
K-theory for certain group C*-algebras 

by 

E. CHRISTOPHER LANCE 

University of Leeds 
Leeds, England 

Introduction 

The use of K-theoretic techniques in C*-algebras has led to the solution of several 

outstanding problems, among them the conjecture of R. V. Kadison that C~Fn), the 

reduced C*-algebra of the free group on n generators (n~2), has no nontrivial projec- 

tions. This was resolved affirmatively by Pimsner and Voiculescu [6] as a corollary to a 

remarkable theorem which describes the K-groups for any reduced crossed product of 

a C*-algebra by an action of a free group. 

This paper originated in the author's attempt to understand the work of Pimsner 

and Voiculescu, and in particular to see whether their methods could be used to give a 

simpler proof that Ko(C~Fn))=Z. By slightly adapting their approach, we are able to 

give a description of K.(C~F)) for any group F which is a free product of countable 

amenable groups (Corollary 5.5 below). When specialized to the case F=Fn, our results 

naturally agree with those of Pimsner and Voiculescu. Our proof of their result is not 

actually much simpler than theirs, given the technical simplifications that accrue from 

not considering crossed products, but we feel that the structure of the proof becomes 

clearer when displayed in a more general context. 

The K-theory of the full C*-algebras of some free product groups has been 

investigated by Cuntz [2] and Rosenberg [7]. Comparison of their results with ours 

shows that K.(CfiF)) is the same as K.(C*(F)) in all known cases. 

A vital element in the work of Pimsner and Voiculescu is the construction of an 

extension, which they call the Toeplitz extension, of C~F~) by the algebra K of 

compact operators. The Toeplitz extension is intimately tied to the group of integers, 

and in order to be able to deal with free products of groups other than Z we have 

replaced it by another extension of C~F) by K which can be constructed for any free 

product group F and which turns out to be somewhat easier to handle than the Toeplitz 

extension. We describe this extension and some of its properties in section three. 

In section two we investigate what seems to us the crucial property of the integers 
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which allows Pimsner and Voiculescu's methods to work. We show that this property 

holds in any countable amenable group and also in some nonamenable groups. 

Another important ingredient of Pimsner and Voiculescu's work is a useful method 

for constructing homomorphisms between the K-groups of C*-algebras. We call this 

construction the "difference map" and give a systematic account of it in section one. 

We assume a general familiarity with K-theory for C*-algebras as presented for 

example in [8] and [9]. 

For any group G we write {6(g): g E G} for the canonical orthonormal basis of 

12(G), so that 6(g) takes the value I at g and 0 elsewhere. We write 2 for the left regular 

representation of G, so that 2(g)6(h)=6(gh). The reduced C*-algebra of G, C~G), is 

the C*-algebra generated by {2(g): g E G}. If ~0 is a representation of G which is quasi- 

equivalent to ;t then ~p extends to a representation of C~G). We shall denote this 

representation also by ~/,, so that ifx=A(g) then ~p(x)=~/,(g). 

If G, G' are groups then we write {6(g,g'):gEG, g'EG'} for the canonical 

orthonormal basis of 12(GxG'). We habitually identify this space with 12(G)| ') so 

that, for example, if x E B(IZ(G)) then we write x|  1 for the operator on 12(Gx G') which 

behaves like x on the first coordinate and leaves the second coordinate fixed. When we 

refer to tensor products of C*-algebras we always mean the spatial, or minimal, tensor 

product ([I0]). 

1. The "difference" map 

IfA is a C*-algebra then we denote by A* the algebra obtained by adjoining an identity 

1 to A, unless A is already unital in which case A*=A. Replacing A by K| we may 

assume that KI(A) consists of equivalence classes [u]l of elements of the unitary group 

A~ of A t. If a: A---~B is a homomorphism between C*-algebras then a can be extended 

to a homomorphism, still denoted by a, from A* to B*. Let p=a(l), so that p is a 

projection in B*, and write p.L for I - p .  (It is important that we should not assume 

a(1)=l.)  The induced map aI:KI(A)---~KI(B) is given by al[u]l=[a(u)+p• The 

induced map ao: Ko(A)--*Ko(B) is obtained by taking suspensions. We write a .  for the 

homomorphism aof)al of graded groups K,(A)--,K,(B). 
Suppose that a, fl are homomorphisms and that J is an ideal (always closed and 

two-sided) in B such that a(x)-fl(x) E J for all x in A. We say that a and fl agree rood J. 

Let p=a(1), q=fl(1). Then p - q E J  and so p• EJ. For u in A~, 

(a(u)+p.L) (fl(U-I)+ q.L)=(a(u)_fl(U) ) fl(U-I)+(p• _q.L) (fl(u-i)+q• (pl_q• 1 E J*. 
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Since (a(u)+p• • is clearly unitary, we can define a map (a/~)l from 

K I ( A  ) t o  K1(J) by 

(a//~)j[u]~ = [(a(u)+p • ~(u-~)+q• 

LEMMA 1.1. The map (a/~)! is a homomorphism from Kt(A) to Kl(d0. 

Proof. It is clear that the map (a/~) I is well-defined. Let wEfv, vEB* u. In the 

algebra M2(B*) of 2x2 matrices over B* we have 

:)(~ :) 
There is a homotopy (Vt) in M2(Bt)u from the identity to 

SO 

:,) 

V w ,(0 
is a homotopy in M2(f u) from 

(0 0 1 ) t o  (rOY-' ~). 

Hence [wh=[vwv-ql in KI(./). It follows that 

[(a(x)+p • (fl(x-l)+q• j = [(~(x-l)+q • (a(x)+pX)]l 

in Kj(J), for any x in A~:. 

Thus for x, y in A~: we have 

(a//~)1[xy]1 = [(a(xy)+p ~) ~(y-~x-')+q~)]i 

= [(~(x)+p• (a(y)+p• (~(y-l)+q• (~(X-J)+q• 

= [~(x- ~)+ q • (a(x)+p • (a(y) +p • ~(y-')+ q 9] ~ 

= (a/~h [x]i (a/~), [y],. 

Thus (a/~)l is a homomorphism. 
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The difference map (a/fl)o from Ko(A) to Ko(J) is defined by taking suspensions. 

We write (a/fl), for the map 

(a/fl) o O(a/fl),:  K,(A) ---) K,(J). 

Difference maps were introduced by Pimsner and Voiculescu in [6] for the follow- 

ing reason. Given a homomorphism a" A-~,B of  C*-algebras, it can sometimes happen 

that the induced map a . :  K.(A)--~K.(B) is an isomorphism even though a itself is not. 

In such cases, the inverse map a .  t does not necessarily lift to the algebras. In other  

words, there need not exist any homomorphism fl: B--~A such that f l . = a .  ~. What 

Pimsner and Voiculescu discovered was that in such circumstances it is sometimes 

possible to embed A (or ra ther  the stably isomorphic algebra K| as an ideal in a C*- 

algebra C in such a way that there are homomorphisms fl, Y: B-*C which agree mod 

K| with ( f l / y ) . = a .  I. Thus although a .  I does not lift in the usual way, it does lift as 

the difference between two homomorphisms.  

The construct ion of  the difference map seems to be special to C*-algebraic K- 

theory. There  does not appear  to be any direct way of  constructing (a/fl)o without using 

suspensions and thereby invoking Bott  periodicity, so it is hard to see how one could 

define difference maps in the setting of  algebraic K-theory,  

The following five lemmas give some of  the elementary properties of  difference 

maps. In each case a,  fl: A - . B  are homomorphisms which agree mod J. The proofs are 

trivial and are omitted. 

LEMMA 1.2. (a/fl).=--(fl/a).. 

LEMMA 1.3. f l y :  C---*A is a homomorphism of  C*-algebras then 

(aT/~y), = (c@),  r , .  

LEMMA 1.4. Suppose 6: J--*D is a homomorphism of  C*-algebras. Suppose also 

that F is a C*-algebra containing D as an ideal and that c~:fl--~F is a homomorphism 

which extends 6. Then 

(~al@), = 6,(a/~),. 

For  the next  lemma, suppose that y:A--.B is a homomorphism such that 

a(1)y(1)=0.  Then we can define a homomorphism a~7:A---~B by 

(a~y)(x)  = a(x)+y(x) (xEA). 
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LEMMA 1.5. Suppose that y:A---~B is a homomorphism with a(1)y(1)=fl(1)y(1)=O. 

Then 

(a@y/~Gy), = (a@,.  

LEMMA 1.6. Suppose that a, fl, y:A---~B are homomorphisms which all agree 

mod J. Then 

(a/v), = (a/#), + @y),.  

Let a, fl: A--~B be homomorphisms which agree mod J. We say that a and fl are 

J-homotopic if there is a path {Yt: 0 ~<t~<l} of homomorphisms from A to B such that 

(i) (Yt) is continuous (in the sense that t~yt (x)  is continuous, for each x in A), 

(ii) y0=a ,  y l=f l ,  

(iii) each Y, agrees with a (or fl) mod J. 

The proof of the next lemma comes in Lemmas 2.1 and 2.2 of [6]. 

LEMMA 1.7. Let J be an ideal in B, and suppose a, fl:A--~B and y:A---~J are 

homomorphisms with fl(1)y(l)=0 such that f l ~ y  and a are J-homotopic. Then 
y,  =(a/#),.  

Proof([6]). Suppose (o,:0~<t~<l) is a homotopy of homomorphisms from A to B 

which all agree mod J, with Oo=flt~/, ol=a. Let p,=o,(l), q=fl(l). For u in A~ let 

w, = (o,(u)+ pD (#(u-')+q~ ). 

Then (w,) is a continuous path of unitaries in J* with 

and 

[w,], = (a/#), [ul, 

w o = ( f l (u)+y(u)+p~)  (fl(u-J)+q • 

=7(u)+q+p~ 

so that [ W o ] I = 7 1 [ U ] I  . Thus (a/fl)l=yl. It follows that (a/fl)o=Yo by suspension. 
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2. Groups with property A 

Throughout this section, ).0 will denote the left regular representation of a group G. We 

say that a representation 221 of  G on 12(G) has a fixed point if, for some unit vector ~ in 

12(G), 221(g)~=~ for all g in G. Let  K be the ideal of compact operators in B(12(G)). 

Definition. The group G has property A if22o (considered as a representation of  the 

full C*-algebra C*(G)) is K-homotopic to a representation 221 which has a fixed point. 

THEOREM 2.1. Any countable amenable group has property A. 

Proof. To say that 21 has a fixed point is the same as to say that 2t contains the 

trivial representation r of  G as a subrepresentation. If  G is finite then 20 contains r so 

the theorem clearly holds. 

Suppose then that G is infinite and let {gj:j>~O} be an enumeration of the elements 

of  G. Observe first that if A, B are finite subsets of G then we can find a right translate 

of  B which is disjoint from A (choose x~B-IA: then ANBx is empty). Using Fr 

condition ([4], p. 64), we can find finite nonempty subsets Ko, K I  . . . .  of G with the 

property that 

]K.I-'IgjK. n K . I > I - 2  '-2" (j<~n). 

By the above observation we may assume that the sets K~ are all disjoint. Define unit 

vectors ~o, ~l . . . .  in 12(G) by 

= I t .  I O(g). 
gEK n 

Then {~n} is an orthonormal set, spanning a subspace M of/2(G), and 

1122o(gj) .- .ll < 2 -"  (j<~n). 

For t~>0, let n be the integer part of t and write O=(zd2) (t-n). Define an isometry 

vt on/2(G) as follows: 

Vt(~i) = ~i (i  < n ) ,  

v,(~.) = cos 0 .~ .+s in  0.~.+1, 

V,(~i) = ~i+ I ( i  > n), 

v,(~) = ~ (~E M• 
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Let pt = 1 - o  t I t* , SO that Pt is the projection onto the one-dimensional subspace spanned 

by sin 0. ~n-cos 0. ~n+l. 

Suppose k~>max {n+2,j}. Then 

II (~.o(gj) - vt ~.o(gj) or*) ~k II = I I go(g) ~ -  ~ -  Vt(~.o(gj) ~tc-I -- ~k-1 ) II 

< 2-k+2.  

This shows that the restriction of 2o(gj)-vt ~-o(gj)O* to M is Hilbert-Schmidt and hence 

compact. Let PM denote the projection of 12(G) onto M and write p~  for 1 -pu .  We 

have shown that (Ao(gj)--vt]~o(gj)vt*)pM is compact. Replacing gj by its inverse and 

taking adjoints, we see that pM(]~o(gj)--Vt20(gj) V* ) is compact. Since vt is the identity 

on M • 

p~(~.0(&)- v, ~-0(&) v,*) p~, = 0, 

and it follows that 2o(gj)-Vt2o(gj)v* is compact, for all j and all t. 

Fix j ,  and let gi=gf  j. We suppose that t is large, so that n~>max {i,j},  and we wish 

to estimate the norm of the compact operator 

k t = 20(g j) - p , -  v, 20(g:) v*. 

We begin by calculating the effect of kt on a set of basis vectors for the subspace M, 

spanned by {~,.: i>~n}. The computation in the previous paragraph shows that 

11 k,(cos 0. ~. + sin 0-8.+ 1)I1 = I I (,~0(g) v, ~o-v, ~,)+ ut(~o(gj) ~n- ~n) ll 

< 2-"(cos 0+sin 0+ 1), 

]l kt(sin 0. ~ . - c o s  0.~.+ i) II = [I 0-0(gi)- l) (sin o . k . - c o s  0.~.+ i) II 

< 2-"(sin O+cos 0), 

IIk,~j[l< 2 -~ (j~> n+2). 

Thus the Hilbert-Schmidt norm, and hence the operator norm, of kt restricted to M. is 

at most c2 -~, for some constant c. Since v t is the identity on M~, the argument in the 

previous paragraph shows that ]lktll<c'2 -~ for some constant c', and so kt--*0 as t---.~. 

Define a path {ut:0~<t<l} of unitary operators from 12(G)~C onto 12(G) as 

follows. Let s=tan (zt/2), let n=[s], let O=(x/2) ( s -n )  and let 

u,(~, a) = v,(~)+a(sin 0. ~n-cos 0. ~,+j). 
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Define a path of representations/~t of G on 12(G) for 0~<t<l by 

fit(g) = ut(;t 0 Or)  (g) u*. 

It is easy to check that ;to(gj)-/~t(gj) = ks, which is compact and tends to zero in norm 

as t---~l. If we let ~ = ; t o  then (~t) is a K-homotopy joining/~0, which evidently contains 

r as a subrepresentation, to ;to. 

The proof of the above theorem is modelled on Arveson's approach to Voicules- 

cu's Weyl-von Neumann theorem ([1], Theorem 4; [11]). Voiculescu defines two 

representations 2, /~ of a C*-algebra A on a Hilbert space H to be approximately 

equivalent if there is a sequence of unitary operators un on H such that ;t and un/~(.)u* 

agree mod K for all n and u~(x)u*~;t(x) as n~oo  for all x in A. It is evident that the 

concepts of K-homotopy and approximate equivalence are quite similar. It is not hard 

to show that a countable group G is amenable if and only if its left regular representa- 

tion is approximately equivalent to a representation with a fixed point. In fact, if G is 

amenable then an argument like that used to prove Theorem 2.1, but simpler, shows 

that ;to is approximtely equivalent to a representation of the form ~O)r. Conversely, if 

/t~)r is approximately equivalent to ;to then it is easy to see that the state associated 

with r is a weak*-limit of vector states associated with ;to, so that r is weakly contained 

in ;to and therefore G is amenable ([4]; Proposition 18.3.6 of [3]). It will follow from 

Proposition 2.2, however, that property A does not imply amenability. The reason is 

that no unitary equivalences are assumed among the representations in a K-homotopy.  

For a specific group, it is often possible to exhibit a much simpler K-homotopy 

between ;to and a representation with a fixed point than that provided by Theorem 2.1. 

For G = Z ,  Pimsner and Voiculescu construct a K-homotopy as follows. Given a 2x2  

unitary matrix u, we can associate with u a unitary operator t~ on/2(Z) by making u act 

on the two-dimensional subspace generated by 6(0) and 6(1) and leaving the orthogonal 

complement fixed. The left regular representation of Z is generated by ;t0(1), which is 

just the bilateral shift on 12(Z). Let  (ut) be a continuous path of 2 • 2 matrices joining the 

identity to 

(0 '0) 
for example we could take 

Ct S t )  
IIt ~- 

S t C t 
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where ct=(l+emi)/2, st=(1-enti)/2, and define ;tt(1)=/~t;to(1). This specifies a K- 

homotopy ;it of representations of Z joining ;to to a representation which fixes 6(0). 

PROPOSITION 2.2. The free group F,, has property A. 

Proof. Denote by al . . . . .  an the generators of Fn and for l<.j<~n let Gj be the 

subgroup generated by aj. Let ;to be the left regular representation of Fn and define 

unitary operators ;tt(ay) (0~<t~<l) as follows. On the subspace lZ(Gy)=-lz(Z), ;tt(ctj) is a 

copy of the operator ;it(l) constructed above and on the orthogonal subspace 

12(Fn\G~) the operator ;tt(aj) is equal to ;to(aj.). Clearly ;tt(aj-) is unitary. Thus ;it 

extends in a unique way to a representation of  Fn, which gives a K-homotopy from ;to 

to a representation which fixes 6(e). 

The above argument shows in fact that the class of groups with property A is 

closed under the formation of  free products. However, there are groups which fail to 

have property A, as the next result shows. For the definition of property T, see [5]. 

PROPOSITION 2.3. A nonamenable group which has property T cannot have 
property A. 

Proof. Suppose G has property T. There exist a finite subset F of G and e>0 with 

the following property. If ~, is a representation of G on a Hilbert space H and ~ is a unit 

vector in H such that 

IIW(g)~-~ll <e  (gEE) 

then ~ contains r. It follows from [3], Proposition 3.4.2 (ii), that if ~p contains r weakly 

then ~ contains r. 

Suppose that G also has property A, and let (At) be a K-homotopy joining the left 

regular representation of G to a representation which contains r. Let T= {t: ;tt contains 

r}. Since G has property T, the set T is open. On the other hand, it is easily seen that 

the set of all t for which ;it weakly contains r is closed, so that T is closed. Since T 

contains 1, it also contains 0, and so G is amenable. 

We conclude this section with a simple result which makes it easier to handle 

representations with a fixed point. 

LEMMA 2.3. A representation I~ o f  G on /2(G) which has a fixed point ~ is 

K-homotopic to a representation which has 6(e) as a fixed point. 

Proof. Let M be the two-dimensional subspace of 12(G) generated by 6(e) and ~, 

15-  838286 Acta Mathematica 151. Imprim~ le 28 Decembr6 1983 
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and let (ut) be a continuous path of unitary operators on /2(G) such that u0 is the 

identity, ut is the identity on M • and ulr(e)=~. Then define ,ttt(g)=ut,tt(g ) Ut*(g ~ G). It 

is clear that (gt) gives the required K-homotopy. 

In future, given a group G with property A, we shall always assume that (2,) is a 

K-homotopy joining 20 to a representation 21 which fixes 6(e). 

3. The extension algebra 

Let G, S be groups. We use e to denote the identity element of any group and we write 

G * = G \ { e } ,  S * = S \ { e } .  We require that all groups considered should be nontrivial, 

so G* and S* are nonempty. 

Let F=G-~S be the free product of G and S. In the usual way, we express each 

element of F as a reduced word in G* and S* (with e corresponding to the empty word). 

We say that a word w in F ends in G ifw=...g2s2gl (with gl EG*). Let F~'be the set of 

all nonempty words in F which end in G and let FI=F~'0 {e}. Similarly, let F~'be the set 

of all nonempty words ending in S, F ~* the set of all nonempty words beginning with G, 

F 2. the set of all nonempty words beginning with S, 

F 2 = F 2. t.I {e}, F~ = r 2 n r , ,  = r 2. n 

and so on. 

For M~_F let q(M) be the projection from 12(F) onto/2(M). Most of what follows 

will be concerned with the space/2(F 0, and if M~_F~ then we shall also use q(M) to 

denote the projection from/2(F 0 onto 12(M) where the context makes it clear what is 

happening. We write qw for q({w}) (w E F). 

Notice that 2(g) leaves /2(F 0 invariant for g in G (where 2 is the left regular 

representation of F) and 2(s) leaves lZ(F~ invariant for s in S. For g in G let p(g) be the 

restriction of 2(g) to 12(F 0, and for s in S let v(s) be the restriction of 2(s)q(F~ to 

/2(Fl). Then p is a representation of G on/2(F0 and v is a nonunital representation of S 

on 12(FI). 

Write A=C~G),  B=C~S).  Then/~, v extend to representations (which we still 

denote by/~, v) of A, B respectively on 12(F 0. Let E be the C*-algebra generated by 

/~(A) and v(B). Notice that qe=p(1)-v(l)EE. For any word w=.. .s- lgosogj ... in F 

let 

o(w) =.. .  v(s_O /~(go) V(So) /~(g O ... 

be the corresponding element of E (with a(e)= 1). If wEF~ then a(w) qe is the rank one 
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operator ~ ( ~ ,  6(e))6(w) in B(F([`0). Let K be the ideal in E generated by qe. Then it 

is clear from the above that K is just the compact operators on lZ([`l). The following 

result is Lemma 1.1 of [6]. 

LEMMA 3.1. There is a homomorphism re from E onto Cr*(F), with kernel K, such 

that ~(kt(g))=2(g) (g E G) and zr(v(s))=2(s) (s E S). 

Proof(J6]). Fix h in G*, t in S*. For n~>l let M,={w(ht)": wEFi}.  Then Mn 1' F as 

n~oo. Define v,: lZ(Fl)---~lZ(F) by 

v,O(w) = 6(w(ht)") (wE [`0- 

Then vn maps 12([`1) isometrically onto the range of q(M~), so vnv*--*l strongly as 

n~oo. Since right multiplication commutes with left multiplication it is easily verified 

that 

v,l~(g) v*--, 2(g) strongly (g • G), 

* 2(s) strongly (sES). v . v ( s )  v .  ---, 

Hence the strong limit zr(x)=lim,_,oo v, xv* exists for each x in E. Obviously ~r maps E 

homomorphically onto C~F) and since ~r(qe)=0 it is clear that K is contained in the 

kernel of at. 

To complete the proof it only remains to show that ker ~r_~K. For x in C~[`) let p(x) 

be the restriction of q(F0x to 12([`0. Then the linear mapping p takes ;t(g) to/~(g) 

(g E G) and 2(s) to v(s) (s E S). It is easy to check by induction on the length of w that 

p~to(w)-o(w)=p3.(w)-tT(w) E K (w E F). 

It follows that par(y)-y E K (y E E) so that if :t(y)=0 then y E K as required. 

Thus E is an extension of C~[`) by the compact operators. In the following 

sections we shall see that if G has property A then one can compute the K-groups of E 

and thereby those of C~F). 

4. Construction of various homomorphisms 

We suppose throughout this section that G has property A. Any element of F=G-~S 

can be uniquely written in the form wg, with w in ['2 and g in G, and any element of F~' 

can be uniquely written in the form wh, with w in [`2 and h in G*. Define 

u: 12(Fx G*)--~I2(F~• G) by 
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uO(wg, h) = Z (AI (gh) o(h-l)' 6(k) ) 6(wk, k-lgh), 
kE G* 

where 21 is a representation of  G on/2(G), K-homotopic to the left regular representa- 

tion 20, which leaves 6(e) fixed. 

LEMMA 4.1. The mapping u is isometric from 12(I'xG*) onto /2(I"~'xG), with 

inverse given by 

u*O(wh, g) = Z (6(h), ~,l(hg) 6(k) ) 6(whgk, k -l) (w E F 2, h E G*, g E G). 
kEG* 

Proof. Initially, u is defined only as a mapping between the prehilbert spaces 

spanned algebraically by the basis vectors. It is easy to check that the adjoint operator 

is as given in the statement of the lemma. 

Fix I in G. Then {21(/) 6(p): p E G} is an orthonormal basis for 12(G). If  h, k E G then 

it follows that 

I ifh = k 
Z (6(h), 2,(/) 6(p) ) (2,(/) 6(p), 6(k) ) = (6(h), 6(k) ) = ifh4=k. 
p E G  

Suppose now that h, kEG*. Since ;t~(/) fixes di(e), we have 

(6(h), )q(/)6(e) ) = (2,(/) 6(e), 6(k) ) = 0 

and so the above equation remains true if we sum over p in G* (rather than over all p in 

G). 

It follows that, for w in F2, h in G* and g in G, 

uu*O(wh, g)= Z (6(h),2,(hg)6(l) ) (2~(hg)O(l),6(k) ) 6(wk, k-~hg) 
k, IEG* 

= 6(wh, g). 

Thus uu* (and similarly u'u) is the identity, and so u extends by continuity to a unitary 

operator from 12(Fx G*) onto 12(F~'x G). 

We now wish to define a nonunital representation of E on the space/2(Ft xG).  To 

do this, we identify 12(F~'xG) with the obvious subspace of 12(Ft xG) and regard u as a 

map into 12(FIxG). For  x in E let v/(x)=u(rc(x)| where ~t is as in the previous 

section. For  I in G, a calculation like that in the proof of Lemma 4.1 shows that 
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f 
~(lwh, g) ifw * e 

(1) 
~p(~(l)) ~(wh, g) = (21(/) ~(h), ~(k) ) ~(k, k-Ilhg) ifw = e. 

k . k E G  

As before, we write A for the C*-algebra C~G) acting on 12(G). Define 

~p': E-->E| • G)) by ~p'(x)=x| I. 

LEMMA 4.2. For l in G, 

(i) ~p(/z(/)) E E| 
(ii) ~p(/z(/))-~p'(/z(/)) E K| 

Proof. Since (i) obviously follows from (ii), we prove (ii). Observe first that 

~p'(I.t(l)) ~(wh, g) = ~(Iwh, g) (wh E F I, g E G). 

From (1) we see that 

(q (FI \G)  | 1) 0P~(/))-~P'~(/))) --- 0. 

Since qe| 1 E K|  the proof will be complete if we show that 

(q(G*) | I) 0p(/z(/))- ~p'(/z(/))) E K| 

For h in G* and g in G, 

~p'(lz(l)) b(h, g) = ~(lh, g) = E (20(/) ~(h), r ) ~(k, k-' lhg). 
kEG 

Thus, from (1), 

0P~(/))-~P'~(/))) ~(h, g) = ~ ((2~(/) -;t0(l) ) 6(h), ~(k) ) b(k, k-~lhg). 
kEG 

Define a unitary operator U on 12(G*xG) by Uf(h,g)=b(h,hg). Clearly U is in the 

multiplier algebra of K|  and U* is given by U*b(h, g)=(~(h, h-lg). Since 21, 2o are 

K-homotopic, (21(/)-2o(/))| and hence also U*(0.1(/)-Zo(/))| is in 

K| But a routine computation shows that the restriction of the latter operator to the 

range of q(G*)| I is equal to 

(q(G*)| 1) 0p(.u(/))- ~p'~(/))), 

so the lemma is proved. 
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So far, we have only considered the effect of~0 and ~p' on elements of  the form/~(/). 

But it is easy to check that 

v/(v(s)) = v/'(v(s)) = v(s) | 1 (s E S). 

Since elements of  the form/~(/) or v(s) generate the C*-algebra E, we conclude that 

V/(x)-q~'(x)EK| for all x in E. Thus ~0 and ~p' are homomorphisms from E to E| 

which agree mod K| 
Any element of  F can be uniquely written in the form ws, with w in FI and s in S. 

Define v: 12(F)---~12(FI x S) by v6(ws)=6(w, s) and let O(x)=wt(x)v* (x E E). For t in S, 

~6(tw, s) if w *  e (2) 
O(v(t)) 6(w, s) = v6(tws) = L6(e, ts) if w = e. 

Thus O(v(t))=q(F~)v(t)|174174 (with B=C~S)). Similarly 0~( / ) )= 

/~(/)| 1 E E |  for I in G. So 0 is a homomorphism from E to E| 

Define O':E---~E| by O'(x)=x| It is clear that 0 and 0' agree rood K| 

If we identify A and B with the direct summands of A ~ B  then we may regard any 

homomorphism into or out of  A (or B) as being a homomorphism to or from A ~ B .  With 

this convention, we have 

/~ ,+v , :  K,(A t~B) ~ K,(E), 

(0/0') ,-(~php') , :  K,(E) ~ K,(A t~B). 

We aim to show that these maps are inverses of each other, so that K,(E)=-- 

K,(A)~K,(B).  

5. The main theorem 

We continue to assume that F=G-~S where G has property A, A=C~G) and B=C~S). 
Let (2t) be a K-homotopy of  representations of  G on I2(G) joining the left regular 

representation ~.0 to a representation ;tl which fixes 6(e). 
Recall from the previous section that ~:E---}E| is a homomorphism with 

~(1)=q(FT)|  Denote by il the map a~--~qe| from A to K|174 Then 

~p(1)it(l)=0 so we can form the (unital) homomorphism lpg0)ij: A--}E| 

LEMMA 5.1. The homomorphisms WIt~il and ~'~ from A to E|  are K| 

homotopic. 

Proof. For 0<~t~<l and l in G define an operator tpt(/) on 12(F I xG) by 
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f c)(lwg, h) 

~(l)6(wg, h)= 1.k~o ( 2t(l)O(g)'6(k) ) 6(k,k-'Igh) 

if wEF~,gEG* 

if w=e ,  gEG. 

We wish to show that there is a homomorphism from A to E| which extends got. To 

do this, we exhibit a unitary operator ut on/2(F~ xG) such that 

q0t(/) = ut(kt(/) | I) u* (IE G). 

Define ut on the basis vectors as follows: 

utO(g, h) = Z (2,(gh) t~(h-~), t~(k) ) O(k, k-~gh) (g, h E G), 
k EG 

u t 6(wg, h) = 6(wg, h) (w E F'~, g E G*, h E G). 

It is easily verified that the adjoint operator is the identity on the range of q(FI \ G ) |  1 

and is specified on the range of q(G) |  by 

u*,~(g, h) = ~ (,~(g),,Z,(gh),~(k-') ) ,~(ghk-', k). 
kEG 

As in the proof of  Lemma 4.1, one verifies that ut is unitary and also that got(/) = 

ut(.u(l)| l)u* (l E G). Thus got extends to a homomorphism from A into B(12(Ft x G)). An 

argument like that used in the proof of Lemma 4.2 shows that go,(x)-goo(x)EK| 

(xEA). It is clear that goo=q~'p and goj=~op0)i~. Thus got(x)EE| (0~<t~<l, xEA), and 

(got) is a K-homotopy connecting q, pE)ia to ~0'~. 

The next result which we need is a more complicated version of Lemma 5.1 in 

which A is replaced by E. 

Let  j denote the map x,--~qe| from E to K|174 and let ki = 

1 | E|174 Then j (1)=qe |  1 and/~q, ( l )=q(F~|  1, so we may form the (unital) 

homomorphism kiq,~)j: E---.E| Also, let k denote the map x~x|  from E to E| 
and let 9 = l |  E|174 Then k(1)=l| and 90(l)=l |  so we may form 

the (unital) homomorphism 900)k: E--,E| 

LEMMA 5.2. The homomorphisms IJVdO)j and f, Ot~k from E to E| are K| 
homotopic. 

Proof. For I in G and 0~<t~<l, define an operator ~t(g(/)) on 12(FlxF t) by 
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[ 6(lw, w') 

r 6(w, w') = ] ~ (2,(1) 6(w), 6(k) ) 6(k, k-'lww') 
I..kEG 

if w E F I \  G 

if wEG 

This operator can be described as follows. Any element w' of F~ can be uniquely 

written as w'=hw" with h in G and w" in F~, and by means of the correspondence 

6(w,w')~6(w,h,  w") we can identify 12(FixF 0 with card(F~) copies of 12(FixG). 

Under this identification, ~t(g(/)) is just the direct sum of card(F~) copies of the 

operator ~(/) constructed in Lemma 5.1. It follows that ~t(g(/)) is a unitary element of 

E| which depends continuously on t, and also that ~,/ t  is a representation of G on 

12(Fj xF  0 which agrees mod K | E with ~0~. 

For s in S and 0~<t~<l define ~t(v(s)) by 

[ 6(sw, w') 
r 6(w, w') = ~ ~(e, sw') 

if w * e  
if w = e , w '  *e .  
if w = w ' = e  

Then ~t(v(s)) (which is obviously independent of t) is a partial isometry in E| whose 

initial and final spaces are both equal to {6(e, e)} J-, and ~tv is a representation of S. 

We shall show that for 0~<t~<l there is a homomorphism dPt:E---,E| whose 

values at kt(/) and v(s) are as above. For t=0 or t= 1 there is indeed such a homomor- 

phism, since a routine verification shows that ~o=PO~k and ~ j  =khp~j. If ~t  exists, it 

will clearly be unique, will agree mod K| with ~o and will vary continuously with t. 

We shall establish the existence of Or, and thereby prove the lemma, by exhibiting a 

unitary operator m, on 12(F~xF0 such that m,~o(X)m~t=~t(x) whenever x=/~(l) or 

x=v(s). 
Let w . . . .  s-lgosogl.. .EF and let o(w)= ...v(s-Ol~(go)v(So).u(gO... (as in sec- 

tion three). We define ~t(o(w)) in E| to be the corresponding product 

... ~ ,( v( s_ 0) 'l',(~(g0)) 't',( v( so) ) '~',q~(g O ) .... 

Notice that any element of F~' can be uniquely expressed in the form shw' where 

sES, hEG*, w'EF] .  Define m t on the basis elements of 12(FtxF I) by the following 

formulae: 
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m, 6(e, e) = 6(e, e), 

tortS(e, shw')  = ~ (At(h) 6(h-~), 6(k) ) t~(sk, k-l  hw')+ (2t(h) 6(h-t), t~(e)) ~(e, shw') 
kEG* 

( sES ,  h E G * , w '  EF~), 

m,6(w,  w') = r w') (wE F~', w' EFj). 

By linearity, mt is defined on the prehilbert space Ho spanned algebraically by the basis 

vectors. It is easy to verify that 

mt~o(/z(l)) ()(w, w') = r ) m t ~(w, w'), 

m,CPo(V(s)) 6(w, w') = ffP ,(v(s)) m, t~(w, w') (I E G, s E S, w, w' E Fi). 

Thus mt~Po(X)=CPt(x)m t on Ho whenever x=l~(l) or x=v(s). To complete the proof we 

have to show m t is unitary on Ho and so extends to a unitary operator on 12(FIxF~). 

Any element of FIx F~ can be uniquely written in the form (wg, hw') with g, h E G, 

w E F 2, w' E F~ (and in fact g E G* unless w=e). Define 

A 0 = {(wg, hw') • F I XFl: g =4= e, gh = e}, A I = (Fj X F I ) \ A  o. 

It is easy to check that mt leaves 6(w, w') fixed if (w, w') E A o. We define an equiv- 

alence relation on A~ by 

(w I ,w~)~(w 2,w~) if and only if w Iw' I = w  2w~. 

Each element of AI is equivalent to exactly one element of the form (e, w), where 

w = g~slg2s2...gn_lSn_lgn (n >I l, gl E G, gi E G* for i > l, s i E S* for i ~> l), 

and the equivalence class containing (e, w) consists of 

{(g~sj...sj_ik, k-Jg~sj...gn): l <~j ~< n, k E G i f j  = l, k E G* i f j  > l }. 

Fix w in FI as above, and also fix t in [0,1]. Write e(j ,k)= 

6(glsl...s~_lk, k-lgjsi. . .gn) and denote by Hw the closed subspace of /2(FI• 

spanned by the e(j, k). By inspecting the definitions of mt and ~t, one sees that mt 

leaves Hw invariant. We complete the proof by showing that mt maps Hw isometrically 

onto itself. 
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With w fixed as above, define unit vectors r/j (O<~j<~n) in Hw by 

r/o = e(1, e), 

r/~. = Z (2t(g) di(e), 6(k)) tq,  k)+ (At(g) 6(e), 6(e)) rlj_ l ( j >  1). 
kE G* 

By induction on j one sees that 

m, e(j, k) = ~ {2t(gj) 6(gf 'k) ,  6(p)) e(j, p) + (2,(&) 6(gf 'k),  6(e)) r/j if k 4= gj, 
pEG* 

m t r &) = Z (2t(gJ+ ~) 6(gf+ j' k), 6(p) ) t ( j+ 1, p) + ().t(gj+,) 6(gf+~ k), 6(e) ) rlj, 
pEG* 

(3) 

except that i f j=n  and k=gn then mr(n, gn) is given by the first of these formulae rather 

than the second (so that in fact mt(n, gn)=r]n). 
Since {e(j, k)} is an 'orthonormal basis for Hw, it follows that Hw is isomorphic to 

12(G)~H ', where H '  is the direct sum of n -1  copies of lZ(G*). We wish to define n 

unitary mappings on Hw each of which perturbs a subspace Hj. isomorphic to 12(G) and 

leaves its orthogonal complement fixed. To do this, we specify (for l<~j<~n) a unitary 

map vj from 12(G)~H ' to Hw which takes/2(G) to Hj in a manner to be described and 

maps H' in any unitary manner onto Hj L. We then define a unitary map uj on 12(G)~)H ' 

which will be specified on 12(G) and will be the identity on H' ,  and we form the unitary 

map vjujvf  j on H w. It is clear from this that we only need to describe uj and vj on the 

subspace 12(G). 

We define uj=2t(gj)J.o(gf I) on 12(G) and we define vj on /2(G) by induction as 

follows: 

v~6(p)=e(l ,p)  (pEG), 

and for l<j<~n 

vja(p)= t ( j ,p)  (pEG*), 

vj 6(e) = rlj_ I. 

Notice that rb._l is in the subspace of Hw spanned by {e(i,k):i<j} and is therefore 

orthogonal to e(j ,p)(p E G*). It follows that vj maps 12(G) isometrically to a subspace 

Hj of H w. Hence vjujvf  I is unitary. 
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From the equations (3) we see that 

vjuiv-(le(1,k) = m,e(1,k)  ( kEG,  k4=gl) , 

VlUlOll e(1, g l )  = t]l , 

and VlUW-( 1 leaves e(j, k) fixed for j > l  and kEG*.  Similarly (by induction on j'), for 

l <j<~n 

vjujvf~e(j ,k)  = mte( j ,k )  (kEG*,k~=gy), 

viui vT' e(j, gl) = rl J, 

Vi Ui VT I~li_I = m, e(j-- l , gi_l) , 

while v 1 u 1 v 71 leaves e(i, k) fixed for i>j  and also leaves rote(i, k) fixed for i<j except 

when (i, k )=( j - l , gy_ , ) .  

This shows that the restriction of m, to Hw is equal to 

VnUnV~lVn_lUn_lVn~l...VlUlV~ 1 

and is therefore unitary, as required. 

THEOREM 5.3. The map ~ , + v ,  is an isomorphism f rom K , ( A ~ B )  onto K,(E).  

Proof. Recall that 0'v: B---~E| is a homomorphism with O'v( l )=q(F~|  I. Denote 

by i2 the map b~--~qe| from B to K | 1 7 4  Then we can form the homomorphism 

O'v~i2, and it is easy to check that O'v~i2=Ov. It follows from Lemmas 1.7 and 1.3 that 

i 2 ,  = ( Ov/O' V),  = ( O/O') ,V , .  

Similarly, from Lemmas  5.1 and 1.2, 

i~, = 0/,'/~/~/z), = (~/,'h/,),/z, = -(~/,h/, ') ,#,.  

It is clear from the definitions of V/, V/, 0 and 0' that ~/,v=~/,'v and 01~=0'l~. Hence 

(~//~o'),v,=(O/O'),/z,=O, and so 

( ( O/O') ,-(  e//e/'),) ( /z ,+v,)  = i~, + i2,. 

However, il ~i2 is just  the canonical map from A ~ B  into a corner of K |  so that 

i~,+i2, is the identity on K , ( A ~ B ) .  
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Observe next that fe~p'=CO'(~k, since it is trivial to verify that both sides give the 

map x ~ x |  E--)E| From Lemma 5.2 and the lemmas in section one we deduce 

that 

j ,  = ((CO ~k)/,uq)), 

= ((c0 Ck)/(c0' 0)k)), + ~ ' / p v / ) ,  

= v , ( O l O ' ) , - # , O p l ~ ' ) , .  

Now ~0 and ~ '  map E into E|174  but (by our convention that maps into or 

out of A or B are to be identified with maps to or from A ~ B )  9: E|174 

annihilates the first direct summand of A ~ B .  Hence 9~p=9~p'=0 and v,(~hp') ,=0.  

Similarly p,(O/O'),=O. We conclude that 

j ,  = (/~,+v,) ( (0 /0 ' ) , - (~/~ ' ) , ) .  

Finally, j maps E into a corner of K |  s o j ,  is the identity map. Thus the maps p , + v ,  

and (0/0'),-0p/~0'), are inverses of each other, as required. 

THEOREM 5.4. Let F=G-~S, where G has property A, and let A, B be the reduced 

C*-algebras o f  G, S. The K-groups o f  C~F) are given by the short exact sequence 

0 --) K,(C) ~q*-~r K,(A ~ B )  el*+e2~ K,(C~F)) --) 0, 

where ~1, x2 denote the embeddings o f  C into the scalar multiples o f  the identity in A, 

B, and el, e2 are the embeddings o f  A, B in C~F). 

Proof. From the short exact sequence 

O --* K --~ E --~ C ~ F ) "--~ O 

and the fact that p , + v ,  is an isomorphism we obtain the following diagram by Bott 

periodicity. 

d o ~  K0(A ~ B) 

;po+Vo :r o 
Z ' K0(E) ' K0(C~F)) 

T n. 1 
Kt(C~F)) ~ Kt(E) , O. 



K-THEORY FOR CERTAIN G R O U P  C*-ALGEBRAS 229 

Since qe=It(e)-v(e), it is easily checked that do takes the generator [qe]o of Z=K0(K) 

to [i1(1)]o-[i2(1)]o, from which one sees that d , = x l , - ~ 2 , .  Since the algebra A is 

finite, with a trace given by x~(x6(e) ,6(e)) ,  [i1(1)]o cannot be the zero element of 

Ko(A) and therefore do is not the zero mapping. By exactness at Z, it follows that the 

index map from Kl(C~F)) to Z is the zero map. The map from K0(C~F)) to 0 is 

obviously the zero map. So the upper and lower halves of the above diagram can be 

separated, and the statement of the theorem follows. 

COROLLARY 5.5. If GI, G2 . . . . .  G~ are nontrivial countable amenable groups and 

F is their free product then 

(c~r ) )  ~ K 0 = o ( C * ( G i  , 

K, fCr~r)) = ~ KIfC*(Gi)). 
i = l  

Proof. This follows from Theorem 5.4 by induction on n: take G =  

Gn, S=GI~G2~.. .~Gn-I.  

Added in proof. Since this work was done there have been several significant 

developments in this area. J. Cuntz ("K-theoretic amenability for discrete groups", 

preprint) has used the machinery of Kasparov's KK-theory to give a very neat compu- 

tation of the K-groups for the reduced C*-algebras of a class of groups apparently more 

general than that considered in this paper. In two further preprints ("Generalized 

homomorphisms between C*-algebras and KK-theory", ~'K-theory and C*-algrebras") 

he has shown how KK-theory can be developed using what in this paper are called 

difference maps as the basic elements of the theory. In fact, the difference maps 

constructed in section four above furnish some instructive examples of elements of 

certain KK-groups and may be usefully contemplated by anyone wishing to learn KK- 

theory. 

C. Schochet and S. Wassermann (private communications) have pointed out that, 

contrary to what is implied in section one, the difference map can be defined in a purely 

algebraic, functorial way. Indeed, the ideas for doing this are essentially present in J. 

Milnor's book "Introduction to algebraic K-theory" (Princeton, 1971). 

Finally, A. Connes ("The Chern character in K-homology", preprint) has given a 

very short and self-contained proof that the reduced C*-algebra of the free group on 
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two generators has no nontrivial projections. This proof,  although inspired by K- 

theoretic ideas, uses absolutely none of  the heavy machinery of  K-theory or KK-  

theory.  
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