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1. Introduction

Let Fy: M—R™! be a smooth immersion of a closed n-dimensional hypersurface of
nonnegative mean curvature in Euclidean space, n>2. The evolution of Mo=Fy(M) by
mean curvature flow is the oné—parameter family of smooth immersions F: M x[0,T[—
R™*! satisfying

(5,0 =—H(p,(p,0), PEM, 120, (1.1)
F(-,0)=F, (1.2

where H(p,1t) and v(p, 1) are the mean curvature and the outer normal respectively at the
point F(p,t) of the surface M;=F(-,t)(M). The signs are chosen such that —H v=H
is the mean curvature vector and the mean curvature of a convex surface is positive.

For closed surfaces the solution of (1.1)—(1.2) exists on a finite maximal time interval
[0,T[, 0<T <o0, and the curvature of the surfaces becomes unbounded for {—T. It is
important to obtain a detailed description of the singular behaviour for t—T, a future
goal being the topologically controlled extension of the flow past singularities.

In the present paper we use the assumption of nonnegative mean curvature to derive
new a priori estimates from below for all other elementary symmetric functions of the
principal curvatures, strong enough to conclude that any rescaled limit of a singularity
is (weakly) convex.

Let X= (A1, .-, A ) be the principal curvatures of the evolving hypersurfaces M, and
let

Sp(\) = > Aig Mg o Niy

1<i1<ia<... <k <0
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be the elementary symmetric functions with S;=H. Then our main result is

THEOREM 1.1. Suppose that Fy: M—R™! is a smooth closed hypersurface im-
mersion with nonnegative mean curvature. For each k, 2<k<n, and any n>0 there is
a constant C, i depending only on n,k,n and the initial data, such that everywhere on
M x[0,T[ we have the estimate

Se>-—nH*~C, 1. (1.3)

The arbitrariness of 7 breaks the scaling invariance in inequality (1.3) and implies
that near a singularity, where S;=H becomes unbounded, each S becomes nonnegative
after rescaling:

COROLLARY 1.2. Let M; be a mean convez solution of mean curvature flow on
the mazimal time interval [0,T[ as in Theorem 1.1. Then any smooth rescaling of the
singularity for t—T is conver.

For a discussion of previous results on the blowup behaviour of mean curvature flow
see [12], where we proved a lower bound as in (1.3) for the scalar curvature of M;. We
note that the present result applies to type-1I singularities which up to now were under-
stood only in the one-dimensional case. We give a classification of type-II singularities
in the mean convex case in Theorem 4.1, complementary to the known classification of
type-I singularities in (10}, [11].

In view of the results in [14] and [9] respectively, Theorem 1.1 and Corollary 1.2
also hold for star-shaped surfaces in R"*! and for mean convex surfaces in smooth
Riemannian manifolds, see Remarks 3.8 and 3.9.

The proof of Theorem 1.1 proceeds by induction on the degree k of the elementary
symmetric polynomial Si. Assuming that the desired inequalities in (1.3) hold up to some
k>2, we perturb the second fundamental form A={h,;} by adding a small multiple of
the metric g={g,;}, setting

bij = hij+eHg;;+Dgi; (1.4)

for small >0 and positive D. In view of the induction hypothesis (1.3) we manage to
choose D=D, in such a way that the elementary symmetric function Sy of the eigenvalues
of {b;;} is strictly positive, allowing us to work with the quotient Qx4+1=Sk+1/ Sy as a
test function. The algebraic properties of S, §k and Qk+1,ék+1 established in §2, in
particular the concavity of Q1 on the set where Si >0, turn out to be crucial for the
proof of the a priori estimates in §3.
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2. Symmetric polynomials

As we said in the introduction, in this paper we are concerned with symmetric functions
of the principal curvatures on a manifold. We begin by recalling the definition and some
basic properties of the elementary symmetric polynomials. In the following n>2 is a
fixed integer.

Definition 2.1. For any k=1,2,...,n we set

sk(:u’): Z By Mg --- iy VN=(/‘17-"’“H)ERn' (21)
1€ <ig<...<iggn

We also set sp=1 and s =0 for k>n. In addition, we define

Tr={peR":s1(t) > ﬁ, s2(p)>0,..., (2} > 0}. (2.2)

Clearly the sets I'y, are open cones and satisfy Iy CT for any k=1,...,n—1. In
the sequel (Theorem 2.5 and Proposition 2.6) we will also see that these cones are convex
and that I';, coincides with the positive cone.

" Let us denote by Sk;i (1) the sum of the terms of sg(u1) not containing the factor u;.
Then the following identities hold.

PROPOSITION 2.2. We have, for any k=0,...,n, i=1,...,n and p€R™,

SR 23)

Sk+1(1) = Skr15i (1) + pisisa (1), (2.4)

> siilp) = (n—k) s (u), (2.5)
=1

D biss () = (k-+1)sia (w), (2.6)

Z P35k (1) = s1(p) s1(p) — (k+2) sp2(p).- (2.7)

Proof. The properties (2.3) and (2.4) follow from the definitions, while (2.6) is a
consequence of (2.3) and Euler’s theorem on homogeneous functions. Taking sums over
i in (2.4) and applying (2.6) we obtain (2.5). By (2.4) we also obtain, for any p€R",

Skr2() = Sk 2 (1) = HiShr136 (1) = paSrr1 (1) — 43 ks (1)
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Taking sums over ¢ and using (2.5) we find

n

(k+2)sp42(p) = Z (pisk+1(p) _N?Sk;i(ﬂ)),

i=1
which implies the identity (2.7). O

A less immediate property of these polynomials is the following inequality (for the
proof see e.g. [7, pp. 104-105]).

THEOREM 2.3. For any k€{1,...,n—1} and peR"™ we have

(r= k1) (k1) sk-1 () sts1(1) < k(n— k)52 (1)- (2.8)

The above result is known as Newton’s inequality. We observe that it implies the
weaker inequality

Sk—1(1) sk41(p) < si(w). (2.9)

The following property of the polynomials si; is a consequence of Newton’s inequality.

LEMMA 2.4. Let peTl'y be given for some k€{l,...,n}. Then we have sp;(u)>0
for any he{0,...,k—1} and i€{1,...,n}.

Proof. We proceed by induction on h. The case A=0 is trivial. Consider now an
arbitrary he{l,...,k—1}. By the assumption that u€Tl and by (2.4) we have, for any

i=1,..,n,

HiShyi (1) +8ht 16 () = Sha1(B) >0, pisn—1;i(1) +5nsi (1) = sn(p) > 0.

By the induction hypothesis we have sp_1,;(#)>0. Let us argue by contradiction and
suppose that sp;(#)<0. Then we have p;sp—1,(p)=sn(pt) —sn;i(1t)>0, which implies
1;>0. Therefore

Shat;s (1) > —pisni() 20, pisn_1::(1) > —5sn;i(u) 2 0.

We deduce that sh+1;i(,u)sh_1;i(,u)>s%;i(,u). On the other hand, formula (2.9) evalu-
ated for y;=0 and k=h yields the opposite inequality. The contradiction proves that
Spi(p)>0. O

Let us now define, for k=2,...,n and p€lk_1,
sk(w)

= —. 2.10

qk(p‘) Sk—l(lJ') ( )

Similarly we set, for i=1,...,n, qgi(#)=5sk:(1)/Sk—1,:(1t). Observe that, if u€T'y, then
gx,: (1) is well defined, by virtue of the previous lemma. The functions g are homogeneous
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of degree one. We now give a concavity result for these functions which is fundamental
for our later purposes. Our proof is inspired by the one of [13, Theorem 1], where the
concavity of ¢, was proved in the positive cone.

THEOREM 2.5. The cone Ty is convex and the function qx11 s concave on T'y for
any k=1,...,n—1. More precisely, given ucl'y and EER™, we have 0?qyy1/0€% (1) <0,
and equality occurs only in the two following cases:

(i) € is a scalar multiple of wu,

(ii) w has exactly n—k zero components and these components are zero also for €.

Proof. We proceed by induction on k and consider first the case k=1. The convexity
of I'; is immediate since I'; is a half-space. In addition we have the identity

Z?ﬂ(fisl(u)—ﬂisl(ﬁ))z
si(p)si(p+8)s1(p—¢€) ’

2g2(p) —qa(p+&) —ga(u—§€) =

valid for all y,& such that y, u+£€T’;. Using this we obtain, for all u€I'; and {€R"™,

_@( )= lim 2¢2(1) — @2 (pted) ~go(—ef) _ XinaGsrlw)—pisi(©)®
o = e? s1(u)?

The right-hand side is strictly positive if £ is not a multiple of y, and this proves the
assertion in this case.

Let us now consider k arbitrary. The convexity of 'y follows from the induction
hypothesis, since we have I'y={u€T'x-1:qx()>0}. To prove the concavity of g1, let
us take p€I'y. Then we have, by (2.4) and by Lemma 2.4,

sk(p)

——Sk—l;i(,u) >0. (2.11)

Wi+ qri(p) =

Applying first (2.7) and then again (2.4) we obtain

2 Sk— 11 )
i — ll‘i Sk(ﬂ») )

(k+1)gr1( u)=zn:(
:i (uz 2 Se=1a(p) ) (2.12)
> (-

Sk; z(ﬂ +4iSk—1, z(/J/)

ka ‘H‘z)
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Let us now take £&€R™ small enough to have u+£€T,. Using (2.12) we obtain

(k+1)(2‘Ik+1() —@r+1(p+E€) —qrr1(n—8))

( ﬂz+€z)2 (;u'i_gi)z _ (2/'1'1')2 )
(WO +pi+&  qri(p—8)+pi—&  qryi(u+E)+ar(n—8€)+2p;

(2p) 2 )
+Z:(Qk;i(ﬂ+‘f)+Qk;i(ﬂ_§)+2ﬂi Qri(p) i

2":( (i +&) s (=€) — (i — &) Giss ()] )
=1 ka ﬂ+§ +Nz+§z][ka(l‘ £)+l‘z 51][‘1191 ,u+€)+qk1(ﬂ §)+2Nt]

n

Z i+ &) +0ki(B—E6) —2qi(p)
=7 (@i (B 6) + Qs (1 — &) 42084 ) (Ghsi (1) + 424

It follows, for £ arbitrary,

Paesr () iy BBt +au(1—ed) ~ 21 (1)

(962 g—0 2
< lim 2[’/12 . Qk;i(ﬂ+€€)+¢1k;i(lt'—5§)_2Qk;i(ﬂ)
= e=0 4= k+1 €2(qr;i(p+e€)+qr;i(p—e€) +20i) (gse (1) + 1)
13 (32%1/352)(#)
Z (k+1)(gui () +p:)?

Let us denote by [u];, [{],- the vectors obtained by setting the ith component of u, £ equal
to zero. Then [u];€Tk_; for every i by Lemma 2.4. Thus, by the induction hypothesis,
we have

2 . 2
1 e ) = i s () <0 (213)

This proves the concavity of gxy1. Let us now analyse the cases when we have equality in

(2.13) for every 7. We first consider the case when p has more than k nonzero components,
say for instance the first k+1. Then, for any i=1,...,k+1, the vector [u]; has at least
k nonzero components and p;#0. By the 1nduct10n hypothesis, equality in (2.13) is
possible only if [¢]; is a multiple of [u];. Since this must hold for every i=1,...,k+1 and
since k+1>2, we obtain that £ is a scalar multiple of p.

Let us now consider the case when u has exactly k nonzero components, for instance
the first k. By the induction hypothesis, [€]; and [u]; satisfy either property (i) or
property (ii). In both cases we find that the last n—k components of [£]; are zero. Then
the same holds for £. This shows that pu and £ satisfy property (ii).

The case when p has less than k nonzero components is excluded, since it would
imply that sx(p)=0, in contradiction with our assumption that p€T. |

We can now obtain a characterization of the cones T'y.
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PROPOSITION 2.6. The sets Ty, coincide with the connected component of {p€R™:
si{p)>0} containing the positive cone. T'y, coincides with the positive cone.

Proof. Let us denote by Gy, the connected component of the set {u€R™: sx{u)>0}
containing the positive cone. Since I'y is convex and contains the positive cone, we
deduce that 'y CGg. On the other hand, it is known (see [3], [2]) that GxCGr_; for
any k=2, ...,n. This implies that s1, 82, ..., 8x_1 are positive in G, and so G, CI'y. This
proves that G =T'x. To obtain the last assertion, it suffices to observe that s,, vanishes on
the boundary of the positive cone, and so G,, cannot be strictly larger than the positive
cone. ]

We define now, for any k=1,...,n, a function on the space of symmetric (nxn)-
matrices in the following way: to each matrix ©=(6;;) we associate the polynomial s
evaluated in the eigenvalues of ©. With an abuse of notation, we use the same symbol
and denote by si(u) the function on vectors and by sx(©) the function on matrices.
Similarly, we can consider the functions gk, Sk, gk;; as functions defined on symmetric
matrices.

Let us observe that s,(©) is a homogeneous polynomial of degree k of the entries 0;;.
In fact we have, for teR,

det(tI+0) =t"+51(O) " ...+ 5,_1(0)t+5,(O).

This shows that sx(©) is the sum of subdeterminants of order kxk of ©.

Consider now a smooth n-dimensional immersed manifold M, and let z be a local
coordinate on M. We denote as usual by g=(g;;) the induced metric and by A=(h;;) the
second fundamental form A. Then the Weingarten operator W: T, M —T, M associated
with g and A has coefficients A% =g*"h;;. We denote by A1, ..., A, the principal curvatures
of M, which are also the eigenvalues of W. They appear in the following formulas in a
symmetric way and therefore the order in which we label them has no influence. Then,
given k=1, ...,n, we can consider the function Sy: M—R defined by Sp=s¢(A1, ..., An).
To simplify the notation, it is convenient sometimes to consider Sy as a function of the
Ai’s or of the h%’s; in this way we have

%_63’“( ) %_%k( )

Thus we will write, for instance,

85}9 I -
VS = -@V,hj instead of V,;Sk(p)= Z

88 k
o0:

. (W) Vik(p).

,J

%,
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Analogously, we can define on M functions Qy, Sk.i, Q«;: evaluating qx, Sk;:, gx;:
in (A1, ..., An). Observe that, according to the previous definition, S; coincides with the
mean curvature; therefore we will denote this function in the sequel by the usual letter H.

As we mentioned in the introduction, it is convenient for us to define some suitable
perturbations of the quantities introduced above. Given ¢, D20, let us define

Ai;51D2A1+6H+D, bij;s,D =h7;j+gij(EH+D). (214)

We call A, p (resp. W p) the matrix whose entries are bij,c p (resp. b%.. p)- Then
AL, ..., A, are the eigenvalues of WE, p- We denote by gk;s, p the functions on M obtained
by evaluating sy at :\51 p instead of A. We will drop the subscript &, D if there is no risk
of confusion. From the definition it follows that

f}e,p = gl;e,D = 81(5\5,0) =(1+ne)H+nD,
|Ae,p|* = Z X?;E,D =|A?+n(eH+D)*+2H(¢H+D),
=1
Sae,0 =59(Ae,p) = Sa+(n—1)(eH+D)H+ in(n—1)(¢H+D)>.

In general, we find
k

~ n—k+h

Skie,D= Z ( h )(EH+D)hSk_h. (2.15)
h=0

If we regard §k as a function of A or of W, we have

8S; _Osk s, OSp _ Osi =

Let us also observe that

V,bij = Vlhij +9ij eV H,

and therefore the Codazzi equation does not hold for V,b;;. It is also easy to check that
VA=0 if and only if VA=0.

We will denote by Mr, the set of all points z€M such that (A(z),..., An(z))€T%.
Similarly, for given e, D, we will denote by Mg, the set of all points z€ M such that
(A1(z), ..., An(2))€T%. On the set Mg, we will consider the function Qg41:=Sk+1/Sk-

Now we investigate the relation between certain estimates from below for the poly-
nomials Sy and other estimates for the perturbed functions §k;5, p- The interest of these
results for our later purposes will be explained in Remark 2.10.
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LEMMA 2.7. Let M have positive mean curvature and let k€{2,...,n—1} be given.
Suppose that for any 6>0 there exists Cy such that

S;>—60H! —Cy, 1=2,..,k, (2.16)

everywhere on M. Then for any £€10,1/n] there exists D, >0 such that

~ e n—k+1-~
AL iy~ H, 2.17
1+ne k k—1;e,D D ( )

for all D>D,.
Proof. Let €€]0,1/n] be given. By (2.15) we have on M, for any D>0,

e n—-k+1~
—5 H
1+ne A k—1l;e,Dile D

S ("‘z”’) (eH+D)"Sy_»

h=0

Sk;s,D—

k—1
£ n—k+1 Z (n—k+h+1> (€H+D)hSk_1_hﬁ

1+ne k = h

k .
—Sk+Z( j )(EH+D) Sk—; k: eH+ B(i7ne) D).

Jj=1

We can now estimate the right-hand side using assumption (2.16) to obtain, for any 6>0,

= e n—k+1lx
Sk;E’D_1+n€ —k‘_Sk laDHsD
L
Z—on—Co—Z( i J)(eH-}—D) (6H*=7 4+Cp)
j=1
n—1 k2. [ EH  kten n w1 D )
_mren H+D i
+<k—1)(EH+D) H( +k(1+sn)D + k (eH+D) 1+en
k—2

>— (k 1) Z (eH+D)Y (GH* I +Cq)+ = (k 1)( H+D)F
j=

Let us now define 6. =e*(2(k—1))~! and D.=1+2(k~1)Cp,. Then, since (¢H+D)* 7>
(eH)k=34+DF=J the right-hand side of the above formula is positive for §=6, and for
any D> D,. O
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LEMMA 2.8. Let the assumptions of Lemma 2.7 be satisfied and let |A|?’<aH? on

M for some a>0. Suppose also that, for any £€€10,1/n] and n€]0,1], there exist C>0,
D20, 0€]0,1] such that

ék+1;e,D+nﬁz,D >

B C. (2.18)
Hp
Then for any 6>0 there exists Cy>0 such that
Sky1 = —0H 1 -Cy. (2.19)

Proof. Inequality (2.18) is equivalent to ék+1 >—nﬁ ~CH 1=o which implies that
Qr+12—2nH —c; for some ¢;=¢1(C,n,0)>0. We rewrite this inequality as

Sk41> —2nH Sk —c1 Sk.
On the other hand, using the identity (2.15) and the assumption [A|?<aH? we find
Skt1 < Sky1+eca HF ey (HR+1),

for suitable constants ca==c3(n,a) and ¢g=c3(n, D, a). Therefore we obtain

Sks1 > —2nHS,—c1 Sk —eca H* ' —c3(HF +1).
Again using (2.15) we can estimate

Sk <cas(Q+H*), HS, <csH*'4cg(H*+1),
where cy=cq(n, D, a), cs=c5{n,a) and cs=ce{n, D,a). We conclude that

Sky1> —cr(e+n) H T —cg(HE+1) > —2¢c7(e+n) H* 1 — ¢,

where c;=c7(n, a), while cg and ¢y depend on n, D, a, C, 1, 0, €. This proves the lemma,
since € and 7 can be taken arbitrarily small. d

Remark 2.9. It is clear from the above proofs that, if we have a family {M,} of mani-
folds satisfying the hypotheses of the two previous lemmas with constants independent
of t, then the conclusions also hold with a constant independent of t. We recall that,
if {M;} is a family of closed manifolds with positive mean curvature evolving by mean
curvature flow, then the inequality |A|?><<aH? is satisfied for some o >0 independent of ¢
(see e.g. [12]).

Remark 2.10. We observe that the thesis of Lemma 2.8 allows to apply Lemma 2.7
with & replaced by k+1. In addition, we recall that in [12] we proved that a family of
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hypersurfaces evolving by mean curvature flow fulfils property (2.16) for k=2. There-
fore, an iterative application of the two previous lemmas yields our main Theorem 1.1,
provided we are able to prove at each step that estimate (2.18) holds. This will be our
aim in §3; to this purpose we need some properties of the functions §k which will be
proved in the remainder of this section.

Following [1, Lemmas 2.22 and 7.12] we now derive some estimates exploiting the
concavity of gqi41. First of all, we derive a suitable expression for the second derivatives
of gy with respect to the matrix entries 6;; in terms of the derivatives of g, with respect
to the eigenvalues p;. Given ¢,pe{l,...,n}, with i#p, let us denote by 7, €R™ the vector
whose 4th component is 1, the pth component is —1, and all other components are 0.

LEMMA 2.11. Let i€l and let © be the diagonal matriz with entries fi1, ..., fin.
Then we have

32(1k+1 pa 32Qk+1
8)= 813000+ Gip(i2) 6ig0ip, 2.20
801']'891,(1( ) B,ulau ( ) JoPe p( ) P ( )

where we have set G;,(pu)=0 for i=p, while if i#p,

192 qk+1

zp(,u)— e (n+o-5(up—pi)mip) do. (2.21)
] 'ip
Proof. By the chain rule
32(1k+1 = P g1 8Hl = Otim = Oqx+1 FPuw =
fi . 2.22
80,,86,, © Zamapm 26,2 24, (GH; o P G060, O (22

Actually, this formula cannot be applied in general, since the eigenvalues are not an
everywhere differentiable function of the entries of a matrix. However, using the implicit
function theorem, it is easily checked that, if the eigenvalues fi1, ..., fin are distinct, then
the above derivatives exist and are equal to

ij 0 otherwise,

5 1/([”1_["1)) ifi?'épai=q=l,j:pa
H = _ _ [P . .
606é (e): 1/(:“‘11-/11') 1f@7épa]=P=la t=gq,
L) P9
0 otherwise.

It follows that

Pars1 = P 1—-8;p (Oqri1 O0gr+1
8)= 8i0pq+ — 2P ( i) — ﬂ)éi 8. 2.23
Bﬁijaﬁpq( ) OpiOpyp (7)0:40q fi—fp \ Op; Q Opp (7)) 3iadsm (2:23)




56 G. HUISKEN AND C. SINESTRARI

Let us write the second term on the right-hand side in a more convenient way. For fixed
i#p, let us call u* the vector in I’y with entries

Ky = e e
T\ Laitiy) i =i orif j=p.

Then p}=u; and so

Okt1, o OGki1, uy OQkt1, .
= —_ :0
Mip Opi ( Opyp (w)

since gx41 is a symmetric function. From the definition of G;, we obtain

Ok+1, o OGk41,_\ Odky1,_, OQry1, .\ OQry1,_

— - H

i) F (1*) ey ( ): ey ( ): B () o, ()
Hp— [ Hi—fip B —fp

Recalling (2.23), this proves the conclusion in the case when the eigenvalues fiy, ..., fin
are distinct. Since both sides of (2.20) are well defined and continuous for Z€T', the
general case follows by continuity. O

LEMMA 2.12. Given L€l and i#p we have Gip() <0, with equality only if [ has
exactly k nonzero entries and fi;#0, i, #0.

Proof. We observe that s1(7;,)=0, and so no scalar multiple of 7,, belongs to I'.
Then the result is a direct consequence of Theorem 2.5. O

LEMMA 2.13. Let g€y satisfy sk+1(R)<0, and let a;;p be a nonzero totally sym-
metric tensor. Given €20, set

n
Giip = Quip+€0;p E Qikh,

h__
M,a E) Z o? Qk+1 alualpp"_z GW alip)2’
i,p,! 8Hzaﬂp p,l
’ s

where Gy, is defined as in (2.21). Then J(f,a,€)<0.

Proof. From Theorem 2.5 and Lemma. 2.12 we immediately obtain that J(f, a,£)<0.

Let us now prove that the inequality is strict. We have by assumption s;{zz)>0 for any

I=1,...,k and sg41(jz)<0. We deduce in particular that at least k+1 components of [

are nonzero. By Lemma 2.12, G;, (1) <0 for any i¢#p; thus, J(fi,a,c) can vanish only if

a15p=0 for all I and all i#p. Since @j;p,=au;p for i#p and ayy, is symmetric, we deduce
that

aiip=0 unless I=i=p. (2.24)
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By assumption ay;p, is not identically zero; therefore ay; must be nonzero for some I. Let us
assume for instance that a1117#0. We deduce from equation (2.24) that ZZ=1 A1hh=0111,
and so

G1ii = (0i1+€)ainn, 1<i<n. (2.25)

From Theorem 2.5 we deduce that J(f, a,€) can vanish only if the vector (d1ii)1<ign IS
a scalar multiple of 7. This implies, by (2.25), that the components of fi have all the
same sign. This contradicts the assumption that s;(z)>0, sg+1(2)<0. O

To simplify the notation, we assume that all following computations are performed
in a coordinate system which is orthonormal at the point under consideration. Then we
have g;;=0;, hs=hi;, bi=b;; at that point, and so we will make no distinction in our
formulas between upper and lower indices.

THEOREM 2.14. At any point PE Mg, we have

8% Q1

———V;b;;V1b,q < 0. (2.26)
| B33 Bb,y V10

45,04,
Moreover, given c>n>0 there exists a constant C=C/(c,n,n) such that, for any £€[0,1],
for any D20, and for any point PEMy, satisfying —cH(P)<Qp41(P)<—nH(P), we
have -
1 |VAJ?
C A

82Qr11
Obs; Obyg

Vlbijvlbpq <—

1,7,P,q,1

Proof. Let PEMf‘k and let our coordinate system be such that h;; is diagonal at P.
Then, by Lemma 2.11, we have at the point P

azék_H 82qk+1 T 3 2
IRk b, Vibyg = (3) VibiiVibgp+ 3 Gip(3) (Vibip).  (2:27)
1,504, 0bi; Obpq i,p,1 Op: Opip i,p,1
i#£p

Inequality (2.26) follows then from Theorem 2.5 and Lemma 2.12. To prove the second
assertion, we proceed as follows. We denote by E the set of all elements (u,a,¢€)€
I'ex (R*"@R"®@R") x [0, 1] with the following properties.

(i) The vector p satisfies —cs1(1) s (1) < sk+1(1) <—nsk () s1{p).

(i) The tensor a=(a;;p) is totally symmetric.

(ii) |ul=a|=1.
Let us define the tensor @ and the function J(u,a,¢) as in the previous lemma. Then
the function J(u,a, ) is everywhere negative on E. Since E is compact, we deduce that
there exists C'>0 such that
1 |a]?

C 1l

J(”” a, E) < -
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for any (u, a,¢)€ E. By homogeneity, such an inequality remains true if we drop property
(iii) in the definition of E and assume instead only u7#0. This inequality, with ,uzj\e, D
and a;ip=V hip, proves the theorem, thanks to formula (2.27). O

LEMMA 2.15. Given £, D20 we have

8§k -~ 8§k a2§k+1
—V;V;Sk41= — Vb, V;b
 0by; I i) Obij ObinBbyg 77pd
85y A8k
i abi]’ 8blm V[Vmb,]
i,5,1,m
€ ~ 6§k ~ ng;l =~
£ - —(—k+1) S5 2Ny H
+1+TL€ i <(n k)Skab” (n + )Sk ! Bb” v J

)

— HS k41 +(k+1)S7 1 +k[(k+1) SE; — (k+2) S Ska]

~ 2
(ﬁi) [(k-+1)(n—k+1)Sp418k—1—k(n—k) ]
(gi;f)[(n—k)ﬁk(ﬁgk-<k+1>§k+l)

+(n—k+1)Sp_1((k+2) Skr2—HSk11))-
Proof. Throughout the proof we use the summation convention for repeated indices
(except of course for the index k appearing in §k) We have

05k 85k
6‘b,-j 6blm

Bbi; Dbpm Oy

a8y, ~
%ViVjS)H,l =

We recall the commutation identity
Viv]‘ hlm — V( thij = hij hlrhrm — hlmhi’r hrj +him hlr hrj - hlj hmrhri .

Then we obtain
0S8 0Ski
abi]‘ 86[,”

3§k.3§k+1
by Foim
_Eagk_agkﬂ
~ T 0by  Oby,

Bbi; Obim

ViVibym — ViV by

(81m ViV H — 6,V Vi H) (2.29)

(hz'jhlrhrm - hlmhirhrj +himhlrhrj _hljhmrhri)-

From the general identity
5

o 05 = ("‘k+1)§k—1, ke{l,...,n},
0b;;
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we deduce that

95k 5k (01 ViV H — 6;;VV,n H)
Obij Obim (2.30)
~ 35}, ~ 08k
= - —(n— - .V, H.
5<(n k) Sk 8bi]- (n k:-l-l)Sk 1 6bij >V VJ

To evaluate the other term on the right-hand side of (2.29) we choose a coordinate system
such that h;; is diagonal at z, that is, h;j=46;; A;. We find

% . B;Z;H (hijhirPrm = himRip b+ Rim Par By — hij R Buri)
¥ m
_8§k 6§k+1 ) 2 2 3§k 8§k+1 . 2 2 )
= G B XM A g S QX AE)
= ‘Z‘;’“ % (A2 —A20,) (2.31)
38k 8Ski1 5 52 25 ,08c 0Sp41 + <
= )\)\ — A Am)+(eH+D —— Am— s
O\ Om DA, m)+( ) O\ Om ( )
38y, 3Sk+1 12
H+D /\ —AZ).
+(e )8)\2 o —( m)
Now we can use identities (2.3), (2.6) and (2.7) to obtain
85k 35'k+1 (332 —323,.)
Oh Oy
= kSi Z §k;m5‘3n_(k+1)§k+l Z 5\?§k—1;i (2.32)
m=1 i=1

= kSk(H 81— (k+2) Spy2) — (k+1) Sea (HSe — (k+1) Se1)
= 'ﬁ§k§k+1+(k+1)§z+1+k[(k)+1)§z+1 —(k+2) Sk Sk12)-
Similarly, using (2.5) and (2.6) we find

88k 8Sk+1 v < =~ SRS
— - ——= Am—Ai) =(k+1)S Sk—1.i—kS Sk:m
5 oy | )= (k+1) ’“*1; . ’“,?;1 i (2.33)
= (k+1)(n—k+1) Sp418k_1—k(n—k) 5%,
while we deduce from (2.5) and (2.7)
6§k 6§k+1 32 _ 32 s N~3& 12 < 3 32
ok IOk (5232 = (n—k) 8k 3 S A2 (n—k+1)Sko1 3 SkimAZ,
%, O ( )=(n—k) k; k—1; (n ) Sk 11;:1 k;
(2.34)

= (n—k) Se(H Sk~ (k+1) Se41)
—(n—k+1)§;¢_1(ﬁ§k+1—(k+2)§k+2).
From (2.28), (2.29), (2.30), {2.31), (2.32), (2.33) and (2.34) we obtain our conclusion. [
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COROLLARY 2.16. Suppose that the assumptions of Lemma 2.7 are satisfied. Let
1, D,e>0. Suppose that
€ < min ! . — D>2D
~ n7 2k(n_k) b = £
where D, is given from Lemma 2.7. Then, at any point x€M such that @k+1(x)<
—nH(z), we have

a5y, ~ 8Se 8%Ski 88, 8Sk11
> Bh; vzvjskﬂg | T v,blmvjb,,qu T VVinby;
i3 i,7,p,4,l,m 1,5,L,m
£ ~ 88k S ~
1+n€;((n—k)5k 8bij—(n—k+1)Sk_1 Phy ViV,H

+(k+1)SZ,,+ inH2S2 - CD|A1**(D+]4)),

where C=C(n).

Proof. Let us consider the identity given by the previous lemma. We have to estimate
the polynomials of maximum degree 2k+2 appearing on the right-hand side, since the
other terms are dominated by CD|A|?*(D+|A|) for a suitable C=C(n). By hypothesis
we have §l>0 at z for [=1,...,k and §k+1<—nf~l.§k. This implies

—~HS 811 >nH?S2, (eH+D)Sk(HSp—(k+1)Sky1)>0.

Grouping the two terms containing the factor H 2§k_1§k+1 we obtain the contribution

e(n—k+1)

(14+ne)? H2S-1Sk41((k+1)e— (1+ne)),

which is positive, since e<1/(k+1). In addition we have

e2k(n—k) ~ox ~
_ﬁ)—QZHZSg>_%nH2‘S£

It remains to estimate the term
~, ~ o~ 6 ~ —_— —~
k(k+1)S§+1~k(k+2)SkSk+2+mH(n—k+1)(k+2)Sk_1Sk+2.

Let us first suppose that §k+2 >0. Then the third term is clearly positive, while the sum
of the first two is positive by Newton’s inequality (2.8). Suppose instead that §k+2 <0.
Then the first term is positive, and the sum of the second and the third is nonnegative
by Lemma 2.7. This concludes the proof. a



CONVEXITY ESTIMATES FOR MEAN CURVATURE FLOW 61

3. The a priori estimates

Let F: Mx[0,T[—-R™"! be a solution of mean curvature flow (1.1)—(1.2) with closed,
smoothly immersed evolving surfaces My=F(-,t)(M). The induced metric g={gi;},
the surface measure dy and the second fundamental form A={h;;} satisfy the evolution

equations previously computed in [8]:

LEMMA 3.1. We have the evolution equations
(i) Ogij/0t=—2Hh;;,

(i) O(du)/ot=—H"dp,

(iii) Ohij/Ot=Ahi;—2Hhihl+|AlPhy;.

If we consider the Weingarten map W: T, M —T, M associated with A and g, given
by the matrix {h%}={g"hs;}, and let P=P(W) be any invariant function of the ele-
mentary symmetric polynomials of the principal curvatures as considered in §2, then
Lemma 3.1 implies

COROLLARY 3.2. If W={h}} is the Weingarten map and P(W) is an invariant
function of degree a, i.e. P(oW)=0p*P(W), then

(i) OR%/0t=AR:+|AIRS,

(ii) OP/8t=AP—(56°P/0h;0hE)V KV hE+alA|*P.

Let us first consider the case of an initial surface Mo=Fy(M) satisfying S(W)>0
for some k, 1<k<n. The following two propositions, although not needed for the proof of
the main Theorem 1.1, are of independent interest and demonstrate that the elementary
symmetric functions provide natural curvature conditions for the flow.

PrOPOSITION 3.3. (i) If Sx>0 on any closed hypersurface MCR™ ! for some k,
1<k<n, then also S;>0 for all 1<I<k. The same result holds for the case of strict
inequalities.

(ii) If Sk=0 on My for some k, 1<k<n, then the strict inequalities S;>0, 1<I<k,
hold on M for each t€]0,T].

Proof. (i) For a closed MCR"™"! each connected component admits at least one
strictly convex point po€.M where S;(pg) >0 for all 1<I<n. The claim then follows since
the cones I'; introduced in §2 are connected and satisfy I'; CT'y for all 1<k<I<n.

(ii) The argument is an iterative application of the maximum principle: First observe
‘that the mean curvature S;=H satisfies the evolution equation

%I =AH+A]’H, (3.1)

implying strict positivity of H for all t>0 in view of the strict parabolic maximum
principle and the fact that there is at least one strictly convex point on M. Also notice
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that the evolution equation in Corollary 3.2 (i) preserves any of the closed convex cones
I, by a general result due to Hamilton ([4, §4]). Now suppose that we have already
shown S;_1>0 for some [>2, and consider for t>tq>0 the quotient Q,=S;/S;_;. By
Corollary 3.2 (ii) we have the evolution equation

3Q
O} Oh}

a .
an =AQ;— VIR, VihE+ A Q) (3.2)
and the second term on the right-hand side is nonnegative since Q; is concave by The-
orem 2.5. Since we already know that @, remains nonnegative, it now follows from
the strict parabolic maximum principle that ;>0 on |0, T, and the iteration may be
continued. O

Now suppose that S;, 1<I<k, is already strictly positive on Mg for some &, 2<k<n.
Then there are constants ;>0 for 2<I{<k such that on Mg

S>> HS; ;. (3.3)

We show that this uniform estimate on the curvature is also preserved by the flow:

ProProSITION 3.4. If on the initial surface My the inequalities S;>&,HS;_, hold
for constants €;>0, 2<I<k, then the same inequalities continue to hold on [0,T7].

Proof. In view of (3.1) and (3.2) the quantity g=Q;—¢; H satisfies the inequality

dg 5
5 = Bat1Alg (3.4)

where we used the concavity of @;. The result is then a direct consequence of the
maximum principle. Note that the result can also be deduced from a general result of
Hamilton [4], since the inequality describes a convex cone in the space of symmetric
2-tensors. (]

To prove the main Theorem 1.1, we will use an iterative procedure employing quo-
tients of consecutive elementary symmetric polynomials similar as in the proof of Propo-
sition 3.3. The first step of the iteration is contained in {12], where we showed that S
satisfies the desired estimate if the initial data have nonnegative mean curvature:

For all 6>0 there is Cy depending only on ¢ and My such that

Sy > —082—Cp. (3.5)

Now suppose that 2<k<n—1 is given and that the desired estimate has already
been established for all 2<I<k, i.e. for all §>0 there is Cg; with

S;>—0H'-Cy,. (3.6)
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To derive the lower bound for Sky1, we have to overcome the difficulty that S; is not
quite positive and therefore Q1 is not well defined on the evolving surfaces. We study
a perturbed second fundamental form fi:fis, p={bi;} as already discussed in §2,

bij =bijie,p = hij+eHgi;+Dygij, (3.7)

where €>0 and D >0 are constants to be chosen appropriately. We will then denote by
H , §l, @l the invariant functions of A:/L-, D, indicating the dependence on €, D explicitly
only where necessary.

In view of Lemma 2.7 and assumption (3.6) there is C\, >0 depending only on n such
that for all £€]0,1/n] we may choose D=D, so large that for all 2<I<k

g[ :§l,e,De P Cnsl_lﬁl and §l = Cnsﬁgl_l. (3.8)

Note that D, depends on Cy; for 2<i<k and hence on the estimates established in
previous steps; in particular, D, depends on the initial data.

The quotient Qk+1 =§k+1 / S"k is now well defined and we infer from the first inequal-
ity in (3.8) that for every >0 there is a constant C=C{(n, k, ) such that

|Qr41| < C(n, k,e)H. (3.9)
Here we also used the fact that in view of (3.8) in case /=2 we always have the inequality
AP <|APP < B (3.10)

For future reference we also note that in view of (3.8) and (3.10)
85,

bt} gi Cj

< C(n, k,e)H*2|VA|. (3.11)
Bbij

e 85,
<Clnk DRl [7igoe
1]

In the following we will assume that for each €>0 the constant D, in the definition of the

perturbed second fundamental form is fixed once and for all such that the inequalities
(3.8) hold and therefore (3.9)-(3.11) hold with fixed constants C(n, k,¢).
In view of Lemma 3.1 and Corollary 3.2 we have the evolution equations
92
ot
o . . . ;
égb;- = Abl+|A|*b— D| A6,
Hence if P is a symmetric homogeneous function of degree a satisfying the evolution
equation in Corollary 3.2 (i), then the corresponding function P of {bi;} satisfies the
equation

bij = Abij —2thlb_l7 + |Al2bij —D|A|2gij,

o~ .~ OP
EP‘AP‘ab;‘.abg

. - P
Vlb}Vlb§’+a|A]2P—D|A|2tr(gbi' > : (3.12)
7
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To prove the estimate (3.6) now for [=k+1 we first fix an arbitrary 0<n<1 and then
consider for 0<o< %, €20 the function

ko1 —nH
f fa e,De = Q};_ll an (313)
Notice that for k=1, e=D.=0 this agrees with the choice of test function in [12]. For
simplicity we write from now on é for Qk+1 and make no further distinction between
upper and lower indices. From (3.12) we derive the following evolution equation in a
straightforward calculation:

P -
A - ar+ 22D vit vy - L9 o
1 2Q & (Q+nH (3.14)
—_— . 2 2 &rnid
+ﬁ1—a 6bijabmVmb”Vmbpq-+-cr|A| f+Dc|A] tr(&bg( i ))

In view of the estimates (3.8)—(3.11) the last term on the right-hand side of this equation
can be estimated by

0 @—i—nf! ~
2 0 < - l+a' 3.15
D |A] tr(—abij <—H1—a )) C(n,k,e)D.H (3.15)

We now establish LP-estimates for the quantity f, =max(f,0).

LEMMA 3.5. There are positive constants ¢y and cs depending only on n,k,n, €
such that for any p>co there are constants cq4 and cs depending only on n, k,p,n, €, D,

and o, such that we have the inequality

f

- [ Frdu<-tpo-) / f”‘2|Vf|2du——/ dus
+2po |}~I|2ff du+04/ fPdp+cs du.
M, M, M
Proof. For p>3 we derive from (3.14), (3.15) and Lemma 3.1 (ii)
d P p—2 2 ff_l
5 | raus<—plp=1) [ £V du+2(1~0)p 5 ( )du

7 8Q
M, H1=o 0b;;Obq,

tpo / AP 2 du+pCin, k,€) D, / ety

+p Vm bij Vm bqr du
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Notice that f<coH? for some co=cp (n, k,7). In addition, on the set where f>0 we have
the inequalities —C(n, k, s)fI g@kﬂ <—77fI , such that on this set by Theorem 2.14
8°Q 1 |VAP

bz b T g -
Bbij 6bqr T JV 7 5] H

(3.16)

with a constant ¢;=c1(n, k,€,n). For p>max{4, 1+4coc1 }, cs=2c, the terms involving
derivatives of curvature may then be estimated as desired since |[VA[2>(1/n)|VH|?.
Furthermore we use Young’s inequality to estimate

JPTYH™ o fPH? 4 C (o) fP Y07 L o fPH?+ C(0) 24 Co, p).
The conclusion then follows from (3.10). O

To absorb the positive integrals on the right-hand side of the inequality just estab-
lished, we use the commutator of the second derivatives of {h;;} to derive a Poincaré-type
estimate:

PROPOSITION 3.6. There exists a constant cg depending only on n,k,e, such that
forany p>2, B3>0

= | s (ve8) [ pravstaaren [ £

M,

d,u+/ fPdu.

Proof. From the definition of f in (3.13) we compute
Vif=—H 15, '"V;Spi1+H 18728, 11V, S —nH 'V, H+ (0 —1)HfV,; H
as well as

ViV f==H" 8, V,V; 8141 — (0 - 1) H* 28 'V, HV; 814
+HO1572V,8,V; Sp14+(0—1) HO 25,28, 1 Vi HV; 5%
271525, 18V, St H 152V, 51 v, 5
+H 18,28, ViV; 8, —n(c—1)H* 2V, HV;H-nH* 'V, V; H
+(e-1)H W, fV;H—(0—-1)H ?fV;HV; H+(c—-1)H ' fV;V,;H.

We now take the trace of the Hesslan of f with respect to dSy /0b;; and restrict

attention to the set where f>0, also bearing in mind that D, is fixed such that the
inequalities (3.8)—(3.11) all hold. We then conclude that

1 05,

VVf< —H°15; By

2V, V;Sk1+ CHF 3| VA + CHF2|VF| |VA|

BSk

+ 55 2R A 8728, 1 ViV, S — (nHO = (o —1) H™ f) ViV, H},
(7]
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where the constants depend on n, k and £. Here we also used [VH[2<n|VAJ? and
|VSk| < C(n, k,e) H* Y \VA|, |VSks1|<C(n,k,e)H*|VA]. (3.17)

We now multiply this inequality by f?H*+1=¢ and fix e=¢(n,n, k) >0 such that Corol-
lary 2.16 can be applied to the first term on the right-hand side to yield

/H2 kSkfpdﬂ< /pr—k+1 aask

~ 89S ( ~ o~ -
—/ffH_kabvk_{—51:25‘“+1Viv3‘5k
7

1 0? §k+l
by Obgr

a8,
p iy—k Y9k
o[ reEr o (an;

(n— k+1)/fPH *Sk—157 aa;“ ViV, H dp

~ 185
Vibim Vjbgr + 5} ' L 7,V b }du

+5; T

(n k)+(oc—1)H ”f)VVHdu

1+

+Cln,k,n) [ FOE-2VAP 10|V [VA) dy

+Cln k) [ F2EA57 el o)+ 1) d

Now notice that in view of (3.8) we have Sk >C(n)e*~1 H* where e=¢(n, n, k) was fixed
above. Hence the crucial term on the left-hand side is estimated from below by a small

fraction of
[ B zan
whereas the last term on the right-hand side is lower order compared to the left-hand

side, and can by interpolation be replaced by

C(n,k,n /f”du

We now integrate by parts all terms of the right-hand side involving second derivatives
of curvature. Using repeatedly the inequalities (3.8)—(3.11), (3.17) and the fact that
F<C(n,k,n)H° we derive

/ 22 du< Cln, k,m) / P2 VAP + 0|V |VA]) dy

+pC(n, k,n)/ff’z(IVf!2+f+fI_1IVf| IVAI)d#JrC(n,k,n)/ff du,

and the conclusion of the proposition follows. O
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COROLLARY 3.7. There are constants c; and cg depending only on n, k,n and the
initial data such that for p>cy, 0<o<cgp~/? there is a uniform bound

| frauses on o1,
My

depending only on n, k,n,0,p and M.

Proof. From Lemma 3.5 and Proposition 3.6 with S=p~1/2

d
Eg/ffdﬂgc/ffdquC/dp

with constants depending on n, k, p, n, 0 and My. This yields the desired estimate since

we infer that for p,o as
above

T is bounded in terms of the diameter of the initial surface. [

Having established the LP-bound for o=0(p~'/2) the proof of the sup-bound for f
proceeds exactly as in [12], compare also [14] and [8]. This establishes the next step in

the iteration on k according to Lemma 2.8, and completes the proof of the main result
in Theorem 1.1. ' O

Remark 3.8. It was shown by Smoczyk in [14] that a star-shaped surface evolving by
mean curvature satisfies the bound on the scalar curvature corresponding to the first step
in our iteration. He also proved that, for such surfaces, the uniform bounds H >—C) and
|A|2<C2H?+ Cj hold for suitable constants C;. It is easily checked that our Lemmas 2.7
and 2.8 are still valid (with a different choice of the constants) replacing the assumption
H >0 with these weaker bounds. Therefore, the iterative procedure of this section can
be applied, and the main results in Theorem 1.1 and Corollary 1.2 hold in the class of
star-shaped surfaces as well.

Remark 3.9. Let F: M x[0,T[—(N™1,h) be a closed hypersurface of nonnegative
mean curvature evolving by mean curvature flow in a smooth Riemannian manifold
(N™*1 h) satisfying bounds — K, <oy < K2, |VN Riem |< L, in >0 on its sectional curva-
ture, gradient of Riemann curvature tensor and injectivity radius respectively, similarly
as in [9]. Then the estimates in Theorem 1.1 continue to hold with constants Cy, x now
also depending on the data of (N™*! h) above, and we again conclude that singularities
of mean convex surfaces have convex blowups. To see this, first note that the mean
curvature satisfies (compare [9])

OH

e AH+H(|A*4+Ric™(v,v))

and therefore remains nonnegative due to the parabolic maximum principle.



68 G. HUISKEN AND C. SINESTRARI

Furthermore, the crucial evolution equation for the full second fundamental form
differs from the Euclidean case only by lower-order terms, see [9]:

%A =AA+|A]PA+Riem™x A+ VY Riem" .

Similar lower-order terms appear in the commutator identity for the second derivatives
of the second fundamental form, and hence the additional terms in Lemma 3.5 and
Proposition 3.6 can all be estimated by

c [ rman

with a constant depending on n, k, p, K1, K3 and L. The proof then proceeds as before.

4. Description of singularities

Let [0, T be the maximal time interval where a smooth solution of the flow exists, such
that sup,y, |A|> becomes unbounded for t—7. We assume the reader to be familiar
with the rescaling procedure described in [12], see also [6] and [5]. The new estimates
in Theorem 1.1 yield a description of type-1I singularities of the flow in the case of
nonnegative mean curvature.

Let (zx, tx) be an essential blowup sequence as in (4.2) and (4.3) of [12], and let //\\/l/k,t
be the corresponding rescaled surfaces with limiting mean curvature flow MT, T€ER, as
described in {12, Lemma 4.4 and Theorem 4.5]. As in this reference we call a solution of
mean curvature flow (1.1) which exists for all time and moves by translation in R**! a
translating soliton.

THEOREM 4.1. If Mg has nonnegative mean curvature, then any limiting flow of a
type-11 singularity has convex surfaces M., T€R. Furthermore, either M, is a strictly

convez translating soliton or (up to rigid motion) M,=R"*xZk where 3¥ is a lower-
dimensional strictly conver translating soliton in RFTL.

Proof. The convexity of the limiting flow is for both type-I and type-II singular-
ities an immediate consequence of the a priori estimates in Theorem 1.1. To obtain
the splitting result we apply the strict maximum principle for symmetric 2-tensors of
Hamilton [4, Lemma 8.2] to the evolution of the nonnegative second fundamental form

0 . i i
on the limiting flow M,, 7€R. Thus the rank of A is a constant, and the null space of A
is invariant under parallel translation and invariant in time. Using the Frobenius theorem
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as in (4, §8] or as in [11, Theorem 5.1] we see that each M, splits as an isometric product
R"*x 3k where F is strictly convex unless M is strictly convex itself. Finally, X is
a translating soliton since it is convex, solves mean curvature flow for all 7€ R and admits
the maximum of the mean curvature at one point at least, compare [6, Theorem 1.3]. O

We wish to point out that the splitting result can also be obtained by a successive
application of the (scalar) maximum principle to the quantities Qx, 2<k<n, satisfying
the parabolic equations (3.2). The splitting dimension k is then characterised by the
relations S,=S5,_1=...=5;4+1=0, 5;>0 when 1<I<k.

In the case k=1 the only translating soliton is the “grim reaper” curve x=1log cos y+t,
and in higher dimensions it is known that there are rotationally symmetric translating
solitons. It is an open problem whether in higher dimensions there are other translating

solitons, convex or of positive mean curvature.
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