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1. Introduction 

Rational maps have been much studied as dynamical systems. Many rational maps are 

hyperbolic, and easy to analyse. More importantly, variation of dynamics even within a 

one-parameter family of rational maps is usually extremely rich, and can sometimes be 

described in great detail. The prime example is the family of quadratic polynomials 

{z2+a: a E C} which has been the subject of a fundamental study by Douady and 

Hubbard [D], [D-H1], [D-H2], some of which has been reinterpreted by Thurston IT]. 

This is, in fact, the main motivation for the present work, which is concerned with the 

family of rational maps of degree two. The aim is to understand the variation of 

dynamics within this family. 

It has been clear since the pioneering work of Fatou and Julia IF], [J] that the 

dynamics of a rational map is largely influenced by--and sometimes completely deter- 

mined by-- the dynamics of its critical points. This, in itself, is an example of a vague, 

but recurrent, theme in dynamical systems in general that the variation of dynamics in 

some family of maps (or flows) should be determined by the movement of some 

(hopefully finite) set of points--which might be periodic, or homoclinic, or, as in the 

present example, critical. Thus, in the family of polynomials {z2+a: a E C}, it is the 

behaviour of the critical point 0 which is important, and in the family of rational maps 

of degree two, it is the behaviour of the two critical points. The interesting dynamics of 

a rational map occur on its Julia set. Variation of dynamics in families of rational maps 

is visible even in static pictures, since the structure of the Julia set often changes 

radically, even up to homeomorphism, under changes in parameter. However (as 

always with dynamical systems), dynamics, and structure of the Julia set, are constant 

on hyperbolic components. The union of hyperbolic components is conjectured to be 

dense in the family of rational or polynomial maps of degree d, for any d. 
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Naively--and I think this should be kept in mind---one would like to describe the 

variation of dynamics through a parameter space by the movement of critical points 

across the Julia set and its complement for some fixed map in the parameter space. The 

trouble i skas  just mentioned--that the Julia set and its complement change as one 

moves through parameter space. But sometimes one can reognize the original Julia set, 

even after changes. This is what happens with the Mandelbrot set for quadratic 

polynomials, this being the common name for the set of a for which the Julia set of 

z~-.->z2+a is connected. The Julia set of Z~"'>Z 2 is the unit circle. Any locally connected 

Julia set of a quadratic polynomial, which can be assumed to be of the form z~-->z2+a, is 

obtained in a unique way by making extra identifications on the circle. Furthermore, 

the identifications can be completely described. This means that the dynamics can be 

completely described. Classical arguments show that a connected Julia set of a hyper- 

bolic rational map is locally connected, and, thanks to Yoccoz, this is now known to be 

true for a very large class of quadratic polynomials. (It is not always true, though-- 

there is a non-locally connected example in [D], and Douady has other examples.) The 

variation in the set of identifications can be related to the position of the critical point 

relative to them, and thus, as we shall summarise in 1.10, to the position of a in the 

Mandelbrot set. The Mandelbrot set itself (according to Thurston's interpretationksee 

the survey of Chapter 1) can be described--almostmas a quotient of the unit disc. If 

one moves out of the Mandelbrot set, the Julia set breaks up into a totally disconnected 

set, and any sensible identification with the unit circle is lost. 

There is another instance of movement in parameter space leading to extra 

identifications on some fixed Julia set. This comes from the concept of mating, due to 

Douady and Hubbard, and again, described in more detail in Chapter 1. The idea is to 

glue together two Julia sets of polynomials of degree d (for any d) to obtain (up to 

homeomorphism) the Julia set of a degree d rational map, with corresponding dynam- 

ics. Wittner [W] introduced the idea of captures. Again, more details are given in 

Chapter 1, but the idea is to take the Julia set of a hyperbolic polynomial and to make 

certain types of modifications to obtain certain rational maps. Both these constructions 

are very important, because they describe a large class of rational maps. Indeed, in his 

thesis [W], Wittner gives a conjectural description of the family 

l+az 
Z ~ . . . . . > ~  

Z 2 

which has critical point 0 of period two, and a conjectural description of a proper subset 

of the family 
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z ~ ( z -a )  ( z -  1) (a 4= 0) 
z 2 

which has critical point 0 of period three. The descriptions are in terms of matings and 

captures. (In fact, the descriptions can be proved to be valid, at least as much as the 

combinatorial description of the Mandelbrot set is currently known to be valid.) 

The rough idea of the current work is as follows. The reader is warned not to try to 

interpret the idea too precisely at this stage. A much fuller explanation is given in 

Chapter 1, which surveys the most important results I use, and also summarises the 

whole of the current work as far as I have got, comprising a background paper, the 

current paper, the sequel (in which the main results so far are proved) with brief 

comments on a further sequel. The family of degree two rational maps is essentially of 

complex dimension two. For various reasons, we restrict attention to subvarieties in 

which one critical point is held periodic of fixed period. We have already mentioned the 

subvarieties corresponding to periods 1, 2 and 3. Period 1 gives the family of polynomi- 

als. The exact definitions are given in Chapter 1. Fix a subvariety V, and m>0 such that 

each map in V has a critical point, always called Cl, and varying continuously, of period 

m. Each map also has a second critical point, also varying continuously, and called c:. 

Then V contains at least one polynomial J~. Then c2 is fixed by J~. Under movement in 

the subvariety, the full orbit of cl moves, and c2 also moves, identifying countably often 

with points in the full orbit of c~. Each identification point in V is contained in a 

hyperbolic component. We consider the complement C in V of the union of these 

hyperbolic components. We also consider the complement C' in C of the full orbit of Cl 

under f0. We would like to find identifications between, not C and C' themselves, but 

their universal covers. As it stands, neither universal cover exists. However, we 

modify C' to a manifold with boundary, which we call U. The universal cover 0 is then 

topologically a disc with some boundary. Geometrically, 0 is given the structure of a 

subset of the Poincar6 disc with geodesic boundary. (The geometry is not intended to 

relate to the geometry of the subvariety.) A geodesic lamination is defined on O. A map 

of C is associated to each leaf of the lamination, and to many of the complementary 

regions, which are called gaps. These maps are all two-to-one after omitting exception- 

al points. Thus, 0 is some sort of parameter space for a family of maps. 

It is too large to be associated to C. First, we have to restrict to some open subset 

of U, called ~]ad, by describing its boundary. The boundary appears to identify with 

punctures in the subvariety V. Without going into details, consider the family 

( z -a )  ( z -  1) z ~ (a * 0). 
Z 2 
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a=0 gives a M6bius transformation, whose cube is the identity. Letting a---> oo and 

renormalising gives z~l / z ,  whose square is the identity. This is significant. Some idea 

of why it is given by the Admissable Boundary Theorem of 1.17. 

Now identifications have to be made on (.lad, which is still too large. The first step 

is to collapse each lamination leaf to a point, and to collapse to a point any gap which 

does not have an associated map. The quotient space Q is still, in some sense, a 

parameter space for a family of maps. At this stage, each uncollapsed gap from (-,lad, 
with its associated map, is associated to a hyperbolic component in C. Each collapsed 

leaf from aOn (]ad is alSO associated with a hyperbolic component----or rather, with a 

boundary point of onembut this time, with one in V \ C .  The associations are surjec- 

tive, but many-to-one. (So far, I have made no attempt to extend the association 

beyond hyperbolic components, but I hope it might be possible to do so.) This is all 

right, since the aim is to relate Q to some sort of covering space of V. It seems that V 

should be related to the quotient of Q by the increasing orbits of a sequence of group 

actions, and that each group should be thought of as a lamination-preserving group 

acting on Oaf, rather like a Fuchsian group. See 1.18 for slightly more detail. 

This work has been developing slowly over several years, and it still incomplete. 

During this time, many people have been extremely helpful to me with their attention, 

suggestions, corrections and encouragement. Among others, I should like to thank my 

colleagues at Liverpool, especially my Ph.D. student D. Ahmadi, and also A. Douady, 

M. Herman, C. McMullen, M. Shishikura, Tan Lei, W. Thurston, and especially both 

referees. 

Chapter 1. Survey and statement of results 

This paper is the first of a series studying hyperbolic rational maps of degree two with a 

view to a better understanding of the decomposition of parameter space into hyperbolic 

components and the complement of these. This chapter of this paper is extended to 

review background material, explain the results, and establish some notations which 

will be used throughout the series. 

Here is an index for this chapter. 

1.1. Rational maps and hyperbolic rational maps. 

1.2. Critically finite branched coverings and their types. 

1.3. Types of hyperbolic components. 

1.4. Equivalence of critically finite branched coverings. 

1.5. Equivalence and semiconjugacy. 
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1 .6 .  

1.7. 

1.8. 

1.9. 

1.10. 

1.I1. 

1.12. 

1.13. 

1.14. 

1.15. 

1.16. 

1.17. 

1.18. 

1.19. 

1.20. 

1.21. 

Equivalence to a rational map. 

The map oa. 

Polynomial-and-Path Theorem. 

One-complex-parameter families. 

Outline of Thurston's laminations. 

More general laminations: invariant and parameter. 

Objects associated to invariant laminations. 

Invariant laminations. 

Lamination maps. 

Results on invariant laminations. 

Parameter laminations: their construction. 

Admissible points and their boundary. 

Identifications between branched coverings. 

Matings, captures and admissibility. 

Tuning. 

Examples of admissible points relative to a particular lamination. 

Here is an index for the remaining chapters of this paper. 

Chapter 

Chapter 

Chapter 

Chapter 

Chapter 

Chapter 

Chapter 

2. Proof of the Polynomial-and-Path Theorem. 

3. Proof of the Lamination Map Equivalence Theorem. 

4. Equivalence and conjugacy. 

5. Rays. 

6. Invariant laminations. 

7. Parameter laminations. 

8. The Tuning Proposition. 

In what follows, it is suggested that any sentences between the words "Index 

section" and the end of a numbered section should be omitted on a first reading, since 

they are not necessary for the understanding of the results. 

1.1. Rational maps and hyperbolic rational maps 

We consider rational maps of degree two with numbered critical points. We denote 

the critical points of f by cl(f), c2(f), or by c~, c2 if no confusion can arise. Formally, 

we let RM2 denote the set of triples (f, Cl, c2) modulo the equivalence (f, Cl, c2)= 

(rfr -1, rc 1, rc 2) whenever r is a M6bius transformation. We denote the equivalence class 
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of (f, CI, C2) by [f, cl, c2]. Then RM2 is an orbifold of complex dimension two, with one 

singularity at the point [Z~--)I/z 2, 0, oo]. We shall usually refer to an element of RM2 
simply as f. 

A rational map is hyperbolic if the forward orbit of each critical point converges to 

an attractive periodic orbit. In that case, the Julia set J(f) is given by 

J(f) = {x: {fn(x)) does not converge to an attractive periodic orbit). 

These maps have always been of key importance ([B], [F], [J], [D], [D-HI],  [D-H2], 

[M-S-S]). A hyperbolic map is automatically J-stable, that is, there is a neighbourhood 

U of J(f) such that for all g sufficiently near f, J(g)~g-lUcU, and there is a 

homeomorphism Xg: U----~C with XgOf=goxg on f-lU, and Zg(J(f))=J(g). The set of 

hyperbolic maps is open, and any two maps in a connected component of hyperbolic 

maps are topologically conjugate in neighbourhoods of their Julia sets. It is a longstand- 

ing conjecture that the union of hyperbolic components is dense in RM2 (or any other 

suitable space), which is why it might be important to obtain information about their 

positions. (See [M-S-S], where it is shown that J-stable components are dense.) 

1.2. Critically finite branched coverings and their types 

IfJfi C---~(~ is any branched covering, let the postcritical set X(f)  be defined by 

X(f)  = {fnc: c critical, n > 0}. 

Then f is critically finite if # ( X ( f ) <  + oo. 

It is well-known that, if H is a hyperbolic component, H usually contains a 

critically finite map. See [McM], for instance. In [R], we showed that each hyperbolic 

component in RMz, with one exception, contained a critically finite map, which was 

unique. (No originality was claimed for this particular point.) The exception was the 

hyperbolic component containing z2+a for all large a. In so doing, we classified the 

hyperbolic components into types I, II, Ill  and IV, with type I being the exceptional 

component. In view of this, we classify certain branched coverings of 1~ into types II, 

III and IV. I f f i s  a critically finite hyperbolic rational map of degree two, thenfmus t  be 

type II, III or IV, and lie in a hyperbolic component of the same type. Conversely, any 

critically finite rational map which is type II, III or IV is hyperbolic. 

So now let f be a branched covering with critical points cl, c2, and let cl have 

period m under f. Then f i s :  
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type II iffm-qcl=C2 for some 0 < q < m  (so that m~>2), 

type III iffqc2=cl for some q > l ,  but c2 is not periodic (so that m~>2), 

type IV ifffc2*ci for any n~>0, but c2 has some period p under f .  

17 

1.3. Types of hyperbolic components: index section 

We give, here, the classification of hyperbolic components into types. (See [R] for 

more justification.) In fact, we define the type of a hyperbolic map, such that all maps 

in a hyperbolic component have the same type. The definition is consistent with that 

for critically finite maps. Let fERM2 be hyperbolic. Then we denote by Ul=Ul(f), 
U2 = U2(f) the components of (2\J( f )  which contain el, c2. One of Ul, U2 must be 

periodic. Without loss of generality, we always assume U~ is periodic of period m. 

Thenf i s :  

type I if UI=U2, in which case Ut=(:~J(f) and J(f)  is a Cantor set, and f l i e s  in 

the same 

type 
type 
type 

hyperbolic component as z~z2+a, for all large a ([R], for instance), 

II if U~'I:U2, but U2=fm-qu1 for some 0<q<m,  

III if U2:l:fnU1 for any n>~O, butfqU2=Ul for some q~>2, 

IV iffnU24:U~ for any n~>0, but U 2 for some period p underf.  

1.4. Equivalence of critically finite branched coverings 

Thurston [T] defined a homotopy-type equivalence relation for critically finite branch- 

ed coverings. One form of this definition is as follows. 

f and g are equivalent, written f=g, if there exists an orientation-preserving 

homeomorphism <p, and a path {gt: t E [(3, I]} through critically finite branched coverings 

such that X(gt)=X(g) for all tE [0,1], rpofocp-l=go, and g=gl. 
This is simply the natural type of homotopy equivalence for critically finite 

branched coverings. We also write f=~g in the above situation, but this is not an 

equivalence relation. 

Index section. There is another form of the definition of equivalence which is often 

more useful, f=g if there is a path {ft:tE[0,1]} through critically finite branched 

coverings withf0=f, fl =g, and X(ft) varies isotopically. 

If {ft} is as above, and {tpt) is an isotopy with tpl=identity and q)t(X(g))=X(ft), 
then f =  %, g and 9=9o 1, gt=qgO 1 oft 0 q)t satisfy the first definition. Similarly, given {gt} ,  

tp as in the first definition, we can find an isotopy {q)t: t E[0,1]) with ~)=identity, 

2-928182 Acta Mathematica 168. Imprim6 le 6 f~vrier 1992 
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q~=q~o 1, and pass to the second definition by taking ft=q~t o gt o qgt 1. We shall write 

(f, Yo)- (g, YI) or (f, Yo)-~(g, YI), 

if X ( f ) c g o ,  X(g)c--gl , f (go)c=go , g ( g l ) c g l  , ~/9(g0):gl with cpof=go~ on Y0, and 

gt(Yl)c YI for all t, for {gt} as in the first definition of equivalence. 

A second, equivalent definition of (f, Y0)-(g, Y0 is: there exists a path {ft: rE[0,1]} 

through critically finite branched coverings with f=fo, g=fl, X(ft)cYt, ft(Yt)cYt, where 

Yt varies isotopically between Y0 and I11. 

If we use the second definition in each case, it becomes a triviality that iff=g, then 

( f , f -"X( f ) )  = (g, g-"X(g)), for each n >~ O. 

1.5. Equivalence and semiconjugacy 

We remark that, for critically finite branched coverings f a n d  g, if g=~f,  then there is a 

well-defined homeomorphism which can be wri t tenf-n o q0 og"=W,,. If, in addition, f i s  

hyperbolic rational, and g is suitably defined near X(g), then lim~_~ W~=W exists, and 

satisfies Wog=fo~ .  This type of argument, obtaining a semiconjugacy from some sort 

of homotopy equivalence under some hyperbolicity assumption on one of the maps, is 

common, and presumably old. (See [Fr] for the more difficult case involving Anosov 

diffeomorphisms on nilmanifolds, for example.) In the case when f is hyperbolic 

rational, we give details of the procedure in Chapter 4. In the sequel to this paper, we 

shall use some of the same ideas in the case whenf i s  expanding with respect to a semi- 

metric only. It is common to extend the procedure to give information about the 

conjugacy classes o f f  and g, as we shall do in this paper, particularly in Chapter 4, 

whenf is  hyperbolic rational. The information it gives about maps up to semiconjugacy, 

or conjugacy, is one reason for the importance of the homotopy-type equivalence for 

critically finite branched coverings. 

1.6. Equivalence to a rational map 

The main (but related) reason for the importance of the homotopy-type equivalence for 

critically finite branched coverings of t~ is, however, the reason for which it was 

introduced. Thurston [T] gave a necessary and sufficient condition for a critically finite 

branched covering to be equivalent to a rational map. If an equivalence class contains a 

hyperbolic rational map f,  then the other rational maps in the equivalence class are 
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those conjugate t o f b y  M6bius transformations. (See [D-H3] for a version of the proof 

of Thurston's theorem.) This condition will be very important in these papers. The 

condition is redundant for f ,  if f is a degree two branched covering with critical points 

c 1, c 2 andfcl=c I, Fc2=c 2 for some p~>l. Thus, such a n f i s  equivalent to a degree two 

polynomial. (See [L] for a proof of the redundancy.) In degree two, Thurston's 

condition can be simplified using work of Levy [L], Tan Lei [TL] and, more recently, 

Shishikura [S]. In a sequel to this paper, we shall refine this condition further. 

Index section. Thurston's original condition will never be used directly in these 

papers (although it was used once in the background paper [R]) but it should, perhaps, 

be recorded here. 

A simple path ~ in ( 2 \ X ( f )  is peripheral if it bounds a disc containing at most one 

point of X(f) .  Let 

f*~/= ~ 6i/n i, 
i=1 

where 6i are the nontrivial components of f - i v  with f[6i of degree ni. Then we can 

extend f*  so that 

f* Xi ~i = Xi f * O ' i )  
i=l  

if xiER and yi are isotopically distinct in ( 2 \ X ( f )  for l<<.i<<.n. The first hypothesis for 

Thurston's necessary and sufficient condition for equivalence of f to a (unique) rational 

map is that an orbifold associated with the set X( f )  be hyperbolic, which only ever fails 

to happen if #(X(f))~<4, and if #(X(f))~<3, f i s  trivially equivalent to a unique rational 

map. But if #(X(f) )=4 and the associated orbifold is not hyperbolic, f is equivalent 

either to a rational map, or to a map of the form x~-->Ax+b: R2/----->R2/-, where - is the 

equivalence relation with classes {+x+n: n E Z  2} (xER 2) and A is a 2x2 matrix with 

integer coefficients and determinant > I. (See [T] 16.6 for some of this.) If this happens, 

f has precisely two critical values, and neither is periodic. Whenever f is not of this 

form up to equivalence, Thurston's necessary and sufficient condition for equivalence 

of f to a (unique) rational map becomes: 

(A) There do not exist ~i and xi (l~<i<~n) and 2>~1 such that 

f* Xi ~i "~ 2 Xi ~i" 
- i=l 
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I f f  is degree two, the condition can be simplified to: 

(B) There do not exist nonperipheral Yi and ~ (l~<i~<n) such that Yi and ~ are 

isotopic in ( ~ \ X ( f ) ,  7~ is a component o f  f-l(yi+t) (with ~'r+l=)'l) and f l y  ~ is a homeo- 
morphism. 

If {Yl .....  Yr} exists as in (B), then it is called a Levy cycle. A proof that (A) implies 

(B) was given in Levy's  thesis [L], but there is an obscurity in the proof. For an 

alternative, see Tan Lei's thesis [TL]. For the moment, use the notation ~,[ as it is used 

in (B). Note that necessity of condition (B) is clear: if Y~=Yi,1 and, similarly, yi, n+l=V[,n, 

then standard hyperbolicity results show that limn_,= diameter(y;,,)=0 if f is rational 

hyperbolic. This is impossible, since )'i is nonperipheral. 

f f f i s  degree two, and type II, III or IV, then (B) can be refined to: 

(C) There does not exist a Levy cycle ~1 . . . . .  7r (r ~>2) such that only one component 
- r 

C o f C ~ J i =  1 ~i is not a disc, and such that f lC '  is a homeomorphism onto C, where C' 

is a component o f  f - l C  and bounded by y~ (l~<i~<r). 

I first proved that (B) implies (C) by an over-complicated method, but a much 

simpler proof was found by Tan Lei [TL]. (A slightly simplified statement of the result 

has been given here.) Now Shishikura [S] can prove that (A)implies (C) directly. In a 

sequel to this paper, we shall further refine, and use, condition (A) in the case whenf i s  

degree two and of type II, III, or IV. 

Conditions (B) and (C) make sense even if X ( f )  is infinite, although we then have 

to consider the possibility that the 7, have non-transversal intersections, and take C as a 

component - r of ( C \ O i =  17i). It is then easy to see that conditions (B), (C) are satisfied i f f  

is hyperbolic rational, or, more generally, i f X ( f ) c ( ? . \ J ( f )  (whenfcan  have parabolic 

basins). 

1.7. The map a~ 

If ~: [a, b]--*C is any path, we define ~: [a, b]--*(?, by ~(t)=~(a+b-t). Iffl: [a, b]--~(2 is 

any simple path we take o# to be a homeomorphism which is identity outside a 

neighbourhood offl([a, hi), and such that o#(fl(a))=fl(b). We take this neighbourhood as 

small as the circumstances require. We shall often be interested in compositions such 

as o#of, where f is a critically finite branched covering with fl(a), f l (b)EX(f) ,  and 

f l ( (a ,b))nX(f)=~.  In such a case, ooof  is well-defined up to equivalence if the 

neighbourhood mentioned above avoids X(f ) \ { f l (a) , f l (b)} .  Given the importance of 
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maps such as oa in describing isotopy classes of homeomorphisms on a punctured two- 

sphere [M], it is not surprising that they should be of importance in describing 

equivalence classes of critically finite branched coverings. The assumption that fl is 

simple is unnecessary. 

Index section. Iffl: [a, b]---,C, is not simple, but there exist a=to<h<...<t~=b such 

that fli=fli[ti_l, ti] is simple (l<~i<~n), then we can define 

= o 0o.., o % ,  

and we still have oa(fl(a))=fl(b). Again, o# can be taken as the identity outside an 

arbitrarily small neighbourhood of fl([a, b]). I f f  is a critically finite branched covering 

with fl(a), fl(b) E X( f )  and fl((a, b)) n (X(f)  \ {fl(a), fl(b)})=~, then the equivalence class 

of o# o f  is independent of the precise definition of o#. Similarly, for any path 8, we can 

define oa=limn__,~ tpan, where fl=limn__,| fin, andfln has only finitely many self-intersec- 
tions. 

In many cases, we actually have o~of=o#, o f  for a simple path 8': [a, b]---~C with 

fl'(a)=fl(a), fl'(b)=fl(b), and fl'([a, b]) contained in a small neighbourhood of fl([a, b]). 

For suppose in the above that n=2, and fl(a) ~fl([tl, b]), fl(b) ~fl([a, tl]). Choose U<tl so 

that fl([u, tl]) nfl((h, b])=~, and let 

Then let 

fl; = ill[a, u]. 

~fl, on [a, tl], 8' 
o &  = on [t'l, b]. 

Then fl' is simple, and oa, o#,2oo~,o ~, are all isotopic via an isotopy 

q~t with q~t(fl(a))=fl(b) for all t and q0t=identity outside a small neighbourhood of 

fl([ a, b]). 

1.8. The first result 

The first result of this work is as follows. 

POLYNOMIAL-AND-PATH THEOREM. Let f be a critically finite hyperbolic degree 
two rational map with cl(f)  o f  period m>~2. Then there exists a polynomial fo of  the 
form z~z2+a with 0 of  period m under fo, and there exists a simple path ?: [0, 1]--~C, 

with ?(0)= 0% such that the following hold. 
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I f  f is type III, f~--ayOf o, where 7(1)=x, fq(x)=0, but x is not periodic. 

l f  f is type II, f~-a 0 o oro f  o , where y(l)=f~-q+l(O),for some 0<q<m,  r](l)=f~n-q(0), 
and foot1= ?. 

I f  f is type IV, f=o~oorofo, where 7(1) has period p under fo, is either in the Julia 

set of  fo or equal to 0% r/(1)=fg-17(1) and foorl=y. 

In all cases, 7((0, 1)) is disjoint from the forward orbits under fo of  0% y(1), 0, and, 

in the equivalence, the critical point cl corresponds to O. 

The main drawback of this result is that the hypothesis t ha t fbe  a rational map---or 

equivalent to one--is probably completely unnecessary. This is certainly so if f is type 

III. In that case, the description of rational maps up to equivalence given by the 

theorem is rather empty. However, the result is amenable to refinement, and that, 

essentially, is the substance of all subsequent work in this paper (and its sequels). 

In this theorem, we could arrange that 7([0, 1]) was contained in the complement of 

the full orbit of 0 under f0. If C \ t J i ez f~ (0 )  were a submanifold, we could take its 

universal cover, and regard (7, 7(1)) as a point in the universal cover. Then perhaps we 

could find a submanifold of the universal cover which consisted of all (Y, 7(1)) for which 

the corresponding branched covering cr~ o cry o3~ was equivalent to a rational map. Then 

perhaps we could find identifications on the submanifold, giving parameter space up to 

homeomorphism, together with its decomposition into hyperbolic components. Of 

course, doing exactly this is impossible, but this is the idea of the programme, on which 

some progress has been made. 

The case m= 1 is explicitly excluded from the theorem. However, the work of 

Douady and Hubbard implies that every map fa:z~zZ+a with 0 periodic under fa is 

equivalent to a map of the form 

(r0 o a 7 o f  0, 

where 7: [0, 1]---~C is a path from oo to the unit circle to a periodic point (underj~) on the 

unit circle, and Y intersects the circle only at this point. Also, as in the theorem, 

f0 o r/=7. Thus, the theorem is a generalisation of part of Douady and Hubbard's work, 

using Thurston's notion of equivalence. 

The construction described in the theorem also generalises the concepts of matings 

and captures. In the type IV case, if the path 7 does not intersect J(fo) except at y(1), 

then o~ o o r o f  0 is a mating up to equivalence, in the sense of Douady and Hubbard. In 

the type III case, if the path y crosses J (~ )  exactly once, then aro3~ is a capture up to 

equivalence, in the sense of Wittner [W], and all matings and captures arise, up to 

equivalence, in this way. 
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1.9. One-complex-parameter families 

Since it becomes possible to visualise decompositions in a space of complex dimension 

one, we shall consider, for each m~> 1, the algebraic variety in RMz consisting of all 

[f, el, c2] with cl of period m underf.  For m~<3 (at least), this variety is irreducible. For 

m= 1, the variety can be identified with C, or with (go: a E C}, where go(z)=z2+a. The 

motivation for the current work is that hyperbolic components and their positions in 

this family are well understood, thanks to the work of Douady and Hubbard ([D-HI], 

[D-H2]) and the very illuminating interpretation of their work by Thurston [T] who 

used laminations. (This interpretation will be summarised in a minute.) Their work led 

to a complete understanding of the combinatorial structure of the Mandelbrot set {ga: 

g~(0)-/,oo}, which is the complement, in the family (ga}, of a single type I hyperbolic 

component intersected with the family (ga}" 

1.10. Outline of Thurston's laminations 

The idea of the present work is to produce invariant laminations which describe the 

dynamics of degree two rational maps, and parameter laminations describing decompo- 

sitions of parameter space, following Thurston's approach for the family {ga: 

go(Z)=Z2+a, a E C}. So, first it is necessary to summarise Thurston's approach IT]. All 

the necessary theory is contained in Thurston's preprint, although some statements 

given here may not be spelt out there. For the original approach, one should look in 

Douady and Hubbard's papers ([D], [D-H1], [D-H2]) and also at Lavaurs' note [La]. 

A lamination L on the unit d isc / )={z:  [zl<l} is a closed set of disjoint geodesics 

---called leaves--with endpoints on S~= {z: Izl = I}. We can use either the Euclidean or 

Poincar6 metric on the disc. A gap is a component o f / ) \ L I L ,  and a gap G is finite- 

sided if G contains only finitely many leaves. (I am grateful to D. Ahmadi for pointing 

out that, according to Thurston's definition, gaps are the closures of complementary 

components of the lamination. But for generalisations, it will be useful to stick to the 

variant given here.) An equivalence relation =z on C--which, of course, contains b m i s  

defined by two elements being equivalent if they are both in i for some l E L, or both in 

for some finite-sided gap G. 

A lamination L is invariant (under z ~ z  2) if, whenever IEL has endpoints zl, z2, 

(a) if zl~=-zz, t 2 EL, where l z has endpoints z~, z~, 

(b) we have - l E  L, where - l  has endpoints-zl ,  -z2, 

(c) we have l I EL for at least one 11 EL with l]=l. 
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If L is invariant, and we also stipulate that 

(d) 0 is in an infinite sided gap of L, 

then L has exactly two longest leaves of the form _+l. Then/~=l z is called the minor leaf 

of  L, and L is the unique lamination satisfying (a) to (d) with minor leafkc A leaf,/t, is 

the minor leaf of some (unique) lamination satisfying (a) to (d) if and only if: 

(1) the endpoints of/~ are e 2~ir, e 2~it, where r, t are odd denominator rationals of the 

same period under x~--~2x rood 1 (we say/~ has endpoints r, t), 

(2) the set {/Lz": n>~0) is a finite lamination in which/~ is the image of the longest 

leaf (and, in fact, is the shortest leaf). 

For each odd denominator rational r in (0, l), there is a unique minor leaf/~r with 

endpoint at r. The closure of the set of minor leaves satisfying 1 and 2 is a lamination 

which Thurston calls the Quadratic Minor Lamination, or QML. (Since it is a lamina- 

tion, it is easy to compute the leaves/~r: the pairs of endpoints are {I/3, 2/3), {1/7, 2/7}, 

{3/7, 4/7}, {5/7, 6/7} .... ) 

We write Lr for the invariant lamination satisfying (a) to (d) with minor leaf/~, and 

we write =r==L. Then there is a critically finite branched covering st: C--->(2 with the 

following properties. 

(1) The critical points of s~ are 0, ~,  with s~(~)=~,  and 0 is of the same period 

under s~ as r under x ~ 2 x  rood 1. 

(2) For Iz[~>l, Sr(Z)=Z 2. 

(3) The lamination L~ is invariant under st, that is, s,.Lr=L,.=s; ~ L,.. 

(4) For all z E G, s~"(z)--*O as n ~ ,  where m is the period of 0 under Sr, and G is 

the gap of L~ containing 0, and s~ is topologically conjugate, near 0, to z ~ z  2. 

The map sr induces a branched cover [Sr]: (~/=r---" C/----'~ which is uniquely deter- 

mined up to topological conjugacy by properties (1) to (4). Then (:/=r is homeomorphic 

to C, and [s~] is topologically conjugate to a unique critically finite ga, where 

ga(Z)=zZ+a. By abuse of notation, we write ga=g,.. Then gr~--s~--[s,.]. Every ga for which 

the critical point 0 is periodic arises in this way, for a unique/# (giving two correspond- 

ing odd denominator rationals) except for go(z)=z 2, which corresponds to the empty 

lamination on b .  

For each odd denominator rational r in (0, I) there is a gap G~ of QML wi th /~c (~  

and ~r separating Gr from 0. We have G,.=Gt only if t is an endpoint of/#. There is also a 

gap Go which contains 0. These are all the infinite-sided gaps. Let 

M =  {aEC: g~ (0)---~ ~ as n---> ~}. 

There is a continuous surjection (P: C--->C/=QML such that (P is a holomorphic bijection 
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of C \ M  (which is a single hyperbolic component in the family {ga}) o n t o  (C\D)/=QML 
(which is effectively just C \ D ,  since each equivalence class in this set contains just 

one point), and qb is a homeomorphism of the hyperbolic component of g, onto 

Gr/~--QML, which is effectively just Gr. It is conjectured that �9 is a homeomorphism. 

This is equivalent to the conjecture that M is locally connected. 

1.11. More general laminations: invariant and parameter 

In this work, a lamination L is a closed set of nonintersecting complete simple 

geodesics---or leaoes----on a surface R. The nature of R depends on whether L is an 

invariant or parameter lamination. If L is an inoariant lamination, C \ ( z :  [z[=l}c 

Rct~, R is open and C \ R  is infinite, so that the universal cover of R is the unit disc, 

and R is endowed with a complete Poincar6 metric. If L is a parameter lamination, 

Re(z:  Iz4<l)=b,  R is endowed with the Poincar6 metric of D----so that, if R~=/9, R is 

not complete,--and the boundary of R in/9 consists of complete geodesics. 

A gap of L is a component G of R \  tJL. A side of G is a leaf I of L which intersects 

the boundary of a component of G \  (z: Izl= 1 }. (We use this formulation because if R is 

not simply connected, not all components of aG may be sides of G.) Finite-sided gaps 

will be of some importance. The equivalence relation --L on I~ (if L is invariant) or on R 

(if L is parameter) is the smallest closed equivalence relation such that x---L y whenever 

x, y E l, for l E L, or x, y E G for a finite sided gap G of L. 

There is a parameter lamination ~r for each odd denominator rational r in (0, I) 

with ~ =  ~ if and only if r, t are the endpoints of/~r. Thurston's lamination QML can be 

regarded as ~0. As might be expected, the parameter laminations parametrise the 

invariant laminations. In analogy with the results concerning QML, if r runs through 

the rationals of period m under x ~ 2 x  mod 1, then the invariant laminations parame- 

trised by ~r describe up to topological conjugacy those hyperbolic critically finite 

degree two rational maps [f,c~,c2] with ct of period m under f. Thus, ~g, gives 

information about the parameter space of such [f, c~, c2], although it is as yet unclear to 

me exactly how much information ~,  gives about this. 

1.12. Objects associated to invariant laminations 

Let an odd denominator rational r in (0, 1) be fixed. We are going to describe a Cantor 

set Krc(3, a lamination Lr on (2\Kr (which is, in fact, invariant) and a branched 

covering ~r: C---~C which preserves Kr and Lr. We use the lamination L, on (z: Izl<l) 
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and the branched covering s, of 1.10. Let (~1~---(I) r" {~--'-->{~ be a continuous orientation- 

preserving subjection with the following properties. 

(1) The sets 0, co, {z: Izl<l}=/5, {z: Iz t=l)=S I, {z: Izl>l) are preserved by ~ .  

(2) For all z, q~(-z) = - ~ ( z ) .  

(3a) If/~r does not bound a finite-sided gap of L ,  then ~b-l(x) is a point unless z E i, 

for I in the full Sr-orbit of/~, when ~-~(l) is a topological rectangle with two sides in S 1 

and two sides in D. 

(3b) If/~r bounds an n-sided gap Gl of L ,  then ~-l(x) is a point unless xEG,  for G 

in the full Sr-orbit of G1, when ~-1(G) is a topological 2n-gon with n sides in S 1 and n 

sides in/5. 

Let 

K~= {xE SI: e~-l(x) is a point}. 

Then K~ is a Cantor set with K~=-K, .  Let 

L~ = {11:11 is a component of a(~-l(l))  n/5, l E L,}. 

Then we can choose @ so that in addition to 1 to 3: 

(4) L~ is a lamination on C \ K , .  

There is a branched covering $r: C--->C such that: 

(a) ~ogr=s~oqb, 

(b) g~(-z)=~r(z) for all z, 

In particular, 0 and co are the critical point of gr, g~co = oo, and 0 has the same period 

under both Sr, gr. Here is a sketch of Lv7. (See Diagram 1.) 

1.13. Invariant laminations 

An invariant lamination is a lamination on C \ K r  with certain additional properties, for 

some odd denominator rational r in (0, I)---or on C \ S  1, which is the case for Thurston's 

invariant laminations. To start with, we need to outline definitions of inverse and 

forward images of geodesics under certain branched coverings. These definitions will 

be made precise in Chapter 6. Throughout this section, we fix r, and write K=K,  
L=L, q~=~, ~=~r. Let 1 be a simple directed geodesic on ( ~ \ K  with g(O)~l. If 

t :  [0, 1 ]~C is a path with fl(0)=co and fl(1) ~ l, then (cr~og)*(l) is defined to be the two 

geodesics +11 which are the straightenings of the components of (e#og)-l(l). (A 

straightening of a path is homotopic to it in a restricted sense.) If fl(1)El, then 
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15/28 
15/28 

9/28 9/28 2/7 2/7 

11/28 

1/7 
~,1/7 

4/7 ~ ~1/14 
4/7 X 0 _ . . . . ~ ~ 1 / 1 4  

11/14 11/14 
Diagram 1. 

(o~og)*(l) is the four geodesics which are the straightenings of the components of 

(a~o~)*({/',/")), where l', l", are paths bounding a disc containing I. In this case, the 

four geodesics from (o 8 o ~)*(l) bound a topological rectangle G~ containing oo. These 

definitions can be made for some other branched coverings besides cr~og. If L is a 

lamination, then so is 

(cr~o~)*L -- {11: l 1E(cr~og)*l, some IEL}.  

Let fl: [0,1]--~I~\K satisfy fl(0)= oo, fl((0,1)) N {fl(0),fl(1)} = 6 ,  and either fl-l(t.lLr)=~, 
or fl-l(t.lL)--{t}, for some tel0,  I]. Then a lamination L on C \ K  is invariant or fl- 
invariant if 

(o~o ~)* L = L, 

and a couple of other less important conditions hold to be given in Chapter 6 (see 6.9). 

1.14. Lamination maps 

Given a fl-invariant lamination L, there is a lamination map Ot.: C ~ C .  In particular, it 
will turn out that the conditions imply that OL is a critically finite branched covering 
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with L=QLL=oL~L whenever fl(1)~UL, and that QL always preserves =L, SO that 

[gL]: (?./=L--~(?./=L is well-defined. Ot is uniquely defined up to equivalence, and [QL] is 

uniquely defined up to topological conjugacy, whenever fl(1)(~ UL and the gap G~ of L 

containing ~ is simply connected. The precise definitions are given in Chapter 6 (see 

6.11). 

1.15. Results on invariant laminations 

These results extend the Polynomial-and-Path Theorem of 1.8. In both results, let f be 

a hyperbolic critically finite degree two rational map with critical point ct of period m. 

LAMINATION MAP EQUIVALENCE THEOREM. There is an odd denominator ra- 

tional r in (0, 1) o f  period m under x~--~2x mod 1 and a path fl: [0, 1]---~(~\Kr with 

fl(0)=w, a fl-invariant lamination L on C \ K ~  with simply connected gaps Go, G~ 

containing O, ~ , and a lamination map Qt which is a critically finite branch covering, 

such that 

f =  �9 QL, 

with q/(cl)=0. 

LAMINATION MAP CONJUGACY THEOREM. Let L, 9t have the properties as in the 

Lamination Map Equivalence Theorem. Then there exists ud: (3--~(3 and a family 

{qJt: tE [0, oo)} of  homeomorphisms such that qJ=limt...,+~ qJt, ud-l(z) is a =t-equiv- 

alence class for all z, and 

~ o Q t  =foqJ .  

In particular, (2/=L is a sphere, and tt I induces a conjugacy between f and [pl]. 

Moreover, =L coincides with the (a priori smaller) equivalence relation = generated by 

Zl=Z2 if zl ,z2Ei for  some IEL, or zl,z2Effr for a finite-sided gap G o f  L. 

1.16. Minor gaps and parameter laminations 

The last results in the present paper concern the construction of the parameter 

lamination. We write K=K,, L=Lr, g=$, for some odd denominator rational r in (0, I). 

(See 1.12.) Let U=Ur be the component of (2\ (KO(t3L))  which contains ~. Let 

:r:/)-->(~\K be a holomorphic covering map with x(0)= ~,  so that geodesics in ( 2 \ K  

lift to geodesics in/~. Let 0 denote the closure in D={z: [z]~<l} of the component of 
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~t-l(U) containing O. Then t_7 is topologically a closed disc, and a(J \OD consists of 

inverse images under zt of geodesics in L. 

If L is any invariant lamination on C \ K ,  then leaves of L in U lift to geodesics in 

U, which are either entirely in 0 0 or entirely in Interior t_). (See the precise definition 

of invariance in 6.9.) Our parameter lamination will be a lamination on U, including 

geodesics in aD. Let L be a fl-invariant lamination on C \ K .  We are going to define the 

minor gap of L iffl(1)~ LIL, and, in almost all cases, the minor leaf of L. Iffl([0, 1])c U, 

let fl: [0, I]---~ t) be the lift offl under zt with fl(0)=0. Let G (if it exists) be the gap of L 

with fl(1) E G. Let 

to = sup{t: fl(t) E LIL), 

and let/~ be the leaf of L with fl(to) E~t. Let/ i  be the lift of/~ with [J(to) E/i, and let G be 

the lift of the component of G N U with fl(1) E G (if G exists). Then/i or/~ will be referred 

to indiscriminately as the minor leaf of L, and (~ or G will be referred to as the minor 

gap of L. If fl([0, 1])r let to=fl-l(LIL), and let/~ be the leaf of Lr with fl(to)E/~. Let 

/3: [0,t0]--,U be the lift off l  with fl(0)=0, and l e t / i c a O  be the lift of/~ with fl(to)Eti. 

Again, bi or/~ will be referred to as the minor leaf of L. Thus, the minor leaf of L always 

exists unless fl([0, 1])N (LIL)=~--which is quite rare. 

In the following theorem, we use the term primitioe, which will be defined in 7.3, 

but it is not an important restriction. In the Lamination Map Equivalence Theorem 

(1.15), L can be chosen to be primitive. The theorem will be proved in Chapter 7. The 

point of the theorem is to allow the definition of parameter laminations given after- 

wards, 

PARAMETER LAMINATIONS THEOREM. For i=1 or 2, let L i be a primitive fl- 

inoariant lamination, and let Zi denote the minor leaf o f  closure o f  the minor gap o f  L i 

in U. Let Ql.i be critically finite. Then if  Zl NZ2~=~, there are no transversal intersec- 

tions between Lt and L2. 

Definition o f  parameter laminations. Because of the Parameter Laminations Theo- 

rem, the following set ~=LP, is a well-defined lamination on/_): 

is the closure of the set of leaves l, such that either l=# or l ~ OG, where # (or t~) 

is the minor leaf (or gap) in 0 of a primitive invariant lamination L in r  with QL 

critically finite. 

Roughly speaking, infinite sided gaps of the parameter lamination are combinatori- 

al analogues of hyperbolic components in some appropriate parameter space. Of 
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course, I hope that the parameter laminations give topological information about the 

corresponding parameter spaces. Here is an abbreviated statement of a theorem about 

the gaps of ~ ,  which will be proved in the sequel to this paper, if the current proof can 

be cut down somewhat. 

PARAMETER GAPS THEOREM. Let ~ be a parameter lamination. Then any side o f  

a gap o f .~ i s  also a side o f  a minor gap o f  some invariant lamination, andprojects to 

an eventually periodic leaf in this invariant lamination. 

1.17. Admissible points and their boundary 

A leaf/z in ~ is admissible if there is a neighbourhood V of # in 0 such that, whenever 

L is a primitive invariant lamination with minor gap intersecting V, QL is equivalent to a 

rational map. A point in Interior(U) is admissible if it is either in an admissible leaf of 

~,  or in a gap of ~ w i t h  at least one admissible side. A point in aO is admissible if it has 

a neighbourhood whose intersection with Interior(U) consists of admissible points. The 

set of admissible points in O is open by definition, and is denoted by Uad. The point 0 is 

admissible. The component of Oad containing 0 is denoted by U0. Let ~ = ~ , ,  where r is 

of period m under x ~ 2 x  mod 1. Our hope is that some quotient of Oad/=~e----or, better 

still, of O0/=~e--is a continuous image of- -or ,  better still, homeomorphic t o - -  

{[f, c l, c2] ERM2: c I is period m underf, f is not hyperbolic of type II or III}. 

Since ~o=QML, this would be analogous to the result that D/=Q~L is a continuous 

image of 

{ga: ga(z) = z2 +a, g~(O)-/-> oo}. 

The Admissibility Proposition below--which is a strengthening of the Invariant 

Laminations Theorem, or the Polynomial-and-Path Theorem--is a step towards this. 

ADMISSIBILITY PROPOSITION. Let f b e  a critically finite degree two rational map 

with critical point cl o f  period m. Then there is r o f  period m under x~->2x mod 1, such 

that the following hold for  Uad defined relative to U--Ur. 

(a) I f  f is type IV, there is a primitive invariant lamination L with minor gap 

intersecting ~]ad, such that f=QL. 

(b) I f  f is type II or III, there is a primitive invariant lamination L with minor leaf lt 

in Ova, and f=QL. 
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It would be useful to have Oo instead of l]ad in the Admissibility Proposition. The 

proofs of the Polynomial-and-Path Theorem, and the Improved Polynomial-and-Path 

Theorem (see Chapters 2 and 3 of this paper) have been chosen with this in mind. We 

now give the results we have on the boundary a(]aa of (.lad as a subset o f / ] .  These 

results enable one to compute boundary leaves, but, hopefully, they can be neatened. 

ADMISSIBLE BOUNDARY THEOREM. Let IZ be a leaf in a(.lad. Then t* is either a 

side o f  the minor gap G(L) o f  a primitive invariant lamination L, or/z=lim._,~o G(L~) for 

G(L.) the minor gap o f  a primitive invariant lamination Ln, where G(L), G(L~)c ~ (-lad 

and Q =QL or QL. has the following properties. 

The period m of  oo under Q is less than or equal to the period o f  r under x~->2x 

mod 1. There is a finite set A o f  leaves in L (or L.) satisfying: (UA)- is connected, non- 

contractible in (2\X(g)  and invariant under g. and g. l=l  for all lEA. 

1.18. Identifications between branched coverings 

Many leaves in our parameter lamination represent the same map. I plan to give results 

on identifications between leaves in a later paper. This work is in its early stages, but 

there are some observations which are encouraging for further progress. These obser- 

vations are best expressed for the moment in terms of the branched coverings 

and 

~oA 

ar176 

which first made their appearance in the Polynomial-and-Path Theorem. Recall that fo 

is a polynomial of the form z~z2+a,  where the critical point 0 is of period m. For fixed 

m, there are only finitely many choices for fo. Many different fl might give the same 

branched covering, and (since ~ is defined in terms of fl) we ask when the branched 

coverings corresponding to ill, f12 are equivalent to a fixed critically finite branched 

covering g. The answer turns out to be that this happens precisely when ill, f12 are in the 

same orbit under a certain group action--and this group action depends only on the 

polynomialfo, not on the equivalence class of g. This is perhaps a little surprising when 

g is of type IV--when ill, f12 are usually paths between ~ and periodic points in the 

Julia set of fo. Actually, in the type IV case we shall have to start by modifying the 

paths. We leave this aside for the moment, and concentrate, for simplicity on g of type 
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Ill. The group G which acts is actually an inductive limit (in a sense yet to be 

explained) of isotopy groups, but if N is the least integer for which gN(c) is periodic, for 

the nonperiodic critical point c of g, and if g=o#ffo, then the equivalence class of g 

depends only on the isotopy class of the arc fli between points of foNX(fo) in 

(7.\folVX(fo). Then let G be the group of homeomorphisms 9 fixing X(3~), and leaving 

f-NX(fo) invariant, up to isotopy fixing foNX(fo), with 

(fo, f oN X(fo)) =~ (Oa O fo, foNX(fo)), 

for some closed loop a (depending on ~p) based at oo, but otherwise not intersecting 

foNX(fo). Then G acts on arcs between oo and other points infoNX(f0) by 

In the type IV case, it will also be possible to consider isotopy classes relative to 

foNX(fo) for some N. 

1.19. Matings, captures and admissibility 

Given two odd denominator rationals r and t in (0, 1), the mating of  s, and st, which is 

denoted by SrllSt, is defined by 

[st(z) for Izl ~ 1, 

SrHSt(Z)  = ~ [(st(z-l)) -l for Izl 1. 

The term mating of  s, and st will also be used to denote any map equivalent to this 

one. For example, srHst=stI-[sr . (The critical points have to be interchanged to obtain 

the equivalence). Matings were introduced by Douady and Hubbard (not exactly in this 

terminology). Let 

L~ -l = {l-l: IELt}, 

where 

l - l= {Z-I: ZE I}. 

Then s,Hst preserves LrOL-~ I. We can find a primitive invariant lamination Lr, t with 

OL=sfllst, where Lr, t is a follows. We can choose �9 = Or SO that L',t is a set of geodesics, 

where 
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Lr = LrO {1: ! is a geodesic in{z: Izl > I} and in the boundary of the 

convex hull of ~-1(11 nS 1) for some leaf l t in L~-I}. 

Then Lr, t can be obtained from L',t by removing some isolated geodesics. We omit 

the details. Let G be the gap of Lr, t containing ~-I((st(0))-l. Then Lr,, is fl-invariant, 

where fl: [0, 1]---~(~ satisfies fl(0)= o0, fl([0, 1]) fl S 1=~, fl(1) E G. Thus, G is the minor gap 

in (2 \Kr.  For fixed r, let Gt denote the lifted minor gap in U. 

Ifk~,/~' are leaves of QML, we define an ordering by: p</~' if and only if~ separates 

/~' from 0. Then SrlIS, is equivalent to a rational map if and only if there does not exist an 

odd denominator rational number q with I~q<~gr, lq-q~l~t [TL]. This happens if and only 

if G tc  ~.~r0, where /5'0 is as in 1.17. 

Now let r be an odd denominator rational in (0, 1), and let x0 satisfy g~(x0)=0 for 

some n>0, with Xo~:gr(O). Let fl: [0, 1]-->(~\Kr be some simple path with fl(0)=oo, 

fl(1)=Xo,fl-l(sl)= (Ul}=fl-l(~(exp 2arit)) for some rational t, and f l - l (oL)={u2} ,  where 

0<Ul<U2<l. ff x0 is non-periodic under gr, ~ is of type III. ff xo is periodic, let 

~: [0, 1]--~(2\Kr be the unique path with grO~=fl, and r periodic under gr. Then 

o(o tr, o Sr is type II. Such maps a~ o gr, cr(o o 8 o sr were studied (up to quivalence) by B. 

Wittner in his thesis [W]. He called them captures. They are determined up to 

equivalence by r, x0, t, or simply by r, x0 if/t~ is minimal in the ordering on QML. We 

shall see in Chapter 3 how to define a fl-invariant lamination L = L r ,  xo, t (which can be 

modified to be primitive) with OL=O~O~r or o~oo~og r In fact, we shall do this without 

the restriction that fl-l(s1) is one point. 

A similar result to that for matings holds. If/~, is not minimal in the ordering on 

QML, the capture associated to r, x0, t is equivalent to a rational map if and only if there 

does not exist q with ~q<~l~r, i~q<~l~t. Here, /~t is any leaf of QML with endpoint at 

exp(2zrit), if such a leaf exists, and if there is no such leaf, I~t=exp(2arit), and then #q<~l~t 

means/~q separates exp(2reit)=ktt from 0. I f /~  is minimal, then the same captures are 

equivalent to rational maps, and in addition the captures associated to r, xo, r are 

equivalent to rational maps, if x0 is g~0 for the unique i with l<i<~r such that exp(2~rir) is 

in the boundary of the gap containing gir(0). 

The minor leaf of L=Lr, xo, t is in U0 precisely when 9L is equivalent to a rational 

map. In summary, the minor leaves in 0 of L~, t and L,,x0,t are in U0 precisely when they 

are not separated from 0 by the minor leaf/~l-q of L~, 1-q in U, where/~q is minimal; with 

/~q~</~r. We write (JO, m~ (matings and captures) for the smallest connected set in U0 

consisting of leaves and gaps, and containing all minor leaves of the Lr, t, Lr, xo, t in 

o0. 

3-928182 Acta Mathematica 168. Imprim6 le 6 f(~vrier 1992 
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1.20. Tuning 

Let f b e  a degree two critically finite branched covering of type III or IV with critical 

point of c of period m. Let g be equivalent to a degree two polynomial. Then the tuning 

o f f  by g round c, denoted fVcg, is defined up to equivalence as follows. (This 

terminology comes from Douady and Hubbard. For interval maps, the concept is due 

to Milnor and Thurston [M-T].) Up to equivalence, we can assume that there is a disc 

D containing c such thatfmD=D. We can also assume that gD=D, that there is a fixed 

critical point of g outside D, and that the orbit of the other critical point of g is inside D. 

Then define h=fFcg by: 

h = f  outside UfiD, 

h m = g on D, 

h[fiD is a homeomorphism for 1 ~< i < m. 

For example, SrHSt=Sr~'| st. (See 1.19.) It is a triviality from Thurston's necessary 

and sufficient condition that iff~-~ g is equivalent to a rational map, then so is f.  If m = 1 

andf i s  equivalent to a rational map (hence to a polynomial) thenfF-c g may not be. The 

precise situation in that case was given in 1.19, since f~-~ g is then a mating. However, 

we have the following, which will be proved in Chapter 8. 

TUN~N6 PROPOSITION. I f  f is a critically finite branched covering with critical 

point c of  period re>l ,  and f~-cg has a Levy cycle (1.6) then so does f. Hence, i f  f is 

equivalent to a rational map, so is fF-c g. 

Tuning o f  laminations. Let L be a fl-invariant lamination for which QL is type IV, 

and the minor gap G=G(L) in O projects to a simply-connected gap in U. Then if t is 

any odd denominator rational in (0, 1), we can find a primitive flrinvariant lamination Lt 
containing L such that: 

(1) OL =~t ~ s t, 
(2) the minor gap of L, is contained in G. 

In fact, there is a continuous map from G to/~ which maps U ~  to UQML, and 

such that the inverse image of any leaf of QML is either a leaf of ~ or a finite-sided gap 

together with its sides. The details will be given in Chapter 3. 

1.21. Examples of admissible points relative to a particular parameter lamination 

We are now going to consider the parameter lamination ~'1/7 and its relation to rational 

maps [ f  ct, c2] with cz of period 3. That is, we consider 
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where 

{[g~, O, 2a/(a+ 1)]: a E (~, a * 0}, 

ga(Z) = (z--a)  (Z-- I)/Z 2, 

so that ga(O)=oo, g~(oo)=l, g a ( 1 ) = 0 .  

We give a very simple picture of a simple decomposition of the parameter space 

C \ { 0 } .  (This family was considered by Ben Wittner in his thesis [W], which contains 

much better and more detailed pictures.) 

For a =_+ I, the critical points of g~ are in the same periodic orbit, and Ba is a (very) 

rough sketch of the hyperbolic component of ga intersected with the family {g~,}. I do 

not know if the boundaries of  B+l are topological arcs as drawn, but B+1 do have three 

special accessible boundary points 0, a, t~ in common, as drawn. 

Recall that in 1.19, we produced minor gaps of laminations containing Lr associat- 

ed with matings srllst. We also identified those minor gaps contained in Uo (defining O0 

relative to ~r). We did the same for captures. It can be shown that all hyperbolic 

components in B a, B~ are types III and IV, and that in B~, all critically finite hyperbolic 

type IV maps are matings s~:7Llst up to equivalence, whereas the type III maps are 

captures o#os~/7 up to equivalence. Conversely, all type III maps o#osv7 and matings 

sl/7Hst are represented in B~. Similar results hold for Ba. It can be shown that 

B~ 

B~ / Bl 

- 1  1 

B~ 

Diagram 2. 
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Diagram 3. 

{a E Ba: ga is not hyperbolic type III} 

maps continuously onto (U0, mc)-l~, where ~ is the lamination equivalence relation for 

~1/7. 
The set B~ is the intersection with {ga} of a single type IV hyperbolic component 

in which all maps have an attractive fixed point. For large a, the boundary of B~o is 

asymptotic to 

{a: I-l+_2/V=-d I = 1).  

There is a in B~ such that ga is (up to conjugacy) the unique polynomial z,-->z2+b 

with 0 of period 3 and b real. There is a lamination L0 with minor gap (~(L0) and OLo=g~, 
which is//-invariant, and G(L0)=~r((~(L0)) very roughly as shown in Diagram 3. 

Note that G(L0) intersects, but is not contained in ~7]0. mc. For any mating S317USt, 
one can find an invariant lamination L with minor leaf in G(L0) and QL~--s3rlHst. There is 

precisely one boundary leaf of U0 in G(Lo). It is the minor leaf of an invariant 

lamination L with QL~--s3/7IIsl/3. It has Sl-crossings in O-l(exp2:tia~) where an is the 

sequence 

.. .1/56, 53/56, 1/14, 11/14, 2/7, 1/7, 25/28, 1/28, 109/112, 1/112... 
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The segment of the leaf between 2/7 and 1/7 lies in D. Now let l be any leaf of 

L0--as drawn in Diagram 3mwith endpoints ~-I(exp2~ia), O-l(exp2zrib) for odd 

denominator rationals a, b with a E (2/7, 1/3) and b E (2/3, 5/7). We claim that there is a 

leaf/~l with an endpoint at ~-l(exp2:rib), such that/zt is in s and is the minor leaf of 

an invariant lamination L(/), which is flt-invariant, where fit is the extension offl by the 

dotted line approximately as shown in Diagram 3. fit crosses/~t near its endpoint. Then 

the lifted leaf/it is in U0. If we take//A I with endpoint at ~-l(exp2zri(2/3)), however, we 

obtain a boundary leaf of U0 which has Sl-crossings in ~-l(exp 2:tian) (n~>l), where a l  

corresponds to the crossing nearest ~-l(exp2ati(2/3)) and {an} is the sequence 

2/3, 9/28, 11/28, 9/14, 1/14, 9/112, 11/112, 51/56, 1/56... 

Let Ot denote the lamination map of L(l). Then Ot need not be equivalent to a 

mating even if Ot is type IV. For example, if l has endpoints ~-~(exp2:ti(12/17)), 

�9 -a(exp2ati5/17), then QI is not equivalent to a mating. 

Chapter 2. Proof of the Polynomial-and-Path Theorem 

2.1. Proof of the theorem for type III maps 

We recall that this theorem was stated in 1.8. We start by proving the theorem if f is 

type III, so that cl has period m under f,  c2 is not in the forward orbit of c~, butfqc2=cl. 
Note that we certainly do not use the hypothesis t h a t f b e  equivalent to a rational map 

in the type III case. 

Let v: [0, 1]--,(~ be any simple path with v(0)=r v(1)=fc2 and 

v((0, 1)) n {fie2, fie1: i >I 0} = ~.  

Then aoof is  a branched covering with critical points el, c2 with Cl of period m and c2 

fixed. So (as stated in 1.6) Thurston's theorem [T] about equivalence to a rational map 

implies there is a polynomial f0 of the form z~z2+a such that 

a~ of---~ f0, 

for some homeomorphism q~, and q~(c 2) EfJ(X(fo)) .  Then there is ~ with 

(o~ o f , X( f ) )  ~--v,(fo, Y) 

with Y c f J ( X ( f o )  ) (see 1.7). Put y=~,ov. Then 
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as required. 

M. REES 

f =trvoa~of =r trrofo 

2.2. Idea of the proof in general 

L e t f b e  of type II or IV with c~(f) of period m. (We can also treat f of type III by a 

similar method.) Then we can complete the proof of the Polynomial-and-Path Theorem 

if the following equivalence properties hold, where f ' ,  fo, x, Xo, Y(f'), Y(fo), ~, a, v 
satisfy the point properties and path properties listed below. 

Equivalence properties. (a) f=a~oaao f ' .  
(b) (cr~ o f ' ,  Y(f') \ { f'(c2) } )~-(fo, Y( fo)). 

Point properties. The critical points cl(f ' ) ,  cl(fo) have period m under f ' ,  fo 
respectively, and the points x, x0 have period p under f ' ,  f0 respectively, i f f i s  type IV. 

(If f is not type IV, x, x0 are not defined.) J~ is a polynomial with c2(~)=oo, but c2(f') 

and f'(c2(f')) are distinct. 

Y( f ' )=  ~{c2, f'c2}O{f'icl:O<~i<m} i f f  is type II, 

[{c2,f'c2}O{f'icl:O<~i<m}O{f"x:O<~i<p} i f f  is type IV, 

and Y(fo) is similarly defined. All points listed as in Y(f') are distinct, and all points 

listed in Y(fo) except c2=3~(c2) =oo are distinct. 

Path properties. ~, a ,  v :  [0, 1]--~C are simple. 

(~((0, 1)) O a((0, 1)) U v((0, 1))) n Y(f ' )=~.  

f 'o~=a,  ~(O)=v(O)=c2(f'), a(O)=v(1)=f'(c2(f')), ~(1)=(f')m-qca if f is type II, 

~(1)=x i f f i s  type IV. 

Here is a proof of the theorem, if these properties hold. Note that only equivalence 

property (a) really refers tof .  Althoughfis  referred to later, we can speak of "type II" 

and "type IV" point and path properties, which are relevant to the proof when f i s  type 

II and type IV respectively. Even without equivalence property (a), we have 

a~ooao f '  =O~oovoO~ooaoovoa~,of' 
=a~oa~oa~oa~of' 
=a~oa6oa~of', 
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where 6=o0o a, so that O(0)=c2(f'), 6(1)=a(1). Then 

o~of' o~=a~oa=O.  

So 

~ o ~ o ~ o f ' = ~ o % o ~ ,  

where ~0(6)=7 and r/is isotopic to ~0o~ via an isotopy which leaves Y(fo) fixed, and 

f0or/=7. If equivalence property (a) also holds, we have 

f = ~ o ~ o ~ ,  

where the properties required for the Polynomial-and-Path Theorem are satisfied by 

7, 7, and so the theorem is proved. 

It is not hard to f indf ' ,  x, ~, a satisfying the appropriate conditions, as we shall see 

in this chapter. If v is any simple path with endpoints c2, f'c2, then 0 0 of '  is equivalent 

to some polynomial j~. Probably, the stronger equivalence property (b) relating 0 0 of '  
andfo can be proved in the abstract, for an appropriate Xo. But the approach used in this 

paper will involve a path ft in RM2 from f=fl to a polynomial fo. Then f '  will be ft for 

some t E (0, 1]. It is hoped that this approach will lead to a stronger result (though it has 

not, yet). 

2.3. A reduction in the proof 

Let fERM2 be of type II or IV. Then we can find f ' ,  fo, x, Xo, Y(f'), Y(fo), ~, a, v 
satisfying the equivalence, point and path properties of 2.2--and hence can prove the 

Polynomial-and-Path Theorem--if  there exists a path ft (tE[0, 1]) in RM2 from a 

polynomial f0 to J~=fand a path xt in C such that (1) to (3) hold 

(1) For some tl in (0, 1] and for some ~tl' atl, and for f ' = f t :  x=xt: ~=~t~, a=at~, all 
the equivalence, point and path properties which refer only to f, f ' ,  ~, a, x hold. 

(2) The point properties hold wi th f ' ,  x replaced byft,  x ,  for any t E (0, 1], and the 

point properties hold for f0, x0. 

(3) Y(ft) varies isotopically for tE(0, tl] and limt_~0 Y(ft)\{ftc2} = Y(fo). 
To see that (1) to (3) suffice, we claim, first, that for t E (0, 1] there are ~t, at such 

that all the equivalence, point and path properties which refer only to f, f ' ,  ~, a, x hold 

with f '=ft ,  ~=~t, a=at, x=xt. For let tpt (tE(0,tl]) be an isotopy of t~ with 

~0t(Y(ftl)) = Y(ft) and 9t =identity. Let at=fffto(xt, and let ~t be isotopic to 9tO~tl via an 
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isotopy fixing Y(ft) with f ,o~,=a, .  Then the required properties hold, since 

a~ o a~ of, -~0jl a~o a o ~ ,  

if we write ~=~tl, a=a , .  

Similarly, if for some s E(0, t~] there is Vs such that the equivalence and path 

properties hold forf '=f~,  v=v,, ~=~,, a=a, ,  then we can find {vt} such that they hold 

for all t6(0, t l] ,  with f '= f , ,  v=v,, ~=~t, a=at. For we take vt=cptocp-jJovs. But i f s  is 

very close to 0, we can find vs: [0, 1]--->(~ with vs(0)=c2(f~), vs(1)=fs(c2(fs)), vs([0, 1]) very 

close to c2(%) and v(f~)\{f~(c2(f~))} very close to v(%). Then the appropriate equiv- 

alence and path properties must hold forf~, vs. 

2.4. A path to a polynomial exists 

Let W be any irreducible component of the algebraic variety in RM2 consisting of all 

[f, cl, c2] with Cl of period m> 1 under f. Then W is path-connected. The following 

lemma is obviously necessary for the proposed method of 2.2. 

LEMMA. For some [f, cl, c2] E W, fc2=c2, that is, f is a polynomial up to conjuga- 

tion by a M6bius transformation. 

Proof. Let 

W 1 = {[f, c l, c2,x]: [f, c l, c2] E W, f x  = x}. 

Then W1 is a finite branched cover of W, and an algbraic variety. If W does not contain 

a polynomial, there is a holomorphic function defined on Wl\{singularities} by 

[f, Cl, c2, x] s--> l / f  '(x). 

In fact, this function must map into the unit disc. For if If '(x)l<l for some f,  then the 

hyperbolic component H of f contains polynomials (see [R], for instance), and 

{[g, cl, C2] EH: gmct=cl} contains a polynomial, and is contained in W. Now there is a 

compact Riemann surface Wz such that W~\{singulafities} can be identified with 

W2\{finitely many points}. But any bounded holomorphic function on Wz\{finitely 

many points} extends to a bounded holomorphic function on 1412, and must be constant. 

So the original holomorphic function on W~ must be constant, and equal to 2, for some 

121<1. So W~ coincides with an irreducible component of 

{ I f ,  c,, c 2, x]: I f ,  c,, c21 E R M  2, f (x)  = x, f ' ( x )  = 2} = W 3. 
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But we can identify W3\{f ini te ly  many points} with 

{[f~, b, O, oo, 1]: a, b E C \ { - 1 } ,  f'a,b(1) = 2}, 

where 

Thus f,, b E W for 

so that 

fa, b(Z) = (1 + b) (Z 2 + a)/((1 + a) (z 2 + b)), 

f'a, b(1) = 2(b-a) / ( (  I +a)  (1 + b)). 
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(1 +a)  (I + b) = 22(b -  a), 

and for such (a, b), since 2 is assumed fixed, fan, b(0) is a nontrivial function of  a of  

degree 2 n -  1 for n~>l. So we have the required contradiction. (I should like to thank the 

referee for pointing out an error at this point.) 

2.5. Proof of the theorem for f of type II 

Let W be as in 2.4. Let  ft (t E [0, 1 ]) be  any path in W such that f = f l ,  fo is a polynomial,  

and all points listed in Y(f t)= {fit c 1, f~ c2: O<<_i<rn, j=O, 1} are distinct for t E [0, 1]. We 

know by 2.4 that ft exists. Then for t near 1 and some rt>0, there is q~t: {z: Iz[<rlrZ}--~(~ 

which is holomorphic and injective and such that 

q)t(O) ---- f m - q + l ( c l )  , 

q~,(rt~ ') =fe(c2) for some I ,1 = I, 

q0t(z 2) = f ?  o q0t(z ). 

Define at by at(u) = qgt(( 1 - u) rt ~t) and ~t by fe o ~, = at, ~t(O) = c z. Then 

f~ = a~o%of ,  

for t sufficiently near I. So we can take h to be any t < l  sufficiently near 1, and 

fq, Ctq, ~q s a t i s f y  the equivalence, point and path properties of 2.2, as required in 2.3. 

2.16. Proof of the theorem for f of type IV 

Again, let W be as in 2.4. We can choose a pathf t  in W fromf=j~ to a polynomialj~ such 

that ft#=f~ for t < l  near 1. We can assume (ft~)'(x)=~l for any point x with f ' t x = x .  Then 
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we can find a continuous path x, with xl--c2(f) and xt of period p under ft, and ft, xt 

satisfy the properties of  2.2 for all tE[0,  1). Now for t near 1 but <1 there exists a 

continuous injective q~,: {z: Izl~<l}~C such that 99t is holomorphic on {z: Iz[<l} and 

~ , ( 0 )  = x,,  ~0,(1) = c2( f t ) ,  

%(2,Z) = f f o  q~,(z), 

where 2t=(fft)'(xt), 12tl<l. 
Then let ~t: [0, 1]---~(~ be defined by ~t(u)=q~t(1-u) and at=fto~t.  Then 

f l  - a ~ o % o f , ,  

and ~t, at satisfy the equivalence and path properties for t<  1 near 1. So we can take tl 

to be any t < l  sufficiently near 1 and the requirements of  2.3 are met. 

Chapter 3. Proof of the Lamination Equivalence Theorem 

3.1. An improved theorem 

We start by stating a modification of  the Polynomial-and-Path Theorem for type IV 

maps, for which I have two proofs,  but--surpris ingly--nei ther  of  them short. 

IMPROVEO POLYNOMIAL-ArqO-PATH THEOREM. Let f be a type IV critically finite 

degree two rational map with (as usual) critical points cl o f  period m and c2 o f  period 

p. Then if fo is as in the Polynomials-and-Path Theorem with 0 of  period m, one o f  the 

following possibilities occurs. 

(a) In the equivalence 

f--- cro o cry o f  0 , 

we can choose e so that ~(1) is not in Of~ Ul(fo), for any i>>-O, 

(b) For some critically finite map g and polynomial h, 

with c2 in the tuned orbit, and 

f~- g~-h, 

g=a,,o%,ofo, 

where ~', y' have the properties o f  ~?, y in the Polynomial-and-Path Theorem, and y'(1) 

is not in afio Ul(fo) for any i>>-O. 
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3.2. Discussion of the proof of the Improved Theorem 

There is nothing to prove unless either p]m (including p=m) or mlp with p:~m. For all 

but one periodic point in ofio Ul(fo) have period strictly greater than m and divisible by 

m, and the remaining point has period either equal to m or dividing m. We deal with the 

case plm here, and with mlp at the end of Chapter 5. So now suppose plm, and an 

equivalence 

f~-ooooyof o 

has been obtained which does not satisfy (a) of the Improved Theorem, i.e. 

y(1) E afio Ul(f o) for some i>~0. Suppose also that this was obtained using paths {ft}, 

{xt} as in 2.3, with fl = f  and limt_.l x~=c2(f). We now show that we could perhaps have 

made a different choice {x~} rather than {xt), and hence x~ rather than x0. 

For let ~01: {z:lzl<~l}-->U2(f) be continuous and holomorphic on {z:lzl<l} and 

such that 

W1(O) = c2(f),  

Wl(Z 2) = f p  o Wl(Z). 

ThenfPo~pl(1)=~01(1), so that ~01(1) has period Pl under f, for some PlIP. Define 

~: [0, 1]---~C by ~(t)=~pl(t), and let a=fo~. Then, depending on whether pl=p or pl<p, 

f=o~ooao f or f--(o~ooaof)Fc2h, 

for some polynomial h of the form O~-->zE-Fa with 0 of period piP1 under h. In the latter 

case, the attractive basins of h have a common fixed boundary point. Now we can 

assume the path {ft} satisfies 

( f~ ) ' ( z )~=0or l  when f~t~(z)=z, for t < l .  

Now we can take x~=~pl(1), and extend to a path {x~} with x~ of period pt underft, for all 

t. Then, for all t, the orbits ofxt, x; are disjoint underft, since this is true for t= l .  Then 

ft, ~, a satisfy the requirements outlined in 2.3 to give 

o~o o,~o f -- % o % o,1"o , 

where r/': [0, 1]--~C is simple, r/ '(0)=~, r/'(1)=x~, and 7'=f0or/ ' .  Since x~ is not in the 

orbit of x0, and has period <~m, it cannot be in the boundary of the attractive basin of 

f~(0) for any i~>0 (since the only point of period <~m in Of~o U 1 is in the orbit of x0), so we 

are done. 
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3.3. Proof of the Lamination Equivalence Theorem: Type IH 

Let f be critically finite type III, such that 

f =o:,ofo 

is the equivalence of the Polynomial-and-Path Theorem. Then, for some odd denomina- 

tor rational r, 

so that 

fo  ~ Sr, 

(f0, f~ ~(1): i~>O) =w(g,,X) 

for some X. Then we can choose a simple fl: [0, 1]- ' (2\Kr such that ~o  7 and fl are 

isotopic via an isotopy fixing X, and fl-I(OL,)= {t} for some t E (0, 1). Let l0 be the leaf 

of s with fl(t) E lo. We have 

f=oBo~r. 

Let L be defined by 

tJL = ((Lr\ O ff) , i  l0 ) U U {((aa o ~)*)i/0: i ~> 0})-, 
i~l 

where g'and (a~ o st)* are as in 1.13. Let G be the gap of L, containing fl(1). Then L is a 

fl-invariant lamination which has giG as a gap for j~0,  and oo E(a~og,)*G. Hence, the 

lamination map •L (see I. 14) is uniquely defined up to equivalence, and 

eL = a ~ o L - - - f .  

3.4. Proof of the Lamination Equivalence Theorem: Type II 

Let f be critically finite type II, such that 

f~ooooro f  0 

is the equivalence of the Polynomial-and-Path Theorem. Then as in 3.3, ff 

we can find a simple fl: [0, 1]--~C\Kr such that f l - l (OL)= {t}, fl(t)E/0, fl(1)E G, where 
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G is a gap of Lr, ,.~r 0 ~--~fl with ~(1)=~7 -1 fl(1) and 

f=or176  r. 

Let 
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L o = {lELr: l c  ogi~G, i>~O}. 

Then L0 is a lamination. For n~  > I, let 

Ln+ 1 = (080 Sr)* L,,. 

Then for every leaf of L,, there is a simply-connected gap of Ln which has I in its 
boundary and is contained in a simply-connected gap of Ln+ r Also, for n>~l, the gap 
containing oo also contains S~-q(O), and the gaps of Ln containing Si,(O) (O<~i<rn) are all 

simply-connected and distinct. Then 

L = lim,_~o~ L~ 

et =or 

exists and is fl-invariant, and 

3.5. Proof of the Lamination Equivalence Theorem: Type IV(a) 

Let f be critically finite type IV, and let 

f~oo~176  

be an equivalence as in the Improved Theorem part (a). (See 3.1.) Let 

~Ogr =f00~0, 

where, in the previous notation, q,=~0 o ~r. Thus, ~/,=limt~ l ~0 t, where {~Pt: t E [0, 1)} is a 

continuous path of homeomorphisms with ~0=identity. Then ~0-1(~,(1)) contains a set 

D, where D is either a point of K ,  the closure of a leaf of L ,  or the boundary of a finite- 

sided gap of L ,  and D has the following properties. It can be chosen not to intersect the 

boundary of any gap of L~ in the full orbit of Go under 8~ (where Go is the gap containing 

0), and has period p under 8~ (where p is the period of y(1) under j~). Then (after 

modifying ~r if necessary) we can find a neighbourhood U of D with S U c  U, for a well- 

defined local inverse S of ~r with SD=D,  and with g~ U (0~<i<p) all disjoint. Then we 
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can find simple paths fl, r [0, 1]---~C\(K~U UL,) with the following properties, after 

modifying g~, if necessary. 

(a) f---o~oo~og r 
-i U=f~, l<~i<p, and the sets fl([0, I]), Sifl([t, 1)) (i~>t) are (b) fl([t, 1])~ U, fl([0, I]) n sr 

all disjoint, but ~f l ( l )=f l ( t ) .  
(c) lim---,_.= U,~, Sifl([t, 1])=O. 

(d) I.Ji~=l Si(fl([t, 1])),--/0, 

where l0 is a geodesic homotopic in C \ K ,  to the component of 

(o#og)l-Pg-~t(fl([O, 1])U tJ Sifl(tt, 1])), 
i= I 

which contains Ui=__l si~([t, 1]). 

(e) ~(1)=s -j fl(t), and g o  r for all u E [0, 1]. 

Then let 
P 

L I = U ((o~og,)*ilo �9 
i=1 

Then LI is a finite lamination, all of whose leaves bound finite-sided gaps, including a 

gap Gt containing l0 such that ( l . tJOGi)=(o~og)*lo.  Then for n>~1, let 

and let 

L.+ 1 = (o~ogr)* L. ,  

L = (lim.__,| L.) tJ L r. 

Then L is a fl-invariant lamination with ~ in a simply-connected gap G| of period p 

under g., and 

pL~--O(OO~O~r=f. 

3.6. Tuning laminations and the proof of the Lamination Equivalence Theorem 

for Type IV(b) 

Let L be a fl-invariant lamination with PL type IV, and such that the gap G= containing 

is simply connected. We now show how to produce, for each odd denominator 

rational q in (0, 1), an invariant lamination L(q) with L~L(q ) ,  with the minor gap of L(q) 

contained in the minor gap of L, and 

PL(q) ~-- QL ~-| Sq. 
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Let G denote the minor gap of  L in O, and let F be a lift of  p~ with F(G)--G, where p is 

the period of  oo under QL. Then if aG denotes the boundary of  G in D =  {z: Iz[~ < 1}, which 

contains O, we can extend F (uniquely) to 0G. Then Flag is a degree two orientation- 

preserving covering. So there is a unique monotone q2:aG-~{z:lz]=l} such that 

q~(F(z))=(q)(z)) 2 for all z EOG. Then we can extend ~ to a map q~: G-->D with the 

following properties (where Lq is the lamination of 1.10). 

(a) If  l ELq is not in the boundary of  a finite-sided gap of  Lq, then q~-~(l) is either a 

geodesic, or bounded by 0G and two geodesics in G. 

(b) If  A is a finite-sided gap of Lq with n sides, then tp-l(A) is bounded by a subset  

of 0G with n components ,  and n geodesics in G, and 0~-lA=cp-~aA. 

(c) Otherwise, q)-l(z) is a point for zE G. 

Now let :r: I~-~(2\Kr be the quotient map, and let 

L(q)' = {:t(/l): II is a geodesic in G which is in a~-l ( l )  for I a leaf of 

Lq or in aq~-JA for A a finite-sided gap of Lq}. 

t __ It rr Here,  0 denotes a boundary of  a subspace of  G. Let  ]..~q--~7~(J.~q), where/Zq is the 

geodesic in q)-l(#q)n G which is nearest  to q)-l(sq(O)). Let  ct: [0, 1]-->:t(G) be a simple 

path with 

a(0)=fl(l), a([0,1])n/~= (a(t)), a(])=~o~-~(sq0). 

Let y: [0, l ] ~ ( 2 \ K r  be a path which is homotopic  in C \ K ,  to fl*a, where 

~fl(2t) if t~< 1/2, 
fl*a(t)= La(2 t -1 )  if t ~  > 1/2. 

Then 

and 

Then put 

(o~,o g~)* L = (o~o g,)* L = L, 

(((y~, 0 Sr)*) p L(q)' n :~(G) = L(q)'. 

L(q) = LU U ((oro~,)*)"L(q)'. 
n=O 

Then (oTogr)* L(q)= L(q), and there exists ~7: [0, 1]--,(~ with g,o ~/=y, and 
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Chapter 4. Equivalence and conjugacy 

4.1 

We start by giving details of the general semiconjugacy result mentioned in 1.5. 

SEMICONJUGACY PROPOSITION. Let f be a critically finite rational map, and let g 

be a critically finite branched covering with f=%g,  and let Ra0 be a topological 

conjugacy between f and g in neighbourhoods o f  orbits o f  periodic critical points o f  

X( f ) ,  X(g). Then there is a continuous Ra: 1~---)(~ such that Ra=limt__,+~ Rat, Rat is a 

homeomorphism for t ~ [0, o:), Ra is a homeomorphism of  some neighbourhood of  the 

forward orbits o f  periodic critical points in X ( f )  onto a neighbourhood o f  the corre- 

sponding points in X(g), and Ra o g =fo  Ra. 

Proof. Let U(f) ,  U(g) be neighbourhoods of the forward orbits in X(f) ,  X(g) of 

periodic critical points of f ,  g and let the orientation-preserving homeomorphism Ra0, 

andft  (tE [0, 1]) be such that 

f0 = Ra0~176 1' fl = f ,  

X(ft) = X ( f )  for all t, and ft = f  on U(f)  for all t, 

Rao(U(g)) = U(f).  

(I) 

These exist, since f=g .  Then we can define a path Rat (tE [0, 1]) by 

f~o Ra~ = Rao o g. (2) 

Then 

f o w  I = WoOg, 

Wt = Ra0 on U(g), 

Ral(g-I U(g)) = f -1U( f ) .  

(3) 

Then we can define Rat+, (nEN, n>~l, tE[0, 1]) by 

fn o Rat+, = Rat o g", (4) 

with, in addition, 
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~t+,  -- ~0 on U(g) for all t, n, 

(5) 
Wt+n = ~n on g-nU(g) for all n, and tE[0, 1]. 

Since f "o fo~ ,+l=f f+lo~ ,+z=~oogn+l=Woognog=f"oWog,  and f o W n + l = ~ , o g  

on U(g), we have 

f o ~ , +  ! = ~ o g  for all n. (6) 

By (6), to prove the proposition, it suffices to prove {qJn) is uniformly convergent. In 

fact, we show that for some C>0 and 0<2<1,  

d(W,+tx, W,x)<<.C2" for all nEN andrE[0,1],  (7) 

where d denotes the spherical metric on (3. By (5), we only have to prove this for 

xr Choose C, ~. so that 

sup{d(SWuy, sqJ0 y): y ~. U(g), u E [0, 1]} ~< C$ ~, (8) 

where S is any local inverse o f f "  defined on the set {qJuy: u E [0, 1]}. Note that this set 

does not intersect U(f). Then (7) follows immediately from (8), because q~,x=Sg"x, 

~ for some local inverse S o f f " ,  and g"x~ U(g). 

4.2 

We are especially interested in applying the Semiconjugacy Proposition in the case 

when g=oL is the lamination map of a fl-invariant lamination L. For the rest of this 

chapter (except 4.7, and even there, if desired), f is critically finite rational, g=oL and 

v: o g=fo ~d. We are going to prove the Conjugacy Theorem modulo two results about 

invariant laminations. We need to map =L-classes to points (see 1.11). The following 

lemma is relevant. 

LEMr, iA. Let f, g , ~  be as in 4.1. Let y: [0, 1]---)1~ with yN U ( g ) = O . / f y ,  satisfies 

g"o~,,=y and 6 is a limit o f  a subsequence o f  the sequence o f  sets {~,n([0, 1])), then W(6) 

is a point. 

Proof. It suffices to show 

lim,_~| diameter qJ,(7,) = 0, 

4-928182 Acta Mathematica 168. Impfim~ le 6 f~vrier 1992 
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where tlJ~ is as in 4.1. But Wny~=SW0y, where S is a local inverse of f~, and 

u)0 7 n U ( f ) = ~ .  The result follows. 

4.3 

Lemma 4.2 can be applied to show that if l is a leaf in L with a compact subset II such 

that lcU~ OZ ~ 11, and oL=fas in 4. I, then W(I) is a point. Such a leaf I is called segment- 

periodic, and any component of pi l l  is called segment-preperiodic. Then W(l) is a 

point if ! is segment-preperiodic. Then W(l) is a point for all lEL if the following lemma 

is true. It will be proved in Chapter 6. 

PERIODIC LEAF LEblraA. I f  L is fl-invariant, and fl(1) is in a gap of L, then 

segment-preperiodic leaves are dense in L. 

4.4 

LEMMA. I f  the Periodic Leaf Lemma holds, then u) maps ~--L-equivalence classes to 
points. 

Proof. We have already seen (4.2, 4.3) that W(l) is a point for all l~L.  Since W is 

continuous, it suffices to show that qJ(G) is a point whenever G is a finite-sided gap, so 

that OG=i~O...Uin for I~EL (l~<i~<n). Since tF is a limit of homeomorphisms, 

OU2(G)cW(aG)= U~= 1 ~(li). So ~ (G)  is either all of (~ or a point. But ~(G)f l  U(f)--~5, 

because Wn(G) N U ( f ) = O  for all n. So W(G) is a point. 

4.5 

We want to show that W-l(z) is always a single --L-class. The following lemma is 

useful. For the rest of this section, we write Kr=K, gr=g, ~r=~. 

LEMMA. lNK4=fD for all IEL, ifU)(l) is a point for all lEL. 

Proof. If INK=f3 then l crosses only finitely many components Ii (l<~i~<k) of 

S i \ K .  Either I is a loop, or, for each 6>0 there are distinct segments of /crossing some 

li in the same direction, with crossing points distance <6  apart in the spherical metric. 

Choose two such segments, and join along Ii to get a closed loop 7(6). If l is a loop, put 

y(6)=l for all 6>0. In either case, y(6) separates some of the J~ (l<~i<~k) where these are 

the components of S1\LI~=11 r Because W(l') is a point for all l 'E L, 

lim~__,0 diameter ~P(~/(6))= O. 
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Then, taking limits, W-~(W(I)) intersects K in an open subset, whose image under 0~, 

for some n, contains K. We deduce that qJ-~(qJ(l)) contains K. We deduced this from 

the assumption that h3 K = ~ .  It follows that ~(t.lL tJ K) is a single point z. Then q~-~(z) 

also contains all but one gap of L, since qJ-~((3\{z}) is connected. Then 

#(X(OD)=#(X(f))=2, so that X(oDcU(oD. But then we have a contradiction, since 

OLIU(QL) should be a homeomoporhism. So IOK*O for all l, as required. 

4.6 

From now on, we assume, in addition to the standing hypotheses for f ,  0L with f=oL, 

that the gap Go of L containing 0 is simply connected, and that O~"z---~O as i---~w for all 

z E Go, and that a similar property holds for the gap G~ containing ~ if ~ is periodic 

| - i  ~ - i  GO o n t o  under 0L- Then W is a homeomorphism of either Ll~=09 L (GotJG| or Ll~=00 L 

(?.\J(f) ,  depending on whether or not oo is periodic under ~L. If we assume the Finite- 

sided Gap Lemma below, then W-~(z) can only be non-singleton if it is a union of =L" 

classes, each of which intersects K. The Finite-sided Gap Lemma will be proved in 

Chapter 6. 

FINITE-SIDED GAP LEMMA. I l L  is inoariant, then any gap G which is not in the 

full orbit of  Go--or of  G| if oo is periodic--is finite-sided. 

4.7 

Now here is the key to proving that qJ-l(z) is a single --L-Class, under the assumption 

that 0L is type II, III or IV, that is, the equivalent rational map f is hyperbolic. The 

lemma simply concerns an expanding map g on a metric space. 

LEMMA. Let (X, d) be compact metric, and g:X---~X expanding. Let f :  Y---~Y and 

V2:X---~Y be continuous, with V2og=fo~ p. Then either there is N such that ~p-l(y) 

always has ~ N  elements, or some ~-i(y) contains x, x' with x=l=x ' but g(x)--g(x'). 

Proof. Suppose there is no bound on the number of elements in ~p-l(y) (y E Y). 

Since g is expanding, there are 6D>0 and 4> 1 such that d(gx~, gx2)>~,~d(x~, x2) whenever 

d(x~,x2)~6 o. Since ~0 is continuous, any limit of a sequence ~P-~(Yn) must be contained 

in some v2-1(y). Then, given 6o>e>0, choose N so that X is covered by N e/2-balls. 

Choose y~E Y so that ~p-l(y~) has ~>N elements. Choose 6>0,  and xiE ~p-l(y~) (I<~i~<N) 

so that, if i4:j, d(xi, xi)>>-6. Choose n so that 2n6>60. Then for some i*j, d(gnxi, g"x~)<e. 

Choose O~k<n so that d(glxi, gtxj)<e for k<l<~n, but d(gkxi, gkxi)>~e. Then k must exist, 
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because otherwise d(gtxi, gtxj)<e<6o for O<~l<~n, and d(g%i, g~xj)>-Md(xi, xj)~>2"6>60, 

giving a contradiction. Then d(gkxigkxj)>6o, because otherwise d(gk+lxi, gk+lxj)>-2e. 

Now gkxi, gkxjE ~V-t(fky,)=~/-t(Z~), writing z,=fky,. Taking a limit set of the sets ~0-t(z,) 

as e--->0, we obtain a set ~p-i(y) containing points x, x' with d(x,x')>>-6o but g(x)=g(x'), 

as required. 

4.8 

I think the following proposition can be made to work if f is critically finite rational but 

not hyperbolic, but the proof would be more involved. We continue with the assump- 

tions made in 4.6, 4.7. 

PROPOSITION. I'IJ-I(z) is a single =L-Class for each z. 

Proof. If W-1(z) is not a single --L-Class, it must be a union of infinitely many, since 

it is connected. Also, by 4.5, 4.6, each such set must have infinite intersection with K. 

So W: K--,J(f) ,  with Wog=foqJ ,  is not boundedly finite-to-one. We can find a metric 

on K for which g is expanding, since s: z ~ z  2 is expanding, ~:  K--.S ~ satisfies �9 og= 

s o ,  and r is non-singleton for z in at most two eventually periodic full s-orbits. 

So, by 4.7, we can find z, - z E K  with W(z)=W(-z). Now, for any wEC,  

I u  ) = ~)~1 ~I/-I(w) ~___ A O - A ,  

for a closed connected set A, and thenf- l (w)  = {W(A), W(-A)) .  Hencef - l (w)  is a point 

if W(w0=W(-Wl) for some wl Et~Z l W-l(w). So f-lWoL(z)=f-lWg(Z) is a point. Then 

ulg(z) must be a critical point of f ,  and hence in U(f).  But this is impossible, because z 

and gz are in K, and W(K) n U ( f ) = ~ .  

4.9 

The following completes the proof of the Lamination Conjugacy Theorem, modulo the 

Periodic Leaf Lemma and the Finite-sided Gap Lemma. 

LEMMA. Under the previous hypotheses, =L coincides with the smallest (not a 

priori closed) equivalence relation = such that zl=z2 if either zl, z2El for some IEL or 

Zl, Z2 E G for some finite-sided gap G of  L. 

Proof. We clearly have --C=L. SO it suffices to show that - is closed. So it 

suffices to show that if xn=yn, Xn-->X and yn---~y, then x=y. Let N be the maximal 
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number of elements of K in an =L-class. By pasing to a subsequence, we may assume 

there is t, with 2<.t<~N and that there are x~,i (l~<i~<t), l~,i (2~<i~<t) such that the follow- 

ing hold: x~,l=x~, x~.t=yn, xn, i_l, Xn, i~ln,  i (2<~i~<t), Xn, iEK (2~<i~<t-1), limn_.,,oXn, i=Zi 
(l<~i<<.t) with Z~---x, Zt=y, and lim~_~| I~. i exists in the Hausdorff topology (2~<i~<t). Then 

lim~_~| I~, i is a union of leaves o f / , - -poss ib ly  infinite, but (lim~_,| l~, i) N K has ~<N 

elements. So zi-i--zi (2~<i~<t) and z~=zt, that is x=y. 

Chapter 5. Rays 

5.0. Contents 

This chapter ends with the completion of the proof of the Improved Polynomial-and- 

Path Theorem f o r f o f  type IV, modulo the Tuning Proposition. The key for that is 5.9, 

the Endpoint Theorem. 

Throughout this chapter, we consider rational maps in W, where W is an irreduc- 

ible variety in RM2 consisting of [f, cl, c2] with Cl of period m underf.  It might be worth 

pointing out that it follows from the descriptions in [R] (for example) that if H is a 

hyperbolic component, HN W is connected. As in the introduction, we use U1, U2 to 

denote the components of the Julia set complement containing ci,c2. (U2 might not 

exist.) 

5.1. Rays 

L e t f E  W. If C2=t=fnc 1 for any n>~0, and O<~i<m, there is 0<r<~l and a unique holomor- 

phic injective map q0=tpf.i: {z: Izl<r}-->C such that 

q~(O) = f ic~ ,  

qg(Z 2) =fmq)(Z). 

If c2~fnU~ for any n~>0, we can take r= l ,  and then we call the set 

~({QeE:tia: Q ~ (0, 1)}) 

the ray of  argument a in flu1. 

If c2 Ef~U1 for some n~>0 but c2~:fncl, then t ic 2 EfiUl for some O<j<.m, and then 

we can ensure that riCE EIm tp. Consider the connected component C of 

[.J f-mnqg({QeEnia2k: • E (0, r)}) 
n~0, k~>0 
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Diagram 4. 

which contains qT({QeZnia: Q E (0, r)}). If cp-l(fJc2)=l=Qe 2nia2k for any 0 E (0, r), k>~0, this is 

the ray of argument a infiUl. If cp-l(fJc2)=Qe 2~i~2k for some ~ E (0, r), k~>0 (there is only 

one pair (Q, k) unless a is rational with odd denominator, when there is an infinity of 

values of k) then the ray of  argument a infiU~ is 8VNfUI,  where Vis the component of 

f iU~\C  which containsfic~. Thus, in this case, the ray of argument a is topologically a 

Y. See Diagram 4. 

Note that the ray is invariant under f mp, if a has period p under x ~ 2 x  mod 1. This 

definition coincides with the previous one if c2 ~f"Uj for n>~0. 

5.2. Endpoints 

A ray of rational argument has an endpoint if the ray is topologically a line, and one or 

two endpoints (but, actually, two) if the ray is topologically a Y. If c2 r for n~>0, 

the endpoint is defined to be limr_~l cp(re2~ia), which does exist. This is proved, and 

endpoints are defined in general, using a standard argument which originates (I think) in 

Douady and Hubbard's work. In general, the endpoint, or set of two endpoints of a ray, 

is defined a s / ~ \ ( R U  {ficl}) if R is the ray in f/U1 of argument a. To see that this 

consists of one or two points, we can assume without loss of generality that a is of odd 

denominator and of period p under x ~->2x mod 1. Then let B' be the image under q0 of an 

open ball which contains q0(p'e 2~ia) for p2p<0,<Q, and such that B'cImq0, and B' is 

disjoint from all its forward images except fr~B'. Let B be another ball w i th /3cB ' ,  

fmvB nB~:O, and also containing qg(Q'e 2~tia) for Q2p<Q,<Q. Then 

R \ ( R O { f i c l } ) c  lira LI f -~WBnR . 
N---~ ~ \ n = N  / 
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All the components of f-mpnn are balls up to bounded distortion, by the Koebe 

distortion theorem [Du], and have diameters converging to 0 as n--->o0, since any ball 

intersects only two others. It follows that the endpoints of R are well-defined and fixed 

by fmp. 

5.3. Rays, endpoints and centres in hyperbolic components 

Now let H be a type II hyperbolic component, with fqc 2 E UI, but fqc2~c ~. Then 

~of, o=tps, (5.1) exists with fqc 2 EIm qof and v( f )  = q~71(fqc2) is well-defined. It was shown 

in [R] that 

v: { fEHf3  W: fqc2 ~= cl}---> {Z: O< Izl < 1} 

is a degree three covering, except when H contains z ~ l / z  2. For that exception, v is a 

homeomorphism. A component of v-t({re2~i~: rE (0, 1)}) is called a ray o f  argument a in 

H N W. We call the unique critically finite map in H N W the centre. It was shown in [R] 

that if R =  (fr: r E (0, 1)} is a ray of argument a with v(f,)=re 2~i~, for a an odd denomina- 

tor rational in (0, 1), then f~=limr_~lf, exists. We call f~ the endpoint of R. It was also 

shown in [R] 6.12 that the ray of argument a in Ul(f0 ends at a parabolic point in the 

boundary of a parabolic basin containing fqc 2, and that the parabolic basin has period 

rap. Note that, from the definition in 5.1, rays of argument a in U~(f) (for a rational) 

are topologically lines unless f l i e s  on a ray of argument 2ka in a type II component, for 

some k~>0. 

5.4 

The following lemma uses the Tuning Proposition, which will be proved in Chapter 8, 

at one point. 

LEMMA. Let m > l .  Let f E  W be either hyperbolic o f  type III or IV, or have a cycle 

o f  parabolic basins. Then two rays o f  rational arguments a, a' from Ll f i U l ( f )  can only 

have the same endpoint i f  a=a'=O. 

Proof. I f f i s  as described, then q~f, iis defined on {z: Izl< 1 } and extends continuous- 

ly to {z: Izl--1}. We aim to show, first, that for each i, all rays i n f iU l ( f )  have distinct 

endpoints. So fix i. Let 

L = {1: l is a geodesic in the boundary of the convex hull of q~-l(x), some x E a f iu l ( f ) ) .  
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Then L is a z2-invariant lamination in the sense of IT], as described in 1.10. (If we took 

re=l ,  this is exactly how z2-invariant laminations were produced in [T].) By the 

classification of zZ-invariant laminations, L contains Lr for some odd denominator 

rational r. We can change the definition of f i n  U2 to produce a critically finite branched 

covering f0, and we can change the definition of f i n  tJ~=lflU 1 to produce g~-foFr s r (see 

1.20) such that gm(cp(Lr))=cp(Lr) and g admits a Levy cycle. Then by the Tuning 

Proposition, so does 3~. Then so does f ,  which is impossible (see 1.6). 

So all rays infiU~ have distinct endpoints, for anyj.-->0. Now suppose i~:j, and that 

rays of arguments a, fl in f lu1,  fJul  have a common endpoint. Then if one of a, fl--say 

amis odd denominator rational, rays of argument fl and 2kfl have a common endpoint 

for any k such that 2ka=a mod 1. Then by the first paragraph, 2kfl=fl mod 1. So if one of 

a, fl is odd denominator rational, they both are, and of the same period under x~-+2x 

mod 1. If both of them are even denominator rational, by applying f"  for suitable n, we 

see that 2ha has an odd denominator if and only if 2kfl does. 

So now, if there are any common endpoints at all, there is 0< j<m with 2j<.m and 

odd denominator rationals a, fl of the same period p such that the rays of arguments a 

in U~ and fl in f Ju l  have a common endpoint. Now the proof is completed by Lemma 

5.5 below, which is stated separately in the form in which the result will be needed 

later. The m a p f o f  5.5 can be taken equivalent to the map f o r  f0 of this lemma, and the 

arc y of 5.5 can b e  derived from the identifications between aU~ and Of JUl of this 

lemma. 

5.5 

LEMMA. Let f be a critically finite degree two orientation-preserving branched cover- 

ing with critical points cl, c2, and cl o f  period m. Let cl E U, where (_] is a closed 

topological disc with f ( J  (0~<i<m) all disjoint, and fmU = U. Let there exist a homeo- 

morphism ~vi: {z: Izl<~l )--->fiu (l~<i~<m) with q~i+l(z)=fo q~i(z) (l~<i<m), tPl(z2)=f ~ q)m(Z) 

for all ]z[<~l. Let  ~ be an arc in C.~ l.li>~ofi(], but with endpoints at q~m(eZ'ria), q~j(e2~ia), 

where O<j<2j<.m, a, fl are o f  period p under s:x~-*2x mod 1, V is o f  period t under f ,  

and {fiT: 0~<i<t } have disjoint interiors. Then p = l  and t=m. 

Remark. Note that f d o e s  not have to be equivalent to a rational map. 

Proof. We regard s as a map on R/Z, and a, fl as elements of R/Z. We start by 

showing that p~<2, and hence that i fp:~l ,  a, fl have the same orbit {1/3, 2/3) under s. 

So suppose that p~>3. 
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If 2j<m, we claim there are disjoint intervals l(a),l(fl) on R/Z which contain 

respectively all points sia, sift (i>~O). For there are arcs fi+mk(y) attached to rio at points 

tpj(e 2~'2k~) (k~>0) and arcs fkm(y) attached t o f i / ]  at points q~j(e z~2kg) (k>~0). The first set 

of arcs have second endpoints in f2JO and the second set have second endpoints in O. 

The existence of I(ct), I(fl) follows, since p>~3, and Uk~ o fi+kmy Uf2Jt] must be contained 

in a single component of C\(I.Jk>_ofmkyu OUfiO). In particular, a and fl have disjoint 

orbits. 

If 2j=m, we claim there is an interval I on R/Z which contains all points sia, sift 
(i~>0) and satisfying I n (I+ 1/2)=~. For there are arcs of the form fly joining all points 

q~m(e2~2k~), q0m(e 2~'2k#) in a U  to points in afJU. Let V be the non-periodic component of 

f-lfi+l U. Then there is another set of arcs, disjoint from the first set, joining all points 

q~m(e 2~i(2~+~rz)) to points in aV. As in the case 2j<m, the existence of I follows. 

Now let I be an interval on R/Z with endpoints of the form sga, and containing all 

points sia, i>~O, and with In(I+l/2)=(~. (If this is not true for a, it is true for ft.) Now 

the endpoints of I are of the form q/(2 p- 1), for integers q. Then each component of 

l \{sia: i~>0} is mapped homeomorphically by s to a component of R/Z\{sia: i~>0}. It 

follows that the components of I \{sia:  i~>0} have lengths 2k/(2 p -  1), 0~<k~<p-2, and I 

has length (2 p - l -  1)/(2 p -  1). Applying this if 2j<m (with a replaced by fl if necessary), 

we obtain that one of I(a), I(fl) has length (2P-1-1)/(2P-1). Then, since the two 

intervals are separated by intervals of length ~>l/(2P-1), we obtain that the other 

intervals from I(a), l(fl) has length ~<(2 p-1-2)/(2 p -  1), which is impossible, by the above 

argument. So p~<2 if 2j<m. Applying the argument if 2j=m, we see that a, fl have the 

same orbit, and s preserves the cyclic order of the points sia (i>~0). Thus, the cyclic 

order of the points sift is the same as for the points sia. This is impossible, since fkm), 
joins ~rn(e 2n~2ka) t o  qoj(e2~ak~). So, again p~<2. 

Now we show that p = l .  So suppose p=2. Note t h a t f  mp maps any arc of the form 

fk 7 to another such arc with the same endpoints. So fmp preserves the cyclic order of 

arcsfk7 with endpoints at q~m(e2~i~). So f  mp must fix all such arcs, and since all such arcs 

are in the same orbit under f ,  no two have the same endpoints. I f f l  maps one such arc 

to another, neither endpoint is fixed. But if three arcs of the formfk7 have an endpoint 

at  q?m(e2Xia), the map f l  between two of them must f ix  q)ra(e2nia). So there are exactly two 

arcs of the form fky with endpoints a t  q)m(e2Z~ia), and ), has period and oriented period 

2m. Then at least one component, 6, of Lli~> 0 f ;y bounds a disc D in C\Ll i~ 0 f~O. If the 

period of 6 under f i s  u, inductively we find d~=6, dl ... 6u=6 such that 6i~ I.Jk>~Ofky, (}i 
bounds a disc Di~(?.\Uk>>.ofkfJ with f~i+l=6i, fDi+l=Di . (We use the fact that Di 
contains at most one critical value o f f . )  Since f"[6 is a homeomorphism, fldi+l is a 
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C 1 

Diagram 5. 

homeomorphism. Hence flDi+l is a homeomorphism, since Di contains at most one 

critical value o f f ,  and thus none. Sof"]D is a homeomorphism, withf~D=D. Now we 

can assume 7m6. IffmTc6, t h e n / )  0 (JOfJO is a one-holed torus, which is impossible. 

IffmTr then 7, fkT,fZk7 are all distinct for either k=j or k=j+m, and in 6, and 2j<m. 

Now fro: 6---~fm6 preserves orientation. This is impossible, since fZgU is contained in a 

component of  C \ ( / ) U f ' n D O  (JUfJ(J) and is attached to both f2ky and f2k+m~. So p = l ,  

as required. 

5.6 

�9 In what follows, we obtain information about a type II hyperbolic component H from 

an endpoint of  a ray in H. This will be used more than once. We collect the results in 

the following lemma. 

LEMMA. Let H be a type II hyperbolic component with centre fo, with f~-q cl=c2, 

fOc2=c 1. Let {f~: rE (0, 1)} be a ray of argument a in H N W, with v(f, )=re 2~ia, and with 

endpoint fl. Let R(f~) be the ray of argument a for f,  in Ul(fr). Let R'(f~) be the 

component of R ( f )  \ fq-m(c2(f)) whose closure contains cl(f~)), as in Diagram 5. Then 

(a) R ( f  1) = li--mr__,l R'( f ) ,  
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(b) lim---"~__,l R ' ( f r ) \ R ( f  t) is contained in the parabolic basin of  fl which contains 

fq(c2). 
(c) fo is uniquely determined up to equioalence by fl and q. In fact, 

f0 = a;oo of , 

where r/(0)=fT-q(c,), r/(1)=c 2, y=fl o r~ and Im(r/)c f'~-q R(fl)U Uz(fl). 

Proof. A stronger statement than (a) is proved in [R], 6.12-6.13, and a similar 

method proves (b). We sketch the method here. Let tp~ be the map ~f,,0 of 5.1. For 

suitable r3(r), rs(r) (as in [R], 6.10) we define 

B r = f~r({Z: Iz-ra(r)l < r5(r)}. 

Then Br is a disc up to bounded distortion which contains fqc 2, f~+'Pc 2, and such that 

f~BrNBraF~ if and only if i=0 orm  p. Also, there is an integer nr and 1>6>0 such that 

all components off~B r are discs up to bounded distortion if i E Z, i<.n, and moreover 

of f ~ B r (i E Z) firmBrcq~r({Z: ]Z}<t~}) for im>~nr. Let Yr be the union of those components i 

which intersect R(f~). Then R(f~)c Yr. As in [R], we can show that one component of 

Interior (lim~_,l Y) 

is contained in U1(3~), and all other components are contained i n f  q Uz(f0, and the only 

noninterior point of limr__, 1 Yr is the parabolic point of j] in f~ a Uz(fl). 

(a) is, in fact, fairly immediate, because q0~ clearly converges on compacta to 

q01=gs,. 0. It is also clear that R(fO coincides with the intersection of limr_~ t R ' ( f )  with 

the component of Interior (li--mr_,l Yr) which is contained in U1(3~). Then (b) follows. 

Finally, for 0 < r < l ,  

fo ~- 0?(3 Cr~ oft ~ 

where 

It follows that 

r/r(t)=f~-qq~r(r(l--t)), yr=frOr/r. 

where Y=fl or/, and Im(r/)cf]"-qR(fl) U UE(fl), giving (c). 
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5.7 

LEMMA. I f  f is a common endpoint o f  rays o f  odd denominator rational arguments a, a' 

in HN W, H' N W, where H, H' are type II hyperbolic components, then either H=H' 
with a=a', or ct=a '=0.  

Proof. For g E H  let gqc2EU~, and for gEH' ,  let gq'c2EU r Without loss of 

generality, we can assume O<q<q'<m. Let q<q'. Then, as stated in 5.3, the ray of 

argument a in Ul(f) has endpoint at the parabolic point in afqu2(f). So the image of 

the ray under fq'-q--which is actually of argument 2a in fq'-qUl--has endpoint in 

common with the ray of argument a' in U~. So we deduce from 5.4 that a'=O. Similarly, 

we deduce that a=0,  by taking the image under f  q-q'+m of the ray of argument a '  in U~. 

I f q=q ' ,  then by 5.3, rays of arguments a, a '  in Ul(f) have a common endpoint. So 

ct=a', by 5.4. But then we deduce from 5.6(c) that H=H', since they have the same 

centre up to equivalence, and hence have the same centre. (See 1.6. It is always true 

that two hyperbolic critically finite rational maps are conformally conjugate if they are 

equivalent. This is part of Thurston's theorem, but also the Semiconjugacy Proposition 

4.1 shows topological conjugacy, and a standard hyperbolicity argument shows this 

implies conformal conjugacy. This argument is outlined, for example, in [R], 5.1.) 

See also [D--H1], part 1, Chapter 6, where this is proved for polynomials. 

5.8 

LEMMA. Let a be an odd denominator rational. Then two distinct rays o f  argument a in 

HN W, for a type II hyperbolic component H, cannot have the same endpoint. 

Proof. Let { fr: r E (0, I)) and {g: r E (0, 1)} be two rays of argument a in H N W with 

V(fr)=V(g)=re 2~i~, and let h=limr_~lf,=limr_~lgr, SO that h has a parabolic cycle of 

period rap. We aim to show fr=gr as elements of RMz. It suffices to do this for one r, 

since rays coincide if they intersect at one point. We know there is a holomorphic 

bijection ~p~: (2\J(f~)--->(?.\J(gr) with ~p,of~=g,o ~0 r It suffices to show that V2r can be 

chosen to extend holomorphically to C. By a theorem of Ahlfors [A], it suffices to show 

that ~Pr can be chosen to extend quasiconformally to (~. By a standard argument written 

out in [R], 5.1 (for example), it suffices to show ~p~ can be chosen to extend homeo- 

morphically to C. Now ~Pr(R(f,))=R(g,), where R(fr), R(gr) are the rays of argument a 

in Ul(f), Ul(gr). We claim that it suffices to find neighbourhoods Y, Y' of J(fr), J(gr) 

and a homeomorphism Zr: Y--* y' withzrofr=g, OZr where both sides of the equation are 

defined, and Zr(YNR(fr))= Y' NR(gr). For then we have a convergent sequence of points 
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Cl 
Diagram 6. 

{z,} in R(fr) with fmZn+l=Zn, and lim,~| ~Or(Zn)=lim,_,| Then a homotopy be- 

tween ~Pr and Zr on some compact annulus A in Ul(fr), with (U,>~of-mnA) n Ul(f  r) a 
neighbourhood of aUl(f~) in Ul(fr), can be lifted unde r f  ~" to a homotopy betweeen ~Pr 

and X~ o n f  -re"An Ul(f~), and we see that 

lim dist(~0r(Z), Xr(Z)) = O. 
z-'-->aUl(fr), z E U l ( f  r) 

Then ~pr can be chosen to extend homeomorphically. 

So now we have to define Xr, for some r sufficiently near 1. Write R+(f,), R-(f~) for 

the two branches of R(fr)\R'(fr), and similarly for gr (with the same orientation), 

where R'(fr), R'(g~) are as in 5.6. Let x be the parabolic point of h in ahqUz(h). So x is 

the endpoint of R(h). Then, for some c~>0, there is an arc /~ with the following 

properties. 

(1) /~ intersects R(h) in one pont, and the endpoints of/~ are in hqU2. These 

endpoints, and ~NR(h), are distance >~3~ from J(h) (in the spherical metric). 

(2) Let B be the neighbourhood of x which contains hqU2 with aBca(hqU2)U~. 
Then the component of h-mpB which contains hqU2 is contained in B, and the corre- 

sponding component of h-mPfl is distance ~36 from/~. 

See Diagram 6 for the configuration. The shaded region denotes B. 

Now we can find an open set Br + with the following properties, for all r sufficiently 

near 1. We choose B~ with aBr + mostly in a small neighbourhood of/~ UR'(f,)UR+(f~). 
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(a) B + does not intersect the forward orbits of  cl(f~), c2(j~), and B + f l R ( f )  = 

B + AR+(f)  is connected. 

(b) limr_~t 8B f N Bo(J(f))c  fl fl B6(J(h)). 

(c) B + contains the endpoint of  R+(fr), and S - ~ c B  +, where S is the local inverse 

o f f ~  p which fixes the endpoint of  R+(f~). 

We choose B~- to have similar properties relative to f~, R-(f~), and C~ to have 

similar properties relative to gr, R+-(gr). Now we drop the suffix r, and there exist 

0<r/~<6, and an integer N, such that the following statements are true for a given e>0, 

and all r sufficiently near 1. 

There exist open Y, Y' which contains r/-neighbourhoods of J ( f ) ,  J(g) respective- 

ly, and there exists a homeomorphism o: 17--~ I 7" with the following properties. 

(i)f-t17cY, g-117'cY', and Y, Y' do not intersect the forward orbits o fc l ,  c2 under 

f , g .  
(ii) o(B+)=C +, o(B-)=C-, o(B + flg+(f))=C + flR+(g), o(B- f lR- ( f ) )=C-  flR-(g), 

and 8B -+ A 8 Y ~ .  

(iii) a o f = g o o  o n f - l ( a Y ) .  

(iv) dist(ox, x)<e for all x ~i t.Ji<~Nf-i(B + UB-). 

Then define 0o=0 and inductively define on: 17--> 17' (n~>O) by 

On+ 1 = r n on ~,\f-(n+l)y, 

goon+l - - -anof  on f-(~+l)y. 

Then we see that, if r is sufficiently near I, then o0 and 0~ are very close on 

( Y \ f - l Y ) U ( f - l Y \ t J i < _ N f - i ( B  + UB-)). Also, o0 and ol have the same image 17'. Since 

each component of  tJ~<_Nf-i(B + OB-) is a disc, with o0, al close on the boundary,  there 

is an isotopy between a0 and oj with image in I7'. This isotopy lifts to one between on 

and on+ 1 on f-n17. Then the diameter of the isotopy decreases to 0 as n tends to oo, 

which is enough to show that o~ converges to the required Z. By the same method, o~ -I 

converges, and the limit must be X -t ,  so Z is a homeomorphism. 

5.9 

We can summarize the results of 5.7, 5.8 in the following 

ENDPOINT THEOREM. I f  tWO different rays o f  odd denominator rational argu- 

ments a, a' in HA W, H'f l  W haoe a common endpoint, where H, H' are type II 

hyperbolic components, then a--a' =0 and H=~H'. 
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5.10. Completion of the proof of the Improved Polynomial-and-Path Theorem 

We recall that the Improved Theorem 3.1 remains to be proved in one case. Let s be an 

integer > 1, and let f E W  have c2(f) of period ms. We need to show that an equivalence 

holds for f a s  in the Improved Theorem. Let {ft: rE[0, 1]} be a path in W with f l=f ,  

f0 a polynomial, and let (xt: tE [0, 1]} be a path in (~, such that 
i f  ms (1) (f~s)'(z)~0 or 1 f t  (z) =z, for any t, z, except when z is in the orbit of cl(ft), 

or t= 1, and z is in the orbit of c2(ft), 

(2)ft is never in the closure of a ray in a type II hyperbolic component of argument 

a, where a has period s under x~-->2x rood 1, 

(3) ftc2~=c2 for tE [0, 1], 

(4) xl=c2(fO, f tS(xt)=x,. 
Because rays of argument a, where a is period s > l  under x~-->2x mod 1, always 

have endpoints, and because of the Endpoint Theorem, it is possible to find a path {ft) 

satisfying (1) to (4). Now Yt varies isotopicaUy to t E (0, 1], where Yt is the union of 

{f~(xt): O<-i<ms} and closures of rays in fi(UO (i>~O) of arguments of period s under 

x~2x  mod I. For t= !, xt is not an endpoint of a ray in Yt. Hence the same is true for all 

t, in particular t=0. Then we can complete the proof of the Improved Theorem using 

{ft}, {xt} as they are used in Chapter 2. See, in particular, 2.6. 

Chapter 6. Invariant laminations 
6.1 

Throughout this chapter, K=Kr, L=Lr, ~P=~Pr and S=Sr a r e  as in 1.12. We also let 

U=Ur be the component of C \ ( K 0  (uL)) containing oo. We consider laminations on 

(~ \K.  Note that z~-,U 1 fixes K and S 1 pointwise, and gives an isometry of C \ K .  

Therefore, the components of S ~ \ K  are geodesics. Throughout this chapter, let L be a 

lamination on C \ K  for which all leaves of L \ L r  are in U. 

We recall that a gap of L is a component of C \ ( K  U (OL)). 

A segment of a leaf I of L is the closure of a component of l \ S  l, also called a leaf 
segment. 

A polygon P is a connected closed set in {z: [zl~<l} or (z: [z[~>l} such that 
OP\StcOL.  

A gap polygon P is a polygon which satisfies, in additon, Interior(P)=G for some 

gap G of L. 

A side of a gap G is then a leaf which intersects the boundary of at least one gap 

polygon with interior in G. 
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6.2. Straightening paths 

A path r: R--->C\K can be straightened if the lift f: R--->/5 has well-defined endpoints on 

019, that is, the limits as x-->+oo off(x) exist on aD. In that case, the straightening ofz  

is the unique geodesic with a lift with the same endpoints as f. 

6.3. Straightenings are determined by crossing 

We are particularly interested in paths r: R - - > C \ K  such that either 

(a) the set z-l(sI) is not bounded above or below, consists of isolated points, and 

no two successive points lie in the same component of S~\K,  
or 

(b) instead of z-l(St) being not bounded below, lim~_,_~ r(x) exists and is in K 

o r  

(c) similarly, r-l(S l) is not bounded above but limx_.+| r(x) exists and is in K. 

We claim that any such path can be straightened, and that the corresponding 

geodesic is determined uniquely by the sequence of components of S I \ K  crossed, 

together with the directions of the crossings. It suffices to show that, if r[[0, 00) is lifted 

to f, then the Euclidean diameters of a lift of a component of S I \ K  intersected by f(x) 

tends to 0 as x-->+oo. So it suffices to show that, for some 6>0, if I1, 12 and 13 are all 

distinct components of SI~K, then any geodesic segment with endpoints in Ii and 13 

and crossing 12 in between has (Poincart) length >~. But this follows from the Margulis 

decomposition [T2], since if 6 is suitably chosen, two closed loops of length <6  in 

different homotopy classes must be distance >6  apart. 

6.4. Straightenings of forward and backward images 

Let qo: (2--->C be a branched covering with rp(K)=K=cp-1(K). Then any lift of qo to the 

universal covering/} extends continuously to the closed disc D. Hence, if qo 0 r can be 

straightened, the straightening (p.(r) depends only on 9 and the straightening of r. 

Now let 9 be a branched covering with critical points (and values) in C \ K ,  and let 

z: R - ->C\K be any path such that T -1 (critical values of 9) is finite. If this set is empty, 

we define q~*r to be the straightenings of the components of 9-1r, if these can all be 

straightened. If the set is {tl . . . . .  t~}, we define q~*r to be the straight versions of the 

components of (p-l(rl 0 r2), if these can all be straightened, where zt, r2 are as follows: 

rj=z except on tJi~=~(ti-e, ti+e) , these intervals are all disjoint, and 
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31([ ti-e, ti+ e ]) U 32(ti-e, ti+ e]) 

bounds a disc containing r((ti-e,t~+e)) , with rl([ti-e,r~+e]) on the left and 

32([ti-e, ti+e ]) on the fight, for some suitable orientation on 3. Once again, tp*r depends 

only on tp and the straightening of 3. 

6.5. Conditions on the path/1 

From now on, let/3: [0, 1]--->C\K with/3(0)=~,/3((0, 1))n {fl(0),/3(1)}=~, and either 

/3-1(uL,)=~, or/3-1(ULr)={t), for some tE [0, 1]. If/3(t)E ULr, let/3(1) be in the full 

orbit of 0 under ~. Thus,/3(1) is determined, in this case, by the leaf containing/3(0. 

Now given our fixed lamination L, we can ensure that/3 also has the following 

properties, if we allow homotopies which keep /3(0) fixed at ~ ,  keep /3(1) fixed if 

/3(1) ~ U, and allow/3(1) to move in a leaf or gap of L if/3(1) E U. We shall assume/3 

satisfies these properties from now on. The properties (a) to (c) involve finitely many 

endpoints at .. . . .  aq of intervals 11 ..... Iq of S ~ \ K ,  and an e>0, which can be taken 

arbitrarily small. Let Ii(t) denote the subinterval of li with endpoint at ai and of 

Euclidean length e, and let U1 .... .  Uq be disjoint neighbourhoods of the Ii(e) with 

U i [7 S 1 = I  i (E), 

(a) If c, d are adjacent points of/3-1($1), then/3(c),/3(d) lie in different components 

of S I \ K ,  and/3 is transverse to S 1 . 

(b) No sub-path of/3 can be homotoped into a leaf of L by a homotopy in C \ K  

fixing the sub-path endpoints, and/3 is transverse to L. 

If flu is any homotopy through paths satisfying (a) and (b) such that /3o=t3, 
/3,(0) =/3(0)= ~ for all u,/3,,(1) ~ UL for all u if/3(1) ~ UL,/3,(1) fi I for all u if/3(1) f i le  L, 

then, for each t, and l f L with/3(0 f l, there is w(t, u), which is continuous in u, with 

w(t, 0)=t and/3,(w(t, u))El. Now we can state condition (c). 

(c) Any two components of/3-1(Ui) are separated by a point of/3-1($1\Ui). The 

point ai is a limit ofli(e)N(UL), and for any homotopy/3~ as above and any t, l0 such 

that/3(0 f l0 and l0 is a leaf segment with both endpoints in s l \ t jq=  1 li(e), 

:1r {t' E [0, t]: fl(t') E S 1) <~ #{t '  E [0, w(t, u)]: fl.(t') E S 1 } 

for all u E [0, 1]. In particular, 

q 

/3([0, 1]) n ( s 1 \  .o 1;(e)) n (UL) = ~.  
i=1 

5-928182 Acta Mathematica 168. Imprim6 le 6 ffvrier 1992 
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6.6. Backward images of leaves and segments under opo~ 

Let r be a parametrisation of  l, and let ~/: R - - - ) C \ K  be a component  of  (a~ o ~)-lr (or of  

(tI/~og)-l(rl tJ r2) iffl(1) E l, where rl, r2 are as in 6.4). Under  the conditions on fl of  6.5, 

and if the disc neighbourhood where cr#4=identity is taken close enough to fl, points of  

r/-l(Sl\(LIq=lli(e)) are all isolated, and we can homotope ~/by a homotopy which is 

identity outside r/-l(ui U,.) to satisfy condition (a), (b) or (c) of  6.3. Hence  r/ can be 

straightened. We call the straightening 

(o~oS)*l, 

i f /~(1)~/ .  If  fl(1)El, we take (a#o8)*! to be the union of  the straightenings of  

(e/~og)-l(rl 0r2) and the gap they are sides of. The straightening is not affected by the 

choice of  any changes we have made to ft. 

Now let 10 be any leaf segment on I. We can assume in addition by  choice of  e that 

the disc neighbourhood where o/~4=identity does not intersect the endpoints of  10. The 

straightening of  a component  of  (o/~ o ~)-I1 can be chosen so that the restriction of  the 

homotopy to (e/~og)-llo homotopes  it to a finite union of  geodesic segments via a 

homotopy which keeps endpoints in S 1. We write 

(a/3o~)*/0 

for the image of this homotopy if3(1) ~ I, which depends only on 10, L and the homotopy 

class of 3 keeping endpoints fixed. If3(1)E I, let r, and r2 be defined as in 6.4, and let 

16, I~ be the corresponding perturbations of I0. Then in this case, let 

(a:o s)* lo 

be the finite union of  gap polygons bounded by geodesic segments obtained by 

homotopies of  (~/~ o S)-t (16 0 l~), keeping endpoints in S ~. 

6.7. Definition of inverse images of gaps and polygons 

Let 

L 1 = (cr~o~)*L = {ll: 11 is a leaf in (a~o~)*l for some /EL} .  

Then Ll is a lamination. If  G is a gap of  L, let 

(a~o ~)* G 
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be the one or two gaps whose sides are the images under (apo g)* of the sides of G, with 

the same orientations of the sides. 

If P is a gap polygon of L, we define (a~ o g)*p to be the smallest (finite) union of 

gap polygons satisfying 

8(o'~ o g)* P fl (UL)  c (o'~ o g)* O(P n (UL)) ,  

with (08 o $)* preserving the orientation of leaves round the boundary. 

6.8. Forward images 

Let LI be as in 6.7. If Y1 if a leaf, gap, leaf segment or gap polygon of LI, define 

(o#~ = S, Yl = Y, 

where Y is a leaf, gap, leaf segment or gap polygon of L with 

Y = (o#o g)* Yl. 

Then given a gap polygon Y~, there might be more than one such Y, and Y might be a 

leaf segment, and if Y~ is a gap with four sides all of which have the same image Y under 

g, then we take g, II1= Y (since YI is not in the image of (era o g)* as so far defined) but in 

all other cases, Y ~  Y~ is a well-defined function between leaves, gaps or leaf segments. 

If IELl is a leaf, then (o#og),l=~,! is indeed the straightening of ~1 or (o#o~)l, as 

required in 6.4. I f P  is a gap polygon, g , P  is singlevalued unless Pc(ooog)* Q~ for one 

Ql with Ql f~fl([0, 1]) fl S~*~ (assuming fl satisfies the conditions (a) to (c) of 6.5). In this 

case, all the finitely many values Q~ .... , Q, of g, P have this property. 

6.9. Invariant laminations 

L is fl-invariant, or simply invariant if 

L = (o~ og)* L, 

and (to simplify later statements of results) the following two properties hold. 

(a) All leaves of L \ L r  are in U (so that the gaps of Lr, apart from U, are contained 

in gaps of L). 

(b) Recalling that m is the period of 0 under $, the points {~i(0): O~<i<m} are in 

distinct gaps of L. 
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If L is invariant, then 

where 

L = g . L ,  

g, L = {~. 1:1 EL}. 

For the rest of  this chapter, let L be a fl-invariant lamination. 

6.10 

The following lemma will be needed in the sequel to this paper, and it seems best to 

prove it while the notations--especially of 6 .5~are  remembered. 

LEMMA. The ai (as in 6.5) are strictly preperiodic under g. 

Proof. If Ii (as in 6.5) is a leaf of L and intersected by fl, then an endpoint ai cannot 

be periodic. So now suppose that I~ is not a leaf of L, and that an endpoint a; has period 

n. Then there is a leaf segment 12 in (08 o g)*" II with endpoint at a~, with l~,/2 on opposite 

sides of s ~. So then there must be a gap of L containing I~(e) (if e is small enough), 

contradicting our assumptions. 

6.11. Lamination maps 

There is a lamination map QL: t~-~C satisfing (a) to (d) below. Recall that m is the 

period of 0 under ~. We denote by G~ the gap of L containing ~ (which always exists). 

In particular, the conditions imply that 0L is a critically finite branched covering with 

L=oLL=oilL whenever fl(1)~UL, and that Pt. always preserves =L, so that 

[PL]: C/=~---~C/=L is well-defined. Moreover, 0L is uniquely defined up to equivalence, 

and [QL] *is uniquely defined up to topological conjugacy, whenever fl(1) ~ t3L and the 

gap G| of L containing oo is simply connected. 

(a) e = o~o ~o q0, 

where the disc neighbourhood in which oaaFidentify intersects S ~ only in uq=l l~(e), and 

in at most one leaf of L,--and that only if fl(t)s L, for some t. Moreover, ~ is a 

homeomorphism, and q~=q~l where q0t is an isotopy between q0, q00=:identity, and for all 

t, q~t=identity on K and leaves invariant all but finitely many components of SI~K. 
(b) ~-l(l)=(o~o~)*(l) for all 16L, unless fl(1)61, when O-I(l)=(o~o~)*(l)UG| 
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Thus QI=~. l for all IEL, and oL=L. Similarly, i fG is a gap of L, Q-l(G)=(o#os)*G 

and o(G)=~.(G). 

(c) 0 is always a critical point for 0, and iffl(1) ~ UL, 0 is a branched covering with 

critical points 0, 00, and two points from {~"0, 0i~:  i,j>~O} are equal whenever they are 

in the same gap of L. 

(d) The map ~m fiXeS 0 and is topologically conjugate near 0 to z ~ z  2 or z,---~z 4, 

depending on whether or not oo is distinct from all points g"(0). If the gap Go containing 0 

is simply connected, O""z--->O as n---> ao for all z E Go. If oo is periodic under 0 and G| is 

simply connected, similar properties hold for all z E G| 

6.12. Thick and thin 

A gap polygon is thick if it either has at least three leaf segments in its boundary, or 

contains a non-point interval I c S  I in its boundary, with K N 160 .  A polygon is thick if it 

contains a thick gap polygon. A polygon is thin if it is not thick. 

6.13. The main results 

The aim of this chapter is to prove the following propositions. In each result, recall that 

L is a/~-invariant lamination, and let Go, G| be the gaps containing 0, 0o. All arguments 

are modelled on arguments in [T]. Since we have defined the lamination map (6.11) so 

that orbits under 0L and ~. coincide, the results do indeed complete the proof of the 

Lamination Map Conjugacy Theorem, as claimed in 4.6. 

ORBIT OF GAPS PROPOSITION. There are finitely many gaps Gi (l~<i<~n) of  L and 

g.G| (which may be a leaf or a gap) such that, i f  G is any gap, then for some i>0, 

~.G = Gj or g,G~. 

for some j, l<.j<~n. 

ORBIT OF SIDES PROPOSITION. Let G be any periodic gap o f  L, that is, g.G=G for 

some i>0. Then there are finitely many sides li (l<~i~<n) of  G such that, i l l  is a side o f  

G, then for some j, and some k>0, 

~.l= l~. 

FINITE-SIDED GAPS PROPOSITION. Every gap G which is not in the full backward 

orbit o f  Go or G| (that is ~,G*Go or G| for any i<.O) is finite-sided. 
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PERIODIC LEAF PROPOSITION. Let 8i,+JG|174 for some i>,O and j>O. (This is 

true for instance, i f  g, G| is a gap.) Then 

{/: g,+Jl = ~,l for some i>~O and j>O} 

is dense in L. 

6.14. Deductions 

G| is 4-sided if 8.G| is not a gap, and 8. is a bijection from sides of G to sides of 8.G, if 

G*Go or G| Hence, the Finite-sided Gaps Proposition follows from the Orbit of Gaps 

Proposition and the Orbit of Sides Proposition. The Periodic Le:ff Proposition also 

follows from these, if gaps are dense in L. We claim that this is true. Given any 

transversal to L, and points of intersection xl, x2 of segments of leaves It, 12 with the 

transversal, there must be a gap of L intersecting the transversal between the segments 

ofl~,/2 unless both 11,/2 do not intersect S 1. So if gaps are not dense, there is an open set 

of such leaves which do not cross S 1, and these leaves must be contained in {z: [zl>l} 

(because gaps approximate all leaves in Lr). Then the set of leaves in {z: [zl>l} which 

do not intersect S ~ is invariant under 8, and forms a lamination L'. Then L"= 

{~(l)-1: l E L'} (with l-I = {Z- 1: Z E l } )  is z2-invariant with gaps not dense, hence by [T] 

has no gaps at all and has all leaves vertical. But this gives a contradiction, because the 

projection of G| is a gap of L". 

So it remains to prove the Orbit of Gaps Proposition and the Orbit of Sides 

Proposition. 

6.15 

The Orbit of Gaps Proposition follows immediately from the Thick Polygon Lemma 

below. We shall see in 6.18 that the Orbit of Sides Proposition follows from the Length 

Lemma and Thick Polygon Lemma below. Again, let L be a/3-inva.riant lamination. 

LENGTH LEMMA. There exists a finite A~-K with gAcA such that, for any O<el, 

there is e2<.el such that the following holds. 

For any leaf segment I from L, there exists N such that, fi~r all n>~N, either 

diameter(g.l)~>e2, or $.! is a component o f  S l \ K  with endpoint in A, or, for some a EA, 

a E C, where C is a component o f  (2\(SIU g~l) o f  diameter <~e2. 

Remark. Here, diameter is with respect to the spherical metric-. 
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THICK POLYGON LEMMA. There are finitely many gap polygons Pi (l~<i~<t) such 

that, if P is any thick polygon, either g.P~8,G| for some n>0,  with g.G~ =IEL, or 

s.P~(Pi: l <-i<-t} for some n>0,  even if ~.P is multivalued. 

6.16 

The Thick Polygon Lemma follows from the Length Lemma. For let P be a thick 

polygon. We can assume ~.P is a finite union of polygons for all n. If  g ,P  is multivalued 

for some least n>0,  then all values Q satisfy Q n Im(fl) n S l =O, and we are done, since 

there are only finitely many such Q. So we can assume ~.P is a single polygon for all n, 

with ~.P f~ Im(fl) n S l =O. Then ~.P is always thick, and has >13 sides if P does .  Then we 

can apply the Length Lemma to three of the leaf sides l~, 12, 13 of P (if three such sides 

exist). For  sufficiently large n, 8~,ii ( i= l ,  2, 3) satisfy the conclusions of  the Length 

Lemma, and are sides of ~.P, giving only finitely many possibilities for 8.P, If  a non- 

point component of  aP  n S 1 contains an endpoint a of a component of S~\K,  then the 

same is true for a~.P N S l, with a replaced by 8"a. Since a is eventually periodic under ~, 

we are done. 

6.17. Proof of the Length Lemma 

Let fl satisfy the properties of 6.5 with e=e~. Choose e2>0 with e2<e~ such that: 

(a) if I is a leaf segment of diameter ~<e2, the one component of C \ ( S I 0  l) has 

diameter <~e2, 

(b) all components of S l \ K  crossed by fl have diameter e2, 

(c) for some ;t> 1, if I is any leaf segment of diameter v<<,e2 and I is a component of  

(a~o8)'8,1 then 8.1 has diameter ~>;tv. (This might necessitate changing the spherical 

metric to an equivalent one, but that does not matter.) Let  A={SJai: j>~O, l~i<~q}, for 

a; as in 6.5. We call a leaf segment good if either I has diameter ~e2 or one component  C 

of C \ ( S  ~ 0 l) has diameter ~e2 and C contains a point a of A. Then if I is not equal to a 

component of (eaog)*~,l, 8,1 is good, since the endpoints of ~,! bound an interval 

containing either a point of A or an interval of S l \ K  crossed by ft. If  I is good and ! is a 

component of (e~ o 8)*g.l, ~.l is good. So we only need to show that given l, there is 

N~>0 such that 8.Nl is good. Choose a least m~>0 so that A '~ diameter(l)~>e2. Then either 
- i+  1 �9 ! , 1+1 there is a least O<~i<m such that g.l#:(o~o~) ~. /--in which case s .  i is good---or there 

is a least O<~i<~m with diameter (g,l)>~e2--in which case ~,! is good. So we are 

done. 
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6.18. Proof of the Orbit of Sides Proposition 

Let G be a periodic gap, and let I be a side of G. Then there is a segment l0 on I and a 

thick gap polygon P with Interior(P)cG and local'. Then g.P takes finitely many 

polygon values as n varies, and g.10 is always in the boundary of one of the polygons Q. 

of g~P. If ever Q. is thin, for a least n, then g,~P is multivalued, and Q. n Im(fl) fl S14:O, 

for fl as in 6.5 (with e=et) and we are done, since there are then only finitely many 

possibilities for such Q., and only two leaf segments for each such Q., hence only 

finitely many possibilities for such g.lo. If Q. is never thin, the Thick Polygon Lemma 

implies Q.c  {Pi: l<~i<~t} for all large n, for suitably chosen Pi. Then the Length Lemma 

implies gila is one of only finitely many leaf segments in a(U~=lP,.) for all large n, and we 

are done. 

6.19 

We complete this chapter with the definition and properties of a subset of a fl-invariant 

lamination L which will be needed for the work on parameter laminations in Chapter 7. 

Let Q(L) be the (possibly empty) closed set of leaves which have no endpoints in K and 

which intersect only those components of S ~ \ K  which are periodic under g. Note that, 

since IJK2(L) intersects only finitely many intervals of  S ~ \ K ,  it lies in a finite type 

subsurface C of C \ K  of the form - " C \ ( U / =  lli), where li are closed intervals of S 1 whose 

union contains K. 

A half-leaf 1 § is segmentwise-periodic if ~,l~=ll for all segments l~ on i § and some 

n>O. 

~(L)-LEMMA. Let g2=Q(L)=~. Then there is N > 0  such that the following holds. 

(1) All leaves and segments o f  g2 are freed by gN., which orientations preserved. 

(2) I f  a half-leaf l + of  L has [+ f)(Ll~):#~, then ! + is a asymptotic to a half-leaf l{ 

with l~ f i fL 

(3)/ffl(1) is not in a periodic leaf o f  L, then only finitely many leaves of  L \ ~  are 

asymptotic to •, all of  them periodic under ~. and segmentwise isolated. 

Proof. (1) For any leaf segment l~ in L, l~=(o#og)*g,l,, with equality if (opog)*g,l~ 

has intersections with S 1 only at either periodic points of K or in periodic intervals of 

S~\K .  Hence S,~2=Q, and there is N such that, up to isotopy preserving K and S ' \ K ,  

sN, l~=l~ for any leaf segment 11 in f~, with orientation preserved. But then gN, l=l for any 
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leaf I in f~ (not just up to isotopy) with orientation preserved, and gNll=ll for all leaf 

s e g m e n t s  Ii in fl (not just up to isotopy) with orientation preserved. 

(2) Let l + be in a component V of C\ ( t J f2 ) .  Fix a base point x0 in V. If, for some 

e>0, there is A>0 such that all points in l + which are spherical distance less than e from 

Uf~ can be joined to x0 by a geodesic in V of length <A,  then all such points on l + must 

be close to compact geodesics in f&-o f  which there are only finitely many. But if l + 

passes sufficiently close to a compact geodesic 10, l + is asymptotic to 10. 

If A never exists, then for some e>0 and A>0 the set of points in V distance <e 

from Uf~ which cannot be joined to x0 by geodesics in V of length <A is of the form 

Ui~=lVi, where each Vi is bounded by two asymptotic half-leaves from f~ and an arc in 

V. Once l + enters a Vi, it cannot exit, hence must be asymptotic to the two bounding 

half-leaves in f2. 

(3) Let l~ be a half-leaf in II • ~ ,  with 11 of oriented period M under ~.. Let l~cl 1 

also denote lifts to D={z: [zig<l}. Let a be the endpoint of l~ in 0D, and b the other 

endpoint of lt. Then g.M lifts to a monotone map R defined on geodesics in L asymptotic 

to l~ sufficiently near l~-, with R(il)=ll. Since fl(1) ~ UL, R is injective. I fA denotes the 

set of lifts of periodic sides of gaps asymptotic to l~, then R(A)=A n Image(R), and 

R-~R(A)=A. So strictly preperiodic sides of gaps cannot be asymptotic to l~. So by the 

Orbit of Sides Proposition, only finitely many sides of gaps are asymptotic to l~, hence 

only finitely many leaves are asymptotic to l~, all of them segmentwise isolated. 

Chapter 7. Parameter laminations 

7.1 

The aim of this chapter is to prove the Parameter Laminations Theorem of 1.16. We 

start by giving the main argument of the proof. We continue to use K=Kr, L=Lr, r 

as in 1.12, and U= U~ is the component of C \ ( K U  (uL)) containing oo, with universal 

cover 0 contained in the disc universal cover/~ of C \ K .  

PROPOSITION. For i=1, 2, let Li be a flrinoariant lamination, with either a minor 

gap in 0 or a strictly preperiodic minor leaf. Let Zi denote the closure o f  the minor gap 

o f  Li in U, if this exists, and the minor leaf o f  Li in ~1 otherwise. Suppose there is no 

half leaf l + o f  Li with #(l  + f) S 1) = oo, and l + intersecting only periodic intervals o f  S l \  K. 

Let Z~ NZ24=~. Then any transversal intersection between Lt and L2 must be isolated, 

and must occur between leaves 11, 12 which are eoentuaUy periodic, where one is 
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periodic i f  and only i f  they both are. In addition, if  both 11 and 12 are non-compact, then 

g~ll is o f  oriented period k i f  and only i f  the same is true for g,12. Furthermore, 11 has 

only finitely many intersections with IDLE, and vice versa, and g, ll and s,12 intersect 

transversally for  all n. 

Proof. Note  that Z~ n Z2 is connected since both Z1, 22 are convex. Let  

fl: [0, 1]--~O satisfy fl(0)=0 and fl(1)EZ~flZ2. Let fl=~ofl. Then L~ and L 2 are fl- 

invariant. We can assume #(f l- l (S1))<+oo.  

We say O has the finiteness property if there is a finite set {Ii . . . .  L} of  components  

of S I \ K  such that O=g on (Ll UL2) fl S~ \ ( l l  U ... tJL). We can find a branched covering 0 

with the finiteness property and such that ol=g,l for any leaf I in Lt U L2. In fact, we can 

take O of the form a s o go ~, where qo is isotopic to the identity via an isotopy preserving 

K and all but finitely many intervals of  S I \ K .  

Now, if l~ EL~ intersects L2 transversally, then It intersects transversally an even- 

tually periodic leaf/2 of  L2, where/2  is in one of  finitely many orbits, and is a side of  a 

gap (using 6.14 and the Orbit of  Sides Proposition, and the hypothesis of  the present  

proposition, that the minor leaf is eventually periodic if there is no minor gap). If  

Ii n 12~=O, then 0% n O~12:~. So to complete the proof  (since L 1 and L 2 are interchange- 

able), it suffices to show that if/2 E L2 has oriented period k under g.,  and Ii n 124=O with 

Ii eventually periodic, then Ii is periodic, gk.ll=l I if 12 is non-compact,  and #( l  I n /2)<+ oo. 

To do this, we shall show that all points of  l I n 12 are periodic under 0, and fixed by O k if 

/2 is non-compact,  and that only finitely many segments of  l~ (or/2) can contain points 

fixed by O k. To show points are periodic, since Ok: 12---~l 2 is an orientation-preserving 

homeomorphism, we only have to show that any point of  l~ f~ l 2 has finite forward orbit 

under 0, for which we can assume that l~ is periodic. So now, to complete the proof, we 

only need to show that, if 12 is non-compact ,  there is a finite union l~ of  segments of 12 

such that, for any x E/2, Ok~xE l~ for all sufficiently large n (and similarly for any 

periodic leaf of  L0.  Now by the hypothesis  of  the nonexistence of  certain half-leaves in 

L2, there is a bound N on the number  of  consecutive segments of 12 which can cross 

some o-Sli, l<~i<~r, O<~j<<.k. So since O has the finiteness property,  the proof  is complet- 

ed by Lemma 7.2. 

7.2  

LEMMA. Let 12EL2 be a non-compact leaf o f  oriented period k, where L2 is as in 7.1. 

Then there is a finite union l~ o f  segments o f  l2, and a finite union i~' o f  segments which 
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contains segments adjacent to l'~, such that S,t'-k ....... 2 ct2, and for any segment I~ o n  12, 
g~l~cl~ for all sufficiently large n. 

Proof. First we show there is a segment/z on lz with gk,/~=/~. If, for some/~, gk.#~/~, 

let ~ '  be the finite connected union of segments with/~, gk.# as end segments. If  $,k/~, is 
-kn  t ever a single segment, it is fixed by gk.. If  not, s . /z  has the same number of segments 

for all n>>,M (some M), and intersects only periodic intervals of S t \ K .  Then LIn~>M $,k/~ ' 

is a forbidden half-leaf. So there does exist/~ with gk,/~=/~. We can find a maximal finite 

" that s.12=l 2. For all segments on 12 intersect only union 12 of segments containing/~ such -k . . . . . .  

periodic intervals of S1 \K .  Then l~ has the required properties, because we can take l~' 
to be the union of l~ and one adjacent segment on either side, and if v is any segment on 

12, the number of segments between/~ and gk"v , can only decrease with n. 

7.3. Definition 

A fl-invariant lamination L for which PL is critically finite, but not type II, is primitive if: 
(a) no half leaf ! + from L has #( i  + nSl) =oo and all SLintersections with periodic 

intervals of S I \ K ,  
(b) no two finite-sided gaps have a side in common, and no leaf is approached on 

both sides by the same gap, 

(c) if G is an infinite-sided gap of L of period n under g. ,  then: 

(cl) if G is simply connected,  at most one side of G has oriented period n, and no 

other periodic side of G in L \ L ,  can also be a side of another gap, 

(c2) if G is not simply connected, and n>  l,  there is a boundary component y of G 

of oriented period n, which separates G from g.G=o~G (0<i<n)  such that y is either a 

compact leaf of L or a finite union of leaves without SLcrossings, and points of K. Any 

side of G which is not in y cannot also be a side of another gap. 

Let  Go be the gap of L, containing 0. Let  0L be type II. Then L is primitive if there 

exists a primitive lamination L'  (with OL' type IV) such that L c L '  and every leaf of 

L ' \ L  is a side of some finite-sided gap G which also has a side in common with a gap in 

the full orbit of  Go. 

7.4 

Proving the Parameter Laminations Theorem for primitive laminations will be quite 

easy, but showing that primitivity is no real restriction takes a bit more work. We need 

to prove the following. 
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PROPOSITION. Let L be a fl-inoariant lamination with OL critically finite, and such 

that, i f  fl(1)E UL, the minor leaf o f  L is strictly preperiodic (so that oo is strictly 

preperiodic under QL). Then there is a primitive fl-invariant lamination L' (after 

possibly moving the endpoint o f  fl within its minor gap) such that ( L ' \ L ) t J ( L \ L ' )  

consists o f  only segmentwise isolated leaves and leaves in Un>_o(O~og)*~f~(L), there 

is a one-to-one correspondence Go--~G' between infinite-sided gaps o f  L, L' with 

( G \ G ' ) O ( G ' \ G )  consisting o f  finite-sided gaps and isolated leaves o f  L, L', and 

OL=OV if  OL is type II, III or IV. 

7.5. Proof that primitivity conditions (a), (b) can be satisfied 

The first step in proving 7.4, given L as in 7.4, is to find L3 such that, although L3 is not 

primitive, L3 satisfies conditions (a), (b) in the definition of primitive (7.3) and satisfies 

all the other conditions satisfied by L'  in 7.4 relative to L. We start by adding 

segmentwise isolated leaves to obtain Lt, so that L~ satisfies all the conditions of 7.4 

except primitivity, Q(L~)= f~(L), and no side of an infinite-sided gap of Li is asymptotic 

to f~(L). So let G be a periodic infinite-sided gap of L with some sides (but necessarily 

only finitely many) asymptotic to O(L). (We know from the f2(L)-Lemma 6.19 that only 

periodic leaves can be asymptotic to f~(L).) We shall add some leaves to G, and then 

extend invariantly to the full orbit of G, and do this to all such orbits to obtain L~. Let (~ 

be a lift of G to the universal cover/~={z: [z[<l}. We shall add leaves to G and then 

project them down. Note that, although only finitely many sides of G can be asymptotic 

to fl(L), their lifts might comprise infinitely many sides of 1~, if G is not simply- 

connected. We add a geodesic l' in (~joining points a, b in OD, whenever the interval I 

bounded by a, b has the following property. I is a component of the closure of the set of 

points x E OD such that x is separated from 1~ by a side l of G which projects to a side of 

G asymptotic to f~(L). The projections of such leaves l' will give only finitely many 

leaves in G. 

Now, having defined L~, let fF(L) consist of all leaves I such that I contains a half- 

leaf l § with infinitely many S~-crossings, all with periodic components of S ~ \ K .  Let 

L 2 = LI\U~0(o/~ o g)*n~'(L). 

Then L2 satisfies property (a). Now let L3 be obtained from L2 by removing all leaves 

which are approached on both sides by the same gap, or on both sides by finite-sided 

gaps. We note that each infinite-sided gap of L~ is contained in an infinite-sided gap of 

L3, and each infinite-sided gap of/-,3 contains a unique infinite-sided gap of L~. By the 
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Finite-sided Gaps Proposition, the forward orbit of an infinite-sided gap must contain 0 

or oo. For any two adjacent finite-sided gaps of L2 have the same period or preperi- 

od---so, by the Orbit of Gaps Proposition, adjacent finite-sided gaps of L2 occur only in 

finite groups. 

7.6 

Before proceeding further with the proof of 7.4, we need to consider non-simply- 

connected gaps. First, we have the following 

LEMMA. Let L be a fl-invariant lamination and let G be a non-simply-connected 

periodic gap o f  L o f  period n under g,. Then there exists a finite set F o f  disjoint 

compact geodesics, with U F c G  or OG, such that g.F=F. I f  G is finite-sided, F can be 

chosen so that each element o f  F bounds an annulus round a boundary component 

of  G. 

Also, 

fl((t,, t2]) N U g,(UF) = O, 
i~>0 

where 

h = Min{t: fl(t) E S 1} 

if  this exists, 

t l = l  

otherwise, and 

t2 = Max{t: fl(t) E UL }. 

Proof. If 7 is any compact geodesic in G or OG, then 7 has finitely many S L 

crossings, and 7 is determined by its SLcrossings, so the set {g,~: i~>0} is finite, and 
-i -i s ,Tcs ,G  or g, aG. So we can find F'={g~7: i>~0} with g ,F '=F ' .  The loops o fF '  may not 

be disjoint, but we can obtain F by lifting each component of UF' to the universal cover 

/~ of C \ K ,  taking the convex hull and projecting back down to C \ K .  

If G is finite-sided, we can start by taking 7 to bound an annulus in G round one of 

the boundary components, as required. If fl(t)E Ui~>0E/,(IJF)for some t E(tl, t2], then 

taking inverse images under otto g, we obtain a leaf of L intersecting Ui~0 g,(UF). In 
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fact, this leaf can be in (o~og)*/~, if/~ is the minor leaf of L. This gives a contradiction, 

as required. 

7.7 

The following few lemmas will be useful for proving primitivity condition (c2), when 

proving 7.4. 

LEMMA. Let F as in 7.6 consist of  a single orbit under ~,. Then no two segments of  

UF in {z: tzl> 1} (or {z: Izl<l}) with endpoints (Xl, Yl) and (x2, Y2) have ~,(xt)=~r(x 2) and 

t~r(Yl)=dPr(Y2 ). I f  

B = {qb (x): x is an endpoint of a segment from UF}, 

then B consists of  one or two orbits under z~-~z 2, and if B consists of  one orbit, each 

loop of F intersects S l exactly twice. 

Remark. The core of this lemma is the result of Tan Lei [TL] about Levy cycles for 

matings of polynomials of which at least one has corresponding minor leaf with 

endpoints in a single orbit under z ~ z  2. 

Proof of  Lemma. Let a, bES  l be such that there are segments of F in {z: Izl>l) 
with endpoints in ~-l(a)  and ~-l(b), and let q be the least integer >0 such that gq, 

preserves this set of segments. Then ~ must either preserve or reverse order of 

intersection with S ~ for this set of segments. So the set consists of only one segment if 

the order is preserved, and at most two if the order is reversed, since F consists of a 

single orbit under g,. (We shall see that the set consists of a single segment in this case 

also.) B is the orbit of the endpoints of/~,, the minor leaf corresponding to r, and so 

consists of one or two orbits. 

Now suppose B consists of one orbit. Then for each a E S 1 for which there are 

segments of UF in {z: tzl>l} (or {z: Izt<l)) with endpoints in ~-l(a),  there are either 

exactly two such segments, whose second endpoints are in different components of 

S I \ K ,  or there is one such segment whose orientation is reversed by gP, for some p. 

There are the same number of segments in {z: Izl>l} and {z: Izl<l}, so the same 

alternative must occur for each. So there is either a loop y and a least integer p>0 such 

that g~=~,, with ~, reversing order on V, or there is a finite type surface S which is not 

an annulus, and a least integer p>0  with ~PS=S, OScOF, and ~ cyclically permutes 

the components of aS. Then we can extend gP, to a homeomorphism q0 of V, S. Then q0 
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has a fixed point. If tp: y--->y, then q0 leaves invariant a segment of ~,, hence must leave 

invariant two segments of~,, one in {z: Izl<l} and one in {z: Izl>l}. Hence y consists of 

exactly two segments, since all segments then have the same period p under ~., and 

this is only possible if there are only two segments in ?. If q0: S ~ S ,  then q0 leaves 

invariant a polygon P of S, and cyclically permutes the leaf segments in aP. These leaf 

segments must all be in different components of aS, since S has no genus. S \ P  is a 

disc, so q0 leaves invariant another polygon P' in S with similar properties. Then P and 

P' must be on opposite sides of S ~, since p was chosen minimal. So then for Euler 

characteristic reasons (because S is a union of polygons all with at least three leaf 

segments as sides) S=P U P', and we are done. 

7.8 

We continue with the previous notation of 7.6. Suppose tz<t~. Let 

L1 = ( l l :  11 is a geodesic in {z: [z[>l) with endpoints qbr(x), ~r(y) 

and there is a leaf segment from L in {z: Izl>l} with endpoints x, y}. 

Then L-(l{l: 1-1 ELI} is an invariant lamination (under z ~ z  2) in the sense of I.I0. 

LEMMA. I f  t2<tl and some infinite-sided polygon P of  G contains more than one 

segment from t.JF and F consists o f  a single orbit under g., then every loop o f  F 

crosses S 1 exactly twice. 

Proof. All the infinite sided polygons of G which contain segments of t, IF are in 

{z: Izl> I } and in the same periodic orbit under g.. Then we can define a critically finite 

degree two branched covering 91 which preserves Ug.P and U F \ t d g . P .  Then by 5.5, 

any arc of UF\tJg~.P has both endpoints in the same gJ.P, that is, each loop of F 

intersects S ~ exactly twice. 

7.9 

We continue with the notation of 7.6. Let 

F'={I: t is a leaf in {z: [z[<l} with endpoints a, b and there is a 

segment l~ from F in {z: [zl>l} with endpoints in Orl(a), ~;l(b)}. 

Then 1"' is a forward-invariant lamination (under z ~ z  z) in the sense of 1.10. Let p' be 

the minor leaf of F', which is a leaf of QML (see 1.10) and let p be the corresponding 
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segment ofF.  We recall that there is a partial ordering on leaves of QML:/t~</t2 ifa~ 

separates/~2 from 0. 

LEM~A. I f  tl <~t2, I~' has endpoints a, b, and l~" <p' has endpoints c, d, then there is 

a l e a f o f L  in (z: [zl>l} with endpoints in ~;~(c), ~;l(d).  Consequently, i fp '  is not 

isolated in QML there is a leaf lg of L in {z: }z}>l) separating # from ~ and with 

endpoints in ~ l ( a ) ,  dP-~l(b). 

Proof. If  t~<~t2, there is a diagonal leaf segment l0 of L in {z: Iz[>l}. Let +x be the 

images under ~ of the endpoints of 10. Now we can assume c, d are periodic of period t 

(say). Let U0 and V0 be the intervals with endpoints x 2, c, and x 2, d respectively, Let 

U1, VI be the preimages of these under z~-->z 2 which contain the periodic preimages of c, 

d. Then one of the intervals has endpoint +x and the other has endpoint -x .  Similarly, 

we define U~, V, for all n, so that U~+I, V~+I are preimages of U~, V~ and U, always 

contains the periodic element of s-~c (if s(z)=z 2) and similarly for V~. Then none of the 

U~, V n, contain a, b, and they are all the same side of a, b, because the orbits of c, d are 

all on one side of a, b. (This is simply a fact about endpoints of leaves of QML). So only 

the component of I m ( f l ) \ S  ~ containing fl(0)= ~ crosses a line joining U, and V~ in 

{z: Izl>l}. Then there is a sequence of segments l~ of L such that 1~+ 1 is a preimage 

under ~ of l~ and the images of the endpoints of I. under ~ are in U~, V,. Taking limits, 

we obtain the required leaf of L corresponding to p". The existence of the leaf 1~ 

follows, if/~' is not isolated. 

7.10 

We continue with the notation of 7.6. 

LEMMA. If  G has period n > l  and is nonsimply-connected, and fl(1) E G, then there 

is a component ~ of  (?.\G which is fixed by Q~ and separates G from pig (0<i<n) and 

one of the following holds. 
(a) t5 is a compact geodesic. 

(b) 6 is a union of  geodesics without Sl-crossings, and of  endpoints in S ~. 

Proof. First we show that there exists 6 with q~6=~ and separating G from piG 

(0<i<n). For some i, we can find a disc D i with qiGcDj, ~DjcaoiG and such that Di 

contains no other QJG. Then CJoo CD i for l~<j<i+l. So, for O<~j<i, all components of 

0-JDg are discs which do not contain 0oo or qkG except for k=i- j ,  and all components of 

(~-~Di are discs. One such component contains G, and the boundary component t~ 

separates G from oJG (0<j<n). We claim that Q~6=6. For if D' is any component of 
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C \ G  with aD'*6, D'lq (0ioo: i~>0)=O, so all components of p-JD' are discs disjoint 

from piG (i>~O) for allj~>0. So we must have 6cp-"6.  

Now we claim that if F is as in 7.6, with all loops in a single periodic orbit under g., 

then some yEF  in G must separate g~ ,  g0 from giG, 0<i<n.  It suffices to show that 

some y E F in G must separate p0 from g;G, 0<i<n.  For this it suffices that some ~, E F in 

G separates some gJ0 from piG, 0<i<n.  (For then, ifj~>l is minimal, we take the 

preimage under g~-l.) But if not, then some ? E F  in G bounds a disc which is disjoint 

from {gi0, gi~: i>~0}. But then y cannot be periodic under ~., giving a contradiction. 

Thus, the lemma will be proved if G O aG contains a loop 7 from F and either y ~ a G  

or there is an annulus A in G with aAcv  t3 aG or y bounds a component of C \ L I F  which 

is disjoint from K (because in this case v~aG). Now let tl, t2 be as in 7.6. There are two 

cases to consider: t2<t 1 and tl<_t 2. 

Case t2<t~. If U F n a G . O ,  we are done. So now suppose UFnaG=O.  As re- 

marked in 7.8, for LI as defined there, L~ -1 is an invariant lamination (under z~z2). If 

one segment I from F is the only one in an infinite-sided polygon P of G in {z: Izl>l}, 
then one component P' of P \ l  has exactly one leaf/1 from L as a side, and l, Ii have the 

same period under g.. If B (as in 7.7) consists of two orbits, each segment from F in 

{z: Izl<l) bounds rectangular polygons on both sides. So some leaves from the orbit of 

11 can be joined by leaves of Lr to give the required 6. If B consists of one orbit, then, as 

in 7.7, each loop of F intersects S 1 exactly twice, and some infinite-sided polygon P of 

G contains more than one segment from t.IF. So now, by 7.8, we can assume that these 

last two properties hold. The leaf segment of aP whose oriented period is the period of 

P must then be a leaf of L with endpoints in K, and there must be a leaf of Lr with the 

same endpoints. The union of these two leaves and their endpoints is the required 6. 

Case tl<~t2. If B consists of two orbits, let lu be as in 7.9 (since in this case kt' is not 

isolated in QML). Then leaves from the orbit of lu can be joined by leaves of L, to give 

the required 6. If B consists of a single orbit, let #" be the immediate predecessor of/~', 

and let /"  be the leaf of L corresponding to / / ' .  By 7.7, each loop of F intersects S ~ 

exactly twice, and hence there is a leaf of Lr with the same endpoints as/". The union of 

these leaves and their endpoints is the required 6. 

7.11. Proof of Proposition 7.4 

We continue from the progress we made in 7.5. So let L3 be the lamination obtained in 

7.5. Essentially, we want to modify L3 to satisfy condition (c). Suppose first that 

6-928182 Acta Mathematica 168. Imprim6 le 6 f6vrier 1992 
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oL--and also 0L3---is not type II. Then there is nothing to prove unless the gap G 

containing QL3~ is infinite-sided, and Q=QL3 is type IV and G is of some period n under 

Q. Now we have to consider two cases separately. 

Case I: G is simply connected. Suppose I is a side of G of oriented period p>n 

under ~. which is also a side of a finite-sided gap G'. Then we claim that G' has no side 

in common with 0/G, 0<i<n.  If G' is simply connected, we obtain this from 5.5. For if 

G' does have a side in common with some QiG, 0<i<n,  we can find y which follows 

closely a minimal possible number of sides of G' from a side of G to a side of some QiG, 

0<i<n. Then {QJT: 0~<j<p} is a set of isotopically disjoint arcs, and ~ , = V  up to 

isotopy. This contradicts 5.5. If G' is not simply connected, and 0iG (0<i<n) has a side 

in common with G', we can also contradict 5.5. For by 7.6, we can find compact 

geodesics in G' which bound annuli round the boundary components of G', and let 

G"= G' \ tJ(annuli) .  Then we can find y' in G" joining different boundary components of 

G", and then extend 7' into the annuli to obtain ~, joining G to pig (some 0<i<n).  We 

take 7' and V to have the minimum possible number of intersections with S ~, and then 

all Q~,/(i~>0) must be disjoint or equal, up to isotopy. Then y is periodic under Q, up to 

isotopy, and for Euler characteristic reasons, the period must be (period(G)x number of 

boundary components), which must be p. 

So now obtain L 4 from L 3 by removing the full orbit of sides of G of oriented period 

>n which are common to finite-sided gaps. So now no side of G which is not in Lr and 

is of oriented period >n can be common to any other gap (by 5.5). Rename G as the gap 

containing fl(1). If G is still simply-connected, we add a leaf to G as follows. Let G be 

the lift of G to the unit disc D, and F a lift of 0~, to D with FG=G. Then there are points 

a, b on aD which are endpoints of sides of G fixed by F, and all the finitely many sides 

of G fixed by F are between a and b. Let L 5 be obtained by adding to L 4 the full orbit of 

the projection of this leaf. If, on the other hand, the new gap G is not simply conneted, 

take L4=L 5. 

Case 2: G is not simply connected. Let 6 be as in 7.10. By 7.10, if any side of G 

which is not in 6 is common to a finite-sided gap G', then G' has no side in common 

with o'G (0<i<n), and no side of G which is not in 6 or Lr can be common to oiG 

(0<i<n). So now remove the full orbit of sides of G not in 6 which are common to 

finite-sided gaps, to obtain L 4, and put Ls=L 4. 

Now L 5 satisfies conditions (a) and (c) in the definition of primitive, but some 

leaves may again be approached on both sides by finite-sided gaps. Remove the full 

orbit of these, to obtain L6=L' with all the required properties. 
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Finally, if 0L was type II, let L]=L 3 U L~, and work with L~ to obtain L 5, and finally 

L 6. Then every leaf of L ~ \ L  3 is a side of at most one finite-sided gap of  L 6. Let  L '  be 

obtained by removing from L 6 all leaves of  L ~ \ L  3, and all sides in L6~L 3 of finite-sided 

gaps of L 6 which have leaves of L ~ \ L  3 as sides. Again, L '  has the required properties. 

7.12. Proof of the Parameter Laminations Theorem 

If  leaves 11, 12 of L1, L 2 intersect transversally, then we can assume they are both 

periodic sides of infinite-sided periodic gaps, by the definition of primitive and 7.1. 

Then QLI, 0L2 must be type II or IV, and we can assume (by adding leaves if necessary) 

that they ~ e  both type IV. Let  GI ,  G 2 be the minor gaps in U of L I, L 2. 

Now l~ must be approached on both sides by gaps of L r So, if G 1 is simply- 

connected, by the definition of primitive, the oriented period n of l~ is the same as the 

period of G~, and if G1 is not simply-connected, 11 is either compact  or has no S 1- 

crossings. 

Now we know from 7.1 that 11,/2 have the same period under ~, unless one of them 

is compact, and even in that case, periodic segments of the leaves have the same 

period. Let  0 be the map of  7.1, so that 0 preserves L 1, L 2. First we consider the case 

when one of GI, G2 is simply-connected, and we assume G 1 is. Thus G 2 and 12 are 

invariant under 0 n. Then we can find an open subset Y of G~, whose boundary is 

contained in OGI together with a single component of IE0 G~, and such that 0 n is a 

homeomorphism of Y onto itself. For  0 n fixes all components of G~ n G 2, G I \ G  2, and is 

a homeomorphism on all but one of  them, because 0 n has only one critical point in the 

forward orbit of G1. Lifting Y, 0" to I? in O, and F with F1?= 17, we see that F fixes the 

lift of the component of 12 fl G1 in a 17, and that all lifts of  sides are eventually periodic. 

Since F is a homeomorphism on a I?, this implies all sides are fixed. So all sides of Y are 

fixed by 0 n. So some other side of G1 is asymptotic to 11, contradicting the definition of 

primitive. 

If both GI and G2 are nonsimply connected, then, by the definition of primitive, l~, 

12 are contained in boundary components 6 ,  62 of G 1, G 2, where the oriented period of 

~i is the period of G~, and ~i is either a compact  geodesic, or a finite union of leaves 

without SLcrossings; and in the latter case, 6,- runs parallel to a compact geodesic in Gi. 

The segments of 6i in (z: Izl>l} have the same endpoints in S ~ as the leaves of  a finite 

z2-forward invariant lamination on {z: Izl<l). The shortest of these segments is the last 

crossed by fl;. Therefore, if 61 and 62 intersect transversally, so do the shortest 

segments in {z: Izl>l}, and so do the corresponding leaves in QML, the lamination of  
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minor leaves of z2-invariant laminations [T]. But QML is a lamination, that is, leaves do 

not intersect. So ~l and 62 do not intersect transversally, and we are done. 

Chapter 8. The Tuning Proposition 

8.1 

We recall that if g: ( ~ ( ~  is a degree two critically finite branched covering of type II, 

III or IV which is not equivalent to a rational map, then condition (C) of 1.6 holds. This 

means that g has a f ixed subsurface in the following sense. There is a homotopy 

(ft: t E [0, 1]}, through branched coverings with X(f~)=X(g)=X for all t,fo=g, and, if we 

writef~=f, there is a compact connected subsurface with boundary Y c C \ X  such that 

f Y =  Y, f l  Y is a homeomorphism, and f cyclicaUy permutes the components of aY all of 

which are nontrivial simple loops in (~ \X .  Then Y is afixed subsurface for g. If Yic Y 

is any subsurface such that all components of 0Y1 are nontrivial in C \ X  and fY1 is 

isotopic to I11 in (~ \X ,  thenfmus t  cyclically permute the components of 0 Y1. Then Y is 

a minimal fixed subsurface if no such subsurface Yl exists, except with Y1 homotopy 

equivalent to Y. The minimality or not of Y is clearly a condition on the isotopy class of 

fl  Y. This is made precise in the following lemma. Clearly, minimal fixed subsurfaces 

exist when fixed subsurfaces exist. 

8.2 

FIXED SUBSURFACE LEMMA. I f  g has a fixed subsurface, then g has a unique minimal 

fixed subsurface Y up to isotopy, and if  f is as above, and Y has k boundary 

components, then either f l Y  is isotopic to a pseudo-Anosov homeomorphism [F-L-P] 

in the sense that it preserves transverse stable and unstable measured foliations, o f f  is 

isotopic to an isometry (for some noncomplete Poincar~ metric on Y, such that 

boundary components are geodesics o f  length I and f k is isotopic to the identity). 

Proof. We claim, first, that any two fixed subsurfaces 111, 112 for g must intersect, 

and that intersections cannot be removed by isotopies of either that keep X fixed. Now 

only one component U of ( ~ \  YI contains a component of g-i U up to isotopy in C ' \X ,  

and U contains both critical points. So if Y1 n Y2=~, we must have YEC U. But then, if y 

is the component of OY2 bounding a disc in U containing II2, and Y~ is the component of 

g-lYE isotopic to u in (~ \X,  and y'=g-lyN Y~, we must have y' and y isotopic in (~ \X,  

with g: y'-->y preserving orientation. This gives a contradiction, because the boundary 
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components of Y2 are cyclically permuted by g - I  u p  to isotopy, so }'2 would have to be 

a disc--which is impossible, since Y2 AX=~,  but each component of a Y2 is nontrivial in 

C \ X .  So Y~ A Y2*~. 

Now let Y be any minimal fixed subsurface for g, and choose f as in 8.1 with 

fY= Y. We classify the isotopy class o f f l  Y following [F-L-P],  where only homeomor- 

phisms fixing boundary components were considered, but the principle is the same. 

Since f lY  leaves invariant no proper subsurface, as already noted (8.1) there is no 

disjoint loop set left invariant b y f u p  to isotopy. We know that f ,  fixes a point in the 

Thurston compactification of Teichmtiller space, where f ,  is the homeomorphism of 

this compactification (which is a ball) which is induced by the isotopy class of f 

[F-L-P]. If f ,  fixes a point in Teichmtiller space, then f l  Y is isotopic to an isometry. 

Then Y can be given a hyperbolic structure such that all boundary components are 

geodesics of length one, and we can assume without loss of generality that f l  Y 

preserves this hyperbolic structure. By the Lefschetz Fixed Point Theorem, f has a 

fixed point Y0. Let li be a shortest geodesic segment from y0 to a boundary component 

bi, l~i<~k. Then for i4=j, li and ij c a n  only intersect at Y0- In fact, any two shortest 

geodesic segments from Y0 to aY cannot intersect. So, since Y\tfli=lli is a disc, I i is 

unique. Sofli=li+t, f/k=/l, for a suitable renumbering. T h e n f  k fixes all li, and must be 

the identity on Y. 

Now suppose f .  does not fix a point in Teichmtiller space. Since no disjoint loop 

set is left invariant by f l  Y, f .  must fix a projective measured foliation in the boundary of 

Teichmtiller space, for which all leaves are dense, and proceeding as in [F-L-P],  f l  Y 

must be isotopic to a pseudo-Anosov which preserves exactly two transverse measured 

foliations. 

Now suppose there is a second minimal fixed subsurface Y' with YN Y'*~ ,  Y4= Y'. 

We can assume that Y and Y' have the smallest possible number of intersections, 

allowing movement of Y, Y' under isotopies fixing X, and without loss of generality that 

the set of segments of a Y' n Y is preserved by f,  and similarly for the set of segments of 

a YO Y'. Then f must be isotopic to an isometry, and, up to isotopy, all segments are 

fixed pointwise b y f  k. Then we can assume that fpreserves  Y, Y', YN Y', and t h a t f  k 

fixes Y, Y' pointwise. Then let D 0, D6 be the disc components of t ~ \  Y, C \  Y' which 

contain both critical points, and let D be the component of D O n D~ which contains both 

critical points. (D does exist.) Then a(Do\D) is fixed by fk, and fk(Do\D)=Do\D, 
since filDo\D is a homeomorphism for each i, and fk(a(Do\D))=~(Do\D). Then 

X(f)fl(Do\D) is invariant under fk, giving a contradiction, since every point in 

X(f)=X(g) has a critical point in its forward orbit. 
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8.3. Proof of the Tuning Proposition 

ff  f is a branched covering with periodic critical point c of period m, and g is a 

polynomial of  the form z~-->zZ+a with 0 periodic, recall (1.20) that f~-cg is another 

critically finite degree two branched covering, known as the tuning of f round c by g. 

Recall also that the Tuning Proposition states that, if m > l ,  and f is equivalent to a 

rational map, so is fFc g. 

Proof. I f f ~ - g  is not equivalent to a rational map, we can assume without loss of 

generality that a minimal fixed subsurface Yis invariant under ft- c g, and we can assume 

that f ,  f l - g  are equal of f f iD  (0~ i<m)  where D is a disc containing c and the tuned 
m-I i D is orbit, and thatfmD=D. We can also assume that Y\tgi=0 f invariant u n d e r f a n d  

ft- c g, and that all intersections between Y and f iD (0~<i<m) are essential. There must 

be intersections since, by hypothesis, f i s  equivalent to a rational map, and hence has 

no fixed subsurface. The intersection arcs are periodic. Hence, by the Fixed Subsur- 

face Lemma, fFcg{Y must be isotopic to an isometry (for some suitable metric) and 

(fF-, g)k I Y must be isotopic to the identity, where 8 Y has k components.  In fact, k=rn. 

For f~-~ g has a fixed point in a component C of m-1 ; Y\I,J;= 0 f D  (since m > l ) ,  and OC 

consists of  nk components of  8C n 8 Y, and nk components of  aC N (U~=-o~fiD) for some 

n. Then Y has Euler characteristic ~<l-nk/2. So we must have n=  1. Now ft-c g acts as 

an order k rotation on the components of OCn 0Y, hence also on the components of 

OClqtUm-l~'iaD ~ Hence mlk. Since YO(tg~=-o'fiOD). has genus 0 and m > l ,  we must x i = 0  . /  1 .  

have m=k. So now we can assume (fl%g) m fixes all components of Yn(fiSD) for all i, 

and also all components of a Yn D, 8 D \ a  Y. From this, we deduce that (ft-~ g)k fixes a 

component of  D \  Y which does not contain the critical point of  3fl-c g in D. This is 

impossible. So we are done. 
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