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The present paper is a study of the Dirichlet problem of the Choquet boundary
08X of a real or complex sup-norm space L over a compact Hausdorff space X. It
is proved that a continuous and bounded function f on 28X can be extended to a
function of the class L on X iff f is annihilated by every L-orthogonal boundary
measure and every limit point of 80X is a non-singular Shilov point for f. (Precise
definitions follow). The case of a metrizable compact space X was treated in [2], and
it was observed independently by A. Lazar [8] and E. Effros [7] that the metriza-
bility could be avoided in the case where representing boundary measures are unique
(“simplicial case”). We have found it convenient to state and prove the general theo-
rem in the “analytic” setting. A ‘“‘geometric” version of the theorem is presented as

a corollary.

We shall assume that X is an arbitrary, but fixed compact Hausdorff space. A
subset L of Cx(X), or Ox(X), in said to be a real, or complex, sup-norm space if:

(1) L is a linear subspace,
(if) L contains the constant functions,
(iii) L separates points,

(iv) L is closed in uniform norm.

The o-field B, of Baire subsets of X is generated by the sets f (0), f€Cx(X), 0
open in X, It is the smallest o-field rendering measurable every f€Cg(X). A measure
m on a o-field F> B, is said to represent a point x€X (relatively to L) if

a(x)=fadm, all a€L. . (1)
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More generally, m is said to represent a linear function ¢ on L if
q(a)=fadm, all a€L. (2)

A subset ¥ of X is said to be a representing boundary for L if there exists a o-
field Fo B, such that Y €F, and such that every point x€X admits a representing
probability measure m on F with m(Y)=1.

The Chogquet boundary 86X of L consists of all points # € X such that the one-point
measure g, is the only probability measure on B, which represents z. Clearly 06X is
contained in any representing boundary. On the other hand, 6X is itself a represent-
ing boundary since every point x€ X admits a probability measure m on the o-field
F, generated by B, U {0X}, such that m represents x and m(@X)=1. (Choquet-Bishop-
de Leeuw Theorem [4], [5], cf. also [9]). Thus the Choquet boundary is the smallest
representing boundary, and it appears that it is an appropriate set for prescription of

boundary values.

The closure of the Choquet boundary of a sup-norm space L is the Shilov-boundary
of L, i.e. it is the smallest closed subset of X on which every function of class L
agsumes its maximum modulus (cf. e.g. [3]). The Dirichiet problem of the Shilow

boundary is quite well understood (cf. e.g. [2), [3]). If we denote by LJ—(BHX) the set
of all L-orthogonal Buaire measures supported by 2X, i.e. the set of all real (complex)

measures u on By such that

| ] (X\ 2X)=0, fady=0 all a€L, 3)

then we can state a necessary and sufficient condition that a continuous function f

on 2X be extendable to a function of class L, as follows:
fﬁ fdu=0, all yeL*@X). )
80X

Similarly we denote by L‘(0X) the set of all L-orthogonal boundary measures, i.e.

the set of all real (complex) measures m on F, such that
[m|(X\é6X)=0, fadm=0 all g€ L. (5)

(Note that this concept of “boundary measure” is formally distinct from that of [1],
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since the domains of definition are different. However, there is a canonical isomor-
phism between the two spaces of “boundary measures”’, cf. e.g. [9].)
Clearly a necessary condition that a function f on 60X be extendable to a function

of class L, is uniform continuity of f and

fdm=0, all meL'(2X). (8)
8x
(Note that a uniformly continuous function f on ¢X is extendable to a continuous
function on X. Hence f is the restriction of a Baire measurable function on X to
the set 9X€JF,, and so the integral (6) is well defined.)
The above condition is not sufficient for extendability. There are simple examples

of uniformly continuous functions on 98X which satisfy (6), and for which {fdu=0

for some p€L'(6X). In fact, set X =[0,1]U {i} U {—14}< ¢, and consider the space
LcCy(X) of all functions f such that 2f(0)=f(s) +f(—1). Here 8X = X\ {0}, L*(0X) =
(0), and LL(5X)=(280—81-—84). Now an example of the desired type is furnished by
fléX for any f€C(X)\ L.

The L-envelopes of a continuous and bounded real valued function f defined on

a subset Y of X containing ¢X, are the functions
f)=inf {a(x)| f<a|Y,a€L,, 0
and f@)=sup{a@)| f>a|¥,acL,}, @)

where L, is the linear space of real parts of functions in L.

Clearly f is upper semi-continuous, f is lower semi-continuous, and f<f Also
f(@) =f@&)=f(zx) for every x€oX. (This is standard for X =¥, i.e. for f€Cxr(X). The
two equalities prevail for ls.c. and u.s.c. functions on X, respectively. Hence both
equalities are valid for continuous functions on a general ¥ >3X. For details cf
e.g. [2]).

We shall say that a point x€0X is a singular Shilov point for a continuous and
bounded real valued function f on oX, if

fl@)=Ff(=). 9)

Similarly we shall say that a point z€0X is a singular Shilov point for a cont-
inuous and bounded complex valued function f on 28X if the inequality (9) is valid

for either the real or the imaginary part of f (or both).
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Points of 8X are always non-singular Shilov points, by virtue of the above remarks.
However, for every xEéX\X there exists a continuous and bounded real valued func-
tion f on X (one may choose f€Cx(X)|0X) such that x is a singular Shilov point
for f. (Cf. e.g. [5], [9)).

Note that if f is a continuous and bounded function on 0X for which all Shilov
points are non-singular, then f is wniformly continuous. A forteriori f is F,-measur-
able, and so the integral |fdm is well defined for any m€ L*(0X).

TarEoREM. A continuous and bounded real (complex) valued function f on the Cho-
quet boundary 86X of a real (complex) sup-norm space L over a compact Hausdorff space
X can be extended to a function of the class L on X iff:

(i) There are no singular Shilov points for f

(ii) f fdm=0 for all real (complex) measures m€ L+ (6X).
X

Proof. Necessity is obvious, and we shall prove the sufficiency in the case of a
complex sup-norm space L.

Note first that the definition and basic properties of the Choquet boundary are
independent of the requirement that L be uniformly closed, and that the Choquet
boundaries of L and L, coincide (cf. e.g. [9]).

Assume that f is a continuous and bounded complex valued function on 90X sa-
tisfying (i), (ii). Let f=f, +if, where f,, f, are real valued, and observe that f, and f,
have common, continuous restrictions f, to 2X for i=1, 2, by virtue of the hypo-
thesis (i). In the sequel we shall write f={, +1f,.

Let M(8X) be the Banach space of complex Baire measures on 6X, and define

maps
M@X)
0 J e
X Y L* v ¢
as follows:
yp(x) (@) =a(x), all a€Ll,z€X, (10)

olu) (a)=fady, all a€L, u€ M(@X), (11)



ON THE DIRICHLET PROBLEM OF THE CHOQUET BOUNDARY 153

plu) = L_deﬂ, all p€M@X), (12)

and finally @' (q)= J‘ax fdm, (13)

where g€ L*, and m is any complex measure on F, which represents q (in the sense
of (2)), and for which |m|(X\8X)=0. Such measures exist by the Choquet-Bishop-de
Leeuw theorem, and the function ¢’ is well defined by virtue of the hypothesis (ii).

Clearly y,p,¢ are continuous with respect to the given topology of X, the w*-
topology of L* the vague topology of M @X) (ie. the w*-topology of M (6—X) consid-
ered as the Banach dual space of Cy(X)) and the customary topology of C. The w*-
continuity of ¢' is the crucial point. We shall derive it from the continuity of ¢ and
@ after proving that the above diagram is commutative.

The proof that follows, is based on certain norm- and order- preserving properties

of the linear functional ¢’ on L*. Let u€ M(2X), and consider the standard decom-
position g = (uf —p1)+#(us —uz) into positive components. For j=1,2 the positive
linear functionals a~ fadu;, a~ fadu; on L, can be represented by positive measures
mj, m;" on Fy, all vanishing off 8X, (Choquet—Bishop -de Leeuw Theorem). Clearly the
measure m = (m; —m;’) +i(mg —mg’) represents g(u). Since 1€ L,, we shall have ||m]| =

Wi |, Nl 1=l 5 || for §=1,2. Tt follows that ||m||<2V2||u]|, and so we obtain our

first estimate:

#enl-| [ ram|<slall- N1l 04

Writing m;=m; ~m;’ for j=1,2, and separating into real and imaginary parts,

we obtain the inequality

2
|9 (ew) ~ o< 2 f fjdmk_f_.fid,uk - (15)
i, k=11J 09X X
Assume for a moment that a;, b, are such elements of L, that
a,|0X <f;<b,|0X, j=1,2. (16)

For each of the four choices of j, k=1,2, we shall have

9xX 0.4 ax ax 00X
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and f_a,d‘ufg<f_ﬂd,u,f<f_bjdpz.
3% 3% ox

Hence lf fydmy— f_fjd‘u,‘cL <f_(b,~a,-)d,u7{.
[:2:9 X X

Similarly ‘ faxij dm; — fbﬁfidﬂ; < J:?i (b;,—a)) duy .

Combination of these inequalities gives

U fidmk—f_f,-dm <f_(b,~—a,-)d|ukl. )
pX ax [i2:¢
By (15) and (17) we shall have

9ot ~ o) | < 3 f -l as)

Now we shall apply the general estimate (14) and the estimate (18) valid under

the condition (16), to prove that the diagram is commutative.

Let yGM(a—_ ), and let ¢>0 be arbitrary. For every Baire subset B of 80X we
define ®(B) to be the (possibly empty) subset of L} consisting of all (a,. by, @y, by)
such that:

a;|0X <f;<b;]0X, (19)
and b, B—a;| B<e, (20)

for =1, 2.
We claim that if O is a Baire subset of 89X such that

|1 @X \.C) >0, @1)
then there exists another Baire subset B of 9X such that
OBY+2, |ul(B)>0, BnO=0 (22)

By regularity there is a compact subset B’ of 8X \ € such that |u|(B’) >0. Let p’
be the restriction of u to B’, ie. u'(4)=u(4 n B') for every A€ B,. Let z€Supp (u'),
and apply the definition (7), (8) of envelopes to construct elements a;, b; € L, satisfy-
ing (19) together with the additional requirement:
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fiz)— 5 <), bilz)< fiz) + g fori=1,2. (23)

The set
T={xeXl fe) =5 <afa), b@) <h@)+; i=1,2}
is a closed neighbourhood of z. Hence |u'|(B)>0. with B=B'nT. By the hypothesis
(i), jv}(z)=f1(z) for 1=1,2, and so
bi(x) —ax)<e, all z€T; 1=1, 2.

Hence the quadruple (a,, b,, @,, b,) satisfies the requirement (20), and so ®(B)+ @
This gives (22), and the claim is proved.

Now we can apply an inductive argument to construct a finite or infinite se-

quence {B"} of pairwise disjoint Baire subsets of X together with four sequences
{a?}, {87}, {03}, {63} from L, such that for n=1,2,...:

a} | B"<f,<®}|B", j=1,2, (24)

b} |B*—a}|B"<e, j=1,2. (25)
and C|ul(BY>A—-27MA,, (26)
where A,=sup{|u|(B)|B€B,, BcoX\(B'U...UB"Y), ®(B)+D};

and such that the sequences break off after term number k iff

| ] @X\(BU ... U B™))=0. @n
We claim that

|l @X\UB") =0. (28)

If the sequences break off, then (28) follows from (27). Otherwise lim, A, =0,
since the relation (26) implies A,<2|u|(B") for n=1,2.... Now assume (28) inexact,
and consider a Baire subset B of X which satisfies (22) with U, B" in the place of
C. By the definition of A,, we shall have |u|(B)<A, for n=1,2,..., which is a
contradiction since |u|(B)>0.
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By (28) we can choose a natural number N such that
2 lul(BM<e (29)
n>N
Consider the restricted measures uy, y,, ..., uy defined by
pold) = u(AN(B* U ... U BY)) (30)
and w(A)=pudnB"), n=1,..., N, (31)
for all Baire subsets 4 of 2X.

Decomposing u" =uf +us, and making use of (25), we obtain for each of the
four choices of 7, k=1, 2:

fﬁ(b}’-—a}')dly,’c‘Kelﬂl(B"), n=1,..., N. (32)

Now we may apply the estimate (14) for u, and by virtue of (24) we may
apply the estimate (18) for u,, n=1,...,N. By (29) and (32) this gives:

l#'etw) ~ el < Z 19/ e(pa)) =~ 9lun) |

<4lluoll- 1711 +4¢ 3 118"

<4+ 1l lDe-
Since ¢>( is arbitrary, this gives the equality

@' (o)) = p(p), (33)

completing the proof that the diagram is commutative.

Let M 1(5)?) and LT be the closed unit balls of M (6?) and L* respectively, and

observe that ¢ maps M,(6X) onto Li* (This does not require the full strength of the
Choquet Theorem. It is merely an integral form of the Krein-Milman Theorem, cf.
e.g. [9]).

Consider an arbitrary closed subset ¥ of C. By the commutativity of the diagram
we shall have:

Li 0 (") H(F) = oM, (2X) 0 @ (F)). (34)
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By the vague continuity of ¢, ¢ '(F) is vaguely closed, and so M,(@X)n ¢ }(F)
is vaguely compact. By the continuity of g, the set LI N (¢') '(F) is w*-compact and
hence also w*-closed It follows that the restriction of ¢’ to the closed unit ball is
w*-continuous.

By the theorem of Banach-Dieudonné (or Krein—-Smuljan, cf. e.g. [6, p. 429]), ¢’

is itself w*-continuous, and so there is an element f € L such that

¢ (@) =g, all geL*. (35)

If x€ X is arbitrary, then by (35) and by the definitions (10) and (13)
f@)=p@) ()= (p) = faxfdm, (36)

where m is any measure on F, such that |m|(X\9X)=0 and such that m represents
p(x) in the sense of (2); or what is equivalent, if m represents x in the sense of (1).
If x€0X, then we may choose the measure m of (36) to be the positive unit

mass concentrated at x. Hence

(@)=f(z), all z€2X. (37)

s 1]

Thus f is a function which belongs to the class L and extends f. The proof is

complete.

We shall apply the theorem to the case where L is the real sup-norm space of
continuous affine functions on a compact convex subset X of a locally convex Haus-
dorff space E. Here X is the same as the extreme boundary 9,X, and for a contin-
uous and bounded real valued function f on X, f is the w.s.c. concave upper envelope
of f and f is the ls.c. convex lower envelope of f. Also we note that L1(0X) is (can-
onically isomorphic to) the space (0, X) of generalized affine dependences on the ex-
treme boundary of X, whereas L*(X) is the space M(X) of generalized affine depend-
ences on X. (cf. [1]).

We are now able to establish the theorem of [2] without any metrizability condition.

CoroLLARY 1. Let X, be a compact convex set in a locally convex Hausdorff space
E; for i=1,2. A continuous map ¢ of the extreme boundary 0,X, into X, can be ex-
tended to a homomorphism (continuous affine map) of X, into X, if and only if the

following two requirements are satisfied:
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()" If veN(©,X,), then the transformed measure v belongs to M(X,).

" o P ~ . .
(i)’ The restrictions of fop and fop fo 8,X; are continuous for every fE€E;.

Proof. Again the necessity is obvious. To prove sufficiency we assume (i), (ii)’
and choose an arbitrary f€ E5. The conditions (i), (ii) of the theorem are valid with

fop in the place of f by virtue of the conditions (i)', (ii)” above. Hence there exists

—~

a continuous affine function fop on X; which extends fog.

Let xz€X be arbitrary, and let m be any probability measure on F, such that
m(@X)=1 and such that m represents z. (Geometrically, = is the barycenter of m).
The continuous mapping ¢: ¢, X, —~X, has a weak m-integral z in the compact convex

set K, (Geometrically, z is the barycenter of the transformed measure @m.) By the

fact that fog is continuous and affine, and by the definition of weak integrals:

foplz) = Lx(f°tp)dm=f(z)~

It follows that z is independent of the choice of m. Hence we may write z = ¢(x),

obtaining:

fop(z) = H(@(a))- (38)

Clearly ¢ is affine, and for every x€9,X;:

Hp(@)) = fop(w) = Hi())

Since f was arbitrary in B3, this implies g(z)=@(z) for €8, X,. Hence ¢ is an
affine extension of ¢ to the whole set X,.

Finally we observe that (38) gives continuity of ¢ in the given topology of X,
and in the weak topology of E,. By the compactness of X,, the latter topology
coincides with the given topology of X,, and the proof is complete.
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