
Acta Math., 181 (1998), 63-108 
(~) 1998 by Institut Mittag-Leffier. All rights reserved 

A characterization of all 
elliptic algebro-geometric solutions 

of the AKNS hierarchy 

FRITZ GESZTESY 

University of Missouri 
Columbia, MO, U.S.A. 

by 

and RUDI WEIKARD 

University of Alabama 
BiT~ningham, AL, U.S.A. 

1. I n t r o d u c t i o n  

Before describing our approach in some detail, we shall give a brief account of the his- 

tory of the problem of characterizing elliptic algebro-geometric solutions of completely 

integrable systems. This theme dates back to a 1940 paper of Ince [51] who studied what 

is presently called the Lamd-Ince potential 

q(x) :-n(n+l)p(x+w3), heN,  xER, (1.1) 

in connection with the second-order ordinary differential equation 

y"(E,x)+q(x)y(E,x)-=Ey(E,x), EeC.  (1.2) 

Here ~9(x):p(x;  wl,w3) denotes the elliptic Weierstrass function with fundamental peri- 

ods 2wl and 2w3 (Im(w3/Wl)#0). In the special case where Wl is real and w3 is purely 

imaginary, the potential q(x) in (1.1) is real-valued and Ince's striking result [51], in mod- 

ern spectral-theoretic terminology, yields that  the spectrum of the unique self-adjoint 

operator associated with the differential expression L2=d2/dx 2 +q(x) in L2(R) exhibits 

finitely many bands (and gaps, respectively), that  is, 

a(L2)=(-c<),E2n]U 0 [E2m-l,E2m-2], E2n <E2n-I<... <Eo. 
m=l 

(1.3) 

What  we call the Lam6-Ince potential has, in fact, a long history and many inves- 

tigations of it precede Ince's work [51]. Without at tempting to be complete we refer the 
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interested reader, for instance, to [2], [3, w [6, Chapter IX], [9, w [18, w167 

[19], [20], [22], [40], [49, pp. 494-498], [50, pp. 118-122, 266-418, 475 478], [52, pp. 378- 

380], [55], [58, pp. 265-275], [72], [74], [99], [101], [103, Chapter XXIII] as pertinent 

publications before and after Ince's fundamental paper. 

Following the traditional terminology, any real-valued potential q that  gives rise to 

a spectrum of the type (1.3) is called an algebro-geometric KdV potential. The proper 

extension of this notion to general complex-valued meromorphic potentials q then pro- 

ceeds via the KdV hierarchy of nonlinear evolution equations obtained from appropriate 

Lax pairs (P2n+] (t), L2 (t)), with L2(t) =d2/dx 2 + q(x, t), P2n+l (t) a differential expres- 

sion of order 2 n + l ,  whose coefficients are certain differential polynomials in q(x, t) (i.e., 

polynomials in q and its x-derivatives), and t E R  an additional deformation parameter. 

Varying n E N U  {0}, the collection of all Lax equations 

d L [P2,~+1 L2], that is, qt  [P2n+l,L2] (1.4) 

then defines the celebrated KdV hierarchy. In particular, q(x, t) is called an algebro- 

geometric solution of (one of) the n0th equation in (1.4) if it satisfies for some (and 

hence for all) fixed t0ER one of the higher-order stationary KdV equations in (1.4) 

associated with some nl~no. Therefore, without loss of generality, one can focus on 

characterizing stationary elliptic algebro-geometric solutions of the KdV hierarchy (and 

similarly in connection with other hierarchies of soliton equations). 

The stationary KdV hierarchy, characterized by qt =0 or [P2n+I, L2] =0, is intimately 

connected with the question of commutativity of ordinary differential expressions. In 

particular, if [P2n+l, L]=O, a celebrated theorem of Burchnall and Chaundy [16], [17] 

implies that P2n+l and L2 satisfy an algebraic relationship of the form 

2 n  
2 2 n  P2n+l = H (L2-Em) for some {Em}m=O C C, (1.5) 

r n = 0  

and hence define a (possibly singular) hyperelliptic curve (branched at infinity) 

2 n  

w2 = 1-[ (E-Em).  (1.6) 
r n : 0  

It is the curve (1.6) which signifies that  q in L2=d2/dx2+q(x) represents an algebro- 

geometric KdV potential. 

While these considerations pertain to general solutions of the stationary KdV 

hierarchy, we now concentrate on the additional restriction that q be an elliptic func- 

tion (i.e., meromorphic and doubly periodic) and hence return to the history of elliptic 
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algebro-geometric potentials q for L2 =d2/dx 2 +q(x), or, equivalently, elliptic solutions of 

the stationary KdV hierarchy. Ince's remarkable algebro-geometric result (1.3) remained 
1 3 the only explicit elliptic algebro-geometric example until the KdV flow qt= ~qxxx+ 5qqx 

with the initial condition q(x,O)=-6p(x) was explicitly integrated by Dubrovin and 

Novikov [26] in 1975 (see also [29]-[31], [54]), and found to be of the type 

3 

q(x, t) = -2 E p(x-xj(t) ) (1.7) 
j = l  

for appropriate {xj(t)}l~<j~<3. Given these results it was natural to ask for a systematic 

account of all elliptic solutions of the KdV hierarchy, a problem posed, for instance, 

in [71, p. 152]. 

In 1977, Airault, McKean and Moser, in their seminal paper [1], presented the first 

systematic study of the isospectral torus Ia(q0) of real-valued smooth potentials qo(x) 
of the type 

M 

qo(x) = -2 E p(x-xj) (1.8) 
j = l  

with an algebro-geometric spectrum of the form (1.3). In particular, the potential (1.8) 

turned out to be intimately connected with completely integrable many-body systems 

of the Calogero-Moser-type [19], [68] (see also [20], [22]). This connection with inte- 

grable particle systems was subsequently exploited by Krichever [59] in his fundamental 

construction of elliptic algebro-geometric solutions of the Kadomtsev-Petviashvili equa- 

tion. The next breakthrough occurred in 1988 when Verdier [100] published new explicit 

examples of elliptic algebro-geometric potentials. Verdier's examples spurred a flurry 

of activities and inspired Belokolos and Enol'skii [11], Smirnov [85], and subsequently 

Taimanov [91] and Kostov and Enol'skii [57], to find further such examples by combining 

the reduction process of Abelian integrals to elliptic integrals (see [7], [8], [9, Chapter 7] 

and [10]) with the aforementioned techniques of Krichever [59], [60]. This development 

finally culminated in a series of recent results of Treibich and Verdier [96], [97], [98], 

where it was shown that a general complex-valued potential of the form 

4 

q(x)=- E djp(x-wj) (1.9) 
j = l  

(w2=w~+w3, w4=O) is an algebro-geometric potential if and only if ldj  are triangular 

numbers, that is, if and only if 

dj=gj(gj+l) for s o m e g j c Z ,  l ~ j ~ 4 .  (1.10) 
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We shall refer to potentials of the form (1.9), (1.10) as Treibic~Verdier potentials. 

The methods of Treibich and Verdier are based on hyperelliptic tangent covers of the 

torus C /A  (A being the period lattice generated by 2Wl and 2w3). 

The state of the art of elliptic algebro-geometric solutions up to 1993 was recently 

reviewed in issues 1 and 2 of volume 36 of Acta Applicandae Mathematicae, see, for 

instance, [12], [33], [61], [87], [92], [95] and also in [13], [24], [25], [32], [48], [82], [88], [94]. 

In addition to these investigations on elliptic solutions of the KdV hierarchy, the study 

of other soliton hierarchies, such as the modified KdV hierarchy, nonlinear Schrhdinger 

hierarchy, and Boussinesq hierarchy, has also begun. We refer, for instance, to [21], [28], 

[40], [41], [64], [65], [67], [80], [81], [83], [84], [86], [89]. 

Despite these (basically algebro.geometric) approaches described thus far, an effi- 

cient characterization of all elliptic solutions of the KdV hierarchy remained elusive until 

recently. The final breakthrough in this characterization problem in [44], [45] became pos- 

sible due to the application of the most powerful analytic tool in this context, a theorem 

of Picard. This result of Picard (cf. Theorem 6.1) is concerned with the existence of so- 

lutions which are elliptic of the second kind of nth-order ordinary differential equations 

with elliptic coefficients. The main hypothesis in Picard's theorem for a second-order 

differential equation of the form 

y"(x)+q(x)y(x)  =Ey(x ) ,  E e  C, (1.11) 

with an elliptic potential q, relevant in connection with the KdV hierarchy (cf. the second- 

order differential expression L2 in (1.4)), assumes the existence of a fundamental system 

of solutions meromorphic in x. Hence we call any elliptic function q which has this 

property for all values of the spectral parameter E E C  a Picard-KdV potential. The 

characterization of all elliptic algebro-geometric solutions of the stationary KdV hierar- 

chy, then reads as follows: 

THEOREM 1.1 ([44], [45]). q is an elliptic algebro-geometric potential if and only if 
it is a Picard-Kd V potential. 

In particular, Theorem 1.1 sheds new light on Picard's theorem since it identifies 

the elliptic coefficients q for which there exists a meromorphic fundamental system of 

solutions of (1.11) precisely as the elliptic algebro-geometric solutions of the stationary 

KdV hierarchy. Moreover, we stress its straightforward applicability based on an ele- 

mentary Frobenius-type analysis which decides whether or not (1.11) has a meromorphic 

fundamental system for each E C C. Related results and further background information 

on our approach can be found in [39], [40]-[42], [43], [46]. 

After this somewhat detailed description of the history of the problem under con- 

sideration, we now turn to the content of the present paper. The principal objective 
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in this paper is to prove an analogous characterization of all elliptic algebro-geometric 

solutions of the AKNS hierarchy and hence to extend the preceding formalism to matrix- 

valued differential expressions. More precisely, replace the scalar second-order differential 

equation (1.2) by the first-order (2 x 2)-system 

J~'(E,x)+Q(x)~(E,x)=E~(E,x) ,  E e C ,  

where ~(E,  x )= ( r  , x), r x)) t ("t" abbreviating transpose) and (; 0) 
J =  - i  ' 

/ Q l , l ( X )  Q1,2(x)) : ( o -iq(x)) 
Q(x)=\Q2,1(x) Q2,2(x) ip(x) 0 I 

(1.12) 

(1.13) 

(!.14) 

Similarly, replace the scalar KdV differential expression L2 by the (2 x 2)-matrix-valued 

differential expression L(t)=Jd/dx+Q(x, t), t a deformation parameter. The AKNS 

hierarchy of nonlinear evolution equations is then constructed via appropriate Lax pairs 

(Pn+l(t), L(t)), where Pn+l(t) is a (2x2)-matrix-valued differential expression of order 

n + l  (cfi w for an explicit construction of Pn+l). In analogy to the KdV hierarchy, 

varying nENU{0}, the collection of all Lax equations, 

d 
~ L  = [P~+l, L], (1.15) 

then defines the AKNS hierarchy of nonlinear evolution equations for (p(x, t), q(x, t)). 
Algebro-geometric AKNS solutions are now introduced as in the KdV context and sta- 

tionary AKNS solutions, characterized by pt=O, qt=O or [Pn+I,L]=0, again yield an 

algebraic relationship between P~+I and L of the type 
2 n + l  

2 SE ] 2 n + i c C  (1.16) P~+I = 1-I (L-Era) for some t mJm=0 
m ~ 0  

and hence a (possibly singular) hyperelliptic curve (not branched at infinity) 
2 n + l  

w 2 :  I I  (E-Era) .  (1.17) 
m : 0  

In order to characterize all elliptic solutions of the AKNS hierarchy we follow our 

strategy in the KdV context and consider first-order (2 x 2)-systems of the form 

Y~'(x)+Q(x)~(x) = E~(x), E �9 C, (1.18) 

with Q an elliptic (2 • 2)-matrix of the form (1.14). Again we single out those elliptic Q 

such that (1.18) has a fundamental system of solutions meromorphic in x for all values 

of the spectral parameter E c C  and call such Q Picard AKNS potentials. Our principal 

new result in this paper, a characterization of all elliptic algebro-geometric solutions of 

the stationary AKNS hierarchy, then simply reads as follows: 
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THEOREM 1.2. An elliptic potential Q is an algebro-geometric AKNS potential if 

and only if it is a Picard-AKNS potential (i.e., if and only if for infinitely many and 
hence for all EEC,  (1.18) has a fundamental system of solutions meromorphic with 
respect to x). 

The proof of Theorem 1.2 in w (Theorem 6.4) relies on three main ingredients: 

A purely Floquet-theoretic part to be discussed in detail in w167 4 and 5, the fact that  

meromorphic algebro-geometric AKNS potentials are Picard potentials using gauge trans- 

formations in w and an elliptic function part described in w The corresponding 

Floquet-theoretic part is summarized in Theorems 4.7, 4.8, 5.1-5.4. In particular, Theo- 

rems 4.7 and 4.8 illustrate the great variety of possible values of algebraic multiplicities 

of (anti)periodic and Dirichlet eigenvalues in the general case where L is non-self-adjoint. 

Theorem 5.1 on the other hand reconstructs the (possibly singular) hyperelliptic curve 

(1.17) associated with the periodic (2 x 2)-matrix Q (not necessarily elliptic), which gives 

rise to two linearly independent Floquet solutions of J ~ t + Q ~ = E ~  for all but finitely 

many values of E C C. 

Our use of gauge transformations in w in principle, suggests a constructive method 

to relate ~--functions associated with a singular curve/Cn and 0-functions of the associated 

desingularized curve/C,~, which appears to be of independent interest. 

The elliptic function portion in w consists of several items. First of all we describe 

a matrix generalization of Picard's (scalar) result in Theorem 6.1. In Theorem 6.3 we 

prove the key result that  all 4wj-periodic eigenvalues associated with Q lie in certain 

strips 

Sj={EeC[[Im([a;j[- lwjE)[<~Cj},  j = l , 3 ,  (1.19) 

for suitable constants Cj >0. Then S1 and $3 do not intersect outside a sufficiently large 

disk centered at the origin. A combination of this fact and Picard's Theorem 6.1 then 

yields a proof of Theorem 1.2 (see the proof of Theorem 6.4). 

We close w with a series of remarks that  put Theorem 1.2 into proper perspective: 

Among a variety of points, we stress, in particular, its straightforward applicability based 

on an elementary Frobenius-type analysis, its property of complementing Picard's original 

result, and its connection with the Weierstrass theory of reduction of Abelian to elliptic 

integrals. Finally, w rounds off our presentation with a few explicit examples. 

The result embodied by Theorems 1.1 and 1.2 in the context of the KdV and AKNS 

hierarchies, uncovers a new general principle in connection with elliptic algebro-geometric 

solutions of completely integrable systems: The existence of such solutions appears to 

be in a one-to-one correspondence with the existence of a meromorphic (with respect to 

the independent variable) fundamental system of solutions for the underlying linear Lax 

differential expression (for all values of the corresponding spectral parameter E E C). 
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Even though the current AKNS case is technically more involved than the KdV case 

in [45] (and despite the large number of references at the end) we have made every effort 

to keep this presentation self-contained. 

2. T h e  A K N S  h ie ra rchy ,  r e cu r s ion  re la t ions  and  h y p e r e l l i p t i c  c u r v e s  

In this section we briefly review the construction of the AKNS hierarchy using a re- 

cursive approach. This method was originally introduced by Al'ber [4] in connection 

with the Kor tewe~de Vries hierarchy. The present case of the AKNS hierarchy was first 

systematically developed in [38]. 

Suppose that  q=iQ1,2, p=-iQ2,1EC~(R) (or meromorphic on C) and consider the 

Dirac-type matrix-valued differential expression 

L = j d + Q ( x ) = [ i  0 d 0 _i ) ~x + ( ip(x) -iq(x) ) 
o 0 ' (2.1) 

where we abbreviate 

J =  0 i ' 

/ Q l , l ( x )  Q1,2(x) ~ 0 
Q2,1(x) Q2,2(x) ] = ( ip(x) -io(X) ) " (2.3) Q(x)= \ 

In order to explicitly construct higher-order matrix-valued differential expressions Pn+l, 

nCN0 (=NU{0}), commuting with L, which will be used to define the stationary AKNS 

hierarchy, one can proceed as follows (see [38] for more details). 

Define functions fz, gl and hz by the recurrence relations 

f - - l = 0 ,  g0= 1, h-l---0, 
(2.4) 

fz+l= �89 gl+l,~=Pfz+qhl, hl+l=-�89 

for /-----1,0,1,.... The functions fz, gl and hi are polynomials in the variables p,q, 
Px, qx, .-. and Cl, c2, ..., where the cj denote integration constants. Assigning weight k + l  

to p(k) and q(k) and weight k to Ck one finds that fl, gt+l and hl are homogeneous of 

weight l+  1. 
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where 

Explicitly, one computes, 

fo = - iq ,  

f l  = �89 

f 2 _ _ l .  1 .  2 ~ z q ~ - ~ z p q  +cl(�89 

go---= 1, 

g l  ~ Cl ,  

g2 = �89 

g3 ---- - �88  i(p~q-Pq~) ~'-C 1 ( l pq)_[_C3, 

ho = ip, 

hi = �89 

h2 1. = --~zp~ + �89 ip 2q+cl (�89 +c2(ip), 

etc. 

Next one defines the matrix-valued differential expression Pn+l by 

n + l  

One verifies that  

Pn+I = - E (gn - l+ lJ+iAn- l )L l '  
l=O 

(2.5) 

(2.6) 

or equivalently, by 

d L ( t )  -[Pn+l(t) ,  L(t)] = O, 

AKNS,~ (p, q) = (P t  (x, t) - 2hn+l (x, t) ~ = 0. 
\ q t ( x , t ) - 2 f n + l ( x , t )  ] 

(2.10) 

(2.11) 

[gn-l+ l J + iAn- l ,  L] = 2 i A n - z L -  2iAn-l+ l, (2.8) 

where [- , .  ] denotes the commutator .  This implies 

[Pn+l, L] = 2iAn+l. (2.9) 

The pair (P,~+I, L) represents a Lax pair for the AKNS hierarchy. Introducing a deforma- 
tion parameter t into (p,q), that  is, (p(x), q(x))--~(p(x,t), q(x,t)),  the AKNS hierarchy 
(cf., e.g., [69, Chapters 3, 5 and the references therein]) is defined as the collection of 
evolution equations (varying nEN0)  

0 - f l )  /-----1,0, 1 , . . . .  (2.7) 
Az = hz 0 ' 
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Explicitly, one obtains for the first few equations in (2.11), 

AKNSo(p, q) = ( p t - p x - 2 i c l p ~  
\ qt--qx+2iclq .] = O, 

AKNS (p, q)= 
\ qt-  �89 2-clq~+2ic2q / = O, 

A K N S 2 ( p , q ) - - / P t + � 8 8 1 8 9  
\ qt § �88 q ~  - 3pqqx + Cl (- �89 § 2) -C2qx + 2ic3q ] = O, 

(2.12) 

or equivalently, by 

f,~+l = hn+l = 0, nENo.  (2.14) 

Next, we introduce F~, G~+I and H~ which are polynomials with respect to E c C ,  

Fn(E,x) = ~ fn_l(X)E l, 
/=0 

n + l  

an+ 1 (E, x) = E 9n~-l-I (x) E l , (2 .15)  

l=0 

H~(E, x) = ~ hn_l(x)E l, 
/=0 

and note that (2.14) becomes 

Fn,~(E, x) = -2iEF,~(E, x) +2q(x)G~+I(E, x), 
Gn+l,x(E, x) =p(x)Fn(E, x)+q(x)Hn(E, x), 

Hn,x (E, x) = 2 i E U , ~  (E, x) + 2p(x) Gn+l (E, x). 

These equations show that 2 Gn+l-FnHn is independent of x. Hence, 

R2n+2 (E) = Gn+I(E, x) 2 -F~(E, x)H~(E, x) 

is a monic polynomial in E of degree 2n§ 

The AKNS hierarchy (2.11) then can be expressed in terms of Fn, Gn+l and H,~ by 

AKNSn (p, q) = / Pt +i (Hn,x - 2iEHn - 2pGn+ 1) ) 
\ qt'i(Fn,~+2iEFn-2qGn+l) =0. (2.20) 

(2.16) 
(2.17) 
(2.1S) 

(2.19) 

etc. 

The stationary AKNS hierarchy is then defined by the vanishing of the commutator 

of Pn+l and L, that is, by 

[Pn+I,L]=O, n c N o ,  (2.13) 



72 F. GESZTESY AND R. W E I K A R D  

One can use (2.16)-(2.19) to derive differential equations for Fn and Hn separately 

by eliminating G~+I. One obtains 

q(2FnFn,zx-F2,z+4(E2-pq)F2)-qz(2FnFn,z+4iEF2)=-4q3R2n+2(E) ,  (2.21) 

p(2H,~H,~,xx-U~,~+4(E2-pq)H~)-p~(2HnH,~,~-4iEH~)=-4paR2n+2(E).  (2.22) 

Next, assuming [P,~+I, L]=0,  one infers 

n + l  
2 P~+I = E (g'~-l+lJ+iA'~-l)(g'~-m+lJ+iA'~-m)Ll+m" 

l,m=O 
(2.23) 

Hence, 

P~+I = - G n + l  (L, x) 2 +Fn(L, x)H,~(L, x) = -R2n+2 (L), (2.24) 

that is, whenever Pn+l and L commute they necessarily satisfy an algebraic relationship. 

In particular, they define a (possibly singular) hyperelliptic curve ]Cn of (arithmetic) 

genus n of the type 

2n+1  

]~'n: W2 = R2n+2(E), R2n+2(E) = H (E-Era) 
m ~ O  

SE ~2,~+1~- r~ (2.25) for some t mlm=O ".-"-~" 

The functions fl, g~ and hi, and hence the matrices At and the differential expressions PI 

defined above, depend on the choice of the integration constants c~, c2, ..., cl (cf. (2.5)). 

In the following we make this dependence explicit and write fl(cl, ...,ct), gl(cl,...,cl), 
hi(c1, ..., cl), Az(cl, ..., cl), Pl(Cl, ..., cl), etc. In particular, we denote homogeneous quan- 

tities, where cl=O, l e N ,  by ]l =f l (0 ,  ..., 0), t)l =gl (0, ..., 0), hi=hi(0,  ..., 0), fi~l =Al (0, ..., 0), 

~ = P I ( 0 ,  ..., 0), etc. In addition, we note that 

l l l 

S/(C1, ...,el)= E Cl--kh' gl(Cl' ...,Cl)= E Cl-kgk' hi(el' ""'at)= E Cl-khk ( 2 . 2 6 )  

k=0  k=0  k=0  

and 
l 

Al(cl .... ' Cl) = E Cl-k2~k' 
k=O 

defining co=1. In particular, then 

(2.27) 

T 

Pr(cl, ,or) = Zc _I?. (22s) 
1=0 

Next suppose that Pn+l is any (2 x 2)-matrix-valued differential expression such that 

[Pn+l,L] represents multiplication by a matrix whose diagonal entries are zero. This 
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implies that  the leading coefficient of P~+I is a constant diagonal matrix. Since any 

constant diagonal matrix can be written as a linear combination of J and I (the identity 

matrix in C2), we infer the existence of complex numbers an+l and ~ + 1  such that  

S1 = Pn+l-  ~  Ln+l (2.29) 

is a differential expression of order at most n whenever Pn+l is of order n + l .  Note that  

[$1, L] = [P,~+I, L]--OLn+ 1 [Pn+l ,  L] = [P,+I, L]-2iC~n+lAn+l (2.30) 

represents multiplication with zero diagonal elements. An induction argument then shows 

that  there exists Sn+l such that  

n+ l  n + l  

Sn+I=P,~+I-E(azPz+~zL z) and [S, ,+l ,n]=[Pn+l ,n]-2iEal .4 l .  (2.31) 
l= l  /=1 

Since the right-hand side of the last equation is multiplication with a zero diagonal, S~+1 

is a constant diagonal matrix, that  is, there exist complex numbers a0 and G0 such that 

Sn+l=aOJ+~o I. Hence, 

n+l n+l 

P n + l = E ( a z P l + / ~ l L  l) and [P,~+I,L]=2iEatf tz .  (2.32) 
/=0 /=0 

Consequently, if all az =0, then pn+] is a polynomial of L, and P ,+I  and L commute 

irrespective of p and q. If, however, a t # 0  and a / = 0  for l>r, then 

(OL.~7 \ n + l  
P~+, = a r e r  1, ..., a-2-~ ) + E / 3 , L ' .  (2.33) 

ar  / /=0 

In this case Pn+l and L commute if and only if 

~-~ az ~ = A,. ( a,--1 ao ) l=0 a~ \ a~ ' " "  ~ =0 ,  (2.34) 

that  is, if and only if (p, q) is a solution of some equation of the stationary AKNS 
p, X -~n+l ~ L l hierarchy. In this case ~+l-Z_,l=o pl and L satisfy an algebraic relationship of the 

type (2.24). 

THEOREM 2.1. Let L be defined as in (2.1). If Pn+l is a matrix-valued differential 
expression of order n + l  which commutes with L, whose leading coefficient is different 
from a constant multiple of jn+l, then there exist polynomials K~ and R2n+2 of degree 
r ~ n +  l and 2n+2, respectively, such that (P~+I-Kr(L))2=-R2~+2(L). 

Theorem 2.1 represents a matrix-valued generalization of a celebrated result due to 

Burchnall and Chaundy [16], [17] in the special case of scalar differential expressions. 

By the arguments presented thus far in this section it becomes natural to make the 

following definition. We denote by M2(C) the set of all (2 • over C. 
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Definition 2.2. A function Q: R--*M2(C) of the type 

:) 
is called an algebro-geometric AKNS potential if (p, q) is a stationary solution of some 

equation of the AKNS hierarchy (2.14). 

By a slight abuse of notation we will also call (p, q) an algebro-geometric AKNS 

potential in this case. 

The following theorem gives a sufficient condition for Q to be algebro-geometric. 

THEOREM 2.3. Assume that Fn(E,x)=~-~4~=of~_l(x)E z with fo(x)=-iq(x)  is a 

polynomial of degree n in E, whose coefficients are twice continuously differentiable 

complex-valued functions on ( a, b ) for some -oo ~ a < b ~ oo. Moreover, suppose that q 

has (at most) finitely many zeros on each compact interval on R with :t=oo the only 

possible accumulation points. If  

1 
4q(x)a {q(x)(2Fn(E, x)Fn,zx(E, x ) -Fn,z (E,  x)2 + 4 ( E  2 -p(x)q(x))Fn(E, x) 2) 

(2.35) 
-q~ (x)(2Fn (E, x) F,,~ (E, x) + 4iEFn (E, x) 2) } 

is independent of x, then p,q and all coefficients ft of Fn are in C~~ Next, 

define 

go(x) -- 1, 
1 

gl+l (X) : q ~  ( l fl,x(X) + i fl+ l (X) ), (2.36) 

1 
h~ (x) : q ~  (gz+l,~ (x) -p(x)  fl (x)), (2.37) 

for l : 0 ,  ...,n, where fn+ l=0 .  Then the differential expression Pn+l defined by (2.6) 

commutes with L in (2.1). In particular, if (a, b)=R then (p, q) is an algebro-geometric 
AKNS potential. 

Proof. The expression (2.35) is a monic polynomial of degree 2n+2  with constant 

coefficients. We denote it by 

2n+2 

R2n+2(E) : ~ "T2n+2-m Era, "TO z 1. (2 .38)  

m:O 

We now compare coefficients in (2.35) and (2.38) starting with the largest powers. First 

of all this yields 

q~ = i"Tlq-2fl, (2.39) 
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which shows that qEC3((a, b)), and secondly that 

(-472q2- 3q2 + 2qq~-8 iq f2 -4  f2 + 8q~fl), (2.40) p =  

which shows that p E Cl((a,  b)). Comparing the coefficients of E 2~-z allows one to express 

4q2fl,~x as a polynomial in p, q, qx, the coefficients ft, their first derivatives, and the sec- 

ond derivatives of f0,---, f l-1.  Therefore, one may show recursively that fz,xzECl((a, b)) 
for any lE{1,. . . ,n}. Equations (2.39) and (2.40) then show that qEC4((a,b)) and 

pcC2((a, b)). Thus it follows that the fz,~ are in C2((a,b)). An induction argument 

now completes the proof of the first part of the theorem. 

Next, introducing 

n + l  

Gn+l(E,x)= E g~+l_z(x)El , Hn(E,x)= hn-l(x)E l, (2.41) 
I=0 /=0 

one finds that F~, G~+I and Hn satisfy equations (2.16) and (2.17). Equating (2.35) 

with -~2n+2 yields R 2 n + 2 = G 2 + l - F n H n .  Hence 2 Gn+I-F~H~ does not depend on x and 

therefore differentiating with respect to x results in 2G,~+IGn+I,x-F~H=,~-Fn,~Hn=O, 
which shows that equation (2.18) also holds. This in turn proves that fz, gt and ht satisfy 

the recurrence relations given above with f~+l=h,~+l=0.  The commutativity of P~+I 

and L now follows as before. [] 

The same proof yields the following result. 

COROLLARY 2.4. Assume that Fn(E, x)=~- ]~  0 fn-l(x)E l, fo(x)=-iq(x), is a poly- 
nomial of degree n in E whose coefficients are meromorphic in x. If 

1 
4q(x)3 {q(x)(2F~(E, x)Fn,xx(E, x)-F~,x(E, x ) 2 + 4 ( E  2 -p (x )q (x ) )Fn(E ,  x) 2) (2.42) 

-qx(X)(2F=(E, x)Fn,~(E, x)+4iEFn(E, x)2)} 

is independent of x, then (p, q) is a meromorphic algebro-geometric AKNS potential. 

Finally, we mention an interesting scale invariance of the AKNS equations (2.11). 

LEMMA 2.5. Suppose that (p, q) satisfies one of the AKNS equations (2.11), 

AKNSn(p, q) = 0 (2.43) 

for some nEN0.  Consider the scale transformation 

(p(x, t) ,q(x, t))~(~(x, t) ,4(x, t))=(Ap(x, t) ,A-Iq(x, t)) ,  A e  C\{0} .  (2.44) 

Then 
AKNSn(~5, q) = 0. (2.45) 
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We omit the straightforward proof which can be found, for instance, in [38]. 

In the particular case of the nonlinear Schrhdinger (NS) hierarchy, where 

p(x, t) = • t), (2.46) 

(2.44) further restricts A to be unimodular, that  is, 

IA] = 1. (2.47) 

Note that  the KdV hierarchy as well as the modified Korteweg-deVries (mKdV) 

hierarchy are contained in the AKNS hierarchy. In fact, setting all integration constants 

c2z+l equal to zero the nth  KdV equation is obtained from the (2n)th AKNS system by 

the constraint 

p(x, t) = 1, (2.48) 

while the nth  mKdV equation is obtained from the (2n)th AKNS system by the constraint 

p(x, t) = • t). (2.49) 

3. Gauge transformations for the stationary AKNS hierarchy 

This section is devoted to a study of meromorphic properties of solutions ~+(E ,  x) of 

L~P=EkO with respect to x C C  under the assumption that  Q is a meromorphic algebro- 

geometric AKNS potential associated with a (possibly singular) hyperelliptic curve ~n. 

Meromorphic properties of k0+ (E, x) will enter at a crucial stage in the proof of our main 

characterization result, Theorem 6.4. 

In the following we denote the order of a meromorphic function f at the point x E C  

by ord~(f). 

PROPOSITION 3.1. If Q is a meromorphic algebro-geometric AKNS potential then 

ordx(p) +ordx(q)/> - 2  

for every xEC.  

Proof. Assume the contrary (i.e., o rdx(p)+ordz(q)~-3)  and choose E such that  

R2n+2(E)--O, where R2n+2 is the polynomial defining the hyperelliptic curve associated 

with Q. Define F~ as in (2.15) and denote its order at x by r. Then ord~(-4pqF~(E,. )2) 

is strictly smaller than 2 r - 2  while the order of any other term on the left-hand side of 

(2.21) is at least 2 r - 2 .  This is impossible since the right- and thus the left-hand side of 

(2.21) vanishes identically. [] 
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Therefore, to discuss algebro-geometric AKNS potentials we only need to consider 

the case where p and q have Laurent expansions of the form 

OO O<3 

p(x) = E p j ( x - x o ) J - l + m ,  q(x) = E  qj(X--Xo)J--I--m' 
j=o j=o 

(3.1) 

with m an integer and at least one of the numbers P0 and qo different from zero. If 

B = d i a g ( - m ,  0), the change of variables y=xBw transforms the differential equation 
oo j J y ' + Q y = E y  into the equation w ' =  ( R / x + S + ~ # = o  Aj+lX )w, where 

(3.2) 
qo) (10) (0 

R = S = - i E  A# = . 
Po 0 ' 0 - 1  ' p# 0 

We now make the ansatz 

w ( x )  = nj(x-x0)J (3.3) 
j=O 

where T and the f~j are suitable constant matrices. This ansatz yields the recurrence 

relation 

Rf~0-FtoT = 0, (3.4) 

J 

R~#+I-  ~ j + l  ( T + j +  1) = - S ~ #  - E Al+l~j-I ~- Bj, (3.5) 
/=0 

where the last equality defines B#. In the following we denote the lth column of ~ j  

and Bj by w~ L) and b~ l), respectively. 

PROPOSITION 3.2. Suppose that Q is a meromorphic potential of L~=Eq~ and that 

Xo is a pole of Q where p and q have Laurent expansions given by (3.1). The equation 

Lk~=Eq~ has a fundamental system of solutions which are meromorphic in a vicinity 

of xo if and only if 

(i) the eigenvalues A and m - A  (where, without loss of generality, A > m - A )  of R 

are distinct integers, and 

(ii) b2~-m-1 is in the range of R - A .  

Proof. A fundamental matrix of w ' - - ( R / x + S + ~ = o  Aj+lXJ)W may be written as 

(3.3) where T is in Jordan normal form. If all solutions of L~=Eq2 and hence of w r= 
er # (R/x+S+~-:~j= o Aj+lX )w are meromorphic near x0, then T must be a diagonal matrix 

with integer eigenvalues. Equation (3.4) then shows that  the eigenvalues of T are the 

eigenvalues of R and that  R is diagonalizable. But since at least one of Po and q0 is 

different from zero, R is not diagonalizable if A is a double eigenvalue of R, a case which 
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is therefore precluded. This proves (i). Since T is a diagonal matrix, equation (3.5) 

implies 

(R+A-m-a -  

for j = 0 ,  1, .... Statement (i i) is just  the special case where j = 2 A - m - 1 .  

Conversely, assume that (i) and (ii) are satisfied. If the recurrence relations (3.4), 
! oo 

(3.5) are satisfied, that  is, if w is a formal solution of w = ( R / z + S + ~ j =  o Aj+lXJ)W 

then it is also an actual solution near Xo (see, e.g., Coddington and Levinson [23, w 

Since R has distinct eigenvalues it has linearly independent eigenvectors. Using these as 

the columns of 120 and defining T=~olRl2o yields (3.4). Since T is a diagonal matrix, 

(3.5) is equivalent to the system 

b~l)= ( R -  A - j - " I  )wj+ 1 ,(1) (3.7) 

(3.S) 

Next, we note that  R - A - j - 1  is invertible for all dEN0. However, R + A - m - j - 1  is 

only invertible if j T t 2 A - m - 1 .  Hence a solution of the proposed form exists if and only 

if h (2) is in the range of R - A ,  which is guaranteed by hypothesis (ii). [] v 2 ~ - - m - -  1 

Note that  

Bo = - EJ~o - A1 no (3.9) 

is a first-order polynomial in E.  As long as R has distinct eigenvalues and j<...2A-m-1, 

we may compute ~tj recursively from (3.7) and (3.8), and Bj from the equality on the 

right in (3.5). By induction one can show that  ~j  is a polynomial of degree j and that  

Bj is a polynomial of degree j + 1 in E. This leads to the following result. 

THEOREM 3.3. Suppose that Q is a meromorphic potential of L~=E~P. The equa- 

tion L~=E~2 has a fundamental system of solutions which are meromorphic with respect 

to the independent variable for all values of the spectral parameter E E C  whenever this 

is true for a sufficiently large finite number of distinct values of E. 

Proof. By hypothesis, Q has countably many poles. Let x0 be any one of them. 

Near x0 the functions p and q have the Laurent expansions (3.1). The associated matrix 

R has eigenvalues A and m - A ,  which are independent of E. The vector v = ( q o , - A )  t 

spans R - A ,  and the determinant of the matrix whose columns are v and b2A-m-1 is a 

polynomial in E of degree 2A-m .  Our hypotheses and Proposition 3.2 imply that  this 

determinant has more than 2 A - m  zeros and hence is identically equal to zero. This 

shows that  b2)~-m-1 is a multiple of v for every value of E. Applying Proposition 3.2 

once more then shows that all solutions of L ~ = E ~  are meromorphic near x0 for all 

E E C .  Since x0 was arbitrary, this concludes the proof. [] 
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Next, let {Eo, ..., E2n+l} be a set of not necessarily distinct complex numbers. 

recall (cf. (2.25)) 

I 2 n + l  ,~ 
1C,~= P = ( E , V )  V2=R2n+2(E)= I I  (E-E'O~" 

rn=O 

We introduce the meromorphic function r  x) on En by 

We 

(3.10) 

V+Gn+I(E,x) 
r x) = F~(E,x) , P = ( E , V ) E ~ n .  (3.11) 

We remark that r can be extended to a meromorphic function on the compactification 

(projective closure) of the affine curve ~n. This compactification is obtained by joining 

two points to Kn. 

Next we define 

I/ } r xo) =exp dx'[-iE+q(x')r , (3.12) 
k./Xo 

r x, x0) = r x) el(P, x, X0), (3.13) 

where the simple Jordan arc from x0 to x in (3.12) avoids poles of q and r One verifies 

with the help of (2.16)-(2.19), that 

Cx (P, x) = p(x) - q(x) r176 x)2 + 2iEr x). (3.14) 

From this and (2.6) we find 

L@(P,x, xo)=Eq2(P,x, xo), Pn+l~(P,x, xo)=iVq2(P,x, xo), (3.15) 

where 
kO(P,x, xo) = ( ~bl(P,x, xo) (3.16) 

\ g'2 (P, x, Xo) }" 

One observes that the two branches ~•  x, x0)=(r  x, x0), r177 x, Xo)) t 
of ~(P,x, xo) represent a fundamental system of solutions of Ly=Ey for all EC 

2 n + l  n C\{{Em},~=0 U{#j(Xo)}j=l}, since 

2V+ (E) (3.17) W(k~ (E, x, xo), @+(E, x, Xo)) -- Fn(E, xo) 

Here W(f,g) denotes the determinant of the two columns f and g, and V+(.) (resp. 

V_(. )) denotes the branch of Y(. ) on the upper (resp. lower) sheet of K:n (we follow the 

notation established in [38]). 
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iE 
~(E,x )  = -~(~) 

implying 

In the special case where K:n is nonsingular, that is, Era#Era, for m#m', the explicit 

representation of ~(P, x, x0) in terms of the Riemann theta function associated with/Cn 

immediately proves that kO• x, Xo) are meromorphic with respect to xEC for all EE 
E 2 n + l  n C \ { { m }m=0 U {#j (xo) }j=l }- h detailed account of this theta function representation 

can be found, for instance, in Theorem 3.5 of [38]. In the following we demonstrate how 

to use gauge transformations to reduce the case of singular curves ~n to nonsingular 

ones. 

Let (p, q) be meromorphic on C, the precise conditions on (p, q) being immaterial (at 

least, temporarily) for introducing gauge transformations below. Define L and Q as in 

(2.1), (2.3), and consider the formal first-order differential system LkO=Eg2. Introducing 

A(E,x)= ( iE -q(x) ) (3.181 
-p(x) -iE ' 

LkO=E~ is equivalent to kO~(E, x)+A(E, x) gy(E, x)=0. 

Next we consider the gauge transformation, 

~(E, x) = r ( s ,  x) ~(E,  x), (3.191 

7[E ) ) =F(E,x)A(E,x)F(E,x)-I-F~:(E,x)F(E,x) -1, (3.20) 

~P~:(E,x)+A(E,x)~(E,x)=O, that is, L~(E,x)=E~(E,x), (3.211 

with L defined as in (4.1), (4.2) replacing (p, q) by (/5, ~). In the following we make the 

explicit choice (ef., e.g., [56]) 

( E-E-�89162176 �89 E E  C\{E},  (3.22 / r(E,x)  = 
�89162176 - �89 ] 

for some fixed E E C and 
r (~, ~) _ ~(01 (~, ~) 

~~ 

where ~(o)(/~, x) = (~o)(/~, x), r x))t is any solution of LkO=/~kO. 

(identifying r162 equation (3.20) becomes 

#(x) = r x), 

~(x) = - q x  (x)  - 2 i E q ( x )  + q(x)2r (~ (/~, x). 

(3.23) 

Using (3.14) 

(3.24) 

(3.25) 
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Moreover, one computes for ~=( r  ~2) t in terms of kO=(r r t, 

(bl(E,x)=(E-E,)r189162162176162 (3.26) 

~2 (E, x) = - �89 (~b2 (E, x) - r x) r (E, x)). (3.27) 

In addition, we note that 
det(F(E, x)) = - �89 (3.28) 

and therefore, 
W(~I(E),  ~22(E)) = -�89 k02 (E)), (3.29) 

where k~j (E, x), j = 1, 2, are two linearly independent solutions of Lk0 =Ek0. 
Our first result proves that gauge transformations as defined in this section leave 

the class of meromorphic algebro-geometric potentials of the AKNS hierarchy invariant. 

THEOREM 3.4. Suppose that (p,q) is a meromorphic algebro-geometric AKNS 
potential. Fix EEC and define (fi,~) as in (3.24), (3.25), with r176 defined as 
in (3.23). Suppose that r176 is meromorphic in x. Then (~,(~) is a meromorphic 
algebro-geometric AKNS potential. 

Proof. The upper right entry G1,2(E,x,x p) of the Green matrix of L is given by 

ir x, x0)r x', x0) x ~> x'. (3.30) G1,2(E, x, x') . . . . . . .  , (E,., 3+(E,., xo)) 

Combining (3.11) (3.13) and (3.14), its diagonal (where x=x') equals 

GI 2(E, x, x) - iFn(E, x) (3.31) 
' 2V§ 

The corresponding diagonal of the upper right entry G1,2(E, x, x) of the Green matrix 
of L, is computed to be 

ir iF~+l(E,x) (3.32) 
G1,2(E, x, x) = W(~_(E, .  ), ~+(E,. )) = 2(E-E,)V+(E) ' 

where 

Fn+l (E, x) = 2iFn (E, x) { ( E -  E,) § �89162 (E, x) - r x)] } 
(3.33) 

x { (E-E,)+ �89162 (E, x ) -  r x)] }, 

using (3.17), (3.26), (3.29) and 

F,~(E,x) (3.34) 
x, Xo)r  x, xo) : F (E, Xo)" 
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By (3.11), 

and 

2 Gn+I(E, x) 
r162 Fn(E,x) 

r162 Fn(E,x)" 

From this, (2.5) and (2.15), it follows that  Fn+l(  ", x) is a polynomial of degree n + l  with 

leading coefficient 
iq~ (x) - 2/~q (x) - iq (x )2 r  (~ ( F,, x) = -i(~(x). (3.35) 

Finally, using ] ,~= = E ~ + ,  that  is, (3.21), one verifies that  G1,2(E, x, x) satisfies the 

differential equation 

~(2G1,2G1,2,x_~22,~+4(E215(t) - 2  = ( 3 . 3 6 )  G~,2)_~x(2G1,2G1,2,x+4iE~2,2) ~3. 

Hence, Fn+I(E,  x) satisfies the hypotheses of Corollary 2.4 (with n replaced by n + l  and 
(p, q) replaced by (15, ~)), and therefore, (15, ~) is a meromorphic algebro-geometric AKNS 

potential. [] 

We note here that  (3.36) implies also that/$n+1 satisfies 

_ ~ N ~ 2  2 ~ -  ~ 2  - ~ ~ . ~ 2  
q(2Fn+lF~+l'xx-F~+l'x+4(E -pq)F~+I)-qx(2Fn+lFn+l'x+4~EF~+l) (3.37) 

= - 4 ~  3 ( g - / ~ )  2 R2n+2 (E), 

that  is, (15, ~) is associated with the curve 

~,~+1 = {(E, V ) [ V  2 = (E-E)2R2~+2(E)}. (3.38) 

However, there may be explicit cancellations in (3.32) which effectively diminish the 

arithmetic genus of an underlying curve so that  the pair (15, ~) also corresponds to a curve 

]C~ with ft~<n. This is illustrated in the following result. 

COROLLARY 3.5. Suppose that (p,q) is a meromorphic algebro-geometric AKNS 
potential associated with the hyperelliptic curve 

2 n +  1 

~ n  = ( E ,  V )  V 2 =  R2n+2(E)= I I  (E -Em)~ ,  
m : O  

(3.39) 

which has a singular point at (E, 0), that is, R2n+2 has a zero of order r>~2 at the 
point E. Choose 

Gn+I(E, x) (3.40) 
r176 (/~' x) -- Fn(E,x) 



ELLIPTIC ALGEBRO-GEOMETRIC SOLUTIONS OF THE AKNS HIERARCHY 83  

(cf. (3.11)) and define (15, (1) as in (3.24), (3.25). Then r ) is meromorphic and the 
meromorphic algebro-geometric AKNS potential (/5, (t) is associated with the hyperelliptic 
curve 

/Ce = {(E, Y) l Y 2 = R2n-2s+4(E) = (E-E)2-2SR2n+2(E)} (3.41) 

for some 2<~s<~ � 89  In particular, K.e and IC~ have the same structure near any point 

Proof. Since V2=R2,~+2(E), we infer that V+(E) has at least a simple zero at /~. 

Hence, 

+V+(E) G,~+I(E,x)Fn(F,,x)-Gn+I(E,x)F~(E,x) (3.42) 
(E, x) - x) - Fn (E, + (E, x) x) 

also have at least a simple zero at E. From (3.33) one infers that Fn+I(E,  x) has a zero 

of order at least 2 at E, that  is, 

F,,+I(E,x)=(E-E)~Fn+I_~(E,z),  s>>.2. (3.43) 

Define f i = n + l - s .  Then F~ still satisfies the hypothesis of Corollary 2.4. Moreover, 

inserting (3.43) into (3.37) shows that ( E - / ~ )  2~ must be a factor of (E-E)2R2n+2(E). 
Thus, 2s<~r+2 and hence 

(1(2F~F~,xx-F2,x+4(E2-/5(1)F2)-(tx(2F~F~,~+4iEF 2) : -4(13R2~+2(E), (3.44) 

where 

] ~ 2 f i + 2 ( E )  : (E-F')2-2SR2n+2(E) (3.45) 

is a polynomial in E of degree O<2n-2s+4<2n+2. This proves (3.41). [] 

In view of our principal result, Theorem 6.4, our choice of r (~, x) led to a curve 

/Ce which is less singular at /~ than /Cn, without changing the structure of the curve 

elsewhere. By iterating the procedure from/Cn to/Ce one ends up with a curve which is 

nonsingular at (E, 0). Repeating this procedure for each singular point of/Cn then results 

in a nonsingular curve ~ and a corresponding Baker-Akhiezer function ~(P,x,  xo) 
which is meromorphic with respect to x E C  (this can be seen by using their standard 

theta function representation, cfi, e.g., [38]). Suppose that/C,~ was obtained from/Cn by 

applying the gauge transformation 

F(E,  x) = FN(E, x)... FI(E,  x), (3.46) 

where each of the Fj is of the type (3.22). Then the branches of 

V(P,x) = r(E,x)- l~ , (P,x ,  xo) = r l ( E , x ) - ~ . . . F N ( E , x ) - ~ ( P , x ,  xo) (3.47) 
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are linearly independent solutions of LkO=E~ for all 

E E C \  {Eo, ..., E2,,+i, #i (xo), ..., #n (x0) }. 

These branches are meromorphic with respect to x since 

Fj(E,x) - i= 2i ( - l i  - l iq(x)  ) (3.48) 

E - E  -�89162176 E-F,-�89162176 

maps meromorphic functions to meromorphic functions in view of the fact that q and 

r ( /~, . ) :Gn+i(F, , .  )/Fn (E,.) are meromorphic. Combining these findings and Theo- 

rem 3.3 we thus proved the principal result of this section. 

THEOREM 3.6. Suppose that (p, q) is a meromorphic algebro-geometrie AKNS po- 
tential. Then the solutions of LkO:E9 are meromorphic with respect to the independent 
variable for all values of the spectral parameter EEC.  

Remark 3.7. In the case of the KdV hierarchy, Ehlers and KnSrrer [27] used the 

Miura transformation and algebro-geometric methods to prove results of the type stated 

in Corollary 3.5. An alternative approach in the KdV context has recently been found by 

Ohmiya [73]. The present technique to combine gauge transformations, the polynomial 

recursion approach to integrable hierarchies based on hyperelliptic curves (such as the 

KdV, AKNS and Toda hierarchies), and the fundamental meromorphic function r  x) 

on tgn (cf. (3.11)), yields a relatively straightforward and unified treatment, further 

details of which will appear in [37]. To the best of our knowledge this is the first such 

approach for the AKNS hierarchy. 

A systematic study of the construction used in Theorem 3.6 yields explicit connec- 

tions between the ~--function associated with the possibly singular curve ~n and the 

Riemann theta function of the nonsingular curve ~,~. This seems to be of independent 

interest and will be pursued elsewhere. 

4. Floquet theory 

Throughout this section we will assume the validity of the following basic hypothesis. 

HYPOTHESIS 4.1. Suppose that p, qELIoc(R) are complex-valued periodic functions 
of period ~>0,  and that L is a (2x2)-matrix-valued differential expression of the form 

where 

L = j d + Q ,  (4.1) 

(; 0) (0 : )  
j :  Q :  . (4 .2)  

- i  ' ip 
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We note that 

_ j 2 = i  and JQ+QJ=O, (4.3) 

where I is the identity (2 x 2)-matrix in C 2. 

Given Hypothesis 4.1, we uniquely associate the following densely and maximally 

defined closed linear operator H in L2(R) 2 with the matrix-valued differential expres- 

sion L, 
Hy=Ly, :D(H)={yeL2(R)2]yeACIoc(R) 2, LyEL2(R)2}. (4.4) 

One easily verifies that L is unitarily equivalent to 

(01 0 1 )  d 1 ((p+q) i(p-q)~ (4.5) 
dx +-2 k. i(p-q) -(p+q) ] '  

a form widely used in the literature. 

We consider the differential equation Ly=Ey where L satisfies Hypothesis 4.1 and 

where E is a complex spectral parameter. Define r xo,Yo)=eE(~-~~ for 

YoCM2(C). The matrix function r  is the unique solution of the integral 

equation 

f Y(x) = r (E, x, Xo, Yo)+ eE(~-~')JJQ(x') Y(x') dx' (4.6) 
J 2~ 0 

if and only if it satisfies the initial value problem 

JY'+QY=EY, Y(xo)=Yo. (4.7) 

Since 
0r 
~Xo (E, x, Xo, Yo) -- EJeE(x-x~ -= EeE(~-x~ 

differentiating (4.6) with respect to Xo yields 

(4.8) 

or 
OXo 
- -  (E, x, Xo, ]Io) = eE(~-x~ 

+ L :  eE(~-x')J J Q(x') ff---~Cxo( E,x',xo, Yo) dx ', 
(4.9) 

that is, 

--Or (E, x, Xo, Yo) = r x, x0, (E+Q(xo)) JYo), (4.10) 
OXo 

taking advantage of the fact that  (4.6) has unique solutions. 

In contrast to the Sturm-Liouville case, the Volterra integral equation (4.6) is not 

suitable to determine the asymptotic behavior of solutions as E tends to infinity. The 

following treatment circumvents this difficulty and closely follows the outline in [63, w 1.4]. 



86 F. G E S Z T E S Y  AND R. W E I K A R D  

Suppose that L satisfies Hypothesis 4.1, p, q c C  n (R), and then define recursively 

a~(x) =iQ(x), 

bk(x) = - i  Q(t)ak(t) dt, (4.11) 

ak+l(X) =--ak,x(x)+iQ(x)bk(x), k= 1,...,n. 

Next let A: R2--*M2(C) be the unique solution of the integral equation 

/ 

/0 / j  A(x,y)=an+l(x-y)+ Q(x-y ')  Q(x')A(x' ,y-y')dx'dy' .  (4.12) 
__yt 

Introducing 

an(E, x) = FA(x, y) e -2iEy dy, 
go 

bn(E, x) = - i  ~oXQ(y)an(E, y) dy (4.13) 

and 

we infer that 

n 

u, (E, x) = I+ E bk (x)(2iE)-k + bn (E, x) (2 iE)-n ,  
k = l  

n 

u2 (E, x) = E ak (x)(2iE)-k + an (E, x) (2 iE)-n ,  
k = l  

(4.14) 

(4.15) 

YI(E, x) = eiEX{(I+iJ) ul(E, x)+(I- iJ)u2(E,  x)}, (4.16) 

Y2(E, x) = e-iEx{ (I--iJ) u l ( -E,  x) - (I +iJ)u2 ( - E ,  x)} (4.17) 

satisfy the differential equation 

JY '+QY = EY. (4.18) 

Since IA(x, y)[ is bounded on compact subsets of R 2, one obtains the estimates 

[eiExan (E, x) l, le~EX~n(E, x) l ~< CR2e I~ Im(E) l (4.19) 

for a suitable constant C > 0  as long as Ix[ is bounded by some R>0.  

The matrix 

Y(E, x, x0) = �89 x-xo)+Y2(E, x-xo))  

is also a solution of J Y ' + Q Y = E Y  and satisfies ~'(E, xo,xo)=I+Q(xo)/(2E). There- 

fore, at least for sufficiently large [E[, the matrix function 

r  xo, I) = P ( E , . ,  x0)P(E,  x0, x0) -1 (4.20) 
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is the unique solution of the initial value problem JY t+QY=EY,  Y(xo)=I. Hence, if 

p, q �9  one obtains the asymptotic expansion 

r xo~_~,xo, i )=(e -iE~ 0 ) 1 ( ~e -iE~ 
o e + \ 2p(xo) sin(E ) 

+ O(eJIm( E)lft E -  2), 

2q(x0) sin(E~) ) 
(4.21) 

where 
fxo+ft 

= ]~o p(t) q(t) dt. (4.22) 

From this result we infer in particular that  the entries of r , x 0 + ~ ,  x0, I), which are 

entire functions, have order one whenever q(xo) and p(xo) are nonzero. 

Denote by T the operator defined by Ty=y(. +~2) on the set of C2-valued functions 

on R,  and suppose that  L satisfies Hypothesis 4.1. Then T and L commute and this 

implies that  T(E),  the restriction of T to the (two-dimensional) space V(E) of solu- 

tions of Ly=Ey, maps V(E) into itself. Choosing as a basis of V(E) the columns of 

r  x0, I), the operator T(E) is represented by the matrix r  x0+~ ,  x0, I). In par- 

ticular, det(T(E)) =det  (r x0 +~t, x0, I)) = 1. Therefore, the eigenvalues g(E) of T(E),  

the so-called Floquet multipliers, are determined as solutions of 

Q2- t r (T(E) )~+I  =0.  (4.23) 
These eigenvalues are degenerate if and only if 02(E)-~ 1, which happens if and only if the 

equation Ly=Ey has a solution of period 2~. Hence we now study asymptotic properties 

of the spectrum of the densely defined closed realization H2a,xo of L in L 2 ([x0, x0 +212])2 

given by 
H2~,xoy = Ly, 

7:)(H2~,xo) = {Y �9 L 2 ([x0, x0 + 2~t]) 21 Y �9 AC([xo, x0 + 2~])2, (4.24) 

y(xo + 2~t) = y(xo), Ly �9 n 2 ([Xo, x0 + 2~t]) 2 }. 

Its eigenvalues, which are called the (semi-)periodic eigenvalues of L, and their algebraic 

multiplicities are given, respectively, as the zeros and their multiplicities of the function 

tr(T(E)) 2 -4 .  The asymptotic behavior of these eigenvalues is described in the following 

result. 

THEOREM 4.2. Suppose that p, q �9  Then the eigenvalues Ej, j EZ, of H2~,xo 

are xo-independent and satisfy the asymptotic behavior 

E2j, E2j-1 = -~  + O (4.25) 
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as IJ] tends to infinity, where all eigenvalues are repeated according to their algebraic 

multiplicities. In particular, all eigenvalues of H2~,xo are contained in a strip 

E =  { E e C  I ]Im(E)l ~<C} (4.26) 

for some constant C>0.  

Proof. Denoting A ( E , x ) = ( E + Q ( x ) ) J  (cf. (3.18)), equation (4.10)implies 

O--~ (E, x, Xo, I) = - A ( E ,  x)r  x, x0, I),  
Ox 

0 r  (E, x, x0, I) -- r  x, xo, I) A(E, x), 
OXo 

(4.27) 

(4.2s) 

and hence 
Otr(T(E)) =0. (4.29) 

OXo 

Thus the eigenvalues of H2a,xo are independent of x0. According to (4.21), t r(T(E))  is 

asymptotically given by 

(4.30) t r(T(E))  -- 2 cos(ED) +f~ s i n ( E D ) E - l §  O(e IIm(E)l~E-2). 

Rouch~'s theorem then implies that  two eigenvalues E lie in a circle centered at j~r/a 

with radius of order 1/Ijl. 

To prove that  the eigenvalues may be labeled in the manner indicated, one again 

uses Rouchd's theorem with a circle of sufficiently large radius centered at the origin of 

the E-plane in order to compare the number of zeros of tr(T(E)) 2 - 4  and 4 cos(E~) 2 - 4  

in the interior of this circle. [] 

The conditional stability set S(L) of L in (4.1) is defined to be the set of all spectral 

parameters E such that  Ly=Ey  has at least one bounded nonzero solution. This happens 

if and only if the Floquet multipliers •(E) of Ly=Ey  have absolute value one. Hence, 

S(L) -- {E c C I - 2  ~< tr(T(E))  ~< 2}. (4.31) 

It is possible to prove that  the spectrum of H coincides with the conditional stability 

set S(L) of L, but since we do not need this fact we omit a proof. In the following we 

record a few properties of S(L) to be used in w167 5 and 6. 

THEOREM 4.3. Assume that p, qcC2(R). Then the conditional stability set S(L) 

consists of a countable number of regular analytic arcs, the so-called spectral bands. At 

most two spectral bands extend to infinity and at most finitely many spectral bands are 
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closed ares. The point E is a band edge, that is, an endpoint of a spectral band, if and 

only if  t r (T(E) )  2 - 4  has a zero of odd order. 

Proof. The fact that  S(L)  is a set of regular analytic arcs whose endpoints are odd 

order zeros of ( t r (T(E)) )  2 - 4  and hence countable in number, follows in standard manner 

from the fact that  t r (T(E) )  is entire with respect to E.  (For additional details on this 

problem, see, for instance, the first part of the proof of Theorem 4.2 in [102].) 

From the asymptotic expansion (4.21) one infers that  t r (T(E) )  is approximately 

equal to 2 cos(El2) for IEI sufficiently large. This implies that the Floquet multipliers 

are in a neighborhood of e i iE~.  If EoCS(L) and ]E01 is sufficiently large, then it is 

close to a real number. Now let E=]Eole it, where t e  (-�89 3~]. Whenever this circle 

intersects S(L)  then t is close to 0 or n. When t is close to 0, the Floquet multiplier 

which is near e iE~ moves radially inside the unit circle, while the one close to e -iE~ 

leaves the unit disk at the same time. Since this can happen at most once, there is at 

most one intersection of the circle of radius IE01 with S(L) in the right half-plane for ]E I 

sufficiently large. Another such intersection may take place in the left half-plane. Hence 

at most two arcs extend to infinity and there are no closed arcs outside a sufficiently 

large disk centered at the origin. 

Since there are only countably many endpoints of spectral arcs, and since outside a 

large disk there can be no closed spectral arcs, and at most two arcs extend to infinity, 

the conditional stability set consists of at most countably many arcs. [] 

Subsequently we need to refer to components of vectors in C 2. If y E C  2, we will 

denote the first and second components of y by Yl and Y2, respectively, that  is, y =  

(Yl, Y2) t, where the superscript "t" denotes the transpose of a vector in C 2. 

The boundary value problem Ly=zy ,  y l (xo)=yl(xo+~)=O,  in close analogy to 

the scalar Sturm-Liouville case, will be called the Dirichlet problem for the interval 

Ix0, x0 +~] ,  and its eigenvalues will therefore be called Dirichlet eigenvalues (associated 

with the interval Ix0, x0+~]) .  In the corresponding operator-theoretic formulation one 

introduces t he following closed realization HD, xo of L in L 2 ([x0, x0 + 12]) 2: 

HD,xoy= Ly, 

~)(HD,xo ) = {Y e n 2 (Ix0, x0 +~t])21 Y e AC([xo, Xo _~_ ~-~])2, (4.32) 

yl(xo) = y l (xo+~)  = O, Ly G L2 ([Xo, x0 +12])2}. 

The eigenvalues of HD,~o and their algebraic multiplicities are given as the zeros and 

their multiplicities of the function 

g(E, x0) = (1, 0)r  x0 +~t, x0, I)(0, 1) t, (4.33) 

that  is, the entry in the upper right corner of r  x 0 + ~ ,  x0, I).  
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THEOREM 4.4. Suppose that p, qEC2(R). If q(xo)r then there are countably 
many Dirichlet eigenvalues #j(xo), jEZ, associated with the interval [xo,xo+~]. These 
eigenvalues have the asymptotic behavior 

jTr ( 1 )  (4.34)  j(x0) = -5 -+0  

as IJl tends to infinity, where all eigenvalues are repeated according to their algebraic 
multiplicities. 

Proof. From the asymptotic expansion (4.21) we obtain that 

g(E, xo) -iq(xo) sin(E~)+O(elim(E)r~E_2)" (4.35) 
E 

Rouch6's theorem implies that one eigenvalue E lies in a circle centered at j~r/~ with 

radius of order 1/Ijl and that the eigenvalues may be labeled in the manner indicated 

(cf. the proof of Theorem 4.2). [] 

We now turn to the x-dependence of the function g(E, x). 

THEOREM 4.5. Assume that p, qECI(R). Then the function g(E,.) satisfies the 
differential equation 

q(x)(2g(E, x) g~( E, x)-g~(E, x)2 § 4( E 2 -p(x)q(x) ) g( E, x) 2) 
(4.36) 

-q~(x)(2g(E, x)g~(E, x)§ x) 2) -- -q(x)3(tr(T(E)) 2 -4 ) .  

Proof. Since g(E, x)=(1,  0)r  x + ~ ,  x, I)(0, 1) ~ we obtain from (4.27) and (4.28), 

gx(E, x) = (1,0)(r  x+12, x, I)ACE, x ) -A(E ,  x)~p(E, x+~2, x, I)) (0, 1) ~ , (4.37) 

gxx(E, x) : (1, 0)(r x+~, x, I)A(E, x) 2 -2A(E, x)r  x+~, x, I)A(E, x) 

+A(E, x)2r x + ~ ,  x, I ) + r  x+~, x, I) A~(E, x) (4.38) 

-Ax(E,x)r 1) t, 

where we used periodicity of A, that is, A(E, x+~)=A(E,x).  This yields the desired 

result upon observing that  tr(r  x+12, x, I)):tr(T(E)) is independent of x. [] 

Definition 4.6. The algebraic multiplictiy of E as a Dirichlet eigenvalue /z(x) of 

HD,x is denoted by 6(E,x) .  The quantities 

~ ( E )  = min{6(E, x) l x E R} (4.39) 
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and 

5,~(E, x) = 5(E, x)-Si(E) (4.40) 

will be called the immovable part and the movable part of the algebraic multiplicity 

5(E, x), respectively. The sum ~ E e C  ~m(E, x) is called the number of movable Dirichlet 

eigenvalues. 

If q(x)~0, the function g( . ,  x) is an entire function with order of growth equal to 

one. The Hadamard factorization theorem then implies 

g(E,x) =FD(E,x)D(E), (4.41) 

where 

FD(E'x)=gD(x)ehD(~)EE~m(~ H (1-(E/A))~'~(~'~)e6m(~'x)s/~' (4.42) 
~c\{0} 

D(E)=ed~176 IX (1-(E/A))~(~)e~(~)E/~' (4.43) 
~,~c\{0} 

for suitable numbers go(x), hD(x) and do. 
Define 

U(E) -- tr(1 (/~)) 2 " - ' - ' "  - 4 (4.44) 
D(E) 2 

Then Theorem 4.5 shows that  

-q(x)  3 U(E) = q(x)(2FD(E, x)FD,x~(E, x)-FD,x(E, x) 2 + 4 ( E  2 -q(x)p(x))FD(E, x) 2) 

-q~(x)(2FD(E, X)FD,x(E, xo)+4iEFD(E, x)2). (4.45) 

As a function of E the left-hand side of this equation is entire (see Proposition 5.2 in [102] 

for an argument in a similar case). Introducing s(E)=ordE(tr(T(E)) 2-4) we obtain the 

following important result. 

THEOREM 4.7. Under the hypotheses of Theorem 4.5, s(E)-25i(E)>/O for every 
EcC. 

We now define the sets 

$I={EeCIs(E)>O, 5~(E)=O } and C2={EeCIs(E)-25i(E)>O}. 

Of course, s is a subset of s which, in turn, is a subset of the set of zeros of tr(T(E)) 2 - 4  

and hence isolated and countable. 
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THEOREM 4.8. Assume Hypothesis 4.1 and that L y = E y  has degenerate Floquet 

multipliers Q (equal to +1) but two linearly independent Floquet solutions. Then E is 

an immovable Dirichlet eigenvalue, that is, 5i(E)>0. Moreover, ~1 is contained in the 

set of all those values of E such that L y = E y  does not have two linearly independent 
Floquet solutions. 

Proof. If L y = E y  has degenerate Floquet multipliers ~)(E) but two linearly indepen- 

dent Floquet solutions then every solution of Ly=Ey  is Floquet with multiplier Q(E). 

This is true, in particular, for the unique solution y of the initial value problem Ly=Ey,  

y(xo) = (0, 1) t. Hence y(xo +12)= (0, ~)t and y is a Dirichlet eigenfunction regardless of x0, 

that is, 5i(E)>O. 

If ECC1 then s(E)>O and L y = E y  has degenerate Floquet multipliers. Since 

5i(E)=0, there cannot be two linearly independent Floquet solutions. [] 

Spectral theory for nonself-adjoint periodic Dirac operators has very recently drawn 

considerable attention in the literature and we refer the reader to [47] and [93]. 

5. Floquet theory and algebro-geometric potentials 

In this section we will obtain necessary and sufficient conditions in terms of Floquet 

theory for a function Q: R-+M2(C) which is periodic with period 12>0 and which has 

zero diagonal entries to be algebro-geometric (cf. Definition 2.2). Throughout this section 

we assume the validity of Hypothesis 4.1. 

We begin with sufficient conditions on Q and recall the definition of U(E) in (4.44). 

THEOREM 5.1. Suppose that p, qEC2(R) are periodic with period 12>0. If  U(E) is 

a polynomial of degree 2n+2 then the following statements hold. 

(i) deg(U) is even, that is, n is an integer. 

(ii) The number of movable Dirichlet eigenvalues (counting algebraic multiplicities) 
equals n. 

(iii) S(L) consists of finitely many regular analytic arcs. 

(iv) p, q e C ~ ( R ) .  

(v) There exists a (2x2)-matrix-valued differential expression Pn+l of order n + l  

with leading coej~icient jn+2 which commutes with L and satisfies 

2 z gn+l n (L--E)S(E)-2~(E)" (5.1) 
EcF2 
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Proof. The asymptotic behavior of Dirichlet and periodic eigenvalues (Theorems 4.2 

and 4.4) shows that  s(E)~<2 and 5 ( E , x ) < l  when [El is suitably large. Since U(E) is 

a polynomial, s (E )>0  implies that  s(E)--25~(E)=2. If #(x) is a Dirichlet eigenvalue 

outside a sufficiently large disk, then it must be close to mlr/~ for some integer m 

and hence close to a point E where s(E)=25~(E)=2. Since there is only one Dirichlet 

eigenvalue in this vicinity we conclude that  #(x)=E is independent of x. Hence, outside 

a sufficiently large disk, there is no movable Dirichlet eigenvalue, that  is, FD(. ,x) is 

a polynomial. Denote its degree, the number of movable Dirichlet eigenvalues, by ft. 

By (4.45), U(E) is a polynomial of degree 2~+2. Hence ~ = n  and this proves parts (i) 

and (ii) of the theorem. 

Since asymptotically s(E)--2, we infer that  s ( E ) = l  or s(E)~>3 occurs at only finitely 

many points E. Hence, by Theorem 4.3, there are only finitely many band edges, that  is, 

S(L) consists of finitely many arcs, which is part (iii) of the theorem. 

Let ~,(x) be the leading coefficient of FD(., x). From equation (4.45) we infer that  

-~(x)2/q(x) 2 is the leading coefficient of U(E), and hence 7(x)=ciq(x) for a suitable 

constant c. Therefore, F(. ,x)=FD(. ,x)/c is a polynomial of degree n with leading co- 

efficient -iq(x) satisfying the hypotheses of Theorem 2.3. This proves that  p, q cC ~ (R) 

and that  there exists a (2x2)-matrix-valued differential expression Pn+l of order n + l  

and leading coefficient jn+2 which commutes with L. The differential expressions Pn+l 

and L satisfy P2+I=R2n+2(L), where 

U(E) 
R2n+2(E) -  4c 2 -- H (E-A)s(~)-25~(~)' (5.2) 

~EF2 

concluding parts (iv) and (v) of the theorem. [] 

THEOREM 5.2. Suppose that p, qcC2(R) are periodic of period f~>0 and that the 

differential equation Ly=Ey has two linearly independent Floquet solutions for all but 
finitely many values of E. Then U(E) is a polynomial. 

Proof. Assume that  U(E) in (4.44) is not a polynomial. At any point outside a large 

disk where s (E )>0  we have two linearly independent Floquet solutions, and hence, by 

Theorem 4.8, 5~(E)~>I. On the other hand, we infer from Theorem 4.2 that  s(E)~<2, 

and hence s (E) - 25~ (E) =0. Therefore, s(E) - 25i (E) > 0 happens only at finitely many 

points and this contradiction proves that  U(E) is a polynomial. [] 

THEOREM 5.3. Suppose that p, qcC2(R)  are periodic of period ~t>0 and that the 

associated Dirichlet problem has n movable eigenvalues for some HEN. Then U(E) is a 
polynomial of degree 2n§ 

Proof. If there are n movable Dirichlet eigenvalues, that  is, if deg(FD(. ,  x))--n, then 

(4.45) shows that  U(E)=(tr(T(E))2-4)/D(E) 2 is a polynomial of degree 2n§ [] 
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Next we prove that  U(E) being a polynomial, or the number of movable Dirichlet 

eigenvalues being finite, is also a necessary condition for Q to be algebro-geometric. 

THEOREM 5.4. Suppose that L satisfies Hypothesis 4.1. Assume that there exists a 
(2• differential expression Pn+l of order n + l  with leading coefficient 
jn+2 which commutes with L but that there is no such differential expression of smaller 
order commuting with L. Then U(E) is a polynomial of degree 2n+2.  

Proof. Without  loss of generality we may assume that  P,~+I=Pc ...... c~+1 for suitable 

constants cj. According to the results in w the polynomial 

F,~(E, x) = ~ fn-t(cl, ..., cn-t)(x)E l (5.3) 
/=0 

satisfies the hypotheses of Theorem 2.3. Hence the coefficients fl and the functions p 

and q are in C ~ ( R ) .  Also the fi, and hence P,~+I, are periodic with period ~. 

Next, let #(x0) be a movable Dirichlet eigenvalue. Since p(x) is a continuous function 

of x E R  and since it is not constant, there exists an x 0 ER such that  s (#(x0))=0,  that  is, 

#(x0) is neither a periodic nor a semi-periodic eigenvalue. Suppose that  for this choice of 

x0 the eigenvalue # :=#(x0)  has algebraic multiplicity k. Let V=ker((HD,~o--#)k) be the 

algebraic eigenspace of #. Then V has a basis {Yl, ..., Yk} such that  (HD,~o--#)Yj =Yj-1 
for j = l , . . . , k ,  agreeing that  yo=0. Moreover, we introduce Vm:=span{yl, . . . ,ym} and 

V0={0}. First we show by induction that  there exists a number L, such that  ( T - 0 ) y ,  

(P~+I-v)yCVm-1, whenever yEVm. 
Let m = l .  Then (HD,~o--#)y=O implies that y=aYl for some constant a, and 

hence y is a Floquet solution with multiplier Q=yl ,2(x0+~),  that is, ( T - g ) y = 0 .  (We 

define, in obvious notation, Yj,k, k = l ,  2, to be the kth component of yj, l<.j<.m.) Since 

P~+I commutes with both L and T, we find that  P~+lY is also a Floquet solution with 

multiplier 6. Since s (#)=0,  the geometric eigenspace of y is one-dimensional and hence 

Pn+ly=vy for a suitable constant ~. 
v-~rn+l 

Now assume that  the statement is true for l<~m<k. Let Y=2_~j=I ajyyEVm+l. 
Note that  (T-~))y satisfies Dirichlet boundary conditions. Hence 

r n + l  m + l  

(HD,zo-#)(T-Q)y = (T-Q) E c~j(HD,xo--tt)yj = E aj(T-~)Yj-1 (5.4) 
j = l  j = l  

m--1 is an element of Vm-1, say equal to v=~j=l  ~jyj. The nonhomogeneous equation 

(HD,xo--#)w-~v has the general solution 

m--1 

j = l  
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where a is an arbitary constant. Since w is in Vm, the particular solution (T-o)y of 

(Hu,xo-#)w-=v is in Vm too. 

Since Q is infinitely often differentiable, so are the functions Yl, ..., Yk. Hence L can 

be applied to (Pn+I-u)y and one obtains 

m + l  m--1 

(L-#)(P,+I-v)y= E aj(Pn+l-v)yj-1 = E "/JYJ (5.6) 
j = l  j = l  

for suitable constants 7j. Thus there are numbers a l  and cr2 such that  

m--1 

(Pn+l -t~)y = E 7jYj+I -~-OLly-~-O~2Yl, (5.7) 
j = l  

where i) is the solution of Ly=#y with ~(x0)=(1,0) t. Note that  (Pn+ly-yy)l(Xo)= 
(P,~+iY)I(XO)=o~I. Let w=(T-o)y and v=(P~+l-~)w. Then wEVm and vEVm-1. 
Hence~ 

(Pn+l Y-/]Y)I (x0 -I- a) = (T(Pn+I - u)y)l (Xo) = ((P~+I - u)Ty)l (xo) 

= ( P n + l  ( p y + w ) ) I  (x0) (5.8) 

= P(P~+lY)I (Xo)~-(Pn+lW)l(XO) = P(:~I. 

On the other hand, (Pn+ly-~y)l(xo+a)=al/p since ~)l(xo+a)=l/p. Thus we have 

0=C~l(p-1/p),  which implies a l = 0  and (Pn+I-tJ)yEVm. 

Hence we have shown that  T and P~+I map V into itself. In particular, we have 

(P=+ly)l(Xo)=O for every yeY. 
Next observe that  the functions Yl,...,Yk defined above satisfy (L-#)Jym=ym_j, 

agreeing that  ym=0 whenever m~<0. Consequently, 

Moreover, 
hA-1 

Pn+lYm = - E (g'~+x-jJ+iAn-J)Ljym 
~=0 (5.10) 

1/ o 3 

"= r=0 \ - - i g n + l - j  Ym+r-j ,2 + i h n _ j  Ym+r--j,1 / 

Since (P~+lYj)l(xo)=yj,l(Xo)=O, evaluating the first component of (5.10) at x0 yields 

n + l  n + l  

O= ( P~+lYm)I (xo)=i E Ym-l,2(xo) ~ E j "'" ( j - l+ 1)# j-zfn-y(x0) 

l=o j=l (5.11) 
Ol F~ 

=i y,,~_~,2(Xo) ~. .-~-F(#,xo 1. 
/=0 
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Letting m run from 1 through k shows that  # is a zero of F~( . ,  x0) of order at least k. 

Therefore, there can be at most n movable Dirichlet eigenvalues counting multiplicities. 

However, if there were less than n movable Dirichlet eigenvalues then, by Theorems 5.1 

and 5.3, there would exist a differential expression of order less than n +  1 which commutes 

with L without being a polynomial of L. Hence there are precisely n movable Dirichlet 

eigenvalues and deg(U)= 2n + 2. [] 

6. A c h a r a c t e r i z a t i o n  of  el l ipt ic  a l g e b r o - g e o me t r i c  A K N S  po t en t i a l s  

Picard's theorem yields sufficient conditions for a linear (scalar) nth-order differential 

equation, whose coefficients are elliptic functions with a common period lattice spanned 

by 2Wl and 2w3, to have a fundamental system of solutions which are elliptic of the 

second kind. We start by generalizing Picard's theorem to first-order systems. Let Tj, 

j = l , 3 ,  be the operators defined by Tjy=y( .  +2wj).  In analogy to the scalar case we 

call y elliptic of the second kind if it is meromorphic and 

y ( ' + 2 w j ) = O j y ( . )  for some QjeC\{0} ,  j = 1 , 3 .  (6.1) 

THEOREM 6.1. Suppose that the entries of A: C--*Mn(C~) are elliptic functions 

with common fundamental periods 2wl and 2w3. Assume that the first-order differential 

system r162 has a meromorphic fundamental system of solutions. Then there exists 

at least one solution r which is elliptic of the second kind. If in addition, the restriction 

of either T1 or Ta to the (n-dimensional) space W of solutions of r162  has distinct 

eigenvalues, then there exists a fundamental system of solutions of ~r=A~ which are 

elliptic of the second kind. 

Proof. T1 is a linear operator mapping W into itself and thus has an eigenvalue 

01 and an associated eigenfunction ul ,  that  is, r162  has a solution Ul satisfying 

ul(x+2 l)=aUl(X). 
Now consider the functions 

ul(x), u2(x)=ul(x+2w3),  ..., u m ( x ) = u l ( x + 2 ( m - 1 ) w 3 ) ,  (6.2) 

where mE( l , . . . ,  n} is chosen such that the functions in (6.2) are linearly independent 

but including ul(x+2mw3) would render a linearly dependent set of functions. Then, 

um(x+2w3) = blul(x)+.. .+bmum(x). (6.3) 

Next, denote the restriction of T3 to the span V of {ul, ...,u,~} by T3- It follows from 

(6.3) that  the range of T3 is again V. Let Q3 be an eigenvalue of T3 and v the associated 
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eigenvector, that  is, v is a meromorphic solution of the differential equation r 1 6 2  

satisfying v(x+2w3)=63v(x). But v also satisfies v(x+2wl)=61v(x) since every element 

of V has this property. Hence v is elliptic of the second kind. 

The numbers 6i and 63 are the Floquet multipliers corresponding to the periods 2wl 

and 2w3, respectively. The process described above can be performed for each multiplier 

corresponding to the period 2Wl. Moreover, the roles of 2Wl and 2wa may of course be 

interchanged. The last statement of the theorem follows then from the observation that  

solutions associated with different multipliers are linearly independent. [] 

What  we call Picard's theorem following the usual convention in [3, pp. 182-185], 

[18, pp. 338-343], [49, pp. 536-539], [58, pp. 181-189], appears, however, to have a longer 

history. In fact, Picard's investigations [77]-[79] in the scalar nth-order case were inspired 

by earlier work of Hermite in the special case of Lam4's equation [50, pp. 118-122, 

266-418, 475 478] (see also [9, w and [103, pp. 570-576]). Further contributions 

were made by Mittag-Leffler [66] and Floquet [34]-[36]. Detailed accounts on Picard's 

differential equation can be found in [49, pp. 532-574], [58, pp. 198 288]. For a recent 

extension of Theorem 6.1 see [39]. 

Picard's Theorem 6.1 motivates the following definition. 

Definition 6.2. A (2 x 2)-matrix Q whose diagonal entries are zero and whose off- 

diagonal entries are elliptic functions with a common period lattice is called a Picard- 
AKNS potential if and only if the differential equation Jr162162  has a meromorphic 

fundamental system of solutions (with respect to the independent variable) for infinitely 

many (and hence for all) values of the spectral parameter E E C .  

Recall from Theorem 3.3 that  J r  Qr  = E r  has a meromorphic fundamental system 

of solutions for all values of E if this is true for a sufficiently large finite number of values 

of E. 

In the following assume, without loss of generality, that  Re(wi)>0, Re(w3)~>0, 

Im(w3/wi)>0. The fundamental period parallelogram then consists of the points E =  

2wis+2w3t, where 0~<s, t < l .  

We introduce 8 E (0, 7~) by 

and for j = 1 , 3 ,  

ei0= w3 w E1 (6.4) 
Wl Iwal 

Qj (~) = tjQ(tjr + xo), (6.5) 

where tj=wj/Iwjl. Subsequently, the point Xo will be chosen in such a way that  no pole 

of Qj, j = l ,  3, lies on the real axis. (This is equivalent to the requirement that  no pole 

of Q lies on the line through the points x0 and x0+2Wl nor on the line through x0 and 
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x0q-2w3. Since Q has only finitely many poles in the fundamental period parallelogram 

this can always be achieved.) For such a choice of x0 we infer that  the entries of Qj(r 

are real-analytic and periodic of period ftj=2]wjl whenever ~ is restricted to the real 

axis. Using the variable transformation x=tjr ~#(x)=x(~) one concludes that  ~b is 

a solution of 

J~b'(x) +Q(x) ~b(x) = E~p(x) (6.6) 

if and only if X is a solution of 

JX'(~) +Qj  (r162 = AX(r (6.7) 

where A=tjE.  

Theorem 4.2 is now applicable and yields the following result. 

THEOREM 6.3. Let j = l  or 3. Then all 4wj-periodic (i.e., all 2wj-periodic and all 

2wj-semi-periodic) eigenvalues associated with Q lie in the strip Sj given by 

Sj = { E e C  I lIm(tjE)l <~ Cj} (6.8) 

for suitable constants Cj >0. The angle between the axes of the strips $1 and $3 equals 
o~(o,~). 

Theorem 6.3 applies to any elliptic potential Q whether or not it is algebro-geometric. 

Next we present our principal result, a characterization of all elliptic algebro-geometric 

potentials of the AKNS hierarchy. Given the preparations in w167 the proof of our 

principal result, Theorem 6.4 below, will be fairly short. 

THEOREM 6.4. Q is an elliptic algebro-geometric AKNS potential if and only if it 
is a Picard-AKNS potential. 

Proof. The fact that  any elliptic algebro-geometric AKNS potential is a Picard po- 

tential is a special case of Theorem 3.6. 

Conversely, assume that  Q is a Picard AKNS potential. Choose R > 0  large enough 

such that  the exterior of the closed disk D(0, R) of radius R centered at the origin 

contains no intersection of $1 and $3 (defined in (6.8)), that  is, 

(C\D(0 ,  R))n(S1NS3) = ~. (6.9) 

Let Qj,+(A) be the Floquet multipliers of Qj, that  is, the solutions of 

Q~ - tr(Tj) Qj + I = 0. (6.10) 
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Then (6.9) implies that  for E E C \ D ( 0 ,  R) at most one of the eigenvalues QI(tlE) and 

p3(t3E) can be degenerate. In particular, at least one of the operators T1 and T3 

has distinct eigenvalues. Since by hypothesis Q is Picard, Picard's Theorem 6.1 ap- 

plies with A = - J ( Q - E )  and guarantees the existence of two linearly independent so- 

lutions r  and r  of Jr162162  which are elliptic of the second kind. 

Then Xj,k(~)=r k = l , 2 ,  are linearly independent Floquet solutions associ- 

ated with Qj. Therefore the points A for which Jx'+Qjx=AX has only one Floquet 

solution are necessarily contained in D(0, R) and hence finite in number. This is true 

for both j = l  and j = 3 .  Applying Theorem 5.2 then proves that  both Q1 and Q3 are 

algebro-geometric. This implies that Q itself is algebro-geometric. [] 

The following corollary slightly extends the class of AKNS potentials Q (x) considered 

thus far in order to include some cases which are not elliptic but very closely related to 

elliptic Q(x). Such cases have recently been considered by Smirnov [90]. 

COROLLARY 6 . 5 .  Suppose that 

( 0 --iq(x)e -2(ax+b) ) (6.11) 
Q ( x ) =  ip(x)e2(ax+b ) 0 ' 

where a, bEC and p, q are elliptic functions with a common period lattice. Then Q is 
an algebro-geometric AKNS potential if and only if Jq2'+QqJ=EkO has a meromorphic 
fundamental system of solutions (with respect to the independent variable) for all values 
of the spectral parameter EEC. 

Proof. Suppose that  for all values of E the equation L~=Jqy'+Q~=E~ has a 

meromorphic fundamental system of solutions. Let 

= 0 e - a x - b  " 

Then T L T - l = L - i a I = J d / d x + Q - i a I ,  where 

(6.12) 

Moreover, L~=Eq2 is equivalent to L(T~)=(E-ia)(TtP). Hence the equation L ~ =  

(E-ia)q2 has a meromorphic fundamental system of solutions for all E. Consequently, 

Theorem 6.4 applies and yields that  Q) is an algebro-geometric AKNS potential. Thus, for 

some n there exists a differential expression P of order n +  1 with leading coefficient _ j n  

such that  [P, L] =0. Define P=T-1PT.  The expression P is a differential expression of 

order n +  1 with leading coefficient _ j n  and satisfies [P, L] = 7  - 1  [P, L+iaI]T=O, that  is, 

oq) /013/ 
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Q is an algebro-geometric AKNS potential. The converse follows by reversing the above 

proos [] 

We add a series of remarks further illustrating the significance of Theorem 6.4. 

Remark 6.6. While an explicit proof of the algebro-geometric property of (p, q) is 

in general highly nontrivial (see, e.g., the references cited in connection with special 

cases such as the Lam~Ince  and Treibich-Verdier potentials in the introduction), the 

fact of whether or not JkO'(x) + Q(x) kO(x)--E~(x) has a fundamental system of solutions 

meromorphic in x for all but finitely many values of the spectral parameter E E C  can 

be decided by means of an elementary Frobenius-type analysis (see, e.g., [40] and [41]). 

To date, Theorem 6.4 appears to be the only effective tool to identify general elliptic 

algebro-geometric solutions of the AKNS hierarchy. 

Remark 6.7. Theorem 6.4 complements Picard's Theorem 6.1 in the special case 

where A ( x ) = - J ( Q ( x ) - E )  in the sense that it determines the elliptic matrix functions 

Q which satisfy the hypothesis of the theorem precisely as (elliptic) algebro-geometric 

solutions of the stationary AKNS hierarchy. 

Remark 6.8. Theorem 6.4 is also relevant in the context of the Weierstrass theory of 

reduction of Abelian to elliptic integrals, a subject that attracted considerable interest, 

see, for instance, [7], [8], [9, Chapter 7], [10], [11], [21], [29]-[31], [54], [57], [59], [64], 

[84], [85], [91]. In particular, the theta functions corresponding to the hyperelliptic 

curves derived from the Burchnall-Chaundy polynomials (2.25), associated with Picard 

potentials, reduce to one-dimensional theta functions. 

7. Examples 

With the exception of the studies by Christiansen, Eilbeck, Enol'skii, and Kostov in [21] 

and Smirnov in [90], not too many examples of elliptic solutions (p, q) of the AKNS 

hierarchy associated with higher (arithmetic) genus curves of the type (2.25) have been 

worked out in detail. The genus n= 1 case is considered, for example, in [53], [76]. More- 

over, examples for low genus n for special cases such as the nonlinear Schrhdinger and 

mKdV equation (see (2.46) and (2.49)) are considered, for instance, in [5], [8], [62], [65], 

[75], [89]. Subsequently we will illustrate how the Frobenius method, whose essence is 

captured by Proposition 3.2, can be used to establish existence of meromorphic solu- 

tions, and hence, by Theorem 6.4, proves their algebro-geometric property. The notation 

established in the beginning of w will be used freely in the following. 
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Example 7.1. Let 

p(x) = q(x) = n(r (7.1) 

where nCN,  ~(x)=~(x;wl ,  w3) denotes the Weierstrass zeta function, and ~2=~(w2). 

The potential (p, q) has two poles in the fundamental period parallelogram. Consider 

first the pole x--0. In this case we have 

(0 o) R = , ( 7 . 2 )  
n 

whose eigenvalues are i n ,  that is, A=n. Moreover, since p=q is odd, we have P2j - I :  
h(2) is a q2j-1---- 0. One proves by induction that b~ ) is a multiple of (1, 1) t and that v2y_ 1 

multiple of (1 , -1 )  t. Hence h(2) is a multiple of (1 , -1 )  t, that  is, it is in the range V2n--1  

of R - n .  Hence every solution of L~=EkO is meromorphic at zero regardless of E. 

Next consider the pole x=w2 and shift coordinates by introducing ~=x-w2.  Then 

we have p(x)=q(x)=n(r162 and hence 

(0 o) R =- . (7.3) 
- n  

One can use again a proof by induction to show that h(2) is in the range of R - n ,  which V2n--  1 

is spanned by (1, 1) ~. 

Hence we have shown that the matrix 

( 0 
Q(x) 

,. in (~(x) -~(x-w2)-~2)  

is a Picard AKNS and therefore an algebro-geometric AKNS potential. 

Example 7.2. Here we let p=l  and q=n(n+l)gg(x), where HEN. Then we have just 

one pole in the fundamental period parallelogram. In this case we obtain 

1 n(no+ 1) ) (7.5) 
R = ( 1  

and ~ = n + l .  Since q is even we infer that q2j_l=0. A proof by induction then shows 
that b~2j ) is a multiple of (n-2 j ,  1) t and that h(2) ~2j-1 is a multiple of (1, 0) t. In particular, 

b(2~ is a multiple of ( - n ,  1) t, which spans the range of R-)~.  This shows that 

Q ( x ) =  ( 0i -in(n+l)~(X))o (7.6) 

is a Picard-AKNS and hence an algebro-geometric AKNS potential. 
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Incidentally, if p-- l ,  then J~+Q~=EffJ is equivalent to the scalar equation 

2 - u ~ 2 - - -  92 where ko=(~t, r t and ~ 1 = r  Therefore, if - q  is an elliptic 

algebro-geometric potential of the KdV hierarchy then by Theorem 5.7 of [45], r is 

meromorphic for all values of E. Hence ko is meromorphic for all values of E and there- 

fore Q is a Picard-AKNS and hence an algebro-geometric AKNS potential. Conversely, 

if Q is an algebro-geometric AKNS potential with p=  1 then - q  is an algebro-geometric 

potential of the KdV hierarchy (cf. (2.48)). In particular, q(x)=n(n+l)p(x) is the cele- 

brated class of Lamd potentials associated with the KdV hierarchy (cf., e.g., [40] and the 

references therein). 

Example 7.3. Suppose that  e2=0, and hence g2=412j and g3=0 (where ej=~(wj), 
l~<j<3). Let u(x)=-p'(x)/(2ez). Then, near x=0,  

U( X) - -  1 5 X..~._O(x3) ' (7.7) 
e l  x 3  

and near x=iw2, 

,it(X) = e l ( X T ~ M 2 )  3 3 5 ~el(xTw2 ) + O((x:Fw2)7). (7.8) 

Now let p(x)=3u(x) and q(x)=u(x-w2). Then p has a third-order pole at 0 and a 

simple zero at w2 while q has a simple zero at zero and a third-order pole at w2. Let us 

first consider the point x=0.  We have 

R =  3/11 ' (7.9) 

and hence A=I.  Moreover, p2=q2=O, p4---53-el, and 3 3 q4=--~el. Since A--1 we have to 

show that  b~ 2) is a multiple of (qo, -1)  t. We get, using p2=q2=O, 

5(3 2 ) 1 4 __qOP4) t ' (7.10) = (~qoE 4-q4, -~E1 4 

which is a multiple of (qo,-1) t if and only if q4=p4q~, a relationship which is indeed 

satisfied in our example. 

Next consider the point x=w2. Changing variables to ~=x-w2 and using the pe- 

riodic properties of u we find that  p(x)=3q(~) and q(x)=�89 Thus q has a pole at 

~=0 and one obtains m=2,  p0 =311, qo=l/el, P2=q2 =0, P4 ---- - -  ~9 el3 and q 4 = -  ~e1.1 Since 

A=3, we have to compute again b~ 2) and find, using p2=q2 =0, 

5(3 2) (-lqoE4-1-3q4, 1 4 t = - ~E -qoP4) , (7.11) 

which is a multiple of (q0, -3)  t if and only if 9q4=p4q 2, precisely what we need. 

Hence, if e2=0 and u(x)=-p'(x)/(2el), then 

( 0 - in(x-w2))  (7.12) 
Q ( x ) =  3in(x) 0 

is a P ica r~AKNS and therefore an algebro-geometric AKNS potential. 
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2 ~0// X e 2 Example 7.4. Again let e2=0. Definep(x)--2( ( ) -  1) and q(x)=-~9(x-w2)/e 2. 
First consider x=0. We have m = - 3 ,  po=4, qo=l, p2=q2=0, p4=__~e 12 2 and q4=--~el.1 2 
This yields A=I and we need to show that b (2) is a multiple of (1,-1) t. We find, using 

p2=q2=0 and qo--A=l, 

b(2)_;/ 1 ~ 5  1 _  _ 1 E 5 F _  5 t 
4 - -  v l - ~ - ~ : ~  - ~ / J 4 - t / 4 ,  ~P4--q4) �9 (7.13) 

This is a multiple of (1,-1) t if 2q4=P4, which is indeed satisfied. 

Next consider x=w2. Now q has a second-order pole, that is, we have m--=l. More- 

ova r, 

- 1 (  l e l  2 ( ) ~ ) = - -  q(x) ,x,~v2,2+ (x-w2)2+O((x-w2) 2) (7.14) 

and 
p(x) = -2el  2 + 96e 4 ( x -  w2) a + O((x-w2)6). (7.15) 

We now need b~ 2) to be a multiple of (qo,-2) t, which is satisfied for q2=P2=0. 

Hence, if e2=0, then 

( 0 ) 
Q ( x ) =  2- ,, 

is a Picard AKNS and thus an algebro-geometric AKNS potential. 
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