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The present paper contains a generalization of the Kister-Mazur theorem which says 

that  any  microbundle over a finite dimensional simplicial complex contains a (up to bundle 

isomorphism) unique fibre bundle. Precisely, we prove this theorem (or a relativized 

version of it) for microbundles over arbi trary topological spaces, provided the mierobundle 

admits a trivializing parti t ion of unity on the base. In  particular the theorem applies to 

any  microbundle over a paracompact  space. At present this is a work tha t  aims a t  gen- 

erality and completeness rather than  applicability, since so far the Kister-Mazur result 

covers most of the interesting cases. From a purely esthetical point of view, however, 

the latter has certain defects. The natural  objects to s tudy among the microbundles over 

a simplieial complex are the piecewise linear microbundles. For such one should of course 

expect sharper results. Recently Hirsch, Mazur and others have shown tha t  a piecewise 

linear microbundle contains subcomplexes which are piecewise linear bundles and tha t  

any two such are pieeewise linearly isomorphic [5]. On the other hand, in the category 

of topological microbundles it seems unnatural  to put  any restrictions at  all on the base 

space. 

The condition about  the existence of a trivializing partition of uni ty has already 

been introduced on bundles by  Dold, who calls such bundles numerable, cf. [3]. Any (micro-) 

bundle over a normal base space covered by a locally finite family of trivializing open sets 

is numerable. Products, sums and "pull-back's" of numerable (micro-)bundles are numer- 

able. Dold also shows tha t  the numerable bundles have the good properties shared by  

bundles over paracompact  spaces. In  view of his work it almost seems desirable to redefine 

(micro-)bundles as numerable (micro-)bundles. In  any case it has been convenient to do 

so here. By  definition (micro-)bundles in this paper  are always numerable. 

Besides the techniques purified in [3], an inductive process of Mazur for extending 

homeomorphisms on open sets in R a plays a fundamental  role in the sequel. 

A preliminary report on this work has already appeared in [6]. The present paper 
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contains the proofs and generalizations of the results announced there. A final word 

about  the generalization from the paracompaet  to the numerable case. This generalization 

is not trivial. One reason is tha t  while paraeompaet  spaces are rich on continuous real 

valued functions, such functions have to  be explicitly constructed by  means of a single 

trivializing parti t ion of unity in the numerable case. Another is that  a fundamental  result 

such as the germ extension theorem for trivial bundles does not seem to be valid in the 

general case. I t  goes through for "numerable" germs, however, which is all one needs. 

On the other hand, the advantages of working in the numerable case will be obvious in 

the proofs. 

I am pleased to acknowledge my  dept to Professor M. Hirseh who introduced me to 

the subject of microbundles and started me on the trail to this work, and to Professor 

E. Spanier for his encouragement during the work. 

1. Preliminaries 

In  the following X denotes an arbi trary topological space. A partition o/unity on X 

is a family of continuous functions 7~j: X-~[0, 1], ]EJ ,  whose supports Wj=~i l (0 ,  1] form 

a locally finite cover of X, and whose sum Zz~ is everywhere equal to 1. (Note tha t  the 

supports are open subsets of X.) Partitions of uni ty will be written (zj, W~)j~ j. 

I f  A is a subset of X, a halo of A is a set containing the support of some function 

z : X - ~  [0, 1] which is 1 on A. Thus a halo of A is a neighbourhood of A. Conversely, if X 

is normal and A is closed, every neighbourhood of A is a halo. 

Given a parti t ion of unity (gj, Wj)j~j on X there is a derived partition o/unity (~ ,  W~)jej 

defined as follows: Form the function z=sup j~ jz j .  Then g is continuous (since it equals 

a finite supremum of 7~j's over any  sufficiently small open set) and positive. Let  ~j = 

max (~ j -~ /2 ,  0) and define ~ =~j/Z~, ] EJ. The functions ~ have supports 

W] = (xl~jCx) >�89 ?'EJ. 

I f  x is any  element of X, only finitely many  ~j are different from 0 at  x, hence there is a 

particular ] such that  ~(x)=zj(x). Then 7~j(x)>�89 so that  xE W;. Thus (W;)jej is a 

cover of X. Since for any  ?" we have W ; c  Wj, in fact W~C {x]zj(x) ~> �89 Wj, (W~)j~ 

is certainly locally finite. This gives 

1.1. L ] ~ A .  To any partition o/unity (xcj, Wj)~j on X there is a derived partition el 

unity (~, W~)j'~j which is a shrinking o/(gj, Wj)jej, i.e. W~c W s/or all ] in J. 
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If  (~j, Wj)j~j is a partition of unity on X and K is a non-empty subset of J ,  write 

~ K = ~ ] ~ K ~  and WK= U ~KW~. Then WK is the support of ~z. 

Sometimes the term partit ion of unity will be used also on a family of functions 

~j: X-~ [0,oo), ]EJ, whose supports form a locally finite cover of X and whose sum is 

everywhere positive, while the families above are referred to as normalized partitions of 

unity. Of course, every parti t ion of unity (in the wide sense) can be normalized by  dividing 

with its sum, as in the proof of 1.1. 

An Re-bundle, 0 <~q, is a diagram of maps and spaces 

X___~ E _ _ ~  X 

such tha t  ps = idx, for which the following is true. 

1. There exists a collection A of homeomorphisms (D: p - I U ~ U x R q  (called local 

trivializations), where U = Uo is an open set in X, such tha t  the composite maps 

U• .... p u--~U 

U S lLp- lU  - r  U • Rq 

are, respectively, the projection to the first factor and the injection to zero slice. 

The family (Uo)o~A is a cover of X. 

2. There exists a parti t ion of unity on X subordinate to ( U o ) r  (i.e. whose supports 

form a cover refining (Ur162 

Given two local trivializations (I)l, (P~ over open sets U1, U2, their composite (P2(I)~l 

(whenever defined) is a homeomorphism on (U 1 N U2) x R q whose restriction to any fibre 

maps origin to origin. Thus, if G(I~ q, 0) is the group of homeomorphisms on R q keeping 

the origin 0 fixed, then there is a map /~1:U1 N U2->G(R q, 0) defined by  (I)2(P~l(x, v) = 

(x,/2x(X)V). I f  G(R q, 0) is equipped with the compact open topology, then/21 is continuous. 

An (R e, Rn)-bundle, 0 ~ n  <.q, is an Rq-bundle such tha t  all the maps 1~1 actually take 

values in G(R q, R n, 0), the subgroup of homeomorphisms tha t  map R n onto R ~ (where 

R ~ is identified with the set of elements (xl, x 2 ..... xn, 0 ..... 0) in Rq). Any (R q, R~)-bundle 

contains a canonical subbundle with standard fibre R ~. The two form a bundle pair in 

the definition of [9]. Bundles will be labelled by  small greek letters ~, ~/ ..... 

I f  A is the collection of local trivializations of an R q- or (R q, R~)-bundle, then there 

is a unique extension A of ~ which is maximal  with respect to conditions 1 (or its refined 

version) and 2. As usual we agree to identify two bundle structures which are defined by  

collections A, A'  with common maximal  extension. 

13 - 662903.  Acta mathematlca. 117.  I m p r i m 6  le  9 f ~ v r l e r  1967 .  
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Let  D q, q >1 O, be the closed unit disk centered at  the origin in R q, and let S q-1 be the 

(q-1)-sphere  which is its boundary. A Dq-bundle is defined like an Rq-bundle except its 

local trivializations are of the form 

O :p - lU  ~ U x D q. 

An  Sq-bundle is defined similarly, but is n o t  required to have a zero section as part  of 

its structure. More generally a bundle with fiber Y is defined similarly to an Sq-bundle. 

All bundles in this paper  will be Rq-bundles, Dq-bundles or Sq-bundles, though. The stand- 

ard trivial Rq-bundle (or (R q, Rn)-bundle) over X is denoted cq(X) or simply ~q 

d : X  ~ ~  X •  R q ~ X .  

The standard trivial Dq-bundle over X is denoted (~q(X) or ~q. (In general though we 

shorten c 1 and (~1 to e and ~.) 

The structure group of a bundle (cf. [9] Ch. 2, sect. 7) will play a modest role in our 

considerations. They will always be subgroups of G(R q, 0), G(D q, 0) or G(Sq). In  section 

4 we make some use of the following two lemmas. The notation is the obvious extension 

of the one introduced above. 

1.2. LSM~A. Let Z and C c Z  be compact or locally compact and locally connected. Then 

G(Z) (and (G(C)) is a topological group in the compact open topology, and the restriction map 

r : G(Z, C)-~ G( C) is a continuous representation. 

The first par t  is verified in [2] (Theorems 3 and 4). As for the second it is an easy 

consequence of the definition of the compact open topology. 

1.3. L]~MMA. Let Z be locally compact and locally connected with one point compacti/ica- 

tion Z', and let { ~ }  be the complement el Z in Z'. The restriction map r: G(Z', Z) ~ G(Z) is au 

isomorphism el topological groups whose inverse is the canonical extension ] : G(Z)-~ G(Z', c~). 

This follows from Theorems 1 and 4 in [2]. 

Given two bundles ~:, ~ over base spaces X, Y (not necessarily of the same fibre type), 

a bundle map of ~ into ~/is a map of total spaces @ : E-->2' sending fibres over X into fibres 

over Y. I f  ~ and ~] have zero sections as par t  of their structure, 0 i s  required to respect 

these in the obvious way. Finally, if ~e and ~] are (R ~, Rm)- and (It q, R~)-bundles, 0 is in 

addition required to map subbundle into subbundle. Every  bundle .map | covers a map 

O ' : X - + Y  of base spaces. I f  X equals Y, then @' will usually be the identi ty map. In  

this case @ is called an embedding, respectively an isomorphism, of bundles if it imbeds 

E in F, respectively maps E homeomorphically onto F. I t  is then clear what an automor- 
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phism is. We write @ : ~ ,  respect ively |  if 0 is a bundle map ,  respect ively  an  

isomorphism,  of $ to 9- I f  ~ is a bundle over  X,  a n y  m a p / : Z - > X  induces functor ia l ly  a 

bund le /*~  of the  same type  over  Z and  a bundle  m a p  [:/*~-+~. I f  A ~ X ,  the bundle in- 

duced b y  the  inclusion m a p  is wr i t ten  ~IA,  and  if @ : ~ - ~  is a bundle m a p  covering the  

ident i ty ,  we write | ] A : ~ I A -~ V I A for the  bundle m a p  defined b y  @. 

La te r  we shall need the  following 

1.4. LEMMA. Let F : X  •  be a positive continuous/unction such that Ilvtl < I[v'll 

implies F(x, v) <~ F(x, v') /or any x E X .  Then the map �9 : X • R q ~ X  • R q de/ined by ~F (x, v) = 

(x, F(x, v)v) is a bundle automorphism. 

Proo/. We show t h a t  ~F is bijective.  S i n c e / F  is f i b re  preserving,  i t  suffices to show 

tha t  ~ maps  x • R q b i jec t ive ly  onto x • R q for a rb i t r a ry  x in X.  Suppose v, v'  are such 

t h a t  F(x, v )v=F(x ,  v')v'. Then v and  v' are l inearly dependent .  B y  the  order preserving 

p rope r ty  of 2'  v equals v'. Hence  ~ is injective. To conclude t ha t  ~ is surjective,  we have  

to show t h a t  given v'  there  is a v such t h a t  F(x, v)v =v'. Since this requires v =tv' for some 

scalar t, we have  to show there  is a t wi th  rE(x, tv')=1. Since the cont inuous funct ion 

t~-+ tF(x,  tv') takes  the  value 0 and  values larger t han  1 (for t sufficiently large), b y  the  

connectedness of [0, ~ )  it  takes  the  value 1 for some t. Thus  ~ is surject ive as well. 

Clearly ~F is continuous.  We show t h a t  ~F -1 is continuous. Le t  ((xv, v~)) be an  ul t ra-  

sequence in X •  q such t ha t  (~(x~, vv) ) converges: ]imr~F(xv, vv)=~(Xo, Vo) say. We  

have  to ver ify t h a t  ((xv, vv) ) converges to (x 0, v0). B y  assumpt ion  l im v xv = x  0 and  

l im v F(x~, v~,)vv = ~(x0, vo)v o. 

Le t  t o = F(x0, 0 ) >  0. B y  the  cont inui ty  of F there  is a neighbourhood W 0 of x 0 such thaV 

] F(x, 0) - F (x  0, 0) ] < to/2 for x e W0. Thus  x e W 0 implies F(x, O) > to~2 and therefore also 

F(x, v)>to/2 for any  v E R  q. I n  other  words F ]  W o •  q is bounded  away  f rom 0. Since 

u l t imate ly  ((xv, vv) ) is in W o •  q and  since (F(xv, vv)vv) converges, this implies that.  

u l t imate ly  (vv) is in some compac t  subset  of R q and  so converges, l im v v v =Vo, say. ]~ut~ 

~F(x o, v0)=l im IF(xv, vv )=~(x  o, Vo), thus  vo=vo and so lim (xv, vv )=  (x0, vo). 

I n  this proof an  ultrasequence s imply means  a generalized sequence which for a n y  

given subset  of the  space is eventua l ly  ei ther in t h a t  set or in its complement .  I t  is eas i ly  

checked t h a t  a m a p / : X - + Y  is continuous a t  x E X  if and  only if for each u l t rasequence  

(xT) converging to x (f(x~,)) converges to / (x ) .  

1.5, LEMMA. Let ~ be a bundle over a space X • I and let ~0, ~1 be the bundles over X 

induced/rom the inclusions X x O~ X • I ,  X x 1 ~ X • I.  Let V be a halo o/ a set A in X 
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and assume that ~1( V x 1)= (~oI V) • I .  There is an isomorphism ~0~1 which is the identity 

over 8ome halo V' c V o~ A.  

Except for the relativization with respect to V, Lemma 1.5 is a consequence of Theo- 

rem 7.8 in [3]. However, the proof of Theorem 7.8 actually works for the relativized version 

appropriate for the conclusion of Lemma 1.5. (Warning. A bundle map in [3] is a stricter 

concept than in this paper.) 

A n  Ra.microbundle, 0 ~q, is a diagram of maps and spaces 

X ~ E ~ X  

such that ps = idx, for which the following is true 

1. There exists a collection A of homeomorphisms (I) : V ~  U • l~ q (called local trivia- 

lizations), where U =  Ur and V=  Vr are open sets in X and E, such that  s U c  V and 

p V c  U and such that  the composite maps 

U x R~ r  V - - ~  U 

U - - ~  V --r U • R q 

are, respectively, the projection to the first factor and the injection to the zero slice. 

The family (U~)r  is a cover of X. 

2. There exists a partition of unity on X subordinate to (Ur162 

Again the collection A of local trivializations can be extended to a unique maximal 

collection 4 ,  and we agree to identify microbundle structures which are defined by collec- 

r A, .~' with common maximal extension. 

Corresponding to the concept of (R  q, R~)-bundles there is a refinement of Rq-micro - 

bundles which will be called (1~ a, Rn)-microbundles and which we now define. Given two 

local trivializations (I)1:V1 ~ U1 • Rq, (I)2:V2 ~ U2 X R q, their composite qb s (I)11 (whenever 

defined) is homeomorphism of some open neighbourhood of (U 1 f~ Us) • 0 in (U 1 fi Us) • R a 

onto another, whose restriction to any fibre maps origin to origin. Consider the slices of 

these neighbourhoods that  lie in (U 1 (1 Us)x  R ~. An  (R q, R~)-mierobundle, 0 ~ n  ~q, is an 

Rq-microbundle all of whose maps (IosOf 1 sends R~-slice onto Rn-slice. Any (I{ q, Rn)-micro - 

bundle contains a canonical submicrobundle with standard fibre R ~. I t  is constructed as 

follows. For every local trivialization ( P : V ~  U • R q of ~ (the maximal extension of A 

respecting It~-slices) form the restriction d P ' : V ' ~ U x R  ~ and the space E ' = i J V ' .  If  

X ~ E L X  is the given microbundle, E '  is a subspace of E containing the image of s. The 
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maps induced from s and p then defines an R~-microbundlo XS'E'v'~X with local trivia- 

lizations (I)', (I) running through A (say). Microbundles will be labelled by small greek 

letters ~u, v ..... Rq-bundles and Dq-bundles are obviously microbundles, and so are S q- 

bundles provided they have sections. 

Given a diagram X L E L X  with ps=idx,  a microbundle neighbourhood of sX in E 

is a neighbourhood E' such that  X ~ E ' v ~ X  is a microbundle, s' and p '  being induced 

from s and p. We consider some examples. 

1.6. For any X there is the standard trivial microbundle eq:XX-*~ x R q ~ X ,  q >10. A 

partition of unity for this bundle is defined by the single constant function ~z:X-~[O, 1] 

with value 1. 

1.7. Let X be a denumerable set and let xoEX be a fixed element. Define a topology 

on X by requiring U c  X to be open if U is empty or contains x 0. Then X is connected, 

and so any continuous f u n c t i o n / : X - + R  is constant. Consider the standard trivial micro- 

bundle e :X-~X • t t-+X. Let Ux~ U2c ... be a strictly increasing infinite sequence of 

open sets exhausting X and let E = U U~ • ( - 1/i, 1/i). Then E is an open neighbourhood 

but not a microbundle neighbourhood of X • 0 in X • R q. In fact if E was a microbundle 

neighbourhood for X • 0, then there should exist a partition of unity (~rj, Ws) of X and 

homeomorphisms (I)j: Vj ~ Wj • It  as prescribed by the local triviality condition. For all j 

define ]j: Wj-+R by/j(x) =pr 2 ~ l(x, 1). Then/ j  is a positive continuous function and hence 

so is / = Z ~ r j / j : X ~ R ,  where ~J/j is defined to be 0 outside Wj. Then, on one hand, / i s  

constant, on the other hand, the set {(x, t) l (z, t) e x  • R and t ~</(x)} must be contained in 

E. This is clearly impossible since U cannot contain proper product sets over X. 

1.8. Let X be paracompaet. Then any neighbourhood E of X • 0 in X • R q is a micro- 

bundle neighbourhood. 

Recall the definition (and notation) of a germ of continuous maps between topological 

pairs (cf. [8] p. 65). We now adapt the definition of bundle mapgerms in [8] to our case. 

Given Rq-microbundles # : X ~ E L X ,  v: Yt~Fq~Y a germ r  s Y ) = ( F ,  tY)  is a bundle 

mapgerm or simply a mapgerm, if the following is true: There is a microbundle neighbour. 

hood V of sX  in E and a representative (I) of r on V such that  (I) maps each fibre in V 

injectively into some fibre in F. For (R q, Rn)-microbundles we require in addition that  (I) 

map the Rn-submicrobundle of ~u in V into the submicrobundle of v. If  X = Y and r covers 

the identity map, then ~b is called an isogerm. If moreover # =v, then r is called an autogerm. 

For every non-negative integer q there is a category of Rq-microbundles and mapgerms 

and, for fixed X, a subcategory of Rq-microbundles and isogerms over X. In  the latter 
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all morphisms are isomorphisms as will follow from the results of section 3. If  # is a micro- 

bundle over X, any  map ]:Z ~ X  induces functorially a microbundle [*# of the same type 

over Z and a mapgerm [:/*ju ~/~. I f  A ~ X, then the microbundle induced by  the inclusion 

map is written # ]A,  and if ~ : # ~ v  is a mapgerm covering the identity, we write ~[A: 

# [ A  ~ v i a  for the mapgerm defined by  v. A subset A of X is trivializing/or # if there 

exists a (global) trivialization of/~ ] A, V~-,A • R q (assuming that  # is an Rq-microbundle). 

The trivialization defines an isogerm # ]A  ~ eq(A) so tha t  # ]A  gets isomorphic to the 

s tandard trivial microbundle. 

Next  we give an important  example of autogerms on the s tandard trivial bundle. 

1.9. Let X Z E L X  be a trivial Rq-microbundle with two global trivializations 

@k:Ek~X x R q, /c= 1, 2, fixed throughout this section. We want to show that  the maps 

(P2qbf 1, (I)l(I)~ 1 define autogerms on sq(X). Since X is not assumed paraeompact,  this is 

not at  all obvious. In  fact we will show that  there exist positive continuous functions 

~12, Qel on X whose associated neighbourhoods N(r N(r ) (defined below) are con- 

tained in the domains of (I)2 (P~ 1, (I)1 (I)~ 1, resp. The interior of any functional neighbourhood 

of X x 0, however, is homeomorphic to X x R q by  a fibre preserving homeomorphism which 

is the identi ty on some smaller functional neighbourhood. Such a homeomorphism is 

certainly a mierobundle trivialization of eq(X). I t  follows that  the maps (P~(I)[ 1 define 

autogerms. 

I f  ]:X-+R is a positive continuous function, define/V(]),/~(]) and N(]) by  

(x, v ) E N ( / ) ~ ( x ,  v) E Z  x R  q and [Ivl] ~</(x), 

(x, v)e:~(h ~(x, v )ex  x a  ~ and ]]vll </(x), 
(x, v )E~ ' ( / )~ (x ,  v )EX x R  q and I]vl] =/(x)- 

Then N(/) is a closed neighbourhood of X x 0 in X x R q with interior ~(])  and boundary 

/~(/). I f  / is constant equal to 1, write/Y(/) = N ( 1 ) = N .  Thus N = X  x D q, D q= Dq(1) being 

the closed unit disk centered at  the origin in I t  q. In  general N(t) = X  x Dq(t) for any real 

number  t>0 .  (Later we shall also make use of these definitions in the case where ] takes 

values in the extended real halfline [0, ~ ] . )  

Define continuous realvalued functions @u on the domain of (I)~(P21, i, ] = 1, 2, i ~=j, by  

o,,(x, v) = ]lpr~r v)ll. 
Moreover, let ~Vj = Of(Of 1N N O~IN) and/Vj = Oj( (OflN fl 0~157) U (Ofl/V N O~IN)), j = 1, 2. 

Then N~ is a neighbourhood of X x 0 in X x R q contained in /Y N domain O~(I)21, and/Vj  

is contained in the boundary of Nj  in N. Also, for any  x E X,/Yj ] x is a compact neighbour- 

hood of (x, 0) in N ] x with boundary N~[x. 
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Finally define the realvalued functions 0~ on X,  i 4 j ,  by 

e~(x) = inf {O~(x, v) l (x, v) e/V~, x fixed}. 

Geometrically, O~j(x) is measuring the minimal radius in the cross-section of Nt over x. 

We claim tha$ 0~ is a positive continuous function and that  N(o~)~domain O~(I)~ 1. 

Since O~t is continuous and positive on the compact set ~r~[x for any x, ~ (x )>O.  

Hence Ou is positive. We show that  ~ is continuous. 

First notice that  if W is a neighbourhood of a point x in X, then/Yj[ W is a neigh- 

bourhood of i n  Moreover, the eonection where W runs o er the neigh- 

bourhoods of x forms a fundamental system for Nj[ x in N~. To see this let M = X  • B, 

where B is some open ball of radius > 1 at the origin in R q. Then, varying B and W, {M [ W} 

forms a fundamental system of ~Y Ix in X • t t  q. Thus {qb~(M[ W)} forms a fundamental 

system of neighbourhoods of 0 ,1 (~]~)  in E, i=1 ,  ~. ]~ut then {(I){~(M] W) N (I)~1(/] W)} 
forms a fundamental system of Old(N[ x) N O~(N]x)  in E (d)l~(N]x) N O~(N]x)  being 

compact) whose trace on O;1N N O ~ N  is {Old(N] W) N qb~(N] W)}. Thus 

{(I)11(~V[ W) ~ (I)21(~V] W)}, 

W varying, forms a fundamental system of Oi l (Nix)N O~l(NIx) in O;1N N O~I/Y. Since 

(I)j((I);I(N[ W) N qb~l(N[ W))=~Yj[ W, the  claim follows. The statement ramains true if ~Ys 

is replaced with Nj everywhere. In  fact the latter follows from the former or from a similar 

direct reasoning. Since pr~-~j = X ,  this means that  p r ~ : N j ~  X is an open map. 

Let  x o be any element of X. By the compactness of ~ j  ] x 0, given s > 0 there is a finite 

collection of open balls BI, B 2 ..... Br in R q centered at  some Vx, v 2 ..... vr with (xo, vk) E~j[xo 

and a neighbourhood W 0 of x 0 in X, such that  /Vj[x0c Wo • I.J Bkcdomain  r (I); 1 and 

such that  for (x, v) E Wo • Bk ]O(x, v) -- O(x0, vk)[ <e, k = 1, 2 ..... r. Then ~ N (W o • (J Be) 

is a neighbourhood of Njlxo in 5Tj (not necessarily filling RJl Wo) and so there is a neigh- 

bourhood Wg of x o with Nj[ W0 c Nj N (W o • [3 Be). I t  follows that  for (x, v) E ~j [  Wo there 

is an integer s with [Oij(x, v)-@~j(xo, v~)[ <s, i.e. O~j(xo)-s<O~(xo, vs)-e<@~j(x,  v)< 

@ij(x o, vs)+s. Therefore x E W0 implies Q~j(x0)-s <Q~j(x). On the other hand, any (x o, Vo)E 

/Vj]x o has a neighbourhood U 0 in Nj  such that  (x, v)E U o implies @~j(x, v)< @~j(xo, vo)+s. 

Since pr  1 : _f[j -~X is an open map, W" =pr  1 U o is a neighbourhood of x o in X. I t  follows 

that  for x E W o Oij(x) < @~j(Xo, v o) + s. In particular if (x0, v0) was chosen a point of minimum 

of 0~[ (~[x0),  O~(x) <O~(xo)+e. Thus, given e>O there exist neighbourhoods W 0 N W o' of 

x o such that  xE W o N W o implies [e,~(x)-~(xo) [ <e. Hence O,f is continuous. 

By definition N ( ~ ) c  N ~  domain r -~. 
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Finally, i f / : X - * I t  is a positive continuous function, let us show tha t  there exists a 

fibre preserving homeomorphism ~F:2~(/)~X x R q which is the identi ty on .N(//2). We 

may  assume tha t  / is bounded by  1/2, say. l~orm the map F : X  • Rq-*R 

1, [[ v[I K/(x) /2  

F(~, v) = (2//(~)) (/(x) - IIvH) + (2//(~) ~) (][vH - / (x ) /2 ) ,  /(~)/2 < II vii </(~) 

1/ / (x)  /(~) < II v II. 

Then F(x, v) satisfies the conditions of Lemma 1.4. Therefore the map (x, v ) ~  (x, F(x, v)v) 

is a bundle automorphism of sq(X) which sends ~( / )  onto h ~ and is the identity on N(]/2). 

Compose the latter with a bundle isomorphism ~ X  • R q which is the identi ty on N(1/4). 

This composite gives ~F. 

The discussion above could easily have been generalized by starting with a tubular 

neighbourhood N(t) = X  • Dq(t) of radius t > 0. This would have given a positive continuous 

function ~(x, t) of two variables such tha t  for t fixed N(~(., t ) ) c N ( t ) c d o m a i n  (I)2(I); 1. 

The following is really a special case of this situation. The proof is easier than tha t  in 1.9 

and will be omitted. 

1.10. LEMMA. Let ~ be a bundle embedding of a trivial bundle eq(X) in itsel] and de- 

fine the realvalued ]unctions ~r (~r on X • (0, ~ )  by 

e.(z,  t) = i.~ {llpr2r v)ll IveD~ x, t fixed} 

ar t) = sup { l lpr2r v) lllv e Do(t), x, t lixed} 

Then ~r ar are positive continuous ]unctions. 

Note tha t  if (I) is only defined on a neighbourhood of X • Dq(t) for some t>0 ,  then, 

of course, the lemma remains valid when ~r ar are considered as functions on X • (0, t]. 

2. The germ extension theorem 

This section is concerned about representing autogerms on the standard trivial R q- 

bundle by  automorphisms. 

2.1. LEMMA. Let r be an autogerm on a trivial bundle ~q. There is a bundle embedding 

of e q in itself whose germ is r 

Proof. Let X be the base of eq and let (I) be a representative of r defined on a micro- 

bundle neighbourhood E '  of X • 0. Let  (zej, Wj)j~j be a trivializing parti t ion of unity for 

E' .  Then there are local trivializations (I)j: V j ~ W  s • R q, ]E J, with V j c  E' .  Since (I)~ 1 is a 
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bundle embedding of eq(Wj) in itself, by  Lemma 1.10 there is a positive continuous func- 

t ion / j=~r 1) on Wj such tha t  N ( / j ) ~  V i c E ' .  F o r m  the funct ion / = E z j - / j ,  where 

7ej./j is defined to be zero outside W r Then ] is positive and continuous on X, and N(/)  

is a neighbourhood of X • 0 contained in E ' .  We m a y  assume / bounded  by  �89 Let  F :  

X • R q -+R be the funct ion constructed in the end of example 1.9 and let tF 1 :/~(]) ~ ~ be the 

homeomorphism (x, v)~-~ (x, F(x,  v)v). Finally,  let ~lP~:~ ~ X  • R q be some bundle isomor- 

phism which is the ident i ty  on N(1). Then OtF;~tF~ 1 is a bundle embedding of e ~ t h a t  

coincides with �9 on N(]/2). 

Notice tha t  the proof relies heavily on the existence of a trivializing par t i t ion of un i ty  

for E '  and  fails to cover the case where r is just  an  autogerm in the sense of Milnor. We 

next  complete the above result b y  showing tha t  any  bundle embedding of e q has the 

germ of an automorphism. The proof is based on the t I i r sch-Mazur  induct ion technique. 

2.2. LEMMA. Let �9 be a bundle embedding o / a  trivial bundle e q in itsel/. There is a 

bundle automorphism 0 '  on eq such that germ 0 '  = germ 0 .  

Pro@ Let  X be the base of e q. Using the  map  ~r 1 ) : X ~ R  as we did with / in 1.9, 

we construct  a map F '  : X • R q -->R such tha t  XF', 

/F'(x,  v) = (x, F ' (x ,  v)v), 

is a bundle au tomorphism of s q with germ the identity,  which maps N(Qr 1) onto N(2). 

Then ~F'O =O~ is a bundle embedding with germ �9 1 = g e r m  �9 and such tha t  O1N(1 ) ~ N (2). 

We now proceed by  induction. Wi th  O1 as described and 00 = O ,  suppose we have con- 

s tructed embeddings O1, O~, ..., O~: s q -+s q, n >t 1, such tha t  

In: O i N ( i ) ~ N ( i + l ) ,  i = 1, 2 . . . . .  n, 

II•: r  i = 1 , 2  .. . . .  n. 

Since O ;  a is defined on N ( n +  1), by  Lemma 1.10 there is a positive continuous func- 

t ion ~r n) : X-+  R measuring the minimal radii of O~lN(n).  Le t  g = rain (~r (. ,  n), n - �89 

Then OnN(g) c N(n).  

Similarly, (I)~ defines a positive continuous funct ion a ~ , , ( . , n + l ) : X - + R .  Let  h =  

max (ar n + l ) ,  n + 2 ) .  Then O n N ( n + l ) c N ( h  ). 

Now, let G, H : X  • R q ->R be the positive continuous functions 

[ Ilvll < 
v) = ] ([I v II - n) + (g(x)/n) (n + 1 - l[ v ][), n ~ II v II < n + x 

I 

t l ,  n +  1 ~<llvll, 
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1, 

H(x,v} = (h(x) /n+ 1} (It,ll- } + (n+ 1 

h(~)/n + 1, 

II v'll < 
n < l l v l l < n §  
-+ l< l lv l l .  

Then the maps  
~(x ,  v) = (x, a(x, v)v), | v) = (x, H(x, v)v) 

are bundle au tomorph i sms  (Lemma 1.4) such t h a t  /F iv(n)=iv(g) ,  /Fiv(n + 1) = i v ( n  + 1) 

and  ~" equals the iden t i ty  outside N(n + 1), and  such t ha t  6)iv(n+ 1)=iv(h)  and  6) is the  

iden t i ty  on iv(n). Final ly  let F :X  • R q ~ X • R q be the  m a p  which equals dPnW'-~r 1 on 

(I)~N(n + 1) and  the iden t i ty  outside. Then  F is clearly a bundle au tomorphism.  Moreover,  

since i v (h)=Oniv(n+l)  U ( i v (h ) -~n i v (n + l ) )  and  FOnN(n+l )=(Pn iv (n+l ) ,  we have  

Fiv(h) = iv(h). Define r to equal  the  composi te  embedding FO(I)~W'. Then  r satisfies 

the  induct ion conditions: 

I~+,: O~+,iv(n + 1) = PO@~Fiv (n  + 1) = P O O ~ ( n  + 1) ~ P@Oniv(n ) ~ P@iv(n + 1) 

= Fly(h) = iV(h) ~ N(n + 2). 

IIn+l: I f  (x, v)e iv(n) ,  t hen  ~(x ,  v)eiv(g) and  so O~XF(x, v)ECP~iv(g)cN(n). Therefore  

6) (I)~F (x, v) = @~iF (x, v) and  F @ @ ~  (x, v) = F q)~F (x, v). Since (P~F (x, v) e 

iv(n) ~ O~iv(n) ~ qb~iv(n + 1), F(I)~F(x, v) = On~F -1 (P;lcI)n~F (x, v) = (I)~ (x, v). Thus  

r v) = r v). 

Hence,  b y  induct ion there exists a sequence of bundle embeddings  (I)1, 4) 2 . . . .  :X  • R ~-> 

X •  R q wi th  germ (Pl = g e r m  (I) and  such t ha t  qP~ satisfies I i  and  1I~, i = 1, 2 . . . . .  B y  the 

conditions 11i there  is a l imit  bundle m a p  (I)' : X • R q-+X • R q defined by  q)' l N(i) = Oi] iv(i), 

i = 1, 2 . . . . .  which is clearly an  embedding,  and  b y  the  conditions I4 (I) is epic and  therefore 

ac tual ly  an au tomorphism.  F ina l ly  germ (I)' = g e r m  �9 1 = g e r m  (P. 

Combining 2:1 and  2.2 we get  the  following impor t an t  result.  

2.3. GERM ]~XTE~SIO~ T H E O r e M .  Let r be an autogerm on a trivial bundle xq. 

There is a bundle automorphism on s q whose germ is r 

I n  par t icular  the  germ extension theorem applies to  the  t ransi t ion au togerms  of 

example  1.9. I n  fact  the  proofs show t h a t  if (I),(P~ 1 is a representa t ive  of such a germ on 

e q, then  there is an  au tomorph i sm (P on s q which coincides with (I),(I); 1 on some funct ional  

ne ighbourhood N(/) of the  zero section. 
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3. The mierobundle representation theorem 

The result below is an important step in the inductive arguments to follow in this 

section. 

3.1. LEM~A. Let ~ be an Rq-bundle with a trivializing partition o /un i ty  (~,  Wt),-1.2, 

and let r ~ ~q be an isogerm to the trivial bundle. Let (~l :~l Wl~sql  W 1 be a trivialization o/ 

over W1 whose germ is r Wr  There is a trivialization ( : P : ~ q  o] ~ whose germ is r such 

that r I w l  - = (~11 W1 -- W2" 

Proo]. Consider the isogerm r I W2:~ I W2 ~ eql W2" Since ~l W2 is trivial, by the germ 

extension theorem there is a trivialization r 2 whoso germ i s~ lW 2. With 

(~', W;),=1.2 the derived partition of unity of (yet, W,)~=I.~, let A = W2-W~, U =  W 1 N W2. 

Then A and U are sub sets of W2, and with ~ = ~z~ I W2, we have A = ~-1 (1) and A = 7r  1 (0,1 ] ~ U. 

Since {W1-W~,  W2} forms an open covering of the base, it suffices to construct a trivia. 

lization ~'2 of ~l W2 such that  germ tF2=germ qb 2 and t F 2 ] A = ~ l l A .  Translate first the 

whole problem to W2 • R q by means of (I)2. Thus we have to construct an automorphism 

tF~ =~F2(I)~l of eq(W2) such that  germ tF~=germ identity and tF~IA =(I)I(I)~I]A. Write (I)' 

for (I) 1 (I)21 I U. There is a map II : W 2 • R q -+ W 2 • R q defined by H (x, v) = (x, 7~(x) v) which 

is a bundle automorphism over 7~-1(0, 1]. Define tF~ by 

I l-t-1 (I)'H on ~-1(0, 1] • Rq 

tFu'= [ identity outside. 

Then tF~ is bijective, and it is bicontinuous except possibly over the boundary of :~-1(0, 1] 

in W 2. Suppose ((xT, vv) ) is a generalized sequence in ~z-l(0, 1] • R q converging to some 

point @, v) iv~ the boundary in W~ •  q (thus (x, v) C U •  Then ultimately II(x~, v~) 

belongs to the neighbourhood of W 2 • 0 (and of (x, 0)) where (I)' equals the identity. But 

then tF~(xv, vv) = (xv, vv). Thus lim tF~(xv, vv) = (x, v) = ~ ( x ,  v) showing that  tFg is contin- 

uous also at (x, v). 

Suppose that  ((xr, vT) ) is a generalized sequence of elements from ~-1(0, 1] • I~ q such 

that  (tF2(xT, vT)) converges to some element tF~(x, v)= (x, v ) i n  the boundary. We have 

tF~(xv, v~,) = (xr, 1/~(xr).pr2(P'(xv, ~(xr).vv) ). Since 1/~(xv) - ~ ,  pr2 ~'(xv, ~(xv).vv) -+0 and 

so (I)'(xv, 7~(xv) .vv) -+(x, 0). Since (I)' is a trivialization defined on all of U • R q, this implies 

that  7~(xv) v v -+ 0. But  then ultimately ~P'(xT, 7~(xv). vv) = (xv, ~(xv) .vv) and therefore ulti- 

mately tF~(xv, vv)= (xv, vv). Thus lim (x v, vv)=lim tF~(xv, %)=tF2(x, v)= (x, v) showing 

that  tF~-I is continuous at tF~(x, v). 

3.2. CO~tOLT, AR~r. Let ~ be an g~-bundle, and let ~ : ~ e  ~ be an isogerm to the trivial 

bundle. There is a trivialization ~P : ~ e  q whose germ is ~. 
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Proo/. Let (~j, Wj)j~j be a trivializing partit ion of unity for ~. By the germ extension 

theorem (or by the lemma above) for any j E J  there is a trivialization of ~ over Wj 

I Wj ~ ~q(Wj) 

whose germ is r Wj. Consider then the collection of pairs (K, (I)) where K c J  is non- 

empty and (P:~I WK~eq(WK) is a trivialization of ~ over WK with germ r WE. Order this 

collection by  defining (K, (I)) ~< (K', (I)') if the following two conditions are satisfied: 

(a) K c K ' .  

(b) If xEWK and 7~K(x)=re K,(x), then (I) lx=(P ' ]x .  

I t  is clear tha t  this relation is an ordering i.e. that  it is reflexive and transitive. 

Suppose (Kr, (I)r), r E R, are the members of a linearly ordered family of pairs. Let  K = (J Kr 

and let x E W~. There is a neighbourhood V(x) of x in WE meeting only a finite number of 

W~ with iEK,  say il, i 2 ..... i~. Let  r be such that  all il, i 2 . . . .  , i~ is contained in Kr. Then 

for (gr, (I)r)<(Ks, (I)s) , ~Ks] V(x)=~:r I V(x) and so Os] V(x)=(P~ l V(x). In other words, if 

V is a sufficiently small open subset of WK, then ultimately all qb~ coincide over V. I t  

follows that  there is a well-defined isomorphism (I)=lim q)r :~l WK~eq(WE)" Thus the pair 

(K, (I)) belongs to our collection, and it is moreover an upper bound for the family (K~, (I)r), 

r E R. I t  follows that  the collection of pairs is in fact inductively ordered and so contains 

maximal elements. Let  (K, (I)) be such an element. If K4~J, let ~ E J - K  and write K ' =  

K U (]}. Form thepar t i t ion of unity (z~, Wi)~=L 2 on WK, with 7~ 1 =ZK/ZF:', ~2 =~j/ZK'. Then 

WI= WK and W2= Wj and so the bundle ~] WK, satisfies the conditions of Lemma 3.1 

with (I)~ equal (I) in (K, (I)) above and r equal r WE'. I t  follows from 3.1 then that  there 

is a trivialization (I)' of ~]W~. whose germ is r WK, such that  (K, (I))~<(K', O'). Since 

(K', (I) ')4(K, (I)) this contradicts the maximality of (K, (I)). Therefore we must have 

K = J ,  and so (P :~eq  is the trivialization claimed. 

We are now ready to prove the result towards which we have been heading. 

3.3. MICROBUNDLE R E P R E S E I ~ T A T I O N  T H E O R E M .  (a) Let/a be an Rq-microbundle 

over some space X .  Let V be a halo o/ a set A in X ,  and let ~] be an Rq-bundle over V contained 

in # I V .  There is an Ra-bundle ~ over X contained in # such that ~I V' =~][ V ' /o r  some halo 

V'cVo/A. 
(b) Let ~1, ~2 be Rq.bundles over X contained in the microbundle # such that ~11 V '= $~ l V' 

/or some halo V' o] A in X .  There is a bundle isomorphism ~1~$2 which is the identity over 

some halo V " c  V' o / A .  

Pro@ Let (z~, W~)~ be a trivializing partition of unity for/~. Consider the collection 

of all triples (K, ~, (r where K is a non-empty subset of J ,  ~ is an Rq-bundle over WK 
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eontained in/~1 W~ and (Ok) is a family of trivializations Ok:~l WK~eq(Wk), k E K. Order 

this collection by defining (K, ~=, (Ok))< (K', ~', (d)~)) if the following two conditions are 

satisfied: 

(a) K c  K'. 
(b) If  xeWK and 7eK(X)=~K,(X), then 

~ lx=~ ' lx  and (I)k[x=@'~[x f o r a n y k e K  with xeW~. 

Clearly this relation is an ordering. We show that  the ordering is in fact inductive. 

Let (K,, St, ((I)r)), r e R, be the members of some linearly ordered family of triples. Let 

K = [J K r and let x C WK. There is a neighbourhood V(x) of x in WK meeting a finite number 

of WE with keK, say kl, ke, ..., k,. Let r be such that  all kl, k s ..... k~ belong to Kr. Then, 

for (g~, ~s, ((I)])) succeeding (Kr, ~,  ((I)~)), ~. IV(x)=zK,] V(x) and so ~] V(x)=~r] V(x). 
If moreover V(x) is contained in Wk for some kEK, then qb~l V(x)=r V(x). I t  follows 

that  there is a bundle ~=l imr~ ~ over WK contained in fll WE with trivializations (I)~= 

limr O~ over Wk, k EK. Obviously (K, ~, (4Pk)) is an upper bound for the family (K,  $~, ((I)[)), 

r E R. Thus, by Zorn's lemma the collection of triples admits maximal elements. Let 

(K, ~, (q)k)) be such an element. We show that  K = J which will prove that  ~ is a bundle 

over X contained in It. 

Suppose K:#J and let ]EJ-K.  Since Wj is trivializing for/~, there is a bundle 

over Wj contained in # [ Wj and a trivialization tFj :~ ~eq(W~). Then ({j}, ~, tFj) is a triple 

in our collection. We glue together (K, ~, ((I)k)) and ({j}, ~, tFj) to a larger triple, thereby 

reaching a contradiction: Since ~1 WK fl We and v I W~ fl Wj are both contained in]~ I W K I~ Wj, 

their total spaces have a non-empty intersection E. I t  follows from example 1.9 that  E 

is a microbundle neighbourhood of the zero-section in ~ I WK N W r Therefore its identity 

map determines an isogerm ~ [ Wx n Wj ~ ~ ] WK ~ W r Since ~] is trivial, by Lemma 3.2 

there is a bundle isomorphism ~:~] W~ ~ W ~ ] ]  Wg ~ W~ with germ the identity. In 

particular ~ 1 W~ (~ W~ is trivial and so, like ~ I W~ fl W~, gives rise to a trivialization of 

# over WE ~ W~. Again by example 1.9 there is then a positive continuous function ~ on 

W~ ~ W~ such that  ~FjE~N(~). We may suppose that  | is the identity on ~F/1N(~). Let 

K '  = g  U (]}. Then ((ZK, WK), (~, Wj)} forms a partition of unity on WK" except for 

normalization. After normalizing (so that,  keeping the same notation, ~K§ form 

the derived partition of unity ((~:,  W~:), (7~;, W~)}. Let 2'K, F~ be the subsets of W~. 

defined by 
xeF~:~xeW~: and 7~'K(X)>~Z~:(X) 

xeF j~xeWj  and z/(x)>~j(x) 

and let A = F g  f) F~. Since FK ~ W ~  WK, FK is a closed subset of W~.. SimiIarly Fj  and 
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A are closed in WK,. Clearly FK U F~ = WK,. Let  ~ =~] FK, 9J =9 [ Fj  and @' = @ [A. Form 

the bundle ~' = ~  U o~9~ which is the disjoint union of ~K and 9J identified over A by | 

That  this is a bundle in the definition of section I follows from the fact that  it  has (z~, W,), G K, 

as trivializing partition of unity. Indeed, consider a trivialization (I),:~IW,~eq(W,) for 

iEK and let 49,K, 49,~ be the restrictions of 49i to W, N EK, W, N Fj  respectively and let 

0 , j  be the restriction of 0 to Wi N Fj. Then the pair (I),K, (I)tj0,j 1 defines a trivialization 

49~=49~ U o,O~j0~ 1 of ~' over W~. Moreover, when restricted to ~'[ W~- Wj=~ I W~- Wj 

this trivializatioa equals (I)~[ W t - W j .  Similarly one shows that  there is a trivialization 

49j' of ~' over Wj. We should like to finish the proof by concluding that  the triple (K', ~', (49[)) 

is larger than the maximal triple (K', $, (49~)). Unfortunately the former does not belong 

to our collection since (because of the identification by 0 ' )  ~' need not be contained in 

,u I WE.. The p~rt of ~' corresponding to where O is the identity is contained in ttl WK. 

however, as is the part  of ~' over WK,-A. Let  z :  W~,-~ [0, 1] be the continuous function 

that  equals 1--(~KZ~')/(re~Z~) on WK f) W; and 1 outside. Then A=z-~(0).  Pick an order 

preserving homeomorphism [0, 1]~[0,  oo] of [0, 1] to the extended real half-line and let 

~o~ be the composite of 7~ with this. Then zoo is 0 on A and o~ outside W~ N W]. Let ~oo : 

WK,-+[0, o~] be the continuous function that  equals 7e~z~ff on W~N W~ and 0 outside. 

Finally let ~ =~oo +~o~. Then ~ is a positive continuous function on W~, to [0, ~ ]  that  

takes the value o~ outside W; and is less than ~ on A. I t  follows that  tF -~N(~]  W~) is 

the total space of bundle 9" over W~ contained in 9 and contained in ~'[ W~ as well (since 

0 operates as the identity on the common part  of ~ and 9" over A). Thus there is a well- 

defined bundle ~"=(~] W a -  W~') Up"=(~'  [ WK-- W~') Up" over WE. contained in ~' and in 

#l W~., such that  ~"] W ~ -  W~ =~'[ W ~ -  W~ =~[ W ~ -  W~. This bundle has (z~, W~)~.  as 

trivializing partition of unity. In fact, an obvious modification Will change 49~" restricted 

~0 ~"] W~ to a trivialization 49; : ~" [ W~sq(W~), i e K', such that  497 [ W~ - W~ = 49[[ W~ - W~ = 

49~] W,-W~ for ifiK. Then the triple (K', ~", (497)) is in fact a member of our ordered 

collection, which strictly majorizes (K, ~, (49,)). The contradiction shows that  K = J  and 

so ~ is a bundle contained in/z. This proves the first part  of the theorem in the case where 

A is empty. 

Suppose finally that  over some halo V of a non-empty set A in the base a bundle 9 

is given contained in 9 ] V. Let  ~v be a function on the base to [0, 1] which is 1 on A and 0 

outside V. Without loss of generality we may suppose that  V actually is the support of ~. 

Let  W be the open subset of all x for which ~o(x)< �89 Then there is a non-negative real 

valued function ~ with support W such that  ~f + z  = 1. Let  (z~, Wj)j~ be a trivializing parti- 

tion of unity for the microbundle # and let (~pt, V~)~z and (tF~),~ L be a trivializing partition 

of unity and a family of corresponding local trivializations for the bundle ~/. Form the 
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subset K c  J consisting of those indicies k for which Wk meet W and the disjoint union 

L U K. Then the two families (Fz, Vz)leL and (Tekz, Wk N W)k~ together form a trivializing 

partit ion of unity for #. With respect to this we have the admissible triple (L, ~, (~p~)), 

which is then majorized by some maximal triple (L (J K, ~, (r Let  V' be the subset of 

V on which ~p > �89 Then V' is a halo of A. By definition of the ordering ~ [ V ' = u ] V '  and 

O~] V'=~F~[ V' for l~L. This completes the proof of (a). 

The proof of (b) is now easy. Let  ~ ,  ~ and V' be as described under (b) in the theorem. 

Then we have a mierobundle fi =re • I over X • 1 and to, t~ ~1 with 0 < t  o <tx < 1 such that  

f i [X • [0, to] contains ~ • [0, to], f i ]X  • [tl, 1] contains ~ x It1, 1] and fi[ V' • I contains 

(~ ] V') • I = ($~ [ V') • I.  Therefore we have the bundle ~ • [0, to] [ (~  [ V') • I U ~ • Its, 1] 

over a halo X • [0, to] U V ' • 2 1 5  1] of X • 2 1 5 2 1 5  in X x I ,  contained in 

f i ]X  • [0, to] [J V' • I U X • [tl, 1]. By (a) there is a bundle ~ over X • I contained in fi 

which restricts to this given bundle over any sufficiently small halo of X • 0 tJ A x 1 

X • 1. By the compactness of I any halo of X • 0 (J A • I U X • 1 contains a subset of the 

form X • 0 U V" • I U A • 1 where V "c  V' is a halo of A in X. Par t  (b) follows now from 

Lemma 1.5. 

Remark 1. Note t h a t  the proof of the representation theorem actually gives some 

more information than announced in the theorem. Thus under (a), if (Y~z, Vz)z~L is a trivial- 

izing partit ion of unity for ~/ with associated local trivializations (tFz)z~L, t h en  there is a 

trivializing partition of unity (r Uk)keK U (YJz, V~)ZGL for ~ with associated local trivializa- 

tions ((I)~)~xu L such that  (r Uk)k~K is disjoint with V" and r V~ N V'=tFzl Vz N V' for 

all l EL. By (b) any solution ~ admits such nice trivializations provided V' is small enough. 

Remark 2. The relation "~ contained in re" could everywhere have been replaced with 

"~ microbundle isomorphic to # "  in Theorem 3.3 (together with the other obvious changes); 

the proof is easily modified to take care of this case. In particular (b) can be given the 

slightly strengthened form: Let ~1, ~ be Rq-bundles over some space X and let r :~1 ~ 2  be 

an isogerm. Let 4P':~11V'~21V' be an isomorphism o~ ~ to ~ over some halo V' o / A  in X 

whose germ is r I V'. There is an isomorphism 6p : ~ 1 ~ 2  whose germ is r such that r ] V" = r I V" 

over some halo V" c V' o / A .  

Remark 3. Theorem 3.3 above is stated in its relativized form, relativization taken 

with respect to subsets in the base. We could however equally well have relativized with 

respect to subsets in the fibre or carried through both relativizations simultaneously, i.e. 

s tated the representation theorem for (R q, Rn)-mierobundles and (R q, Rn)-bundles. In  fact 

the proof of Theorem 3.3 with the preceeding lemmas go through with nominal changes 
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to give this refined result. Notice also that  remarks 1 and 2 hold for the refined represen- 

tation theorem. 

Theorem 3.3 has the following immediate consequences (by Lemma 1.5), cf. [8] p. 58. 

3.4. CO~OnLARY. Let i~ be a microbundle and let ]o~-]1 be homotopic maps to the base 

o/I~. Then/~t~/*l~. 

In  fact if for some halo V of a subset A in the domain of/o, /1 we have/0  -~/1 rel V, 

~she i l  * * /o#~]1/~ by an isogerm which is the identity over A. 

3.5. COROLLi~:~. (a) Any microbundle over a contractible space is trivial. (b) I / i  u is 

a microbundle and / is a map to the base o//~, then/~ can be extended to a microbundle over 

the mapping cone C I i[ and only i/]*# is trivial. 

We give a final application of the techniques used to prove 3.1 and 3.2. As above the 

proof and the theorem actually hold for (R q, R=)-bundles, 0 ~<n ~<q. 

3.6. T ~ E O R ~ .  Let ~ : X ~ E L X  be an Rq-bundle. Let V be a halo o / a  set A in X,  

and let H : E  [ V •  V be a [ibre homotopy relative to sV [rom s[ V p [ V to id~[ V such 

that Ht is an embedding o/~[ V into itsel/ /or t >0. There is a/ibre homotopy H': E • I-+E 

relative to sX  /rom sp to id E such that H~ is an embedding el ~ into itsel/ /or t > O, and such 

that H' coincides with H on E [ V' • I / o r  some halo V' ~ V o /A .  

Proo/. Let (rej, Wj)j~I be a trivializing partition of unity for ~ with associated loeM triv- 

ializations (I)j: ~ [ Wj ~ e(Wj). For each j C J there is a fibre homotopy Ha: E [ Wj • I -~E[ Wj 

corresponding under (I)j to the homotopy (W~ • R q) • I -~Wj • R q that  maps (x, v; t) to 

(x, tv). Clearly H~:s [ Wj p [ Wj ~ id E ] W~ tel s Wj, and (Hi) t is a bundle embedding of ~ I Wj 

into itself for t > 0. More generally, consider the collection of pairs (K, H) where K is a 

non-empty subset of J and H:E] Wk• Wk is a fibre homotopy relative to sWK 

from s I W~: p I WK to idEI WK with H, an embedding for t > 0. Then this collection is non- 

empty. Order it by defining (K, H ) <  (K', H') if the following conditions are satisfied 

(a) K ~  K' 

(b) If eEEIW~: and ~(p(e))=zcK.(p(e)) then H(c, t)=H'(e, t )  fo ra l l  t e I .  

This gives an inductive ordering and so each pair is majorized by  a maximal pair. Let  

(K, H) be a maximal pair. We show that  K = J .  If K@J,  let K'  = K  U {j} where j E J - K .  

From H and H~ construct a homotopy H '  : E I W~. • I -~E I W~. as follows. From the parti- 

tion of unity { (~ ,  WK), (rej, Wj)} on WK (normalized if necessary) form the derived parti- 

tion of unity {(re~, W'~), (re;, W;)}. Define H '  on E[ W~: ~ W; by 



T H E  M I C R O B U N D L E  R E P R E S E N T A T I O N  T H E O R E M  209 

f t t H'(e, t) = Hj(H(e, t/z~K(p(e))), ~ ( p ( e ) ) )  for ~K(p(e)) ~ t 

Hi(e, t) for ~ (p(e)) <~ f 

Then extend H '  so that  it coincides with H on W~ - W / a n d  with Hj  on W / -  W~, Clearly 

H '  is well-defined on E I WK, • I and everywhere continuous except possibly at  the points 

(e, 0) with p(e) in the boundary of W~ in WK.. However, H and Hj  are both defined and 

continuous in a neighbourhood of e • I for such a point e. Since Hj(H(e • I), O) = Hi(e, O) = 

H(e, O)=s(p(e)), for any  neighbourhood U' of s(p(e)) there is a neighbourhood U of e in 

WE N Wj and an e > 0  such tha t  H(U • [0, e])~ U', Hj(U • [0, e ] )c  U' and Hj(H(U • 1) • 

[0, e ] )c  U' (using the compactness of I) .  I t  follows that  H'(U • e])~ U' which shows 

that  H '  is in fact continuous also at  (e, 0), Obviously H' is a fibre homotopy relative to 

sWK, from s ]WK, p lWK, to idx[WK,. I t  is easy to see tha t  H;  is open, hence a bundle 

embedding, for t>0 .  Therefore (K', H ' )  is a pair in our ordered set strictly majorizing 

(K, H). The contradiction shows tha t  we must  have K = J .  This proves the theorem for 

A = O. The case where A is non-empty now follows by  a trick similar to tha t  in the proof 

of the representation theorem. 

By the Theorems 3.3 and 3.6 every microbundle contains a neighbourhood contract- 

ible along t h e  fibres to the zero section. By an argument  of Milnor this implies that  

composite mierobundles are isomorphic to Whitney sums and vice versa ([8], p. 12): 

X L  3.7. COROLLARY. Let i~: E L X ,  v : E ~ E ' ~ E  be microbundles whose composite 

#o~ is defined. Then i~or~/u| Similarly, if/~,/~' are microbundles over X,  then 

/~ |  

Proof. From their definitions the microbundles/~ |  and ~uop*/~' are in fact  identic. 

To show the first par t  of the corollary we may  assume that /~  (and v) is a bundle. Then, 

by  3.6 sp ~_ idE and so p*s*~v.  Thus #ov~/~op*s*v =#| 

Notice tha t  if # and v are actually bundles, their composite, although a microbundle, 

need not be a bundle. By  the representation theorem, however, it does contain an essen. 

tially unique bundle which could be called the composite bundle and which is bundle iso- 

morphic to the Whitney sum of bundles # | s*#. 

4. Sphere bundles and Thom spaces. The Hirsch-Mazur theorem 

For any integer q>~0 let R e c S  ~ be a fixed embedding of R e into its one-point com- 

pactification S ~, the q-sphere, and le t  co denote the complementary point of R e i n  S q. 

Any homeomorphism of (R e, 0) extends uniquely to a homeomorphism of (S e, 0, oo). By  

14- 662903. Acta mathematica. 117. Imprim~ le 15 f6vrier 1967. 
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Lemma 1.3 this correspondence is an isomorphism G(R q, O)~G(S q, O, c~)of topological 

groups. I t  follows tha t  to any Rq-bundle ~ :X ~ E ~ X  there is a functorially associated 

Sq-bundle ~r over the same base with two sections so, so0, and tha t  ~ is naturally 

imbedded in ~oo with zero section s corresponding to s o and total  space E corresponding 

to E ~ - i m  soo. The bundle ~oo is constructed as follows. Let  (/vw) be the family of transi- 

tion maps of ~ arising from the collection of all local trivializations qbv:~I V ~ q  (V). Thus 

]vw: V fl W-+G(R q, 0) are continuous maps defined on non-empty VN W by/vw(X)V=V' 

if and only if (~Pvr v)=(x,  v'). Then the relations /uv'/vw=/vw hold on U fl V fl W 

for any  trivializing sets U, V, W with non-empty intersection. Composing with the isomor- 

phism G(R q, O) ~ G(S q, O, cx~) give continuous maps/vw~:  V N W ->G(S q, O, ~ )  such that  the 

corresponding relations ]yv~']vw~=/uw~ hold. Then the usual gluing process applies to 

give a space E~o and a continuous map p~  :E~-+X with fibres homeomorphie to S q and 

with two sections so, s~. Clearly there is a natural  fibre preserving embedding E-+E~ 

E~o~ X an Sq-bundle. under which the sections correspond as described. This defines $o~: P~ as 

(Obviously a parti t ion of unity trivializing for ~ is trivializing for ~oo and conversely.) 

Therefore ~oo is a bundle related to ~ as claimed. By the natural  embedding we may  and 

will consider $ as contained in $~. 

Next  consider the standard embedding Y ~  C Y  of a compact space Y into its (un- 

reduced) cone C/Z. A homeomorphism ~ E G(Y) extends to a homeomorphism C~ E G(C Y), 

and the correspondence C: G(Y)-~ G(CY) is a continuous representation. I t  follows tha t  
pr 

to any  bundle ~ : E ~  X with fibre Y there is a functorially associated bundle ~c:Ec ~ X  

with fibre C Y, and since any  homeomorphism C~ keeps the cone top point fixed, ~c has 

a canonical section 8c :X-+E c. Observe tha t  E c can be naturally identified with Zp, the 

mapping cylinder of p. Under this identification Pc corresponds to the canonical retraction 

Z~-+X. I n  the case where Y = S  q-l, q>~l, identify CS q-1 with D q by  the standard homeo- 

morphism. Then ~c (with its zero-section) is a disk bundle. Note tha t  the embedding 

S q-1 ~ D q induces an embedding ~ ~ So- 

Let  l~ q~ D q be a fixed embedding of R q onto the interior of the q-dimensional unit 

disk such tha t  origin corresponds to origin. Then R q sits in both D q and S q, and the identi ty 

map  on R q extends to a homeomorphism D q / S q - l ~  q by  which the two spaces will be 

identified. Any homeomorphism on D q maps boundary to boundary and interior to interior 

according to the theorem of invariance of domains. By  1.2 the restriction homeomorphisms 

G(D q, O) -+ G(S q-l) and G(D q, O) -+ G(R q, 0) are continuous. 

Consider a q-dimensional disk bundle ~] :XL_FV-LX. The structure group is G(D q, 0), 
�9 o o 

and the restriction homeomorphisms define associated bundles/]  :/v ~ X  and ~ : X s ~ v  X 

with fibres S q-~ and R a respectively, called the boundary bundle and the interior bundle 
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of ~. There are natural  embeddings of / ]  and ~ in ~ induced from the inclusions S q-1 c D q 

and (R q, 0) C ( n  q, 0) by  which /] a n d / ]  are identified with subbundles of ~. Finally the 

canonical homeomorphism G( D q, O) ~ G( S q, O, ~ ) which maps ~: D q -->.n q tO a/ Sq-l : Dq / s q-1 --~ 

Dq/S q-1 is continuous and so defines an associated Sq-bundle ~]/15 with two sections s o 

and Soo. This bundle may  be considered obtained from ~ by  collapsing the boundary  in 

each fibre. Since this collapsing does not affect ~, ~ sits in ~/26. 

4.1. LEMMA. There is a natural bundle isomorphism ~ / ~ i ? m  which is the identity on ~. 

Let ~ : X ~ E ~ X  be an Rq-bundle. For any  pair of subsets (A, B) in the base X define 

the Thorn space T~(A, B) to be the pointed space 

T~(A, B) = phlA/(sooA U p2~IB), 

the collapsed subset s~oA U p2~lB serving as base point ~-. In  the classical case where 

is an orthogonal bundle the Thorn space T~ of ~ is usually defined as follows: Pick out a 

disk bundle ~ : X ~ F L X  contained in ~ (by means of some riemannien metric on ~, say). 

Then T~ is defined to be the pointed space F / F .  This determines T~ up to a base poin~ 

preserving homeomorphism. In  fact we may  form F / F  by  first collapsing the boundary 

of each fibre in F,  which gives the total space F/I~' of ~]/~9', and then collapsing im ~ 

in F/~'. By Lemma 4.1 the result is base point preserving homeomorphic to /~oo/im soo = 

T~(X, I~). But  ~ is G(R q, 0)-isomorphic to $ by  the microbundle representation theorem 

(in fact ~ and ~ are Oq-isomorphic), and so T~ (X, 12t) is base point preserving homeo- 

morphic to T~(X, 0). Altogether T ~  T~(X, 0). I t  follows tha t  our definition is an exten- 

sion (and relativization) of the classical one. Notice tha t  the classical definition breaks 

down because there is no way of constructing disk bundles in a general Rq-bundle. I n  

fact W. Browder has recently shown tha t  there exist Rq-bundles even over finite poly- 

hedrons tha t  do not contain (or are contained in) disk bundles. On the other hand, M. 

tt irsch and B. Mazur have shown tha t  (piecewise linear) It<bundles over polyhedra which 

split off a (piecewise linear) Rl-bundle do in fact imbed as interiors of (piecewise linear) 

Dq-bundles, el. [4]. Moreover, Hirsch shows tha t  two Dq-bundles over a polyhedron having 

isomorphic interior bundles get isomorphic after having a trivial Dl-bundle added. Dis- 

regarding the piecewise linear aspect it is easy to extend the proof to cover the case of 

general R q- and Dq-bundles. In  fact the woof  is much shorter because one need not  bother 

with piecewise linear structures. Since this result will be applied in [7] we will sketch a 

proof. (Contrary to the proof in [4] this does not make use of any  representation theorem 

for microbundles.) First some preliminary information. Every  homeomorphism on D e 

restricts to a homeomorphism on the boundary Sq-L Conversely, every homeomorphism 
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on S q-1 extends radially to a homeomorphism on D q keeping the origin fixed. Let  

r: G(D q, O) --> G(Sq-1), i : G(S q-l) --> G(D q, 0) be the corresponding continuous representations. 

Then ri=idsq-t and so i imbeds G(S q-l) as a subgroup of G(D q, 0) onto which G(D r O) 
retracts by  r. In  fact the Alexander radialization process (cf. [1] and [4]) shows tha t  

G(S q-l) is a strong deformation retract  of G(D q, 0). 

4.2. LEMMA. There is a strong deformation retraction. 

H: (G(D% o ( n  ~, 0)) X I - ,  (G(nq), G(D q, 0)) rel iG(S q-~) 

from idDq to ir such that Ht is a continuous endomorphism on (G(Dq), G(D q, 0)), tEI .  

Proof. Define H:  (G(D q) G(D q, 0)) • I--,(G(Dq), G(D q, 0)) by  

o t = o ,  I Ix l l=o  

H(~,  1 - t) (x) = t.  ~ (x / t )  t > 0, II xll < t 

[ I lx l l  ~(x/llxll)  t~>0, I1~11 > t .  

This map is easily seen to be continuous. Also it is easy to check tha t  H t is a n  endomor- 

phism for arbi trary t in 1. 

I t  follows that  the structure group of a bundle with fibre D q reduces to (a sub- 

group of) G(Sq-1). More precisely 

4.3. THEOREM. Let ~1 be a bundle with fibre D q. There is an isomorphism ~1~i7c which 

is the identity on i i. 1/~7 is a Dq-bundle (i.e. has a prescribed zero section) over a halo V' o / a  

set A in the base, the isomorphism ~-,i lc can be chosen so as to give an isomorphism o / D  q- 

bundles over a halo V" c V' of A.  

4.4. COROLLARY. Let ~o, ~1 be Dq-bundIes or just bundles with fibre D q. Any  isomor- 

phism ~ o ~ 1  extends to an isomorphism ~ o ~ o  . 

Proof o/4.3. Let (gvw) be the family of transition maps of ~ arising from the collection 

of all local trivializations ~Fv:~IV~dq(V ). For each gvw: V N W->G(D q, 0) define Gvw: 

(VN W)• O) to be the composite Ho(gvw• where H is the homotopy in 

Lemma 4.2. Then (Gvw) is a defining family of transition maps for a Dq-bundle ~ over 

X • I ,  X being the 'base of ~. In  fact 

G~v(x, t).  Gvw(X, t) = Ht  (g~v(x)" H~(g~w(X)) = Ht  (g~dx) "g~w(X)) = Ht  (g~w(x)) = G~,w(X, t) 

for any (x, t)E (U f /V fl W) • I ,  according to Lemma 4.2. Also if (zj, Wj)j~ is a trivializing 

parti t ion of unity for ~, then (zj • idl, Wj • I ) j~ j i s  a trivializing partition of unity for ~/. 
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Clearly @10 and @] 1 are naturally isomorphic to ~ and / I t  respectively. But then ~ / ] c  

by Lemma 1.5. The refinements of the relative case are easily taken care of. We omit 

the details. 

Notice that 4.3 implies that an Rq-bundle which is the interior of a Dq-btmdle con- 

tains Dq-bundles. The converse, of course, follows from the representation theorem. We can 

now formulate and prove the Hirseh-Mazur theorem in the general topological context. 

4.5. THEOREM (Hirsch-Mazur). Let ~ be an Rq-bundle over some space X .  Then ~| 

is isomorphic to the interior o] the Dq+ l-bundle ~ooc. 

Let 90, ~1 be Dq-bundles over X with isomorphic interiors. Then ~o| is isomorphic 

to ~1| 

We only indicate the proof and leave the details to the reader. Notice first that  ~ooc 

is isomorphic to ~o~c', the "dented" mapping cylinder of ~ obtained from ~ c  by collapsing 

the radius to the M-point in each fibre. In  fact ~ and ~oc' have isomorphic boundary 

bundles and so by 4.4 are isomorphic (as bundles with fibre Dq+I). Therefore ~ c  and ~ooc' 

have isomorphic interiors. On the other hand, the interior of ~ooc' is isomorphic to ~ooc 

with its boundary and its "sheet" of ~-radii  removed. This bundle, however, is easily 

seen to be isomorphic to ~| Moreover, it is easy to pick the different isomorphisms in 

such a way that  the composite int ~ c ~ |  maps zero section to zero section. The second 

part of the theorem follows from the fact that  for disk bundles ~ there is an isomorphism 

|  I t  is in fact trivial to construct such an isomorphism on the boundary bundles 

and then again one uses 4.4. 
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