poly-
hedrons that do not contain (or are contained in) disk bundles. On the other hand, M.
Hirsch and B. Mazur have shown that (piecewise linear) R%-bundles over polyhedra which
split off a (piecewise linear) Rl-bundle do in fact imbed as interiors of (piecewise linear)
D?.bundles, cf. [4]. Moreover, Hirsch shows that two D%bundles over a polyhedron having
isomorphic interior bundles get isomorphic after having a trivial D'-bundle added. Dis-
regarding the piecewise linear aspect it is easy to extend the proof to cover the case of
general R% and D%bundles. In fact the proof is much shorter because one need not bother
with piecewise linear structures. Since this result will be applied in [7] we will sketch a
proof. (Contrary to the proof in [4] this does not make use of any representation theorem
for microbundles.) First some preliminary information. Every homeomorphism on D¢

restricts to a homeomorphism on the boundary S¢-1, Conversely, every homeomorphism
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on 87! extends radially to a homeomorphism on D? keeping the origin fixed. Let
r:G(DY, 0)—> Q(S® 1), 4: G(S1) - G(D%, 0) be the corresponding continuous representations.
Then 7 =1idw1 and so ¢ imbeds G(S8%-1) as a subgroup of G(D% 0) onto which G(D, 0)
retracts by 7. In fact the Alexander radialization process (cf. [1] and [4]) shows that
G(S%1) is a strong deformation retract of G(D?, 0).

42. LEMMA. There is a strong deformation retraction.
H:(G(DY, (D9, 0)) x I - (Q(DY, G(D4, 0)) rel 4G(S*1)
from idp, to ir such that H, is a continuous endomorphism on (G(D7), (D% 0)), LEL
Proof. Define H:(G(D%) (D4, 0)) x I ~(Q(D?), G(D?, 0)) by

0 t=0,[[z] =0
H(x,1—1t) (x)=1t x(z/t) t>0, ||z <t
|l - o/ [ll}) ¢=0, ||| >¢.

This map is easily seen to be continuous. Also it is easy to check that H, is an endomor-
phism for arbitrary ¢ in I. ,

It follows that the structure group of a bundle with fibre D? reduces to (a sub-
group of) G(S%1). More precisely

4.3. THEOREM. Let ) be a bundle with fibre D There is an isomorphism nasi)c which
is the identity on 7). If 9 is a D%-bundle (i.e. has a prescribed zero section) over a halo V' of a
set A in the base, the isomorphism nai7 can be chosen so as to give an isomorphism of D
bundles over a halo V'< V' of A.

4.4. COoROLLARY. Let n,, 1, be D%bundles or just bundles with fibre D?. Any isomor-

phism fyae1), extends to an isomorphism ny~1,.

Proof of 4.3. Let (gyw) be the family of transition maps of # arising from the collection
of all local trivializations W'y:n|Vad%V). For each gﬁ,:Vﬂ W—@(D% 0) define Gyy:
(VA W)xI—>G(D%0) to be the composite Ho(gyy xid;) where H is the homotopy in
Lemma 4.2. Then (Gyy) is a defining family of transition maps for a D%bundle 7] over
X x I, X being the base of 5. In fact

Guyl®, 1) Gyylz, 1) = Hy(gyy(a) - Hy (gvw(®)) = Hy (gyv(2) - gyw(®)) = H (guw(2)) =Gyw(z, t) -

for any (2, )€(U NV N W) x I, according to Lemma 4.2. Also if (;, W,);e; is a trivializing
partition of unity for #, then (7; xid;, W, x I);, is a trivializing partition of unity for 7.
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Clearly 7|0 and 7|1 are naturally isomorphic to x and 7 respectively. But then 5~
by Lemma 1.5. The refinements of the relative case are easily taken care of. We omit
the details.

Notice that 4.3 implies that an R%bundle which is the interior of a D%bundle con-
tains D%bundles. The converse, of course, follows from the representation theorem. We can

now formulate and prove the Hirsch~-Mazur theorem in the general topological context.

4.5. TurEorREM (Hirsch~Mazur). Let & be an Ré%-bundle over some space X. Then §@e
is isomorphic to the interior of the D**'-bundle £ .

Let 14,1, be D%-bundles over X with isomorphic interiors. Then 1n,®9 is isomorphic
to 9, DI.

We only indicate the proof and leave the details to the reader. Notice first that &,
is isomorphic to £, the “dented”” mapping cylinder of £, obtained from & . by collapsing
the radius to the oo-point in each fibre. In fact & and &, have isomorphic boundary
bundles and so by 4.4 are isomorphic (as bundles with fibre D%+1). Therefore &, and &,
have isomorphic interiors. On the other hand, the interior of &, is isomorphic to &,
with its boundary and its “sheet’ of co-radii removed. This bundle, however, is easily
seen to be isomorphic to {@e. Moreover, it is easy to pick the different isomorphisms in
such a way that the composite int £, ,~& D e maps zero section to zero section. The second
part of the theorem follows from the fact that for disk bundles % there is an isomorphism
N DO e It is in fact trivial to construct such an isomorphism on the boundary bundles

and then again one uses 4.4.
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