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1. Introduction
The analytic capacity of a compact set ECC is defined as

Y(E) =sup f'(c0)],
where the supremum is taken over all analytic functions f: C\ £ —C with |f|<1 on C\ F,
and f'(oco)=lim,_,o 2(f(2)— f(c0)). For a general set FCC, we set y(F)=sup{y(E):
ECF, E compact}.

The notion of analytic capacity was first introduced by Ahlfors [Ah] in the 1940’s in
order to study the removability of singularities of bounded analytic functions. A compact
set ECC is said to be removable (for bounded analytic functions) if for any open set €2
containing F, every bounded function analytic on Q\ F has an analytic extension to .
In [Ah] Ahlfors showed that E is removable if and only if v(E)=0. However, this result
doesn’t characterize removable singularities for bounded analytic functions in a geometric
way, since the definition of « is purely analytic.

Analytic capacity was rediscovered by Vitushkin in the 1950’s in connection with
problems of uniform approximation of analytic functions by rational functions (see [Vi],
for example). He showed that analytic capacity plays a central role in this type of prob-
lems. This fact motivated a renewed interest in analytic capacity. The main drawback
of Vitushkin’s techniques arises from the fact that there is not a complete description of
analytic capacity in metric or geometric terms.

On the other hand, the analytic capacity v, (or capacity v,) of a compact set E is

7+(E)=Sﬁpu(E),
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where the supremum is taken over all positive Radon measures p supported on E such
that the Cauchy transform f=(1/2)*p is an L°°(C)-function with ||f|l.c<1. Since
((1/2) 1) (00) =p(B), we have

7.(B) <+(E). (L.1)

To the best of our knowledge, the capacity v, was introduced by Murai [Mu, pp. 71-72].
He showed that some estimates on v, are related to the L2-boundedness of the Cauchy
transform.

In this paper we prove the converse of inequality (1.1} (modulo a multiplicative
constant):

TUEOREM 1.1. There exists an absolute constant A such that
Y(E)< Ay, (E)

for any compact set E.

Therefore, we deduce y(E)=~v,(F) (where axb means that there exists an absolute
positive constant C such that C~1b<a<Cb), which was a quite old question concerning
analytic capacity (see for example [De@] or [Vel, p. 435]).

To describe the consequences of Theorem 1.1 for Painlevé’s problem (that is, the
problem of characterizing removable singularities for bounded analytic functions in a
geometric way) and for the semiadditivity of analytic capacity, we need to introduce
some additional notation and terminology.

Given a complex Radon measure v on C, the Cauchy transform of v is

—Z

Cv(z)= % dv(§).

This definition does not make sense, in general, for z€supp(v), although one can easily see
that the integral above is convergent at a.e. 2€C (with respect to Lebesgue measure).
This is the reason why one considers the truncated Cauchy transform of v, which is
defined as

Covlz) = /|5 L ane),

—z|>e §—z
for any €>0 and 2€C. Given a u-measurable function f on C (where p is some fixed
positive Radon measure on C), we write Cf=C(f du) and C. f=C.(f du) for any £>0.
It is said that the Cauchy transform is bounded on L?(u) if the operators C. are bounded
on L?(y) uniformly on >0.
A positive Radon measure p is said to have linear growth if there exists some constant
C such that u(B(z,r))<Cr for all zeC, r>0.
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Given three pairwise different points x,y, z€ C, their Menger curvature is

1

c(z,y,2)= W’

where R(zx,y,z) is the radius of the circumference passing through «,y,z (with
R(z,y,z)=00, c(z,y,2)=0 if z,y, z lie on a same line). If two among these points coin-
cide, we let ¢(z,y,2)=0. For a positive Radon measure p, we set

@)= [ [ clo,v. 2 dut) duce),

and we define the curvature of y as

)= [ @ duta) = [[[ ety 2 duta) dutw) du). (12)

The notion of curvature of measures was introduced by Melnikov [Me2] when he was
studying a discrete version of analytic capacity, and it is one of the ideas which is re-
sponsible for the big recent advances in connection with analytic capacity. On the one
hand, the notion of curvature is connected to the Cauchy transform. This relationship
comes from the following identity found by Melnikov and Verdera [MeV] (assuming that
1 has linear growth):

Cell3 2,y = (1) +O(u(C)), (1.3)

2(u) is an e-truncated version of ¢2(u) (defined as on the right-hand side of (1.2),

where ¢

but with the integrals over {z,y,2€C:|z—y|,|y—2|,|z—2]|>¢€}). On the other hand, the
curvature of a measure encodes metric and geometric information from the support of
the measure and is related to rectifiability (see [Lé]). In fact, there is a close relationship
between c?(u) and the coefficients 8 which appear in Jones’ traveling salesman result [Jo].

Using the identity (1.3), it has been shown in [T2] that the capacity v, has a
rather precise description in terms of curvature of measures (see (2.2) and (2.4)). As
a consequence, from Theorem 1.1 we get a characterization of analytic capacity with a
definite metric-geometric flavour. In particular, in connection with Painlevé’s problem
we obtain the following result, previously conjectured by Melnikov (see [Dd3] or [Ma3)).

THEOREM 1.2. A compact set ECC is non-removable for bounded analytic func-
tions if and only if it supports a positive Radon measure with linear growth and finite

curvature.

It is easy to check that this result follows from the comparability between v and +,.
In fact, it can be considered as a qualitative version of Theorem 1.1.

From Theorem 1.1 and [T4, Corollary 4] we also deduce the following result, which
in a sense can be considered as the dual of Theorem 1.2.
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THEOREM 1.3. A compact set ECC is removable for bounded analytic functions if

and only if there exists a finite positive Radon measure y on C such that for oll x€E

2

either ©}(x)=00 or c;,(z)=o0.

In this theorem, © () stands for the upper linear density of u at z, i.e. ©}(x)=
limsup,_,q u(B(z,7))r L

Theorem 1.1 has another important corollary. Up to now, it was not known if
analytic capacity is semiadditive, that is, if there exists an absolute constant C' such that

YEUF)<C(Y(E)+7(F)). (1.4)

This question was raised by Vitushkin in the early 1960’s (see [Vi] and [ViM]) and
was known to be true only in some particular cases (see [Mel] and [Su] for example,
and [De] and [De@] for some related results). On the other hand, a positive answer to
the semiadditivity problem would have interesting applications to rational approximation
(see [Vel] and [Vi]). Theorem 1.1 implies that, indeed, analytic capacity is semiadditive
because v, is semiadditive [T2]. In fact, the following stronger result holds.

THEOREM 1.4. Let ECC be compact. Let FE;, i21, be Borel sets such that E=
Uie, Ei. Then,

where C is an absolute constant.

Several results dealing with analytic capacity have been obtained recently. Cur-
vature of measures plays an essential role in most of them. G. David proved in [Dd2]
(using ([DAM] and [Lé]) that a compact set E with finite length, i.e. with #!(E)<oo
(where H* stands for the s-dimensional Hausdorff measure), has vanishing analytic ca-
pacity if and only if it is purely unrectifiable, that is, if H!(ENT)=0 for all rectifiable
curves I'. This result had been known as Vitushkin’s conjecture for a long time. Let
us also mention that in [MaMV] the same result had been proved previously under an
additional regularity assumption on the set E.

David’s theorem is a very remarkable result. However, it only applies to sets with
finite length. Indeed, Mattila [Mal] showed that the natural generalization of Vitushkin's
conjecture to sets with non-o-finite length does not hold (see also [JoM]).

After David’s solution of Vitushkin’s conjecture, Nazarov, Treil and Volberg [NTV1]
proved a T'(b)-theorem useful for dealing with analytic capacity. Their theorem also solves
(the last step of) Vitushkin’s conjecture. Moreover, they obtained some quantitative
results which imply the estimate

oo () ) e
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Notice that if H!(E)=o00, then the right-hand side equals 0, and so this inequality is not
useful in this case.

For a compact connected set E, P. Jones proved around 1999 that v(E)=~~,(E).
This proof can be found in [Pa]. The arguments used by P. Jones (of geometric type)
are very different from the ones in the present paper.

Other problems related to the capacity v, have been studied recently. Some density
estimates for v, (among other results) have been obtained in [MaP2], while in [T4] it has
been shown that -y, verifies some properties which usually hold for other capacities gen-
erated by positive potentials and energies, such as Riesz capacities. Now all these results
apply automatically to analytic capacity, by Theorem 1.1. See also [MaP1] and [VeMP]
for other questions related to ..

Let us mention some additional consequences of Theorem 1.1. Up to now it was not
even known if the class of sets with vanishing analytic capacity was invariant under affine
maps such as z+iy—x-+i2y, z,y€R (this question was raised by O’Farrell, as far as we
know). However, this is true for v, (and so for v), because its characterization in terms
of curvature of measures. Indeed, it is quite easy to check that the class of sets with
vanishing capacity 7, is invariant under C!'**-diffeomorphisms (see [T1], for example).
The analogous fact for C! or bi-Lipschitz diffeomorphisms is an open problem.

Also, our results imply that David’s theorem can be extended to sets with o-finite
length. That is, if E has o-finite length, then ¥(E)=0 if and only if E is purely unrecti-
fiable. This fact, which also remained unsolved, follows directly either from Theorem 1.1
or Theorem 1.4.

The proof of Theorem 1.1 in this paper is inspired by the recent arguments of [MTV],
where it is shown that « is comparable to v, for a big class of Cantor-type sets. One
essential new idea from [MTV] is the “induction on scales” technique, which can be also
adapted to general sets, as we shall see. Let us also remark that another important
ingredient of the proof of Theorem 1.1 is the T'(b)-theorem of [NTV1].

Theorems 1.2 and 1.3 follow easily from Theorem 1.1 and known results about +,.
Also, to prove Theorem 1.4, one only has to use Theorem 1.1 and the fact that v, is
countably semiadditive. This has been shown in [T2] under the additional assumption
that the sets E; in Theorem 1.4 are compact. With some minor modifications, the proof
in [T2] is also valid if the sets E; are Borel. For the sake of completeness, the detailed
arguments are shown in Remark 2.1.

The plan of the paper is the following. In §2 we introduce some notation and recall
some preliminary results. In §3, for the reader’s convenience, we sketch the ideas involved
in the proof of Theorem 1.1. In §4 we prove a preliminary lemma which will be necessary
for Theorem 1.1. The rest of the paper is devoted to the proof of this theorem, which we
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have split into three parts. The first one corresponds to First Main Lemma 5.1, which
is stated in §6 and proved in §§7-8. The second one is Second Main Lemma, 9.1, stated
in §9 and proved in §8§10-11. The last part of the proof of Theorem 1.1 is in §12 and

consists of the induction argument on scales.

2. Notation and background

We denote by X(E) the set of all positive Radon measures u supported on ECC such
that p(B(x,r))<r for all ze E, r>0.

As mentioned in the Introduction, curvature of measures was introduced by Melnikov
in [Me2]. In this paper he proved the inequality

ME)?
M2 € ) B+ @y

where C'>0 is some absolute constant. In [T2] it was shown that inequality (2.1) also
holds if one replaces v(E) by 7, (E) on the left-hand side, and then one obtains

N HE)?
B R WE) ) 22

Let M be the maximal radial Hardy-Littlewood operator,

B
MI.L(ZZ:) — Sup p’( (x7 r))
>0 r
(if u were a complex measure, we would replace u(B(z,7)) by |u|(B(z,r))), and let
cu(w)=(c%(x))'/2. The following potential was introduced by Verdera in [Ve2]:
Uu(z) := Mu(z)+c,(zx). (2.3)

It turns out that 7, can also be characterized in terms of this potential (see [T4], and
also [Ve2] for a related result):

Y+(E) ~sup{u(E):supp(p)C E,U,(z) <1 for all z€ E}. (2.4)
Let us also mention that the potential U, will be very important for the proof of Theo-

rem 1.1.

Remark 2.1. Let us see that Theorem 1.4 follows easily from Theorem 1.1 and the
characterization (2.4) of v,. Indeed, if ECC is compact and E=|J;2, E;, where E;, i>1,
are Borel sets, then we take a Radon measure p such that v, (E)=u(E) and U,(z)<1
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for all z€E. For each i21, let F;CE; be compact and such that ,u(Fi)Z%u(E,-). Since
U,ir, (z)<1 for all z€F;, we deduce v, (F;)>C ' u(F;). Then, from Theorem 1.1 we get

YE) =7 (E) ~ u(E) <CZM(E) < CZ%(E')%CZW(F@') < CZV(Ei)~

Let us recall the definition of the maximal Cauchy transform of a complex measure v:

C.v{z)=sup|C.v(z)|.
e>0

Let ¢ be a C* radial function supported on B(0,1), with 0<9¥<2, ||V¥|l. <100 and
[ dL?=1 (where £ stands for the Lebesgue measure). We denote . (z)=c"2¢(z/¢).
The regularized operators 55 are defined as

55V3=1/J€*CI/='(/}5*1*U.
z

Let r.=1.%(1/z). It is easily seen that 7.(2)=1/z if |z|>¢, ||re[leo<C/e and |Vr.(z)|<
C|z|~2. Further, since 7. is a uniformly continuous kernel, C.v is a continuous func-
tion on C. Notice also that if |[Cv|<B a.e. with respect to Lebesgue measure, then
|C.(v)(2)|<B for all zeC.

Moreover, we have

|Cev(z)—Cev(a) =

[--K Te(y—z) dv(y)| < CMv(z). (2.5)

By a square @ we mean a closed square with sides parallel to the axes.

The constant A in Theorem 1.1 will be fixed at the end of the proof. Throughout all
the paper, the letter C will stand for an absolute constant that may change at different
occurrences. Constants with subscripts, such as C;, will retain its value, in general. On
the other hand, the constants C, C}, ... do not depend on A.

3. Outline of the arguments for the proof of Theorem 1.1

In this section we will sketch the arguments involved in the proof of Theorem 1.1.

In the rest of the paper, unless stated otherwise, we will assume that E is a finite
union of compact disjoint segments. We will prove Theorem 1.1 for this type of sets, The
general case follows from this particular instance by a discretization argument, such as
in [Me2, Lemma 1]. Moreover, we will assume that the segments make an angle of %’IT,
say, with the x-axis. In this way, the intersection of F with any line parallel to one of
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the coordinate axes will always have length zero. This fact will avoid some technical
problems.

To prove Theorem 1.1 we want to apply some kind of T'(b)-theorem, as David in [Dd2]
for the proof of Vitushkin’s conjecture. Because of the definition of analytic capacity,
there exists a complex Radon measure vy supported on E such that

[Crolloe <1, (3.1)
lvo(E)|=~(E), (32)
dvg =bgdHE, with ||bp]leo < 1. (3.3)

We would like to show that there exists some Radon measure u supported on E with
LEL(E), u(E)~~(E), and such that the Cauchy transform is bounded on L2(u) with
absolute constants. Then, using (2.2) for example, we would get

7+(B) 2 C™u(E) > C™'4(E),

and we would be done.

However, by a more or less direct application of a T(b)-theorem we cannot expect
to prove that the Cauchy transform is bounded with respect to such a measure u with
absolute constants. Let us explain the reasons in some detail. Suppose for example that
there exists some function b such that dvy=>bdu and we use the information about vy
given by (3.1), (3.2) and (3.3). From (3.1) and (3.2) we derive

|C(bdp)lloo <1 (3.4)

and

/bd,u}%;z(E). (3.5)

The estimate (3.4) is very good for our purposes. In fact, most classical T'(b)-type theo-
rems require only the BMO(u)-norm of b to be bounded, which is a weaker assumption.
On the other hand, (3.5) is a global paraaccretivity condition, and with some technical
difficulties (which may involve some kind of stopping time argument, like in [Ch], [Dd2]
or [NTV1]), one can hope to be able to prove that the local paraaccretivity condition

’/bdu’w(@ﬂE)
Q

holds for many squares Q.
Our problems arise from (3.3). Notice that (3.3) implies that |vo|(E)<H!(E), where
|vo| stands for the variation of 1. This is a very bad estimate since we don’t have any



PAINLEVE’S PROBLEM AND THE SEMIADDITIVITY OF ANALYTIC CAPACITY 113

control on H!(E) (we only know that H'(E)<oo because of our assumptions on E).
However, as far as we know, all T'(b)-type theorems require the estimate

[vol(E) < Cu(E) (3.6)

(and often stronger assumptions involving the L%-norm of b). So by a direct application
of a T(b)-type theorem we will obtain bad results when v(E)< H'(E), and at most we
will get estimates which involve the ratio H!(E)/v(E), such as (1.5).

To prove Theorem 1.1, we need to work with a measure “better” than vy, which
we call v. This new measure will be a suitable modification of vy with the required
estimate for its variation. To construct v, we operate as in [MTV]. We consider a set
F containing E made up of a finite disjoint union of squares: F=|J,.; Q:;. One should
think that the squares Q; approximate E at some “intermediate scale”. For example, in
the case of the usual % planar Cantor set of generation n studied in [MTV], the squares
@ are the squares of generation %n For each square @;, we take a complex measure
v; supported on Q; such that v;(Q;)=vp(Q;) and |v;(Q;)=[v:(Q;)| (that is, v; will be a
constant multiple of a positive measure). Then we set v=)_, v;. So, if the squares Q; are
big enough, the variation |v| will be sufficiently small. On the other hand, the squares

Q; cannot be too big, because we will need
7+ (F) S Cv.(E). 3.7)
In this way, we will have constructed a complex measure v supported on F satisfying
[V|(F) = [v(F)| =~(E). (3.8)

Taking a suitable measure u such that supp(u)Dsupp(v) and p(F)=v(FE), we will be
ready for the application of a T'(b)-theorem. Indeed, notice that (3.8) implies that v
satisfies a global paraaccretivity condition and that also the variation |v| is controlled. On
the other hand, if we have been careful enough, we will have also some useful estimates on
|Cv|, since v is an approximation of vy (in fact, when defining v in the paragraph above,
the measures v; have to be constructed in a smoother way). Using the T(b)-theorem
of [NTV1}, we will deduce
v+ (F) 2 C_IN(E)a

and so, 7.(E)>C~y(E), by (3.7), and we will be done.

Several difficulties arise in the implementation of the arguments above. In order
to obtain the right estimates on the measures v and p we will need to assume that
YENQ;)=v:.(ENQ;) for each square Q;. For this reason, we will use an induction
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argument involving the sizes of the squares @;, as in [MTV]. Further, the choice of the
right squares @); which approximate E at an intermediate scale is more complicated than
in [MTV]. A careful examination of the arguments in [MTV] shows the following. Let o
be an extremal measure for the right-hand side of (2.2), and so for 7, in a sense (now
E is some precise planar Cantor set). It is not difficult to check that U, (z)~1 for all
z€E (remember (2.3)). Moreover, one can also check that the corresponding squares Q;
satisfy

Usj20. (%) = Usic\20, () =1 for all z€Q;. (3.9)

In the general situation of E given a finite union of disjoint compact segments, the
choice of the squares ); will be also determined by the potential U,, where now ¢ is
the corresponding maximal measure for the right-hand side of (2.2). We will not ask the
squares @; to satisfy (3.9). Instead we will use a variant of this idea.

Let us mention that First Main Lemma 5.1 below deals with the construction of the
measures v and u, and with the estimates involved in this construction. Second Main
Lemma 9.1 is devoted to the application of a suitable T(b)-theorem.

4. A preliminary lemma

In the next lemma we show a property of the capacity v, and its associated potential
which will play an important role in the choice of the squares ; mentioned in the
preceding section.

LEMMA 4.1. There ezists a measure c €X(E) such that o(E)~~,(F) and U, ()2
for all z€ E, where a>0 is an absolute constant.

Let us remark that a similar result has been proved in [T4, Theorem 3.3], but without
the assumption o€ (E).

Proof. We will see first that there exists a Radon measure 0 €X(E) such that the
supremum on the right-hand side of (2.2} is attained by o. That is,

_ MEPE __ o(E)
9(E) = eniey WE)+ () o(E)+c(o)

This measure will fulfill the required properties.

It is easily seen that any measure u€X(F) can be written as du=f dH!|E, with
| £l Lo (21 E) <1, by the Radon-Nikodym theorem. Take a sequence of functions {fs}n,
with || fo|| Lo (211£) <1, converging weakly in L () to some function f€ L>°(u) and such

that i

A (B ey I,
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with dpn=f, dHYE, p,€L(E). Consider the measure do=fdH|E. Because of the
weak convergence, pn(E)—0c(F) as n— o0, and moreover 0 €X(E). On the other hand,
it is an easy exercise to check that c?(o)<liminf, o c(un). So we get

___o(BE)?
ST O)

Let us see that o(E)~~.(E). Since ¢ is maximal and 3¢ is also in (E), we have

o(E)? S 30(E)?
o(E)+c2(0) ~ 30(E)+Lc2(o)

Therefore,
10(E)+}c%(0) = to(E)+3P (o).

That is, ¢?(0)<20(E). Thus,

It remains to show that there exists some a>0 such that U,(z)>« for all z€FE.
Suppose that Mo(z)< 155 for some z€E, and let B:=B(z, R) be some fixed ball. We
will prove the following:

CLaM. If R>0 is small enough, then there exists some set ACB(x, R)NE, with
H(A)>0, such that the measure ox:=0+AH'|A belongs to ©(E) for nggﬁlﬁ.

Proof of the claim. Since E is made up of a finite number of disjoint compact seg-
ments, we may assume that R>0 is so small that H!(B(y,7)NE)<2r for all yeB,
0<r<4R, and also that H!(B(z, R)YNE)>R. These assumptions imply that for any
subset AC B we have

HY(ANB(y,r)) <HYENB(y,r)NB)<2r for all ye B, r>0.
Thus, H(ANB(y,r))<4r for all y€C, and so
M(H'A)(y)<4 forall yeC. (4.1)

We define A as
A={yeB:Mo(y)< 1}

Let us check that H'(A4)>0. Notice that

1
o(2B) < 2RMo(z) < =B < -

1
5 < s K (BNE). (4.2)
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Let D=B\A. IfyeD, then Mo (y)>1. If r>0is such that o(B(y,r))/r>1, thenr< L R.
Otherwise, B(y,r)C B(z, 12r) and so
o(B(y,r)) _o(B(z 127‘)) 12

< ! <12M
r T (%) < T500°

Therefore,
Dc{yeB:M(s|2B)(y) > 1}.

For each y€ D, take r, with 0<r, <J; R such that

o(Bm) |

| =

By Vitali’s 5r-Covering Theorem there are some disjoint balls B(y;,y,) such that DC
U, B(yi,5ry,). Since we must have r,, < R, we get H!(B(y;,5ry,)NE)<157,,. Then,
by (4.2) we deduce

HY(DNE) <ZH1 (yi, 574, )N E) <215ry

<6OZ (yi,7y,)) <600(2B) < H(BmE).

500

Thus, H(A)>0.
Now we have to show that Max(y)<1 for all yeE. If y€ A, then Mo(y)<3, and
then by (4.1) we have

1 1 4
<S+HAMHYA .
Mor(y) < g+ AM(HA) W) < 3+ 705 < 1.

If y¢ A and B(y,r)NA=0, then we obviously have

Suppose that y¢ A and B(y,r)NA#@. Let 2z€ B(y,r)NA. Then,

o(B.r) _oBE2) s
T T

l\3|H

Thus,

1 4
+)\M(H |A)(y) < +m<1

So we always have Mo, (y)<1. a

ax(By,7)
r
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Let us continue the proof of Lemma 4.1 and let us see that U,(z)2«a. Consider the

function
ox(E)?

A= B o
Since o is a maximal measure for g(E) and o) €X(E) for some A>0, we must have
©'(0)<0. Observe that

p(N) =[o(B)+XH (A)P[0(B)+AH! (A)+*(0)+3AP(H |4, 5, 0)
+3X% (o, HY A, HYA)+ A3 (H A)) L
So,

'0) = 20(EYHYA)(o(E)+c*(0))—a(E)*(HY(A)+3c2(H! A, o, o))
= (0(E)+(0))?

Therefore, ¢’'(0)<0 if and only if

2HY(A)(o(E)+c*(0)) < o(E)(HY(A)+3c2(HY|A, 0,0)).

That is,
a(E)+2c*(o) < 3c2(H!|A,0,0)
o(E) T HNA)

Therefore, ¢*(H'|A,0,0)/H'(A)>3. So there exists some zo€ A such that

c(zy,0,0) > 3. (4.3)

We write
*(xg,0,0) = c?(xy,0|2B, 0|2B)+c*(xy,0|2B,0|C\2B)

+c?(xo,0|C\2B,0|C\2B). (4.4)

If R is chosen small enough, then BNE coincides with a segment, and so we have
c(xy,0|2B,0|2B)=0. On the other hand,

A(z0,012B,0|C\2B) < C / ——— do(y) do(z) < CaMo(x)>.
ye2B JzeC\2B |z —z|

Thus, if Mo(x)?<1/6C;,, then by (4.3) and (4.4) we obtain
c¢27|C\ZB(ZO) = 02(.’1:0,0'|C\2B, c|C\2B) 2 %—% = %.
Also, it is easily checked that

lcojc\2B(T) —coic\2B(0)| < C3 Mo (). (4.5)
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This follows easily from the inequality

R

|C($,yaz)—c($07y,z)|<c s
S e -yl -z

for x,xz9,y, 2 such that [z—z¢|<R and |z—y|,|z—2|22R (see Lemma 2.4 of [T2], for
example) and some standard estimates. Therefore, if we suppose Mo (z)<1/100Cs5, then

we obtain

Cojc\2B(Z) = ¢oio\2B(Z0) — 165 2 15-

So we have proved that if Mo(z)<min(1/1000,1/(6C2)!/2,1/100C3), then cq(z)> 5.
This implies that in any case we have U,(z) >, for some a>0. O

5. The First Main Lemma

The proof of Theorem 1.1 uses an induction argument on scales, analogous to the one
in [MTV]. Indeed, if @ is a sufficiently small square, then ENQ either coincides with a
segment or it is void, and so

7+ (ENQ)=y(ENQ). (5.1)

Roughly speaking, the idea consists of proving (5.1) for squares(!) @ of any size, by
induction. To prove that (5.1) holds for some fixed square Qq, we will take into account
that (5.1) holds for squares with sidelength <11(Qo).

Our next objective consists of proving the following result.

LEMMA 5.1 (First Main Lemma). Suppose that v,(E)<Cydiam(E), with C4>0
small enough. Then there exists a compact set F=Uz‘e1 Q., with Ziel x10@, SC, such
that

(a) ECF and v+(F)<Cv+(E),

(b) > icr ¥+(EN2Q:)<C.(E),

(c) diam(Q;)< 5 diam(E) for every i€l.

Let A>1 be some fized constant and D any fized dyadic lattice. Suppose that y(EN2Q;)<
Av (EN2Q;) for alliel. If v(E)2 Ay, (E), then there exist a positive Radon measure u
and a compler Radon measure v, both supported on F, and a subset HpCF, such that:

(d) C7'Y(E)Su(F)<Coy(E).

(e) dv=bdpu, with ||b||geo(.) <Cb.

() W(F)=~(E).

() Jr\spCxv du<Cop(F).

(}) Actually, in the induction argument we will use rectangles instead of squares.
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(h) If w(B(z,r))>Cor (for some big constant Cy), then B(z,r)C Hp. In particular,
w(B(z,r))<Cor for all ze F\Hp, r>0.

(1) Hp=Uyer, Bk, where Ry, k€ly, are disjoint dyadic squares from the lattice D,
with 3 cp, [(Rk)<eu(F), for 0<e< 35 arbitrarily small (choosing Cy big enough).

(§) [v(Hp)|<eln(F)).

(k) p(Hp)<ou(F), with §=0(e)<1.

The constants Cy, C, C,, Cp, C., Cy, € and § do not depend on A. They are
absolute constants.

Let us remark that the construction of the set Hp depends on the chosen dyadic
lattice D. On the other hand, the construction of F, y, v and b is independent of D.

We also insist on the fact that all the constants different from A which appear in
the lemma do not depend on A. This fact will be essential for the proof of Theorem 1.1
in §12. We have preferred to use the notation C,, Cy, C,. instead of Cs5, Cq, C7, say,
because these constants will play an important role in the proof of Theorem 1.1. Of
course, the constant Cj does not depend on b (it is an absolute constant).

Remember that we said that we assumed the squares to be closed. This is not the
case for the squares of the dyadic squares of the lattice D. We suppose that these squares
are half open—half closed (i.e. of the type (a, b] x (¢, d]).

For the reader’s convenience, before going on we will make some comments on the
lemma. As we said in §3, the set F' has to be understood as an approximation of E at
an intermediate scale. The first part of the lemma, which deals with the construction of
F and the properties (a)—(c), is proved in §6. The choice of the squares @); which satisfy
(a) and (b) is one of the keys of the proof of Theorem 1.1. Notice that (a) implies that
the squares J; are not too big, and (b) that they are not too small. That is, they belong
to some intermediate scale. The property (b) will be essential for the proof of (d). On
the other hand, the assertion (c) will only be used in the induction argument, in §12.

The properties (d), (e), (f) and (g) are proved in §7. These are the basic properties
which must satisfy ¢ and v in order to apply a T(b)-theorem with absolute constants,
as explained in §3. To prove (d) we will need the assumptions in the paragraph after
(c) in the lemma. In (g) notice that instead of the L™(u)- or BMO({y)-norm of Cv, we
estimate the L(u)-norm of C,v out of the set Hp.

Roughly speaking, the ezceptional set Hp contains the part of p without linear
growth. The properties (h), (i), (j) and (k) describe Hp and are proved in §8. Observe
that (i), (j) and (k) mean that Hp is a rather small set.
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6. Proof of (a)—(c) in the First Main Lemma

6.1. The construction of F and the proof of (a). Let c€X(E) be a measure satisfying
o(E)=~v,(E) and U,(z)>a>0 for all z€ E (recall Lemma 4.1). Let A be some constant
with 0<A<10~8a which will be fixed below. Let QCC be the open set

Q:={zeC:U,(z)> A}
Notice that FC, and by [T4, Theorem 3.1] we have
7+(£2) <CA1o(E) < CA 1y (B). (6.1)

Let Q=|J,c, Qi be a Whitney decomposition of 2, where {Q; }c is the usual family
of Whitney squares with disjoint interiors satisfying 20Q,CQ, RQ;N(C\Q)#< (where
R is some fixed absolute constant), and 3, ; x100; <C.

Let {Q;}icr, ICJ, be the subfamily of squares such that 2Q;NE#@. We set

F:=U Q..
i€l
Observe that the property (a) of the First Main Lemma is a consequence of (6.1) and
the geometry of the Whitney decomposition.
To see that F is compact it suffices to check that the family {Q; }.cy is finite. Notice
that ECJ;¢, (l.lézi ). Since F is compact, there exists a finite covering

Ec U (11Q,).

1<k<n

Each square 2Q);, i€ 1, intersects some square 1.1Q;,, k=1, ...,n. Because of the geometric
properties of the Whitney decomposition, the number of squares 2Q); which intersect some
fixed square 1.1Q;, is bounded above by some constant Cs. Thus, the family {Q;}:ies
has at most Csn squares.

6.2. Proof of (b). Let us see now that (b) holds if A has been chosen small enough.
We will show below that if r€ EN2Q); for some i€, then

Ua|4Qi(.’L') > ia, (62)

assuming that A is small enough. This implies EN2Q;C {Uyq,>7a}, and then, by
[T4, Theorem 3.1], we have

1+ (EN2Q;) < Ca~lo(4Q;).
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Using the finite overlap of the squares 4Q;, we deduce

> 1 (BN2Qi) <Ca™! 0(4Qi) < Calo(E) < Cv.(E).

i€l i€

Notice that in the last inequality, the constant ™! has been absorbed by the constant C.
Now we have to show that (6.2) holds for € EN2Q;. Let 2 RQ;\Q, so that
dist(z, Q;) =dist(8Q, Q;)~1(Q;) (where I(Q;) stands for the sidelength of @;). Since
Mo (z)<U,(2)< )\, we deduce that for any square P with I[(P)> il(Qi) and PN2Q; #2,
we have
o(P

2 <A< 1076, )
l(P) Ce 07 o (63)

~—

where the constant Cs depends on the Whitney decomposition (in particular, on the
constant R), and we assume that A has been chosen so small that the last inequality
holds.
Remember that U, (z)>a. If Mo(z)>1a, then
0@ _«

—_— >
Q) = 2
for some “small” square @) contained in 4@Q);, because the “big” squares P satisfy (6.3).
So, U, jaq.(z)>1a.
Assume now that Mo (z)<

c2(z,0,0) as follows:

sa. In this case, ¢,(z)>3a. We decompose cZ(z)=:
Cz(l',O',O') =CZ(J,‘,0'|4Q1',0'|4Q,‘)+202(£L',0'|4Q1;,U'C\4Qi)
+c?(z,0|C\4Q;, o|C\4Q;).
We want to see that
Coja0; (T) > fa. (6.4)
So it is enough to show that the last two terms in the equation above are sufficiently

small. First we deal with c2(z,0|4Q;,o|C\4Q;):

c*(z,0/4Qi,0|C\4Q:) < C do(y) do(t)

yE4Q; /GC\4Q1' |t —x|?

—~ Co(4Q)) / !
teC\4Q;

t—zx|?
Mo (z) 2
(4Q1) a0, < < CMo(z)? <CX2.

do(t) (6.5)
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For the term c?(x,0|C\4Q,,o|C\4Q;) we write
c*(z,0|C\4Q;,0|C\4Q;) = *(z,0|C\2RQ;,0|C\2RQ;)

+2¢%(z,0|C\2RQ;,7|2RQ;\4Q;)
+c*(z,0|2RQ:\4Q;,0|2RQ:\4Q;).

Arguing as in (6.5), it easily follows that the last two terms are bounded above by

CMo(2)?<CA? again. So we get

03|4Qi($) >cZ(z) —C§|0\2RQi($) —-CX2. (6.6)
We are left with the term CilC\QRQi(x)' Since z, z€ RQ;, it is not difficult to check that
leo1c\2rQ: (T) —Coic\2RQ. (2)] S CMo(2) < Cs A

(this is proved like (4.5)). Taking into account that c,(2)< A, we get

Cojc\2rQ: () < (1+Cs) A.
Thus, by (6.6), we obtain
C§I4Qi(x) > %az—C')\2 > 1—16012,
if A is small enough. That is, we have proved (6.4), and so in this case (6.2) holds too.
6.3. Proof of (c). Now we have to show that
diam(Q;) < £ diam(E). (6.7)

This will allow the application of our induction argument.
It is immediate to check that

1000(F)
Us(z) < m

for all ¢ E (of course, 100 is not the best constant here). Thus, for t€Q\E we have

1000(F)
L —.
A<Uq() < dist(z, E)

Therefore,
dist(z, E) < 100A™'0(E) < CA 17, (E) < 135 diam(E),

taking the constant Cy4 in the First Main Lemma small enough. As a consequence,
diam(Q) < &} diam(E). Since 20Q; (1 for each i€, we have

20diam(Q;) < diam(Q) < 1} diam(E),

which implies (6.7).
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7. Proof of (d)—(g) in the First Main Lemma

7.1. The construction of p and v and the proof of (d)-(f). It is easily seen that there
exists a family of C*°-functions {g;};cs such that, for each i€ J, supp(g;)C2Q;, 0<g: <1,
and ||Vg;|loo <C/1(Q:), so that 3, ., g;=1 on Q. Notice that by the definition of /
in §6.1, we also have } .., gi=1 on E.

Let f(z) be the Ahlfors function of F, and consider the complex measure 14 such that
f(2)=Cuy(2) for 2¢ E, with |1o(B(z,7))|<r for all z€C, >0 (see [Ma2, Theorem 19.9],
for example). So we have

ICro(2)| <1 forall z¢ E,

and
Vo(E) =v(E).

The measure v will be a suitable modification of vy. As we explained in §3, the main
drawback of g is that the only information that we have about its variation |vg] is that
|vo|=bo dHL, with ||bo[lo <1. This is a very bad estimate if we try to apply some kind
of T'(b)-theorem in order to show that the Cauchy transform is bounded (with absolute
constants). The main advantage of v over vy is that we will have a much better estimate
for the variation |vl.

First we define the measure y. For each i€, let I'; be a circumference concentric
with @; and radius l—lo'y(Eﬂ2Qi). Observe that T'; C %Qi for each i. We set

iel
Let us define v now:

1 1
=S [ gidvy HYT.
v ;'HI(FZ,) /9 dvy-H*|

Notice that supp(v)Csupp(u)CF. Moreover, we have v(Q;)=[g;dvy, and since
> icr9i=1on E, we also have v(F)=%", ., v(Q:)=vo(E)=~(E) (which yields (f)).
We have dv=bdpu, with

b S gi dvo
T HYT)
on I';. To estimate ||| Lo (,), notice that
[C{givp)(2)| < C for all 2¢ EN2Q);. (7.1)
This follows easily from the formula
1 [ Cuyy(2)
Clamn)() = Cn(©)(6)+ 7 [ 200, ac?o), (72)
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where £2 stands for the planar Lebesgue measure on C. Let us remark that this identity
is used often to split singularities in Vitushkin’s way. Inequality (7.1) implies that

‘/gi dvg

As a consequence, ||b|| () <C, and (e) is proved.
It remains to check that (d) also holds. Using (7.3), the assumption v(EN2Q;)<
Av,+(EN2Q;), (b) and the hypothesis Ay, (E)<v(E), we obtain the inequalities

Z/gidVO <Z /gidVO
el el

=Cu(F)<CAY 7.(EN2Q;) < CAv.(E)< CY(E),

iel

= ‘(C(givo))'(oo)’ < C’Y(EO2QL) = C’Hl(l“,) (73)

Y(E)=|w(E)| = <CY y(EN2Q:)

i€l

which gives (d) (with constants independent of A).

Notice, by the way, that the preceding inequalities show that Y(E)<CA~v,(E). This
is not very useful for us, because if we try to apply induction, at each step of the induction
the constant A will be multiplied by the constant C.

On the other hand, since for each square @Q; we have u(FNQ;)<CAv,.(EN2Q;)<
CAo(2Q;), with c€X(E), it follows easily that

w(B(z,7)) < CAr forallzeF,r>0. (7.4)

Unfortunately, for our purposes this is not enough. We would like to obtain the same
estimate without the constant A on the right-hand side, but we will not be able to.
Instead, we will get it for all x€F out of a rather small exceptional set H.

7.2. The exceptional set H. Before constructing the dyadic exceptional set Hp, we
will consider a non-dyadic version, which we will denote by H.

Let Cp>100C, be some fixed constant. Following [NTV1], given z€ F, r>0, we say
that B(z,r) is a non-Ahlfors disk if u(B(z,r))>Cor. For a fixed z€F, if there exists
some r>0 such that B(z,r) is a non-Ahlfors disk, then we say that z is a non-Ahlfors

point. For any x€F, we denote
R(z)=sup{r>0:B(z,r) is a non-Ahlfors disk}.

If z€ F is an Ahlfors point, we set R(z)=0. We say that R(z) is the Ahlfors radius of z.
Observe that (d) implies u(F)<Coy(E) < Coy(F)<Cydiam(F). Therefore,

u(B(z, 7)) < u(F) < Cydiam(F) < 100C,r
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for 7> 355 diam(F). Thus R(z)< 155 diam(F') for all z€F.

Z 100
We denote
Ho= U B(z,R(z)).
e F
R(x)>0

By Vitali’s 57-Covering Theorem there is a disjoint family {B(zn, R(z#))}s such that
Hoc U, B(xh,5R(x1)). We denote

H=\JB(zp,5R(zn)). (7.5)
h
Since HoC H, all non-Ahlfors disks are contained in H, and then,
dist(z, F\H) 2 R(z) (7.6)

for all z€F.
Since p(B(zp, R(z1)))=CoR(zp) for every h, we get

1 1
Xh:R(ﬂfh)S a)zh:u(B(ivh,R(xh)))Sa) (F), (7.7)

with 1/Cy arbitrarily small (choosing Cj big enough).

7.3. Proof of (g). The dyadic exceptional set Hp will be constructed in §8. We will
have Hp D H for any choice of D. In this subsection we will show that

Covdp< C(:M(F), (7-8)
F\H
which implies (g), provided HpDH.

We will work with the regularized operators 6'5 introduced at the end of §2. Remem-
ber that |Crg(2)|<1 for all z¢ E. Since L2(E)=0, the same inequality holds for £2-a.e.
z€C. Thus, |Cevo(2)|<1 and Co1p(z)<1 for all zeC, £>0.

To estimate C,v, we will deal with the term 5,(1/—1/0). This will be the main point
for the proof of (7.8).

We denote v;:=v|Q;.

LEMMA 7.1. For every € C\4Q;, we have

Culvi—giv0)(2) < CUQ:) (@)

= dist(z,2Q;)? (79)

Notice that [(dv;—g; dvp)=0. Then, using the smoothness of the kernels of the
operators 6'5, >0, by standard estimates it easily follows that

Cu(vs—gio)(2) < Cl(Qi)EiliVSL(((j’i;gil)/gI(2Qi))'
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This inequality is not useful for our purposes, because to estimate {1[(2Q;) we only
can use |vp|(2Q;) <H(EN2Q;). However, we don’t have any control over H!(EN2Q;)
(we only know that it is finite, by our assumptions on E). The estimate (7.9) is much
sharper.

Proof of the lemma. We set a;=v;—g;vy. To prove the lemma, we have to show

e CUQIn@))
= i) (Qi
) g N wy PRy .
|Ceai(2)]| < dist(z, 20,2 (7.10)
for all 0.
Assume first < 1 dist(z, 2Q;). Since |Ca;(w)|<C for all w¢ supp(a;) and a;(C)=0,
we have .
Cdiam(supp(c;)) y(supp(a:))
dist(w, supp(a;))?

ICai(w)| <
(see [Ga, pp. 12-13]). Remember that
supp(a;) C T U(EN2Q;) C 2Q;.
Then we get

Cl(Qi)'Y(FiU(EQQQi))‘

. <
[Cai(w)] < dist(w, 2Q;)?

(7.11)
Moreover, we have
(I U(EN2Q:)) < C(v(T) +v(EN2Qy)),

because semiadditivity holds for the special case I'; U(EN2Q);). This fact follows easily
from Melnikov’s result about semiadditivity of analytic capacity for two compacts which
are separated by a circumference [Mel]. Therefore, by the definition of I';, we get

YT U(EN2Q;)) £ CY(EN2Q;) = Cu(Q:). (7.12)
If we B(z,¢), then dist(w, 2Q;)=dist(z,2Q;). By (7.11) and (7.12) we obtain

CUQ:)u(Q:)

. < .
ICoilw)l < Gtz 20002

Making the convolution with v, (7.10) follows for e< 3 dist(z, 2Q;).
Suppose now that E>%dist(z, 2Q;). We denote h=1,*a;. Then we have

6’sai =P * % xa; =C(h d£2).
Therefore,
~ h
t@mwm/%%%ﬁwswmm%wme? (7.13)
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We have to estimate ||h||s and £2(supp(h)). Observe that, if we write [;=1(Q;) and we
denote the center of @); by z;, we have

supp(h) C supp(e ) +supp(a;) C B(0,e)+ B(z;, 21;) = B(z;,e+21;).

Thus, £2(supp(h))<Ce?, since I;<e.

Let us deal with ||h||oc now. Let n; be a C°°-function supported on 3@Q; which is
identically 1 on 2Q); and such that |V || <C/l;. Taking into account that «;(2Q;)=0,
we have

h(w) = / e (6 ~w) dexs(€) = / (Ve (€ —w)— e (21 —w)) des(€)

. 3 )

We will show below that
IC(pwn;: dai)|| Loy < C. (7.14)

Let us assume this estimate for the moment. Since C(¢,,7; do;) is analytic in C\supp(«;),
using (7.12) we deduce

I l; Lip(Q;
E-;;/‘Pw(ﬁ)m(f) do;(§)| < 23 ’Y(FiU(En2Qi))<'C 5:£Q )'
Therefore,
Clip(Q;
oo < SHAQ).

By (7.13) and the estimates on ||h||o and L£%(supp(h)), we obtain

~ CUQ)u(Q:) _ CUQ)Q:)
|Ceai(2) < €2 < dist(z,2Q;)?"

It remains to prove (7.14). Remember that Ca; is a bounded function. By the
identity (7.2), since supp(w. ;) C3Q;, it is enough to show that

lpwnillo <C (7.15)

and

-1

IV (wni)lloo < (7.16)

o~

2

For £€3Q);, we have '

3
[ul©) = = e =) ~ e (- 0)] < Veellow < C,
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which yields (7.15). Finally, (7.16) follows easily too:
C
IV (ewnillo SIVPwloo+pwloo IMilloo < 7
We are done. O

Now we are ready to prove (7.8). We write

CN*I/d,u,< C~*1/0du+/ 5*(1/—1/0)d,u
F\H F\H F\H
(7.17)

< Cu(F\H) +Z/ C.(vi—givo) dp.

i€l
To estimate the last integral we use Lemma 7.1 and recall that ”5*(’/2 =9iv0) || Loe () <C:
CUQIHQ:) 4 ) (7.18)
F\H aq,um) dist(z,2Q;)
Let N>1 be the least integer such that (4V+1Q;\4VQ;)\H#@, and take some fixed
20€(4V1Q\4VQ,)\ H. We have

1 o0 o0 4k+1 5
/ Tict{» 9¢). )2 2/ <C Z #(kﬂ <)
F\(4Q:UH) dlst(z ZQZ v (4R QSR QINH 4 Q

k=

C.(vi=gim) du < Ou(4Q0)+ [ y
F

//\

- 21(45+1Qy)))
Z Zo4k+lQ )2

k+1
<C Z Col(4” Q) <CCH——=~ < CCy

1 1
14541Q,)7 = 77 1(4N;) 0Q:)

Notice that in the second inequality we have used that zg€ F\ H, and so pu(B(zy,7))<Cor
for all 7. By (7.18), we obtain

Cu(vi—givo) dp < Cu(4Q;).

F\H
Thus, by the finite overlap of the squares 4Q);, i€l, and (7.17), we get
/ C. vd,u<C’u(F\H)+Cz,u(4Q,)<C;L(F) (7.19)
el

Now, (2.5) relates C,v with C.v:
|Cov(2) —Cor(z)| < CMu(z). (7.20)
By (e), if z€ F\ H, we have Mv(2)<CMu(z)<C. Thus (7.19) and (7.20) imply

Cov(z) du(z) < Cu(F).
F\H



PAINLEVE'S PROBLEM AND THE SEMIADDITIVITY OF ANALYTIC CAPACITY 129

8. The exceptional set Hp

8.1. The construction of Hp and the proof of (h)—(i). Remember that in (7.5) we defined
H=\J, B(zn,5R(x1)), where {B(zn, R(zp))}r is some precise family of non-Ahlfors
disks. Consider the family of dyadic squares DgCD such that Re€Dy if there exists
some ball B(zy,5R(zy)) satisfying

B(zp,5R(zp)) "R+ 2 (8.1)
and
10R(zp) < I(R) <20R(zy). (8.2)
Notice that
UB(zn, 5R(zn))C U R. (8.3)
h ReDy

We take a subfamily of disjoint maximal squares {Ry}rer, from Dy such that

U R= U Rk,

ReDy kely

and we define the dyadic exceptional set Hp as

Hp= ( Rs.

kely

Observe that (8.3) implies HC Hp and, since for each ball B(xy,5R(xp)) there are at
most four squares R€ Dy satisfying (8.1) and (8.2), by (7.7), we obtain

80
D URK) <80 R(zn) < o ulF) <en(F),
kely h

assuming Cy>80e~!.

8.2. Proof of (j). Remember that the squares from the lattice D are half open-half
closed. The other squares, such as the squares {Q, }ics which form F', are supposed to be
closed. From the point of view of the measures p and v, there is no difference between the
two choices, because p(9Q)=|v|(8Q)=0 for any square Q) (remember that y is supported
on a finite union of circumferences).

We have

lv(Hp)|< Y IW(R&)l,
k€ly
because the squares Ry, k€ly, are pairwise disjoint. On the other hand, from (i), we
deduce
> UB) <ep(F) < Caelv(F)),
kely
with £—0 as Cp—00. So (j) follows from the next lemma.
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LEMMA 8.1. For all squares RCC, we have
lv(R)| < CUR),

where C is some absolute constant.
To prove this result we will need a couple of technical lemmas.

LEMMA 8.2. Suppose that Cy is some big enough constant. Let RCC be a square
such that u(R)>Col(R). If Q; is a Whitney square such that 2Q;NR#@, then 1(Q;)<
Li(R).

4

Proof. Let us see that if {(Q;)>3%I(R), then u(R)<Col(R). We may assume
that p(R)2100l(R). Notice that RC9Q; and, by Whitney’s construction, we have
#{j:Q,;N9Q,#2}<C. Further, [(Q;)~1(Q;) for this type of squares. Recall also that
the measure p on each Whitney square Q; coincides with H!|T';, where I'; is a circum-
ference contained in 1Q;, and so u(Q;)<CU(Q);) for each j. Therefore,

MBS Y w@)<C > UQ)<CUQ).
71Q;N9Q £ 7:Q;N9Q: #2
So we only have to show that [{Q,)<CI(R).
Since 2Q;NR#@, there exists some Whitney square Q; such that Q;NR#2 and
Q;N2Q; #2. Since we are assuming p(R)>100/(R), we have [(R)>¢e¢1(Q;), where £9>0
is some absolute constant (for instance, E()zﬁ would possibly work). Thus, I(Q;)~

1(Q,)<CI(R). O

LEMMA 8.3. Let RCC be a square such that [(Q;)< 2I(R) for each Whitney square
Q. with 2Q;,NR#D. Let Lp={hel:2Q,NOR#2}. Then,

> UQn)<CUR).

heln

Proof. Let L be one of the sides of R. Let {Qy,}rer, be the subfamily of Whitney
squares such that 2Q,NL#@. Since l(Qh)sil(R), we have H1(4Q,NL)=C~(Qp).
Then, by the bounded overlap of the squares 4Q), we obtain

> UQWKC DY H'(4QrNL) < CUR). (8.4)

hely, hely
O

Proof of Lemma 8.1. By Lemma 8.2, we may assume {(Q;)<:I(R) if 2Q;NR#®.
Otherwise, |v(R)|<Cou(R)<CrCol(R).
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From the fact that ||Cigl|peo(c)<1, we deduce |vo(R)|<CI(R). So we only have to
estimate the difference |v(R)—vp(R)|.
Let {Q:}icrn, IRCI, be the subfamily of Whitney squares such that Q;NR#@, and
let {Q:}icsn, JRCI, be the Whitney squares such that Q; CR. We write
(R =w(R) = |v( U (@nR))-w( U @nR)|

i€lp i€lp

g‘u( U (QmR))—VO( U (QinR))’

i€IrR\JR i€Ip\JR
+ ‘V (igRQi) ~ (iGUJRQi)
=A+B.

First we deal with the term A. We have

’HI(FiﬂR) ‘

A= H(LOR) [ |

ie%\:hz HIU(T) / gi dvo z-e%JRVO(Q NR)
<2 /g"d”" + > (@iNR).

i€Ip\Jr i€Ip\Jr

Since |C(g; )| <C and |Crp|<C, we have

1/9:‘ dug

Thus, ASC 3 cr,00, {(Q:). Notice now that if i€Ig\Jg, then Q:NR#2 and Q;Z R.
Therefore, Q;NOR#@. From Lemma 8.3 we deduce ACI(R).
Let us turn our attention to B:

+]10(Q:NR)| < CUQ:)+CH(A(Q:NR)) < CUQ;).

B= Z/gidV()“/ dvy
i€Jr UieJRQi
= (/(Z gi_XUie.lRQi) dvo
i€JR
<[ (Za-1)aul+|[ S giduo
jedr Y Qi Nicp C\Ujesp Qi ietp
= B+ Bs.

We consider first By. If } ;. ;. gi#1 on Q;, we write j€ Mg. In this case there exists
some he& I'\Jp such that g, Z0 on Q;. So 2Q,NQ;#, with Q¢ R. Thus, 2Q,NOR#D.
That is, h€ Lg.
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For each h€ Ly there are at most Cg squares @), such that 2Q,NQ; #@. Moreover,
for these squares Q; we have [(Q;)<CI(Qn). Then, by Lemma 8.3, we get

Y UQ)<KCCs Y U(Qn) S CUR). ' (8.5)

JEMR heLpn
Bi=Y

/ (Zgz—-l> dl/()
JEMR Y Qi Niedy

We have [19(Q;)|<Cl{(Q;) and also

‘/Q ZgidVO

JieJp

Now we set

+n(@)]).

<3 (U, 35 e

JEMpR Ji€JR

/ gi dvg
Q;

because #{i€Jr:supp(g:)NQ; #@}<C and |C(g;19)|<C for each i. Thus, by (8.5), we
deduce

<y

i€JR

< Cl(Q])7

B <CI(R).

Finally we have to estimate B;. We have

By < / g: dvg
Z C\U]‘GJRQj

i€eJpr
Observe that if By ;#0, then supp(g,»)ﬂsupp(l/())r‘lC\UjeJRQﬁéz. As a consequence,
2QiNQr#2 for some hel\Jg. Since Q,CR and Qr¢Z R, we deduce that either
2Q.NOR#@ or QNOR#D. So either ieLpr or heLr. Taking into account that
1(Q;)=1{(Q},), arguing as above we get

B<C S uQ)+Cy. Y. Q)

i€Lp i€Jn h€Lp:QnN2Q:#2

<CUR)+C ) > UQW<CUR). 0

h€Lp i€l:Q)N2Q;#2

=Y By,

i€Jp

8.3. Proof of (k). Let us see that (k) is a direct consequence of (j). We have
lv(F\Hp) 2 |v(F)|-|v(Hp)| = (1-€)|lv(F).
By (d) and (f), we get
C

HE)SC(F)] < g Iv(F\Hp)|.

Since ||b]| Lo () <C, we have |v(F\Hp)|<Cu(F\Hp). Thus,
C.
W(F) < 7= p(F\Hbp).

That is, u(Hp)<ou(F), with §=1—(1—¢)/Cy.
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9. The Second Main Lemma

The second part of the proof of Theorem 1.1 is based on the T'(b)-theorem of Nazarov,
Treil and Volberg in [NTV1]. The precise result that we will prove is the following. We
use the same notation as in First Main Lemma 5.1.

LEMMA 9.1 (Second Main Lemma). Assume that v, (E)<Cydiam(E)}, v(E)>=
Av(E), and v(EN2Q;)<AY:(EN2Q;) for all i€l. Then there exrists some subset
GCF, with p{F)<Ciou{G), such that u(GNB(z,7))<Cor for all x€G, r>0, and the
Cauchy transform is bounded on L*(u|G) with ICll L2 iy, L2 (uic) <Chr1, where Chy s
some absolute constant. The constants Cy, Cy, Cyo, C11 are absolute constants, and do
not depend on A.

We will prove this lemma in the next two sections. First, in §10 we will introduce
two exceptional sets S and Tp such that C.v will be uniformly bounded on F'\S and b
will behave as a paraaccretive function out of Tp. In the same section we will introduce
the “suppressed” operators of Nazarov, Treil and Volberg. In §11 we will describe which
modifications are required in the T'(b)-theorem of [NTV1] to prove the Second Main
Lemma.

10. The exceptional sets S and Tp and the suppressed operators Co

10.1. The exceptional set S. The arguments in this subsection will be similar to the ones
in [T3].
We set
So={zeF:C.v>a},

where « is some big constant which will be chosen below. For the moment, let us say
that a>>CyCy, C.. For €8y, let

e(xz) =sup{e: >0, |Cv(z)| >a}.
Otherwise, we set £(z}=0. We define the exceptional set S as

S= |J Blz,e{z)).

€€ Sy

To show that p(S\ Hp) is small we will use the following result.
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LEMMA 10.1. If yeS\ Hp, then C.v(y)>a—8CyCp.

Proof. Observe that if yeS\ Hp, then ye B(xz,e(x)) for some z€Sy. Let go(z) be
such that |C.,v(x)|>a and y€ B(x,e0(x)). We will show that

|Ceo(a) V(%) = Ceo )V ()] < 8CoCo, (10.1)

and we will be done. We have

|Ce )V (2) = Ceo()V(¥)] € [Ceo(2) (V| By, 260(2))) ()]
+Cey (z) (V| B(y, 260(2)))(y)]
+Ceo (@) (¥|C\B(y, 2e0(x)) ) ()
—Ceo () (V|C\ B(y, 20(2))) (y)].

(10.2)

Notice that the first two terms on the right-hand side are bounded above by

[v|(B(y, 2e0(x))) < Cop(B(y, 260()))
eo(x) h eo(T)

< 2C0Cb’

since y¢ Hp. The last term on the right-hand side of (10.2) is bounded above by

1 1 T—Y
/ - |- [ B L TRTHITE
C\B(y,2¢0(s)) | 2= 2—Y C\B(y,2¢0(x)) 12— 2! |2 Y|

<2Che0(a) / L duz),

C\B(y,2e0(x)) IZ—y|2

where we have applied that |z—y|<eo(z) and |2—x|>}|z—y| in the last inequality. As
y¢ Hp, we have the standard estimate

o0

1
du(2) =2Cpep(z E
,U'( ) b ()( ) 1/ (

2
) <lz—yl<2t+icy(z) [2=Y]

QC[,E()(:E)/ ! du(z)

C\B(y,2¢0(x)) ‘Z—ylz

> ktlo (o
<2Cheo(z) Y ﬂ(B(gz’kio(;)g( )

k=1

<4CoCy,.
So we get
|Ceota) (VIC\B(y; 2¢0(2))) () — Ceo (a) (V| C\ B(y; 220(2))) (4)|  4Co G,

and (10.1) holds. O
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Choosing a big enough, we will have %a;SCOCb. Then, from the preceding lemma,
we deduce

2 2C,
WS\ Hp) < = / Covdp< 22 u(F), (10.3)
8] F\Hp [8%

which tends to 0 as a—o0.

10.2. The suppressed operators Co. Let ©: C—10,00) be a Lipschitz function with
Lipschitz constant <1. We denote

x_
lz—y[*+6

<

K@(xvy) =

~—

z)O(y)’

It is not difficult to check that K¢ is a Calderén-Zygmund kernel [NTV1]. Indeed, we

have

1
Ko(z,y)| < ——
' @( y)’ |x—y|

and

8
VKo (2 y)|+IVy Ko (@,9)| < g

The following estimate also holds:

1

max(6(z), 6] (10.4)

We set
Co ev(z) = / Ko(z,y) du(y).
C\B(x.¢)

The operator Cg . is the {e-truncated) ©-suppressed Cauchy transform. We also denote

Co,»v(x) =sup Co V(z).
>0

The following lemma is a variant of some estimates which appear in [NTV1]. It is
also very similar to [T3, Lemma 2.3].

LEMMA 10.2. Let ze€C and ro=0 be such that pu(B(z,r))<Cyor for rzry and
[Cev(z)| K for ezrg. If ©(x)2nrp for some >0, then

ICo.ev(2)| < Cy (10.5)

for all €>0, with C,, depending only on Cy, Cs, o and 7.
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Proof. If e2n~10(z), then

—C.v(z) € T-y _ Ty v
Cowvi=cool< [ |emratmeny By 40
(7=9)0ew)
<af | ememy|

SCb/’z‘ybe———@(x)@(y) du(y)

lz—yl®
O)(O(@) +l—yl)
ng/]z—y|>s ,‘T-ylg d'u(y)
1
_ 2
=a0Er [ | prmdrGeE [ i)

Since u(B{z,r))<Cyr for r2¢, it is easily checked that

1 C
P < —_
/Ix—yl>s Ix_yl3 dﬂ(g) g2

and

1 C
5 q <
/|;r—y|>€ [z_y|2 #(y) €

where C depends only on Cy. Therefore

2
|Co.ev(x)—Cev(z)| £ C(—Z-(Zx) + C@E(m)

and so (10.5) haolds for e 2~ '0(x).
If e<n™'©(z), then

ICoev()| < C / Koz, y)| duly) +
B(z.~16(x))

<2C,

Ko(z,y)dv(y)|. (10.6)

/‘C\B(x,?f‘@(m}}
To estimate the first integral on the right-hand side we use the inequality (10.4) and the
fact that

u(B(z,n~6(2))) < Con™'O(),
because n7'©(x)>ro. The second integral on the right-hand side of (10.6) equals
Coy-1e(r)v(z). This term is bounded by some constant, as shown in the preceding
case. O

We denote ®¢ p(z)=dist(x, C\(HpUS)). Obviously, @y p(x)=0 if 2¢HpUS.
Moreover, ®¢p is a Lipschitz function with Lipschitz constant 1. On the other hand,
HpUS contains all non-Ahlfors disks and all the balls B(z,e(x))}, x€F, and so

@()‘D(I) ? max(R(a:), 6(.’[}))

From the construction of S and the preceding lemma we deduce:
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LEMMA 10.3. Let ©:C—[0,+00) be a Lipschitz function with Lipschitz constant 1
such that ©(z)2n®op(x) for all x€C (where n>0 is some fized constant). Then,
Cov(x)<Cy for all zeF.

10.3. The exceptional set Tp. Looking at conditions (d), (e) and (f) of First Main
Lemma 5.1 one can guess that the function & will behave as a paraaccretive function on
many squares from the dyadic lattice D. We deal with this question in this subsection.

Let us define the exceptional set Tp. If a dyadic square R€D satisfies

w(R) 2 Calv(R)|, (10.7)

where C, is some big constant which will be chosen below, we write R€Dyp. Let
{Rk}ker CDr be the subfamily of disjoint maximal dyadic squares from Dy. The ez-
ceptional set Tp is

Tp= | Rx.
kelr

We are going to show that u(F\(HpUSUTp)) is big. That is, that it is comparable
to p(F). We need to deal with the sets Hp and Tp simultaneously. Both Hp and
Tp have been defined as a union of dyadic squares satisfying some precise conditions
(remember the property (i) for the dyadic squares Ry, k€Iy).

Let {Rx}ker,r De the subfamily of different maximal (and thus disjoint) squares
from

{Ri}rery U{Ri}rerr

s0 that

HpUTp = U R;..
kelur

From Lemma 8.3, (10.7) and the property (i} in First Main Lemma 5.1, we get

W(HpUTp)I< D [v(Re)I< Y [w(Re)[+ Y [v(Ry)|

kelur kel kelr
<C Y UR)+C Y ul(Re)
kely kel

< Craep(F)+Cr u(F) < CalCrae + C ) IW(F)|.
So if we choose ¢ small enough and Cj big enough, we obtain
(v(HpUTp)| < $lu(F).
Now we argue as in §8.3 for proving (k). We have

[V(F\(HpUTp))| > [v(F)|~|v(HpUTp)| > ;|v(F)|.
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Therefore,
p(F) < Co|v(F)| < 2C, [v(F\(HpUTp))| < 2C.Cop(F \ (HpUTp)).

Thus, u(HpUTp) <o p(F), with §1=1-1/2C,C,p< 1.

Let us remark that the estimates above are not valid if we argue with the non-dyadic
exceptional set H. We would have troubles for estimating v(HUTp), because H and Tp
are not disjoint in general. This is the main reason for considering the dyadic version
Hyp of the exceptional set H in the First Main Lemma.

Now we turn our attention to the set S. In (10.3) we obtained an estimate for
#(S\Hp) in terms of the constant a. We set d,=3(61+1). Then we choose o such that

p(HpUTp)+pu(S\ Hp) < 62p(F).

10.4. Summary. In next lemma we summarize what we have shown in this section.

LEMMA 10.4. Assume that v,(E)<Cydiam(E), v(E)2Av+(E), and v(ENQ)<
A (ENQ) for all squares Q with diam(Q)<idiam(E). Let D be any fired dyadic
lattice. There are subsets Hp, S, TpCF (with Hp and Tp depending on D) such that:

(a) p(HpUSUTp)<du(F) for some absolute constant d2<1.

(b) All non-Ahlfors disks (with respect to some constant Cy big enough) are con-
tained in Hp.

(c) If ©:C—[0,400) is any Lipschitz function with Lipschitz constant 1 such
that ©(z)2ndist(z, C\HpUS), for all z€C (where >0 is some fized constant), then
Cov(2)<Cy for all zeF.

(d) All dyadic squares ReD such that R¢ Tp satisfy u(R)<Cq|v(R)|.

11. The proof of the Second Main Lemma

Throughout all of this section we will assume that all the hypotheses in Second Main
Lemma 9.1 hold.

11.1. Random dyadic lattices. We are going to introduce random dyadic lattices.
We follow the construction of [NTV1].

Suppose that Fc B(0,2V~3), where N is a big enough integer. Consider the random
square Q%(w)=w+[-2",2")?, with we[-2N-1,2N"1)2=:0. We take Q%(w) as the
starting square of the dyadic lattice D(w). Observe that FCQ%(w) for all we. Only
the dyadic squares which are contained in Q°%(w) will play some role in the arguments
below. For the moment, we don’t worry about the other squares.
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We take a uniform probability on €2. So we let the probability measure P be the
normalized Lebesgue measure on the square Q.

A square Qe D=D(w) contained in Q° is called terminal if QC HpUTp. Otherwise,
it is called transit. The set of terminal squares is denoted by D*™, and the set of transit
squares by D'. It is easy to check that Q° is always transit.

11.2. The dyadic martingale decomposition. For feLl (u) (we assume always f
real, for simplicity) and any square @ with u(Q)#0, we set

1
=gy .1

We define the operator Z as

where b is the complex function that we have constructed in Main Lemma 5.1, It follows
easily that =fc L?(u) if fe L?(u), and E2==. Moreover, the definition of = does not
depend on the choice of the lattice D. The adjoint of Z is

Let Q€D be some fixed dyadic square. The set of the four children of @ is denoted
as Ch(Q). In this subsection we will also write Ch(Q)={Q;:7=1,2,3,4}.
For any square Q€D and any fe L} (u), we define the function Agf as

0 in C\Q,
<f>Qj <f>Q . : ) tr
Asz ( <b>QJ - m)b in Q] if QJGCh(Q)ﬂD ,
_Yey in Q; if Q;€Ch(Q)NDrr™,
(b)q

The operators Ag satisfy the following properties.

LEMMA 11.1. For all fe L?(u) and all QeD",
() Agfel?(y),

(b) [Aqf du=0,

(c) Aq is a projection, i.e. AL =Aq,

(d) AgE=EAg=0,

(e) if ReD™ and R#Q, then AgAgr=0,
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(f) the adjoint of Ag is

0 in C\Q,
{fblg, _(fble

ALf={ Bla, B @Y Q;€CH@Q)ND™,

) in Q; if Qj€Ch(Q)NDrer™,

The properties (a)-(e) are stated in [NTV1, §XII] and are easily checked. The
property (f) is also immediate (although it does not appear in [NTV1]).

Now we have:

LEMMA 11.2. For any f€ L?(u), we have the decomposition

F=Ef+ > Aqf, (11.1)

QGD"

with the sum convergent in L?(u). Moreover, there exists some absolute constant Cis
such that
Ciat M N2z SIEfNZ2g0+ D_ 180T < Crsll FIEau)- (11.2)
QeDtr
This lemma has been proved in [NTV1, §XII] under the assumption that the para-

accretivity constant Cy (see (10.7)) is sufficiently close to HbHZ;( The arguments in

[NTV1] are still valid in our case for the L?(u)-decomposition of fl' )in (11.1) and for the
second inequality in (11.2). However, they don’t work for the first inequality in (11.2).
We will show below that this estimate follows from the second inequality by duality.
The arguments are of the same type as the ones in [Dd1] and [NTV3] (see also [NTV2]).
However, some additional work is necessary due to the presence of terminal squares and
because we cannot assume b~! to be a bounded function in our case, since b may vanish
in sets of positive measure.

We will need the Dyadic Carleson Imbedding Theorem:
THEOREM 11.3. Let D be some dyadic lattice and let {ag}oep be a family of non-

negative numbers. Suppose that for every square RED we have

Z aq < Cup(R). (11.3)
QeD:QCR

Then, for all fe L?*(u), we have

> agl(Nol* <4CullfllFz(,-
QED: n(Q)#0
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See [NTV1, §XII], for example, for the proof.
Proof of the first inequality in (11.2). By (11.1) and the fact that = and Ag are

projections, we have

f=Ef+ § Agf=E%f+ § AL f.
QeDrr ercr
Then we deduce

[ Pau=[ (24 3 ) sau

Qe‘Dtr

- / ENENd+ Y [@anaynn (11.4)

QeDtr
1/2 1/2
< (1B e+ 3 180MW0 ) (IE 710+ X 1800 13a0)
QED" QeDtr
So if we show that
IE 320+ D 1853200y SCUFIZ 200 (11.5)
Qe'Dtr
we will be done. Notice, by the way, that the second inequality in (11.2) and (11.4) imply
11220 S CIE G20+ C D 1AGflF 20,0
QeDtr

Let us see that (11.5) holds. It is straightforward to check that

1= fll L2y S Cl Sz

So we only have to estimate ZQGDU ”Ab.ﬂl%}(“). To this end we need to introduce the
operators Dg. They are defined as

in C\Q,
DQf={ . '
(flo,—(fle inQ;.
We also define Ef=(f)go. Then it is well known that
IEfZ2 (0 + Z 1D fliZ2uy = 1Fll L2 (0)- (11.6)
QeD

If Q;€Ch(Q) is a transit square, then we have (using (f) from Lemma 11.1)

, (e, — (fba L1
Ay flg; = T 0e +{fb)q, <m B m>

Bo.
_ LDQ(fb)IQ:‘ _(l%%%

Do Dqblg;-
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Since [(b)ql, |(b>Qj|2Cd_l, we obtain

> > 185 200, <C D 1Da(Fb)I32(,

QEeDY Q;eCh(Q)ND QeD
(11.7)

+CY Y b, Dable, iz (i,

QED Q;€Ch(Q)
From (11.6) we deduce
D 1D OZe( < NfblF2( < CUAIIZ 2
QeD
Now observe that the last term in (11.7) can be rewritten as

> [(1b)ol*Ix@Dgbll3a(y =: B,
Q€D

where @ stands for the father of . To estimate this term we will apply the Dyadic
Carleson Imbedding Theorem. Let us check that the numbers ag:= ||XQD@b||iz( ) satisfy
the packing condition (11.3). Taking into account that b is bounded and (11.6), for each
square R€D we have

S lx@ Dbl = IDzbI32(m + 3 1Dgbl22

QCR QCR
Q#R
<Cu(R)+ Y IDq(bxr)l32(,) < Cu(R).
OCcR

So (11.3) holds and then

B< C”fb”Ll(u) = C||f||L2([L)

Now we have to deal with the terminal squares. If Qe D' and Q;&D'"™, then we

have
o (. ) (e, (e
Bafle,= (f (b)o >+< (o  (ba )
Since b is bounded and |(b)g|>C !, we get
185 flo, I SCUA+fD,)+Cl(fba, — (folol =CUSfI+(|f)@,)+ ClDo(fb)lq;l.
Therefore,

> > Ao een<C D > |1 dp

QeDY Q,GCh(Q nDt,erm QeDtr Q]_Ech(Q)therm Qj

+C Y IDo(fo)l72(p)-
QeD

(11.8)



PAINLEVE’'S PROBLEM AND THE SEMIADDITIVITY OF ANALYTIC CAPACITY 143

For the first sum on the right-hand side above, notice that the squares Q;€D*™ whose
father is a transit square are pairwise disjoint. For the last sum, we only have to
use (11.6). Then we obtain

> Yo 1851 Eia,) SCIFIE2g

QED" QjGCh(Q)mDCerm

Since the left-hand side of (11.7) is also bounded above by C||f[32,,,, (11.5) follows. O

(1)

11.3. Good and bad squares. Following [NTV1], we say that a square @ has M-
negligible boundary if
p{zeC dist(z,0Q)<r} < Mr

for all r>0.

We now define bad squares as in [NTV1], too. Let D1=D(w,) and Dy=D(w2), with
wy, w2 €8, be two dyadic lattices. We say that a transit square Q€ DY is bad (with
respect to Do) if either

(a) there exists a square R€ D, such that dist(Q, IR)<161(Q)/4I(R)** and I(R)>
2"(Q) (where m is some fixed positive integer), or

(b) there exists a square R€ Dy such that RC(2™+2+1)Q, I(R)>2"™+1(Q), and
OR is not M-negligible.

Of course, if @ is not bad, then we say that it is good.

Let us remark that in the definition above we consider all the squares of D,, not only
the squares contained in Q°(w2)€ D;, which was the case up to now. On the other hand,
observe that the definition depends on the constants m and M. So strictly speaking, bad
squares should be called (m, M )-bad squares.

Bad squares don't appear very often in dyadic lattices. To be precise, we have the
following result.

LEMMA 11.4 ([NTV1]). Let £,>0 be any fized (small) number. Suppose that the
constants m and M are big enough (depending only on ). Let Dy=D(w;) be any fized
dyadic lattice. For each fixed Q€D1, the probability that it is bad with respect to a dyadic
lattice Do=D(ws), we€R, is <ep. That is,

P{wy: Q€D is bad with respect to D(wa)} < €.

The notion of good and bad squares allows us now to introduce the definition of
good functions. Remember that given any fixed dyadic lattice D;=D(w, ), every function
@€ L%(u) can be written as

p==p+ Z Agep.
QeDY*
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We say that ¢ is D;-good with respect to Dy (or simply, good) if Agy=0 for all bad
squares Q€ DY (with respect to Dy).

11.4. Estimates on good functions. We define the function ®p as
fDD(.’L') = diSt(l‘, C\(H’DUSUT‘D))

Notice that ®p is a Lipschitz function with Lipschitz constant 1 which equals 0 in
C\(HpUSUTp). Observe also that ®p>Ppp (this function was introduced at the
end of §10.2).

Now we have the following result.

LEMMA 11.5. Let D1=D(w;) and Da=D(wz), with wy, w2, be two dyadic lat-
tices. Let ©:C—[0,4+00) be a Lipschitz function with Lipschitz constant 1 such that
infzec ©(2)>0 and O(z) 2 nmax(®p,(z), ®p,(z)) for all € C (where >0 is some fized
constant). If ¢ is Dy-good with respect to Dz, and 1 is Da-good with respect to Dy, then

[{Cop, )| < Crslloll L2y 19l L2 (10

where Ciy is some constant depending on .

This lemma follows by the estimates and arguments of the corresponding result
in [NTV1].

11.5. The probabilistic argument. Following some ideas from [NTV1], we are going
to show that the estimates for good functions from Lemma 11.5 imply that there exists
a set GCC\H with p(G)>C~'u(F) such that the Cauchy transform is bounded on
L?(u|G). The probabilistic arguments of [NTV1, §V] don’t work in our case because
we would need p(HpUSUTp) to be very small (choosing some adequate parameters),
but we only have been able to show that u(HpUSUTp)<au(F), for some fixed §2<1.
Nevertheless, the approach of [NTV1, §XXIII] doesn’t need the preceding assumption
and is well suited for our situation.

Let us describe briefly the ideas from [NTV1, §XXIII] that we need. We denote
Wp=HpUSUTp, and we call it the total exceptional set.

Let Wp,, Wp, be the total exceptional sets corresponding to two independent dyadic
lattices D1=D(w1), D2=D(w2). We have shown that

,U'(F\WD(w)) 2 (1_52)M(F)7
with 0<d; <1 for all wefl. For each x€ F we consider the probabilities

p1(z) = P{weQ: € F\Wp(,)}
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and
p(z) = P{(w1, w2) €QxQ: £€ F\(Wp(u;) UWp(wy)) }-

Since the sets F'\Wp(w,) and F\Wpy,, are independent, we deduce p(z)=p1(z)2. Now
we have

[ pr(@) ) =€ [ xprri, () due) = EnE\ W) > (1-82)u(F),
where £ denotes the mathematical expectation. Let G={xe€F:pi(x)>1(1-4,)}, and

B=F\G. We have

2 2 26
uB) < o [ (@) dute) = 1 (M(F)— / pl(w)du(w)> < 2 u(F),

Thus,

1-6
wG) > 1+5zu(F)-

Observe that for every z€G we have p(z)=p:1(x)?>1(1-d2)%=:3. Now we define
q’(wnwz)(x) = diSt(.’I;, F\(WD(wl)UW’D(wg)))‘

From the preceding calculations, we deduce

1-6;
14382

p{z € F:p(z) > B} 2 p(G) > p(F).

That is,
165

1—+—62‘M(F)~

plzeF: P{(wlva):(I)(wl,wz)(z)zo} >ﬂ} 2

Let us define

@)= pdily S0P Blwwn (@)-
Notice that @ is a 1-Lipschitz function such that ®(z)=0 for all x€G. Moreover, ®(z) >
R(x),e(z) for all z€F, because @y, 4,)(2)2R(x),e(z) for all xeF, (w1, w2)exQ,
since all non-Ahlfors disks are contained in Hp for any choice of the lattice D, and S
does not depend on P.

Finally, from Lemmas 11.4 and 11.5, and [NTV1, Main Lemma (§XXIII)], we deduce
that Cg is bounded on L2(1), and all the constants involved are absolute constants. Since
®(z)=0 on G, the Cauchy transform is bounded on L?(u|G). On the other hand, the
fact that ®(z)=0 on G also implies that R(z)=0 on G, which is equivalent to say that
w(B(z,7))<Cyr for all r>0 if z€G.

Now the Second Main Lemma is proved.
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12. The proof of Theorem 1.1
From the First Main Lemma and the Second Main Lemma we get:

LEMMA 12.1. There exists some absolute constant B such that if A>1 is any fized
constant and

(8) 7+(E)<Cydiam(E),

(b) VENQ)KAY(ENQ) for all squares Q with diam(Q)< ; diam(E),

(c) V(E)=Av.(E),
then y(E)<Bv.(E).

Proof. By First Main Lemma 5.1 and Second Main Lemma 9.1, there are sets F, G
and a measure yu supported on F such that

(1) ECF and v, (E)=7.(F),

(2) WF)=~(E),

(3) GCF and p(G)>Cr'u(F),

(4) p(GNB(x,r))<Cor for all z€G, 7>0, and ||C||p2(uc), L2(u1e) SC11-
From (4) and (3), we get

Y (F)2C7'u(G) > C~ u(F).
Then, by (2), the preceding inequality and (1),

’Y(E)gcﬂ(F)<C’X+(F)<B7+(E)- O

As a corollary we deduce:

LEMMA 12.2. There exists some absolute constant Ay such that if Y(ENQ)<
Apv (ENQ) for all squares Q with diam(Q)S%diam(E), then v(E)< Ao+ (E).

Proof. We take Ag=max(1,C; ", B). If v,(E)>Cydiam(FE), then we get v, (F)>
Cy4v(E), and we are done. If v, (E)<Cydiam(F), then we also have y(E)< Agv.(E).
Otherwise, we apply Lemma 12.1 and we deduce v(E)<Bv.(E)<Aov+(E), which is a
contradiction. ]

Notice, by the way, that any constant Ag>max(1,C; ', B) works in the argument
above. So Lemma 12.2 holds for any constant Ao sufficiently big.
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Remember that we are assuming that F is a finite union of
disjoint compact segments L;. We set

d:=15 rjr;gcldlst(LJ, Lyg).



PAINLEVE'S PROBLEM AND THE SEMIADDITIVITY OF ANALYTIC CAPACITY 147

We will prove by induction on n that if R is a closed rectangle with sides parallel to the
axes and diameter €4™d, n>0, then

Y(RNE) < Apys (RNE). (12.1)

Notice that if diam(R)<d, then R can intersect at most one segment L;. So either
RNE=@ or RNE coincides with a segment, and in any case, (12.1) follows (assuming
Ag sufficiently big).

Let us see now that if (12.1) holds for all rectangles R with diameter <4"d, then it
also holds for a rectangle R with diameter <4"*'d. We only have to apply Lemma 12.2
to the set RoNE, which is itself a finite union of disjoint compact segments. Indeed, take
a square @ with diameter < % diam(R¢NE). By the induction hypothesis we have

Y(@QNRoNE) < Ag7+ (QNRoNE),
because QN Ry is a rectangle with diameter <4™d. Therefore,
Y(RoNE) < Ao+ (RoNE)

by Lemma 12.2. 0
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