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1. I n t r o d u c t i o n  

Let F0: 2~4-~R ~+1 be a smooth immersion of a closed n-dimensional hypersurface of 

nonnegative mean curvature in Euclidean space, n~>2. The evolution of A~o=Fo(J~4) by 

mean curvature flow is the one-parameter family of smooth immersions F: J~4 • [0, T[-+ 

R n+l satisfying 

OF ~(p,t)=-H(p,t)~(p,t), pEArl, t>~O, (1.1) 

F(. ,0)=Fo, (1.2) 

where H(p, t) and ~(p, t) are the  mean curvature and the outer normal respectively at the 

point F(p, t) of the surface J~4t=F(., t)(J~4). The signs are chosen such that  - H v = _ ~  

is the mean curvature vector and the mean curvature of a convex surface is positive. 

For closed surfaces the solution of (1.1)-(1.2) exists on a finite maximal time interval 

[0, T[, 0 < T < c ~ ,  and the curvature of the surfaces becomes unbounded for t--+T. It is 

important  to obtain a detailed description of the singular behaviour for t-*T, a future 

goal being the topologically controlled extension of the flow past singularities. 

In the present paper we use the assumption of nonnegative mean curvature to derive 

new a priori estimates from below for all other elementary symmetric functions of the 

principal curvatures, strong enough to conclude that  any rescaled limit of a singularity 

is (weakly) convex. 

Let X= (A1, ..., A,) be the principal curvatures of the evolving hypersurfaces .~4t, and 

let 

s~(,~) = ~ ~ , , ~ , ~  ... ~,~ 
l~ i l< i2<. . .< ik~n  
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be the elementary symmetric functions with S I = H .  Then our main result is 

THEOREM 1.1. Suppose that F0:J~4---~R n+l is a smooth closed hypersurface im- 

mersion with nonnegative mean curvature. For each k, 2 ~ k ~ n ,  and any ~?>0 there is 

a constant C~,k depending only on n, k, 77 and the initial data, such that everywhere on 

A/[ x [0, T[ we have the estimate 

Sk >~ -~?H k -  C,7,k. (1.3) 

The arbitrariness of y breaks the scaling invariance in inequality (1.3) and implies 

that  near a singularity, where S I = H  becomes unbounded, each Sk becomes nonnegative 

after rescaling: 

COROLLARY 1.2. Let A/it be a mean convex solution of mean curvature flow on 

the maximal time interval [0,T[ as in Theorem 1.1. Then any smooth rescaling of the 

singularity for t--~T is convex. 

For a discussion of previous results on the blowup behaviour of mean curvature flow 

see [12], where we proved a lower bound as in (1.3) for the scalar curvature of A4t. We 

note that  the present result applies to type-II  singularities which up to now were under- 

stood only in the one-dimensional Case. We give a classification of type-II  singularities 

in the mean convex case in Theorem 4.1, complementary to the known classification of 

type-I singularities in [10], [11]. 

In view of the results in [14] and [9] respectively, Theorem 1.1 and Corollary 1.2 

also hold for star-shaped surfaces in R n+l and for mean convex surfaces in smooth 

Riemannian manifolds, see Remarks 3.8 and 3.9. 

The proof of Theorem 1.1 proceeds by induction on the degree k of the elementary 

symmetric polynomial Sk. Assuming that  the desired inequalities in (1.3) hold up to some 

k>~2, we perturb the second fundamental form A={h~j}  by adding a small multiple of 

the metric g = {g~j }, setting 

bij := h~j +~Hg~j + Dgij (1.4) 

for small c>0  and positive D. In view of the induction hypothesis (1.3) we manage to 

choose D=D~ in such a way that  the elementary symmetric function Sk of the eigenvalues 

of {b~j} is strictly positive, allowing us to work with the quotient (2k+l=Sk+l/Sk as a 

test function. The algebraic properties of Sk, Sk and Qk+l,Q)k+l established in w in 

particular the concavity of Qk+l on the set where Sk >0, turn out to be crucial for the 

proof of the a priori estimates in w 
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2. Symmetric p o l y n o m i a l s  

As we said in the introduction, in this paper we are concerned with symmetric functions 

of the principal curvatures on a manifold. We begin by recalling the definition and some 

basic properties of the elementary symmetric polynomials. In the following n>~2 is a 

fixed integer. 

Definition 2.1. For any k = l ,  2, ..., n we set 

sk(P) : Z p,lu,~ ...p~k, v u =  (p~, ..., p , )  eR".  (2.1) 
l <~ il < i2<...<ik <~ n 

We also set s 0 - 1  and s k - 0  for k>n. In addition, we define 

r k :  { p e R " :  ~l(p) > 0, ~:(p) > 0, ..., sk(u) > 0}. (2.2) 

Clearly the sets Fk are open cones and satisfy Fk+ICFk for any k = l ,  . . . , n - 1 .  In 

the sequel (Theorem 2.5 and Proposition 2.6) we will also see that  these cones are convex 

and that  Fn coincides with the positive cone. 

Let us denote by Sk;i(p) the sum of the terms of sk(p) not containing the factor Pi. 

Then the following identities hold. 

PROPOSITION 2.2. We have, for any k=0 , . . . , n ,  i=1 ,  ...,n and p c R  n, 

Osk+l (p) = sk;i(p), (2.3) 
Op~ 

Sk+I(P) = sk+l;i(p) +pisk;i(p),  (2.4) 

~ s~;~(p) = (n- k)s~(p), (2.5) 
i=1 

pisk;,(p) : (k+l)sk+l(p), (2.6) 
i=1 

n 

E p28k;i(P) : S l ( P ) S k + l ( P ) -  (kJ-2)Sk+2(P)" (2 .7)  

i : 1  

Proof. The properties (2.3) and (2.4) follow from the definitions, while (2.6) is a 

consequence of (2.3) and Euler's theorem on homogeneous functions. Taking sums over 

i in (2.4) and applying (2.6) we obtain (2.5). By (2.4) we also obtain, for any p e r  u, 

sk+~(p)- sk+2;i(p) = p~sk+l;i(p) = P,~k+I(P)--P~sk;,(P). 
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Taking sums over i and using (2.5) we find 

n 

i=1 

which implies the identity (2.7). [] 

A less immediate property of these polynomials is the following inequality (for the 

proof see e.g. [7, pp. 104-105]). 

THEOREM 2.3. For any kE{1 , . . . , n -1}  and # c R  '~ we have 

(n--k + l )(k + l)sk-a(#)sk+a(#) <<. k(n-k)s2k(#).  (2.8) 

The above result is known as Newton's inequality. We observe that  it implies the 

weaker inequality 

Sk-l(#)Sk+l(#) <<. S2(U). (2.9) 

The following property of the polynomials sk;i is a consequence of Newton's inequality. 

LEMMA 2.4. Let # 6 F k  be given for some k6{1, . . . ,n}.  Then we have Sh;i(#)>0 

for any h e { 0 , . . . , k - 1 }  and i e{1 , . . . ,n} .  

Proof. We proceed by induction on h. The case h = 0  is trivial. Consider now an 

arbitrary hE{l ,  ..., k - l } .  By the assumption that  #CFk and by (2.4) we have, for any 

i=1,  ..., n, 

U~sh;,(U)+sh+~;~(#) = Sh+l (U) > 0, msh-l#(~)+sh;~(U) = Sh(U) > 0. 

By the induction hypothesis we have Sh-1;i(#)>0. Let us argue by contradiction and 

suppose that  8h;i(U) ~<~0. Then we have UiSh--1;i(#) =Sh (#)-- Sh;i(U) > 0 ,  which implies 

# i>0.  Therefore 

~h+l;~(u) > -u~sh;,(~)/> 0, ~,sh-1;i(~) > -sh;~(~)/> 0. 

We deduce that  Sh+l;~(#)Sh_l;i(#)>s2;i(#). On the other hand, formula (2.9) evalu- 

ated for # , = 0  and k = h  yields the opposite inequality. The contradiction proves that  

sh;~(#)>0. [] 

Let us now define, for k=2,  ..., n and #EFk-1,  

sk(#) (2.10) 
q~(u) = ~-1(#)" 

Similarly we set, for i=1,  ...,n, qk,i(#)=Sk,i(#)/Sk_l,i(#). Observe that,  if #EFk,  then 

q~,~ (#) is well defined, by virtue of the previous lemma. The functions qk are homogeneous 



C O N V E X I T Y  E S T I M A T E S  F O R  MEAN CURVATURE F L O W  49 

of degree one. We now give a concavity result for these functions which is fundamental 

for our later purposes. Our proof is inspired by the one of [13, Theorem 1], where the 

concavity of qk was proved in the positive cone. 

THEOREM 2.5. The cone Fk is convex and the function qk+l is concave on Fk for 

any k = l ,  . . . , n - 1 .  More precisely, given ItEFk and ~ c R  n, we have O2qk+l/O~2(it)<~O, 

and equality occurs only in the two following cases: 

(i) ~ is a scalar multiple of It, 

(ii) It has exactly n - k  zero components and these components are zero also for ~. 

Proof. We proceed by induction on k and consider first the case k =  1. The convexity 

of F1 is immediate since F1 is a half-space. In addition we have the identity 

2q2(it)-q2(#+~)-q2(it-~)= ~in--l(~isz(It)-Itisl(~))2 
Sl(U)sl(it+0sl(it-~) 

valid for all It,~ such that  It,/t-4-~CI~l. Using this we obtain, for all ItEF1 and ~ c R  n, 

02q2 2q2( i t ) -q2(#+e~) -q2( i t - e~)  ~ 2 E l - - 1  (~i  8 1 ( i t )  - -  It i s l  (~)) 
O~ 2 (it) = lim = - ~-+0 e 2 S l ( i t )  3 

The right-hand side is strictly positive if ~ is not a multiple of It, and this proves the 

assertion in this case. 

Let us now consider k arbitrary. The convexity of Fk follows from the induction 

hypothesis, since we have Fk={ i tEFk- l :qk ( i t )>0} .  To prove the concavity of qk+l, let 

us take #CFk. Then we have, by (2.4) and by Lemma 2.4, 

Sk(#) >0. (2.11) 

Applying first (2.7) and then again (2.4) we obtain 

(k+l)qk+l(#)=i~=l ~#'--#i S--~- ~ 

, = ,  

i=1 qk;i ( ~ +  # i  " 

(2.12) 
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Let us now take ~ E R  n small enough to have # •  Using (2.12) we obtain 

(k+ 1)(2qk+l(#)--qk+l(#+~)--qk+l(#--~))  

( 

n 

i=1 \qk;i(U+~)+qk;i(p--~)+2#i qk;i~7+IZi ] 

[(#i+~i)qk;i(#--~)--(#i--~i)qk;~(#+~)] 2 
= ~ ([qk;,(#+~)+#~+~,][qk;i(#--~)+#i--~i][qk#(#+~)+qk.i(#--~)+2#i]) 

i = 1  

n qk;i(#+~)+qk;i(#--~)--2qk;i(#) 
--2 E #2 (qk;i(#+~)+qk',(#--~)+ 2#~)(qk;,(#)+ #,) " 

i = l  

It follows, for ~ arbitrary, 

02qk+l z , qk+l(#+e~)+qk+l(#--e~)--2qk+l(#)  
~-~ (#) = lim 

r E 2 

n 

~< lim ~ 2 # ~ 2  qk;i(#+e~)+qk;i(#--e~)--2qk;i(lZ) 
~--*0"---' k + l  e2(qk;,(#+e~)+qk;,(#--e~)+2#i)(qk#(#)+#~) 

i = 1  

2 2 2 _= #i(O qk;i/O~ )(#) 
i=x (k+l)(qk;i(#)+#i)2" 

Let us denote by [#]~, [~]~ the vectors obtained by setting the i th  component of #, ~ equal 

to zero. Then [#]~EFk-1 for every i by Lemma 2.4. Thus, by the induction hypothesis, 

we have 
02qk;i 2 02qk 
O U - ( U )  = , ,  ([U],) < 0. (2.13) 

This proves the concavity of qk+l. Let us now analyse the cases when we have equality in 

(2.13) for every i. We first consider the ease when # has more than k nonzero components, 

say for instance the first k + l .  Then, for any i = 1 , . . . , k + 1 ,  the vector [#]i has at least 

k nonzero components and # i r  By the induction hypothesis, equality in (2.13) is 

possible only if [~]~ is a multiple of [#]~. Since this must hold for every i=1 ,  ..., k + l  and 

since k + 1 > 2 ,  we obtain that  ~ is a scalar multiple of #. 

Let us now consider the case when # has exactly k nonzero components, for instance 

the first k. By the induction hypothesis, [~]1 and [#]1 satisfy either property (i) or 

property (ii). In both eases we find that  the last n - k  components of [~]a are zero. Then 

the same holds for ~. This shows that  # and ~ satisfy property (ii). 

The case when # has less than k nonzero components is excluded, since it would 

imply that  sk(#)=0,  in contradiction with our assumption that  #G Fk. [] 

We can now obtain a characterization of the cones Fk. 
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PROPOSITION 2.6. The sets Fk coincide with the connected component of { / t C R n :  

Sk(#)>0} containing the positive cone. F~ coincides with the positive cone. 

Proof. Let us denote by Gk the connected component  of the set { # c R ~ : s k ( # ) > 0 }  

containing the positive cone. Since Fk is convex and contains the positive cone, we 

deduce that  FkCGk. On the other hand, it is known (see [3], [2]) tha t  GkCGk-1 for 

any k=2 ,  ...,n. This implies tha t  s l ,  s2, ..., Sk-1 are positive in Gk, and so GkCFk. This 

proves tha t  Gk = Fk. To obtain the last assertion, it suffices to observe tha t  an vanishes on 

the boundary of the positive cone, and so G~ cannot be strictly larger than the positive 

cone. [] 

We define now, for any k : l , . . . , n ,  a function on the space of symmetr ic  (n• 
matrices in the following way: to each matr ix  O~(~ i j )  we associate the polynomial sk 
evaluated in the eigenvalues of 0 .  With  an abuse of notation, we use the same symbol 

and denote by sk(#) the function on vectors and by sk(O) the function on matrices. 

Similarly, we can consider the functions qk, sk;i, qk;i as functions defined on symmetric  

matrices. 

Let us observe that  sk(O) is a homogeneous polynomial of degree k of the entries 0ij. 

In fact we have, for t E R ,  

d e t ( t I + O )  =tn +Sl(O)t~--l +... +Sn_l(O)t +Sn(O). 

This shows that  Sk(O) is the sum of subdeterminants  of order k •  of O. 

Consider now a smooth n-dimensional immersed manifold A/I, and let x be a local 

coordinate on A/[. We denote as usual by g=(gij) the induced metric and by A=(hij) the 

second fundamental  form A. Then the Weingarten operator  W: Tp.M---*TpAJ associated 

with g and A has coefficients h} =gilh~j. We denote by As, ...,/~n the principal curvatures 

of A/l, which are also the eigenvalues of W. They appear  in the following formulas in a 

symmetric  way and therefore the order in which we label them has no influence. Then, 

given k=l,  ...,n, we can consider the function Sk: A4--~R defined by Sk=sk()~l, ..., )~). 
To simplify the notation, it is convenient sometimes to consider Sk as a function of the 

A~'s or of the i, hj s; in this way we have 

OSk Osk OSk Osk T 

Thus we will write, for instance, 

OSk i ViSk = ~ . ~ V l h j  instead of 
~,j 3 
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Analogously, we can define on Ad functions Qk, Sk;i, Qk;i evaluating qk, Sk;i, qk;i 
in (A1, ..., A~). Observe that,  according to the previous definition, $1 coincides with the 

mean curvature; therefore we will denote this function in the sequel by the usual letter H. 

As we mentioned in the introduction, it is convenient for us to define some suitable 

perturbations of the quantities introduced above. Given e, D ) 0 ,  let us define 

~i;e,D = )~i+eH+D, bij;s,D = h i j+gi j (eH+D).  (2.14) 

We call -4~,D (resp. WE,D) the matrix whose entries are bij;e,D (resp. i bj;~,D). Then 

~1, ..., ~n are the eigenvalues of W~,D. We denote by Sk;~,D the functions on A4 obtained 

by evaluating sk at ~e,D instead of )~. We will drop the subscript e, D if there is no risk 

of confusion. From the definition it follows that  

ITI~,D = S1;e,o = sl(Ae,z)) = (l +ne )H +nD, 

[2~e,D[2 = ~ ~2i;E,D = [A[2+n(sH+D)2+2H(eH+D) ,  
i=1 

S2;e,D : 82(~e,D) = S2-~(n-- 1 ) ( r  2. 

In general, we find 
k 

S k ; e , D = E ( n - - k + h ) ( e H + D ) h S k _ h  �9 
h=0 

If we regard Sk as a function of A or of W, we have 

oh} = ( W )  

Let us also observe that  

Vzbij = V~hij +gij sVtH, 

(2.15) 

and therefore the Codazzi equation does not hold for Vzb~j. It is also easy to check that  

VA=O if and only if VA=0.  

We will denote by Adrk the set of all points xCAd such that  (~l(x), ..., ~ ,~(x))erk.  

Similarly, for given ~, D, we will denote by 2M~k the set of all points xE3/t  such that  

( i l (Z),  ..., in (X))e  Fk. On the set Ad~k we will consider the function Q)k+l :--Sk+l/Sk.  

Now we investigate the relation between certain estimates from below for the poly- 

nomials Sk and other estimates for the perturbed functions Sk;~,D. The interest of these 

results for our later purposes will be explained in Remark 2.10. 
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LEMMA 2.7. Let A4 have positive mean curvature and let kE{2, ..., n - l }  be given. 
Suppose that for any 0>0  there exists Co such that 

Sz >>. - O H  l - C o ,  1 = 2, ..., k, (2.16) 

everywhere on M.  Then for any ee l0 ,  1/n] there exists D~>0 such that 

r n - k + l  ~ 
Sk;r >~ l + n ~  Sk-1;e,DH~,D (2.17) k 

for all D>>.D~. 

Proof. Let eE ]0, 1/n] be given. By (2.15) we have on A4, for any D > 0 ,  

1 - - t  e n - ~ t i  - - 
l + n e  k Sk-1;e'DHe'D 

k 

h = 0  

- l+nEe " n - k - t - l ~ ( n - k h h + l ) ( e H + D ) h s k - l - h ~ I - - k  
h = 0  

= S k W ~ - ~ ( n - ; W J ) ( ~ H + D ) J - I s k _ j ( ~ s H 4  kW(k-J )SnD)"  
j=l " k(l +ne) 

We can now estimate the right-hand side using assumption (2.16) to obtain, for any 0>0,  

n - k + l  S~_l.e D~ie D 
l +ne k ' ' ' 

k--2 

j = l  

+ ( n k - ~ ) ( e H + D ) k _ 2 H ( ~  + k+en D~ D 
k ( l + e n )  ]+(nk)(eH+D)k-l(1--+~en) 

Let us now define 0~ = e k ( 2 ( k -  1)) -1 and De = 1 + 2 ( k -  1) CoG. Then, since (ell+D) k-j >~ 
(eH)k-J+D k-j, the right-hand side of the above formula is positive for O=0e and for 

any D >~ D~. [] 
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LEMMA 2.8. Let the assumptions of Lemma 2.7 be satisfied and let [A[2<~aH 2 on 

M for some a > 0 .  Suppose also that, for any r 1/n] and ~/E]0, 1], there exist C>0 ,  

D>~0, aE  ]0, 1] such that 
O k + l ; r  

- 1 - .  ~> - C .  (2.18) 
H~,D 

Then for any 0>0  there exists Co>O such that 

Sk+l ~ - O H  TM - C o .  (2.19) 

Proof. Inequality (2.18) is equivalent to 0k+ l  >/--'11 ~I -C~II -a ,  which implies that  

Qk+l ~ - 2 7 H - C l  for some Cl=Cl(C, 7, a )>0 .  We rewrite this inequality as 

On the other hand, using the identity (2.15) and the assumption IAI2<~aH 2 we find 

Sk+l <<. Sk+l +~e2H k+l +c3(H k + 1), 

for suitable constants c2=c2(n, a) and c3=c3(n, D, a).  Therefore we obtain 

Sk+l ~ - 2 7 ~ I S k  - Cl S k  -- CC2 g k + l  --  e3 (H k + 1). 

Again using (2.15) we can estimate 

Sk <~ c4(l+Hk), f:ISk <~ C5 Hk+l +c6(Hk+l), 

where c4 =ca(n,  D, a), c5=c5(n, a) and c6 =c6(n, D, a).  We conclude that  

Sk+l > --C7 (~+7) Hk+l -- c8 (H k + 1) > -2c7  (~+ 7) Hk+l - c9, 

where c7=c7(n, a), while c8 and c9 depend on n, D, a,  C, 7, a, ~. This proves the lemma, 

since ~ and 7 can be taken arbitrarily small. [] 

Remark 2.9. It is clear from the above proofs that,  if we have a family {A/It } of mani- 

folds satisfying the hypotheses of the two previous lemmas with constants independent 

of t, then the conclusions also hold with a constant independent of t. We recall that ,  

if {A/It} is a family of closed manifolds with positive mean curvature evolving by mean 

curvature flow, then the inequality ]A] 2 ~ a H  2 is satisfied for some a >0 independent of t 

(see e.g. [12]). 

Remark 2.10. We observe that  the thesis of Lemma 2.8 allows to apply Lemma 2.7 

with k replaced by k + l .  In addition, we recall that  in [12] we proved that  a family of 
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hypersurfaces evolving by mean curvature flow fulfils property (2.16) for k=2.  There- 

fore, an iterative application of the two previous lemmas yields our main Theorem 1.1, 

provided we are able to prove at each step that  estimate (2.18) holds. This will be our 

aim in w to this purpose we need some properties of the functions Sk which will be 

proved in the remainder of this section. 

Following [1, Lemmas 2.22 and 7.12] we now derive some estimates exploiting the 

concavity of qk+l. First of all, we derive a suitable expression for the second derivatives 

of qk with respect to the matrix entries 0ij in terms of the derivatives of qk with respect 

to the eigenvalues #i- Given i,pC {1, ..., n}, with i#p, let us denote by ~ipCR n the vector 

whose i th  component is 1, the p th  component is - 1 ,  and all other components are 0. 

LEIvlMA 2.11. Let [~EPk and let ~) be the diagonal matrix with entries #l,...,ftn. 
Then we have 

02qk+l (~)] 02qk+' (#)SijSpq+Gip(f-t)SiqSjp, (2.20) 

where we have set Gip(#)=O for i=p, while if i#p, 

1 L 1 02qk+l (p.A-6" l(~tp--~ti)?]ip) da. (2.21) = 

Proof. By the chain rule 

02qk+l 02qk+l /_, O~l ,~, Ottm .~). ~ Oqk+l ,_, 02l-tl 
OOijOOpq(~))=E O~--~mt~t)-~ij~w)]-~pq c ) @ L  o~-~l t~t] ooijOOp--q (~))" ( 2 . 2 2 )  

l,m 

Actually, this formula cannot be applied in general, since the eigenvalues are not an 

everywhere differentiable function of the entries of a matrix. However, using the implicit 

function theorem, it is easily checked that ,  if the eigenvalues Pl,  ..., #n are distinct, then 

the above derivatives exist and are equal to 

0#L r l  i f i=j=l ,  
O0ij (~)) = t 0 otherwise, 

o2.z (~)~ { ll(p~-pp) 
oo pq" "= 

0 

if i # p ,  i = q = l ,  j = p ,  

if iT~p, j = p = l ,  i=q,  

otherwise. 

It follows that  

02qk+l 
OO i j (~Opq ( ~) ) 

02qk+l (#)SijSpq+ 1-5ip ( Oqk+l - Oqk+l (r,3~5~ 5 
- -  _ _ , , , )  ,,,. 
Otti Ottp tti - t~p \ 

(2.23) 
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Let us write the second term on the right-hand side in a more convenient way. For fixed 

i#p,  let us call #* the vector in Fk with entries 

�9 {/2j i f j # i ,  j C p ,  

#J = �89 i f j = i  or i f j = p .  

Then *- * #~ - # p  and so 

Oqk+l Oqk+l (# . )_  
= = o  

since qk+l is a symmetric  function. From the definition of G~p we obtain 

Oqk+l Oqk+l ,_x Oqk+l Oqk+l, ~.~ Oqk+_____! (#) (p) _ ~ L#) 
a i p @ =  - 0 ip _ 

/2p -/2i /2i -/2p #i - #p 

Recalling (2.23), this proves the conclusion in the case when the eigenvalues /21, ...,/2,~ 

are distinct. Since both sides of (2.20) are well defined and continuous for /2eFk, the 

general case follows by continuity. [] 

LEMMA 2.12. Given/2EFk and i~p  we have Gip(/2)<<.O, with equality only if/2 has 

exactly k nonzero entries and Pi ~ O, /2p r O. 

Proof. We observe that  sl(~?ip)=O, and so no scalar multiple of 7/ip belongs to Fk. 

Then the result is a direct consequence of Theorem 2.5. [] 

LEMMA 2.13. Let /2EFk satisfy sk+l(/2)<0, and let alip be a nonzero totally sym- 

metric tensor. Given c>~O, set 

n 

alip z alip ~-Cf~ip E alhh ' 
h~l  

g(/2, a ,e)  = ~ '  qk+l - ~ - Gip(#)(Slip)2, ~ (#)az,,azpp+ E 
i,p,l i,p,l 

i#p 

where G~p is defined as in (2.21). Then J(/2, a ,E)<0.  

Proof. From Theorem 2.5 and Lemma 2.12 we immediately obtain that  J(/2, a, E) ~<0. 

Let us now prove that  the inequality is strict. We have by assumption sz(/2)>0 for any 

l=1, . . . ,  k and sk+l(/2)<0. We deduce in particular tha t  at least k + l  components of/2 

are nonzero. By Lemma 2.12, Gip(/2)<O for any i#p; thus, J(/2, a, E) can vanish only if 

~av=0  for all l and all i#p. Since 5av=aap for i #p  and aliv is symmetric,  we deduce 

tha t  

Gap = 0 unless l = i = p. (2.24) 



C O N V E X I T Y  E S T I M A T E S  F O R  M E A N  C U R V A T U R E  F L O W  57 

By assumption Clip is not identically zero; therefore am must be nonzero for some I. Let us 

assume for instance that  al l  i ~ 0. We deduce from equation (2.24) that  ~h= 1 alhh = al 11, 
and so 

Ctlii =(5/lq-~)alll, 1 <~i<<.n. (2.25) 

From Theorem 2.5 we deduce that  J(#,  a, ~) can vanish only if the vector (51ii)l~<i~<n is 

a scalar multiple of/2. This implies, by (2.25), that  the components of p have all the 

same sign. This contradicts the assumption that  s1(/2)>0, Sk+l(#)<0. [] 

To simplify the notation, we assume that  all following computations are performed 

in a coordinate system which is orthonormal at the point under consideration. Then we 

have gij=Sij, h}=hij, b}=bij at that  point, and so we will make no distinction in our 

formulas between upper and lower indices. 

THEOREM 2.14. At any point PE.a/Ipk we have 

020.k+1 v,b jv, bpq .< o. (2.26) 
i , j ,p,q,l  

Moreover, given c>r l>0 there exists a constant C=C(c, rh n) such that, for any ~E[0, 1], 

for any D>>.O, and for any point PcA4pk satisfying --c~I(P)<O.k+l(P)<--rl~I(P), we 
have 

02Qk+l 1 IVAI 2 
E ~ q V t b i j V l b p q  <~ C I]t[ 

i , j ,p,q,l  

Proof. Let PEA//~k and let our coordinate system be such that  hij is diagonal at P. 

Then, by Lemma 2.11, we have at the point P 

E ~OaQk+l VtijVZvpqb ~ = E O#iO#pO2qk+l (A)VzbiiVzbpp+ E Gip(A)(Vlbip) 2. (2.27) 
i , j ,p,q,l  i,p,l i,p,l 

i~p  

Inequality (2.26) follows then from Theorem 2.5 and Lemma 2.12. To prove the second 

assertion, we proceed as follows. We denote by E the set of all elements (#, a, 6)E 

Fk x ( R n | 1 7 4  ") • [0, 1] with the following properties. 

(i) The vector # satisfies -cs l  (#) sk (#) <~ Sk+l(#) <<. --risk (#) s l(#). 
(ii) The tensor a =  (Clip) is totally symmetric. 

(iii) [# l=la[=l .  

Let us define the tensor ~ and the function J(#,  a, e) as in the previous lemma. Then 

the function J(#,  a, s) is everywhere negative on E. Since E is compact, we deduce that  

there exists C > 0 such that  
1 [~[2 

J(#,  a, c) ~< 
c I,l 
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for any (#, a, r cE .  By homogeneity, such an inequality remains true if we drop property 

(iii) in the definition of E and assume instead only #50 .  This inequality, with #=Ae,D 

and alip=•lhip, proves the theorem, thanks to formula (2.27). [] 

LEMMA 2.15. Given E,D>~O we have 

• blm V j bpq 
OblmOb. z,3 i,j,p,q, ,rn Pq 

+ ~  .~. ( (n-k)Sk-~i j - (n-k+l)Sk-1--~- i j  )WiVjH 

- g s k  Sk+l + (k+  1) $2+1 § ]g[(k § 1) Sk2+1 -- (k§  Sk Sk-+-2] 

+ (e~I + D ~2[(k + l ) (n-k  + l )Sk+l S k _ l - k ( n - k  ) S2] 
\ l + n s  ] 

+ ( t H + V  ~ [(n-k) Sk(HSk-(k+l)Sk+l) 
\ l+n~  ] 

+ ( n -  k + 1) Sk-1 ((k+ 2) Sk+2 - -HSk+ 1 )1. 

Proof. Throughout the proof we use the summation convention for repeated indices 
(except of course for the index k appearing in Sk). We have 

~ V~V3b~. (2.28) 
O~k O~k+l 

Obij cObij pq 

We recall the commutation identity 

Vi Vj htm- Vt Vm h~j = hij ht~ h~m - htm hi~ h~j + him hl~ h~j - htj hm~ h~i. 

Then we obtain 

OSk.-- O~k+ 1 ViVjbl m_ OSk. OSk+l VtVrnbij 
Obij Obtm Obij Obtm 

OSk OSk+l (S lmViVjg-s i jV lVmg)  (2 .29 )  
= ~ Ob~j Oblm 

OSk OSk+l (hijht~h~m- htmhi~h~j +himht~h~j - hljhm~h~i). 
Obij Oblm 

From the general identity 

OSksi j=(n-k+l lSk_l  k e  {1,...,n}, 
Obij 
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we deduce that  

o~ 
e Obi~ 

OSk+l (6zmV~VjH- 6ijV1VmH) 
Ob~m 

(2.30) 
/ ~ OSk N OSk+l "~"X7.H =r ~-(n-k+l)Sa.,~j- i j  ) vi .3 �9 

To evaluate the other term on the right-hand side of (2.29) we choose a coordinate system 

such that  h~ is diagonal at x, that  is, hi j=6i jAi .  We find 

OSk OSk+l (hij hzrh,-m - hzmhirhrj-t- himhlrhrj - hlj h,~,-h,~i) 
Ob~j Obzm 

-Oh. Obm.~ ~ Oh,5 (:":'~-~f)'J) 
= os~os~+,= ( ~ , ~ - g ~ m )  (2.3,) 

OA~ OA~ 
ogk. ogk+, (ira- i,) = O~kOA~ .OSk+oAm,(iii2_i2Xml+(EH+D)2_~i 0ira 

~ og~+, (&-a,,). 
+ ( e l l + D )  oA.~ "2 -2 

Now we can use identities (2.3), (2.6) and (2.7) to obtain 

=kSk s Sk;m~2--(kH-1)Sk+l s ~2Sk-1;i (2.32) 
m=l i=1 

= kSk (HSk+l -- (k-F 2)Sk+2) -- (k-4-1) Sk+l (HSk - ( k+  1)Sk+l) 

= - H S k S k + ,  + (k+ 1) Sk2+, + k[(k+ 1) g~+l - (k+2)  Sk gk+2]. 

Similarly, using (2.5) and (2.6) we find 

O~k OSk+l (~m--~i) (k-4-1)Sk+l s Sk-1;i--kSk s Sk;m 
0)~i 0)~m i=1 m=l (2.33) 

= ( k + l ) ( n - k + l ) S k + l S k _ l - k ( n - k ) S  2, 

while we deduce from (2.5) and (2.7) 

O~k 0~k+1 (A2-A~)=(n-k)Sk s - -2_(n_k+l)~k_, s Sk',,~ ~2 = Sk-1;i )~i , 
OAi Ohm i = i  m = l  

= ( n - k ) S k ( H S k - ( k + l ) ' 3 k + l )  (2.34) 

- ( n -  k +  l.),.~k_ 1 (.H,~k+ 1 - ( k + 2 )  Sk+~)- 

From (2.28), (2.29), (2.30), (2.31), (2.32), (2.33) and (2.34) we obtain our conclusion. [] 
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COROLLARY 2.16. Suppose that the assumptions of Lemma 2.7 are satisfied. Let 
~, D, c>0. Suppose that 

where D~ is given from Lemma 2.7. Then, at any point xEA4 such that Qk+l(x)< 

- ~ I ( x ) ,  we have 

>--: v'b mvjb'q+ 0bj 
i , j  ~,3,p,q,~,m i , j , l , m  

(( n- E k) Sk ~ - - ( n - k + l ) S k _ l  --~-~j] V, VjH 
z,J 

+(k+ ~2 ~ -2 -2 1)Sk+l+ ~ H  Sk-CD]AI2k(D+tAI), 

where C=C(n).  

Proof. Let us consider the identity given by the previous lemma. We have to estimate 

the polynomials of maximum degree 2k+2 appearing on the right-hand side, since the 

other terms are dominated by CDl~l[2k(D+lA[) for a suitable C=C(n).  By hypothesis 

we have St>0 at x for l : l , . . . , k  and Sk+I<-~?HSk. This implies 

-HSkSk+I >1 ~]~I2S 2, (e~I+D)Sk(HSk-(k+l)Sk+l)  > O. 

Grouping the two terms containing the factor H2Sk_ISk+I we obtain the contribution 

r  k+ 1) ~2~k_ 1Sk+l((k+ 1)e-  (1 + he)), 
( l+ne)  2 

which is positive, since E<~l/(k+l). In a~ldition we have 

1 ~ 2 ~ 2  ~2k(n- k) ~i2~ 2 > _ ~,l~ ~k" 
(l+nc) 2 

It remains to estimate the term 

k(k + 1) ~+~ - k(k +2) ~ ~+2 + ~ ~ ( ~ -  k + 1)(k + 2) ~ _ ,  ~+2. 
I d-hE 

Let us first suppose that Sk+2 >0. Then the third term is clearly positive, while the sum 

of the first two is positive by Newton's inequality (2.8). Suppose instead that Sk+2~<0. 

Then the first term is positive, and the sum of the second and the third is nonnegative 

by Lemma 2.7. This concludes the proof. [] 
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3. T h e  a pr ior i  e s t i m a t e s  

Let F:.s x [0,T[--,R n+l be a solution of mean curvature flow (1.1)-(1.2) with closed, 

smoothly immersed evolving surfaces J~4t=F(. ,t)(.t~4). The induced metric g={gij},  

the surface measure dtt and the second fundamental form A={hi j}  satisfy the evolution 

equations previously computed in [8]: 

LEMMA 3.1. We have the evolution equations 

(i) Ogij/Ot=-2Hhij ,  
(ii) O(d#)/Ot=-H2d#, 

(iii) Ohiy/Ot =Ahij  - 2Hhilh~ + ]A]2hq. 

If we consider the Weingarten map W: TpA4--*TpAd associated with A and g, given 

by the matrix {h}}={giZhtj}, and let P = P ( W )  be any invariant function of the ele- 

mentary symmetric polynomials of the principal curvatures as considered in w then 

Lemma 3.1 implies 

COROLLARY 3.2. / f  W={h~} is the Weingarten map and P(W) is an invariant 

function of degree a, i.e. P(QW)=Q~P(W), then 
(i) Oh}/Ot=Ah} +]AI2h}, 
(ii) OP/Ot=AP-(O2p/Oh}OhP)VIh~VlhP+~]A]2P. 

Let us first consider the case of an initial surface A/10=F0(A/t) satisfying Sk(W)>~O 

for some k, 1 ~< k ~ n. The following two propositions, although not needed for the proof of 

the main Theorem 1.1, are of independent interest and demonstrate that  the elementary 

symmetric functions provide natural curvature conditions for the flow. 

PROPOSITION 3.3. (i) If  Sk>~O on any closed hypersurface A d c R  n+l for some k, 

l<.k~n,  then also Sz>~O for all l<.l<~k. The same result holds for the case of strict 

inequalities. 

(ii) If  Sk >~O on Ado for some k, l ~ k ~ n, then the strict inequalities Sl>0,  l <~ l <~ k, 

hold on M t  for each tE]0, T[. 

Proof. (i) For a closed A 4 c R  n+l each connected component admits at least one 

strictly convex point P0 E A4 where S1 (Po)> 0 for all 1 ~< l ~< n. The claim then follows since 

the cones Fz introduced in w are connected and satisfy F I c F k  for all l<~k<l<.n. 

(ii) The argument is an iterative application of the maximum principle: First observe 

t h a t  the mean curvature S I = H  satisfies the evolution equation 

OH 
Ot - AH+IA]2H,  (3.1) 

implying strict positivity of H for all t > 0  in view of the strict parabolic maximum 

principle and the fact that  there is at least one strictly convex point on ~4. Also notice 
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that  the evolution equation in Corollary 3.2 (i) preserves any of the closed convex cones 

Fz by a general result due to Hamilton ([4, w Now suppose that  we have already 

shown S l - l > 0  for some l~>2, and consider for t~>t0>0 the quotient Qz=Sl/Sl_l.  By 

Corollary 3.2 (ii) we have the evolution equation 

02Ql Vlh~ VthP +lAI2Qz, (3.2) O Qt = AQt i ~  
Ohj Ohq 

and the second term on the right-hand side is nonnegative since Qt is concave by The- 

orem 2.5. Since we already know that  Qt remains nonnegative, it now follows from 

the strict parabolic maximum principle that  Qt >0  on ]0, T[,  and the iteration may be 

continued. [] 

Now suppose that  St, l<<.l<~k, is already strictly positive on A4o for some k, 2<~k<.n. 

Then there are constants et >0  for 2<~t<~k such that  on A4o 

St >~ EzHSt-1. (3.3) 

We show that  this uniform estimate on the curvature is also preserved by the flow: 

PROPOSITION 3.4. If  on the initial surface Ado the inequalities St>>.EtHSt_I hold 

for constants r  2<<.l <<.k, then the same inequalities continue to hold on [0, T[.  

Proof. In view of (3.1) and (3.2) the quantity g = Q t - E t H  satisfies the inequality 

Og 
-~ >1 Ag+IAI2 g, (3.4) 

where we used the concavity of Qt. The result is then a direct consequence of the 

maximum principle. Note that  the result can also be deduced from a general result of 

Hamilton [4], since the inequality describes a convex cone in the space of symmetric 

2-tensors. [] 

To prove the main Theorem 1.1, we will use an iterative procedure employing quo- 

tients of consecutive elementary symmetric polynomials similar as in the proof of Propo- 

sition 3.3. The first step of the iteration is contained in [12], where we showed that  $2 

satisfies the desired estimate if the initial data  have nonnegative mean curvature: 

For all 0>0  there is Ca depending only on 0 and Ado such that  

$2 >>. -OS~-Co.  (3.5) 

Now suppose that  2<<.k<<.n-1 is given and that  the desired estimate has already 

been established for all 2<<.l<~k, i.e. for all 0>0  there is C0,z with 

St >~ -OH z -Co, t. (3.6) 
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To derive the lower bound for Sk+l, we have to overcome the difficulty that  Sk is not 

quite positive and therefore Qk+l is not well defined on the evolving surfaces. We study 

a perturbed second fundamental form -4=f~,D = {b~j} as already discussed in w 

b~j = bij;~,D = h~j +~Hgij + Dgij, (3.7) 

where e > 0 and D > 0 are constants to be chosen appropriately. We will then denote by 

H, Sz, Qz the invariant functions of A=fi,~, D, indicating the dependence on e, D explicitly 

only where necessary. 

In view of Lemma 2.7 and assumption (3.6) there is Cn >0 depending only on n such 

that  for all EC ]0, 1/n] we may choose D=D~ so large that  for all 2<~l<~k 

St =Sz,~,D~ ~> Cnc ' - l ~ z  and S, ~> Cnr (3.8) 

Note that  D~ depends on Co, l for 2<~l<~k and hence on the estimates established in 

previous steps; in particular, DE depends on the initial data. 

The quotient (~k+l =Sk+l/Sk is now well defined and we infer from the first inequal- 

ity in (3.8) that  for every e>0 there is a constant C=C(n,  k, ~) such that  

[~)k+l I ~< C(n, k, E)~I. (3.9) 

Here we also used the fact that  in view of (3.8) in case l=2 we always have the inequality 

iA[2 • [~[2 < ~2.  (3.10) 

For future reference we also note that  in view of (3.8) and (3.10) 

a~k ~ i(j  <C(n,k,r162 ' V z ~ i  j <~C(n,k,e)Hk-2lVfl  I. (3.11) 

In the following we will assume that  for each r  the constant D~ in the definition of the 

perturbed second fundamental form is fixed once and for all such that  the inequalities 

(3.8) hold and therefore (3.9)-(3.11) hold with fixed constants C(n, k, e). 
In view of Lemma 3.1 and Corollary 3.2 we have the evolution equations 

0 b.. = Abij - 2ghi~b} + IAl2b~j -DlA[2gij, 
Ot ~3 

0 
- -  Ab} +]A] b~-DIA I ~- ot b} = i 2 i 2 

Hence if P is a symmetric homogeneous function of degree a satisfying the evolution 

equation in Corollary 3.2 (ii), then the corresponding function /B of {b~j} satisfies the 

equation 

0 ~ A P  02P Vlb}VzbP+alAI2P-DIA]2tr -~j -~P  = Ob~O~ . (3.12) 
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To prove the estimate (3.6) now for l = k + l  we first fix an arbitrary 0<rl~<l and then 

consider for 0~<a~< �89 e>~0 the function 

-Qk+l  - r /H  (3.13) f = f~,e,D,-- fft1_ ~ 

Notice that for k = l ,  e=De=O this agrees with the choice of test function in [12]. For 

simplicity we write from now on O for Q)k+l and make no further distinction between 

upper and lower indices. From (3.12) we derive the following evolution equation in a 

straightforward calculation: 

( 0 ( ( ~ + r p ~  (3.14) 
1 020  Vmb, jVmbpq+alAi2f+D~lAi2t  r ~ \  ~ / / "  

ffIl-~ ObijObpq 

In view of the estimates (3.8)-(3.11) the last term on the right-hand side of this equation 

can be estimated by 

D d A l 2 t r ( s  ( O + Y ~ l ~  <~ / /  (3.15) 

We now establish LP-estimates for the quantity f+=max(f ,  0). 

LEMMA 3.5. There are positive constants c2 and c3 depending only on n, k, rhe 

such that for any p>~c2 there are constants ca and c5 depending only on n, k, p, rh e, D~ 

and a, such that we have the inequality 

d--t fP+ dp <. - �89 1) y~+-21WI2 d~-P 
t t C3 t ffX2--a 

Proof. For p~>3 we derive from (3.14), (3.15) and Lemma 3.1 (ii) 

d f+p-1 f f f - lvfl 2(1- )p f <vh, vf/d  --dt J fP+ d# <<. , p ( p -  1) - - i f -  

F+ -1 O2Q. 
/A4 Vmbij Vrnbqr d# + P , f fIl-~ " Ob~jObq~ 

+pa / IA,2fP+ d.+pC(n,k,e)D~ f ~II+~fP+-~ d.. 
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Notice that f<~coffI ~ for some co=c0(n, k, 7). In addition, on the set where f > 0  we have 

the inequalities -C(n, k, r <-r//~,  such that on this set by Theorem 2.14 

020 1 Iwil 
ObijOba~ VmbijVmbqr <~ Cl ffI (3.16) 

with a constant c~=cl(n, k, e, r/). For p~>max{4, I+4coc~}, c3=2c~, the terms involving 

derivatives of curvature may then be estimated as desired since [VA[2~> (l/n)[V/~[ 2. 

Furthermore we use Young's inequality to estimate 

f p - - l j ~ l + a  < crfV+ffi2 +C(a)fp-2/(1-,r) << afph2 +C(a) fp+ +C(a,p). 

The conclusion then follows from (3.10). [] 

To absorb the positive integrals on the right-hand side of the inequality just estab- 

lished, we use the commutator of the second derivatives of {hij } to derive a Poincar~-type 

estimate: 

PROPOSITION 3.6. There exists a constant c6 depending only on n, k, E, such that 
for any p>2, /3>0 

i f.a4tffi2f~ dlz<<. (p+ ~)  [ fP-~lVf]2d#+ ( l+ ,p ) f .M fp-1 'VA]9~d# + [  f+P d#. 
t H 2-a C6 d J~t J ~ t  

Proof. From the definition of f in (3.13) we compute 

Vjf  = - H ' - '  S ;  ~ V3 S~+1 + H " -  1 S ; % ~  V3 S~ - , H ~ -  ~ V3H+ ( ~ -  1) H - g V 3 H  

as well as 

-- 2~IC~- l ~k3  Sk + l Vi Sk V j  S k -~ g c r -  l S k 2  Vi Sk + l V j  S k 

+ ( a -  1) H -  1Vi f VjH - ( a -  1)H-2f  ViHVjH+ (cr- 1) H - ' f  V, Vj H. 

We now take the trace of the Hessian of f with respect to CgSk/Obij and restrict 

attention to the set where f > 0 ,  also bearing in mind that D~ is fixed such that the 

inequalities (3.8)-(3.11) all hold. We then conclude that 

~cr--1 ~- -10Sk  ~ ~k+a--3 - 2 --k--2 OSk ViVj f  <<.-H S k ~ViV~Sk+I+CH IVAI + C H  IWl IWil Obij 
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where the constants depend on n, k and ~. Here we also used IV_I~I2~<nlVAI 2 and 

IVSkl~C(n,k,-c)~Ik-lIVAI, IV"3k+ll<. C(n,k,~)I-IklVA[. (3.17) 

We now multiply this inequality by fP+.~I -k+l-" and fix ~=~(17, n, k)>0 such that  Corol- 

lary 2.16 can be applied to the first term on the right-hand side to yield 

--1 02Sk+1 - lOSk+lvzvmb~j~d# 
+Sk Ob~mObq,. ViblmVjbq,.+S[ Oblm 

, #  

+ i  :PH- ~-~j - kOSk(--I 7 -- ~ ~ (n-k)+(a-l)~I- ' f)ViV, FId# 

p -  k-  ~ l OSk+l 
+ V 4 - ~ ( n - k + I ) S s ' + H -  Sk_,S; ~ 'V, V3~Id. 

+ C(n, k, 17) S /+p(~ -2  ivAl ~ +~-1-~ IV/I IvAI) d# 

+ C(n, k, r#) i :+ ~:  ~ :  ( <(,,, '<, ,,) + ~ ) dis. 

Now notice that  in view of (3.8) we have Sk>~C(n)Ek-l~I k, where ~----~(17, n, k) was fixed 

above. Hence the crucial term on the left-hand side is estimated from below by a small 

fraction of 

f P72fP+ d#, 

whereas the last term on the right-hand side is lower order compared to the left-hand 

side, and can by interpolation be replaced by 

k, V) i / + ,  dis. C(n, 

We now integrate by parts all terms of the right-hand side involving second derivatives 

of curvature. Using repeatedly the inequalities (3.8)-(3.11), (3.17) and the fact that  

f <~ C(n, k,r#)tI <~ we derive 

i ~s~s~* dis <~ C(n,k, 'D i f+'(~-~IVAI~ +H-I-<,IVfl IVAI) dis 

+pC(n, k, 17) J f+p-2(ivSl2 + f+ i~--1 iVf i IV~I ) d# + C(n, k, 17) i fP+ dis, 

and the conclusion of the proposition follows. [] 
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COROLLARY 3.7. There are constants c7 and Cs depending only on n, k, ~ and the 

initial data such that for p>~cT, O~a~esp -W2 there is a uniform bound 

/ fP+d#~c9 on [0, T[,  
t 

depending only on n, k, ~, a, p and Ado. 

Proof. From Lemma 3.5 and Proposition 3.6 with j3=p -1/2 we infer that  for p, a as 

above 

-~ / ff+ p < C / fP+ d# + C / d# 

with constants depending on n, k, p, ~, a and M0.  This yields the desired estimate since 

T is bounded in terms of the diameter of the initial surface. [] 

Having established the LP-bound for a=O(p -1/2) the proof of the sup-bound for f 

proceeds exactly as in [12], compare also [14] and [8]. This establishes the next step in 

the iteration on k according to Lemma 2.8, and completes the proof of the main result 

in Theorem 1.1. [] 

Remark 3.8. It was shown by Smoczyk in [14] that  a star-shaped surface evolving by 

mean curvature satisfies the bound on the scalar curvature corresponding to the first step 

in our iteration. He also proved that ,  for such surfaces, the uniform bounds H~>-C1 and 

IAI2<~C2H2+C3 hold for suitable constants Ci. It is easily checked that  our Lemmas 2.7 

and 2.8 are still valid (with a different choice of the constants) replacing the assumption 

H > 0  with these weaker bounds. Therefore, the iterative procedure of this section can 

be applied, and the main results in Theorem 1.1 and Corollary 1.2 hold in the class of 

star-shaped surfaces as well. 

Remark 3.9. Let F: A~ • [0, T[--~ (N n+l , h) be a closed hypersurface of nonnegative 

mean curvature evolving by mean curvature flow in a smooth Riemannian manifold 

(N n+l, h) satisfying bounds - K 1  ~ON ~K2, IVgRiem I~L,  iN >0 on its sectional curva- 

ture, gradient of Riemann curvature tensor and injectivity radius respectively, similarly 

as in [9]. Then the estimates in Theorem 1.1 continue to hold with constants Cmk now 

also depending on the data  of (N n+l, h) above, and we again conclude that  singularities 

of mean convex surfaces have convex blowups. To see this, first note that  the mean 

curvature satisfies (compare [9]) 

OH = A H  + H (IAI2 + RicN(v ' v) ) 
Ot 

and therefore remains nonnegative due to the parabolic maximum principle. 
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Furthermore, the crucial evolution equation for the full second fundamental form 

differs from the Euclidean case only by lower-order terms, see [9]: 

O A = + ]A]2A+ + AA RiemN. A V N Riem N . 

Similar lower-order terms appear in the commutator  identity for the second derivatives 

of the second fundamental form, and hence the additional terms in Lemma 3.5 and 

Proposition 3.6 can all be estimated by 

c f fr dtt, 

with a constant depending on n, k, p, K1 , / (2  and L. The proof then proceeds as before. 

4. D e s c r i p t i o n  o f  s ingu la r i t i e s  

Let [0, T[ be the maximal time interval where a smooth solution of the flow exists, such 

that  s u p ~  ]A] 2 becomes unbounded for t---~T. We assume the reader to be familiar 

with the rescaling procedure described in [12], see also [6] and [5]. The new estimates 

in Theorem 1.1 yield a description of type-II  singularities of the flow in the case of 

nonnegative mean curvature. 

Let (Xk, tk) be an essential blowup sequence as in (4.2) and (4.3) of [12], and let A/lk,t 

be the corresponding rescaled surfaces with limiting mean curvature flow J~4r, TER,  as 

described in [12, Lemma 4.4 and Theorem 4.5]. As in this reference we call a solution of 

mean curvature flow (1.1) which exists for all time and moves by translation in R n+l a 

translating soliton. 

THEOREM 4.1. If  2~40 has nonnegative mean curvature, then any limiting flow of a 

type-II singularity has convex surfaces .Mr, TE R .  Furthermore, either .Mr is a strictly 

convex translating soliton or (up to rigid motion) n-k k k .tct~-=R x E r ,  where E~ is a lower- 

dimensional strictly convex translating soliton in R k + l. 

Proof. The convexity of the limiting flow is for both type-I  and type-II  singular- 

ities an immediate consequence of the a priori estimates in Theorem 1.1. To obtain 

the splitting result we apply the strict maximum principle for symmetric 2-tensors of 

Hamilton [4, Lemma 8.2] to the evolution of the nonnegative second fundamental form 

0 hj ~ -= Ah}+lAl2h} (4.1) 

on the limiting flow A//~, TER.  Thus the rank of A is a constant, and the null space of A 

is invariant under parallel translation and invariant in time. Using the Frobenius theorem 
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as in [4, w or as in [11, Theorem 5.1] we see that  each .A4~ splits as an isometric product  
n - - k .  x~k k R ~z,~, where E~ is strictly convex unless j~4~ is strictly convex itself. Finally, E~ is 

a translating soliton since it is convex, solves mean curvature flow for all T E R  and admits  

the maximum of the mean curvature at one point at least, compare [6, Theorem 1.3]. [] 

We wish to point out that  the splitting result can also be obtained by a successive 

application of the (scalar) maximum principle to the quantities Qk, 2 <. k<~n, satisfying 

the parabolic equations (3.2). The splitting dimension k is then characterised by the 

relations Sn = Sn -  1 . . . . .  Sk+l = 0, St > 0 when 1 ~< l ~< k. 

In the case k = 1 the only translating soliton is the "grim reaper" durve x = log cos y+t, 
and in higher dimensions it is known that  there are rotationally symmetr ic  translating 

solitons. It  is an open problem whether in higher dimensions there are other translating 

solitons, convex or of positive mean curvature. 
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