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1. Conformal naturality 

Let G be the group of all conformal automorphisms o f D = { z E C ;  Izl<l}, and G+ the 

subgroup, of index two in G, of orientation preserving maps. The group G+ consists of 

the transformations 

z ~ - ~  z - a  
1-az 

with IAl=l and la[<l. For each such a, the map 

z - - a  

ga: Z ~ 1-dz 
(1.1) 

in G+ takes a into 0 and 0 into - a .  

The group G operates on D, on S l=aD,  on the set ~(S l) of probability measures 

on S ~, on the vector space if(D) of continuous vector fields on D, etc. Explicitly 

g . z = g ( z )  if z E D U S  ~, 

(g.l~) (A) = g . l t (A)  = Iz(g -I(A))  if # E ~(S  1) and A c S  l is a Borel set, 

(g 'v)(g(z))  = g.(v)(g(z))  = v(z)g'(z)  if vE 3-(D), z E D ,  and gEG+,  

(g.v)(g(z))  = g.(v)(g(z))  = O(z) g~(z) if vE 3(D),  z E D ,  and g E G \ G + .  

(We use the notations g~ and gzfor the complex derivatives of the function g(z), and we 

(~) This research was partly supported by the National Science Foundation. 
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write g' instead of gz if g is holomorphic.) The group Gx G operates on the space qr 

of continuous maps o f / )  into itself, or on c~(S1), by (g, h).cp=gocpoh -1. 
If G operates on X and Y, a map T: X--> Y is called G-equiyariant, or conformally 

natural, if T(g.a)=g.T(a) holds for g E G  and aEX.  If G x G  operates on X and Y, we 

say that T: X--> Y is conformally natural if it is Gx G-equivariant. 

Example. There is a unique conformally natural map from D to ~($1). It is the map 

z~-->rlz, where r/z is the harmonic measure of z: 

tlz(A) 2x JA Iz-~[ 2 

if A=S 1 is a Borel set. 

The purpose of this paper is to extend any homeomorphism q~ of S 1 to a homeo- 

morphism ~p=E(cp) o f / ) ,  in a conformally natural way. This extension will have the 

property that if q~ admits a quasiconformal extension, then �9 is quasiconformal (but not 

with the best possible dilatation ratio). Moreover �9 depends continuously on q~. 

However the assignment q~->~ is not compatible with composition: i.e., E(~0oq~)#= 

E(~0) o E(q0) in general. 

The idea is the following: given q0, to each zED we assign the measure tp,(r/z) on 

S 1. Then we define the conformal barycenter w ED of this measure and set w=~(z). 

Each of these steps is done in a conformally natural way. The last step is to show that 

is a homeomorphism. 

We develop the general properties of the extension operator tp ~ i n Sections 2, 3, 

and 4. After that we concentrate on the quasiconformal case. Our results in Sections 5 

and 6 have applications to the theory of Teichmiiller spaces, which we give in Section 

7. In Sections 8 through 10 we compare the coefficient of quasiconformality K* of 

with 

K(tp) -- inf{K; q0 has a K-quasiconformal extension to/)} .  

Our results are rather precise when K(tp) is close to one (see Corollary 2 to Proposition 

5 in Section 9), but they leave something to be desired when K(tp) is large. 

In Section l 1 we briefly discuss the higher dimensional case. Given a homeomor- 

phism q0 of S n-~ and a point x in B", we again define ~(x) to be the conformal 

barycenter of the measure tp,(~/,~). In general �9 is not a homeomorphism when n~>3, 

but Pekka Tukia has pointed out to us that �9 is a quasiconformal homeomorphism if tp 

is quasiconformal with sufficiently small dilatation. We prove that result in Section 11. 
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Finally, we want to thank Pekka Tukia for a number of helpful suggestions, 

especially for encouraging us to write Section 11 and to prove in Section 5 that if q0 has 

a quasiconformal extension then in addition to being quasiconformal, �9 and dp-~ are 

Lipschitz continuous with respect to the Poincar6 metric. 

2. The conformal barycenter 

Our purpose in this section is to assign to every probability measure p on S ~, with no 

atoms, a point B(a)ED so that the map/~-->B(/z) is conformally natural and satisfies 

if and only if f r (2.1) B(/z) = O 
Js I 

There is a unique conformally natural way to assign to each probability measure/~ 

on S 1 a vector field ~, on D such that 

~(0) = ~,  ~d~,(~). (2.2) 

Indeed, formula (2.2) is equivariant with respect to rotations and complex conjugation. 

For general w in D we must write 

1 
~,,(w) = (gw)'(w) ~(~~176176 

i.e. 

and that will make the assignment P ~ u  conformally natural. (Here gw:D--->D is 

defined as in formula (1.1).) It is clear from (2.3) that the vector field ~, is real-analytic. 

PROPOSITION 1 and DEFINITION. Suppose p has no atoms. Then ~u has a unique 

zero in D. We call it the conformal barycenter B(u) o f  p. 

Proof. We compute 

~,,(w) = (1-1wlZ) J~, (~-w) (l+~b~) a~,(~)+o(w) 

= ~(0)-w+ a~ Js[1 ~2 d/~(~)+o(w). 
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The Jacobian of ~u at w=O is therefore 

J~,,(o) = I(~,,)~,(o)1 =-I(~,,)~-(o)1 ~ 

SO 

lff~ iz2_~212d~(~)Xd~(z)>O. (2.4) J~,,(o) = T ,• 

If ~u(O)=O, we conclude that w=O is an isolated singular point of index one. T h e  

conformal naturality implies that every zero of the vector field ~u in D is an isolated 

singular point of index one. To complete the proof it therefore suffices to show that for 

rE]-1 ,1[  close to 1 the vector field ~u has no zero on the circle 

cr = {w; Iwl = r}  

and points inward. 

LE~MA 1. Re ~,(0)>0/f~,([ '~=~", e§ 

Proof. Re ~F'(0)=/'Js Re (r d/~(~)~>(- 1).~ +(V'Y/2).~>0. Q.E.D. 

To complete the proof of Proposition 1, take a>0  such that/z(J)~<] for any arc 

J~S  ~ of length ~<a, and take ro<l such that the arc J,~ of length a centered at 1 is seen 

from r0 with angle 3~r/2 in Poincar6 geometry (i.e., gro(Ja) has length 3~/2). If 

Iwl---r>~ro, let g be the conformal map in G + that takes w to 0 and -w/Iwl to 1, and let 

v=g.(u). Then Re ~v(0)>0 by Lemma 1, so ~v(0) points into g(Cr), and the conformal 

naturality implies that ~,(w) points into Cr. Q.E.D. 

Remarks. (1) It follows from the definition that B(/z) depends in a conformally 

natural way on/~ and satisfies (2.1). 

(2) The result still holds if/z has atoms provided none of them has weight~>�89 (If no 

atom has weight>~ the proof is unchanged; otherwise modify it slightly.) 

(3) If q0:S1-->S 1 is a homeomorphism, then B(cp,(r/o)) is the unique point wED 
such that the homeomorphism gwocp:S1--->S 1 has mean value zero. Indeed, if 

/z=q~.(r]o) and wED, then 
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1 L ~0(O-w IdOl (1-1w12)-l~,(w) = ~ , l-W~0(O 

is the mean value of gw o ~. 

(4) There is a second proof of the uniqueness of B(u). One can write 

~,(z) = fs, ~(z) d~,(O 

where ~c=~o~ is the unit vector field pointing toward ~. The field ~ is the gradient (in 

Poincar6 geometry) of a function h c whose level lines are the horocycles tangent to S 1 

at ~. (This function is defined up to a constant, and can be chosen so that h~(O)=O.) 

Thus ~a is the gradient of 

h,:z~--> I hr 
ds I 

B(u) is a critical point of h a, and the uniqueness of B(/z) can be proved by showing that 

the restriction of - h  a to Poincar6 geodesics is strictly convex. We chose a proof that 

relies on formula (2.4) because this formula will be used in Sections 3 and 10. Thurston 

has remarked that the function - h  a can be interpreted as the average distance to S 1. In 

fact, if d(z, w) is the Poincar6 distance from z to w in D, then 

-he(z) = - �89 ( ~ ' ~  
\ Iz-~l ~ / 

= l im [d(z, rO-d(O, r)]. 
r---~ 1 - 

3. Extending h o m e o m o r p h i s m s  of  S l 

Given a homeomorphism q0: S'---,S l, we define an extension E(q~)=q):/)-->/5 by putting 

~(z)=9(z) if z E S l and 

�9 (z)=B(q),(~z)) i f zED.  

Clearly ~ < b  is conformally natural, i.e. 

E(gocpoh) =goE(~ )oh  for all g and hEG. 

LEMMA 2. The map ~=E(q)):/9--->/} is continuous at every point of  S 1. 
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Proof. For each arc J c S  1, let V(J) be the set o f z E D  such that J is seen from z 

with an angle ~>:r/2 in Poincar6 geometry. The boundary of V(J) is an arc F of the circle 

through the endpoints of J that makes an angle :t/4 with S 1. For w E F there is a map 

g E G such that g(w) =0, g(J)= ['~:~/4, e+~'7~], and g(V(J))=D n {z; IzV~--- l l~< 1 }. It fol- 

lows from Lemma 1 and conformal naturality that if/z(J)~>], the vector field ~, points 

into V(J) on F, and therefore B~)  E V(J). 
Let U(J)={zED;~Iz(J)>~}. Then dp(U(J))cV(q~(J)). Now if ~ES 1, when J ranges 

among neighborhoods of r in S ~, JU U(J) is a neighborhood of r i n / )  and the sets 

r 0 (V(cp(J)) span a fundamental system of neighborhoods of r162 in/) .  Therefore (I) 

is continuous at r Q.E.D. 

THEOREM 1. The map (I)=E((p):/)---)/) is a homeomorphism whose restriction to D 

is a real-analytic diffeomorphism. 

Proof. By Lemma 2, it suffices to prove that �9 is real-analytic and that its Jacobian 

is nonzero at every zED. By the conformal naturality we may assume that z=0, 

(I)(0)=0, and (p: SI--->S ~ has degree one. 

By definition, i f zED,  r is the unique w E D  such that 

I Ss ( q~(O-w '~ (1-lzl 2) [d~l--o. (3.1) 
F(Z,W) = - - ~  , \ l 'Wqo(~)/ Iz-~l 2 

The function F is real-analytic in D• and its derivatives at (0,0) are 

F'~(O,O)-- ~ -  ~o(~)Idr Fi(O,O)-- ~ -  cq~(r162 
I I 

(3.2) f 1 

r(o,o)-- -1, F;(o,o)-- ! q~(O21dr 
Js 2 

Formula (2.4), with/z=tp.(r/0 ), implies 

1 (1 fffs Icp(z)2-qj(OZl2ldz[xld~l>o. (3.3) IF'(0'0)12-[F'(0'0)12 = T ~ -  ,• 

The Implicit function theorem therefore implies that ~(z) is a real-analytic function of z 

near z=0. Moreover, implicit differentiation gives the formula 

IC(o,o) l 2-  IF~-(o,o)l 2 
I(I)'z(~176 = IF'(0,0)I 2-  IF'(0,0)I 2 
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for the Jacobian of �9 at z=0. Since F'z(0,0) and F'~(0,0) are the coefficients c I and c_ 1 in 

the Fourier expansion 

tp(O= ~ c ,~ n, (3.4) 

Theorem 1 follows from 

LEMMA 3. I f  qg"S1---->S 1 is a homeomorphism of  degree one with Fourier series 

(3.4), then 1c11>1c_11. 

Although this lemma is well known, we include a proof so that we can make some 

estimates later. We compute 

1 2 
]C112--1C-112~ (~ -~)  f fsl• 1Re[cp(~)(p(z)(z~-~)]ld~l• 

Put z=e i~, ~ = e  it , and q~(eiU)=ei~~ Here ~p: R---~R is continuous and strictly increas- 

ing, and ~p(u+2~r)=~p(u)+2~r. Now 

2 2:t 2n 
IC1'2--1C-112 = 2 ( -~- ) f~=of t=oSin(s - t ) s in (~p(s ) -Vd( t ) )dsd t  

sin u sin (~O(t+ u)-~O(t)) dt du 
= 2 ~ =o .,,=o 

= 2  sinu [sin(V2(t+u)-~O(t))+sin(~O(t+2~)-~2(t+u+~))]dtdu. 
=0 dt=O 

Therefore 

Icd2-1c-'12=~-J / smu H(t,u)dtdu, 
\ / Ju=O =0 

(3.5) 

with 

H(t, u) = sin 0p(t + u ) -  ~p(t)) + sin 0P(t + 2 : 0 -  ~(t + u + ~r)) 

+ sin (~(t+:r+U)-v2(t+~r))+sin (~(t+~r)-~(t+u)). 
(3.6) 

The integral (3.5) is positive because if 31, t:t2, 6t3, Ct4 are positive numbers whose sum 

is 2:t, then E4=~ sin aj>0. The proof of Lemma 3 and Theorem 1 is complete. 
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Remarks. (1) The quantity If 12-1c-d 2 is the Jacobian at z=0 of the harmonic 

function u:D---~C with boundary values q0. It has been known for some time (see 

Choquet [7] and Kneser [12]) that a harmonic function u: D ~ C  whose boundary values 

map S 1 homeomorphically onto a convex curve F is a diffeomorphism onto the interior 

ofF .  

(2) The extension operator q0~E(99)=r is uniquely determined by the conformal 

naturality and the property that ~(0)=0 if q0 has mean value zero. Indeed, if 

w=B(tp.(r/o)), then gwoq~ has mean value zero, so O=E(gwoq~)(O)=gw(~(O)). There- 

fore �9 (0)=B(tp.(r/o)), and the formula C}(z)=B(q~.(rlz)) follows by conformal naturality. 

4. Dependence on 99 

To study how E(q0) depends on qg, it is convenient to think of the set ~Le(S 1) of 

homeomorphisms tp: SI-~s 1 as a subset of the Banach space cg(S~, C) of complex- 

valued continuous functions on S ~, with the sup norm. For each q0 in ~(S ~) the 

extension q~=E(9) belongs to the group Diff(D)n ~(/)) of C | diffeomorphisms of D 

with homeomorphic extensions t o / ) .  We regard Diff(D) and ~(/)) as subsets of the 

vector spaces C~(D, C) and cg(/), C), each with its standard topology, and we give 

Diff(D) n ~e(/)) the topology induced by the diagonal embedding in Diff(D)x ~e(/)). Both 

~(S 1) and Diff(D) t3 ~e(/)) are topological groups. 

PROPOSITION 2. The map E: ~a(S1).----)Diff(D)n ~(/3) is continuous. 

In other words the map h: (z, cp)~E(cp)(z) o f / ) x  ~(S l) in to / )  is continuous, and 

the partial derivatives of h (of all orders) with respect to z and ~ are continuous maps of 

Dx~e(S ~) into C. We shall prove that h is continuous at every point (z, tp) with zES ~, 
then that on Dx~e(S~) it is locally induced by an analytic map of an open set W of 

Cxc~(S~,C) into C. 

Proof. (a) Continuity at points of  SIx~(SI). Consider a homeomorphism 

q% E ~(S 1) and a point Zo E S 1. Let us return to the proof of Lemma 2. Let V1 be a 

neighborhood of ~po(zo) in / ) .  One can find a neighborhood J1 of tpo(zo) in S l such that 

V(JOcV 1, and then neighborhoods J0 of z0 in S 1 and W 0 oftP0 in cg(SI, C) such that 

99(Jo)cJl for each q0EW 0. Then U(Jo) is a neighborhood of z0 in /), and 

c} (U(Jo)) cV(jO for each q0E W 0. 
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(b) Local analyticity in D x ~($1). Let f~ be the open set in D x C x ~(S 1, C) defined 

by 

n = {(z, w,  ~)  ~ D x C x  <r C); Iwl" Ilq~II<l}, 

and let F: f~--->C be the real-analytic function 

1 tp(r 1--IT[ 2 
F(z, w,(p) : - ~  fs' ( 1 ~ ) ) ] z - ~ l  2 Id~l. 

Choose a homeomorphism q~o:S1-->S 1 and a point zoED. Put wo=E(cpo)(Zo). 

Then F(zo, wo, q~o)=0. Moreover, IFw[ 2-  IF'l 2 is positive at (To, Wo, q~o) because it is a 

positive multiple of the Jacobian of the vector field ~/, at its unique zero Wo; here/z is 

the measure q~.(~/Zo) on S 1. The Implicit function theorem therefore implies that all 

zeros of F near (To, Wo, tpo) are given by a real-analytic function w=h(z, cp), defined in a 

neighborhood of (Zo,~o) in Dx~r In particular E(cp)(z)=h(z, ~) if (z, ~) in 

Dx~e(SI) is close to (zo, q~o). Q.E.D. 

COROLLARY. The functions fo~->E(q~)z(0) and q~->E((p)~-(0) on ~e(SI)are continuous. 

5. Quasiconformal extensions 

THEOREM 2. I f  the homeomorphism cp: S1----->S 1 admits a quasiconformal extension 

to 1), then ~=E(q~) is quasiconformai. In fact both ~P and ~p-i are Lipschitz continu- 

ous in the Poincar~ metric on D. 

Proof. Let ~+(S l) be the set of q~ E ~e(sl) that have degree one. For q~ E ~+(S 1) 

put ~=E(q~) and define positive functions a(tp) and fl(~0) on D by 

I~'z(z)l-I~(z)l / 1 
a(tp) (z) = 1 -I  ~,(z)l 2 1 -Izl 2' 

~(~)(z) = I~'~(z)l+l~(z)l / 1 
]-I~,(z)I 2 1-1zl 2" 

The Lipschitz continuity of �9 and ~-1  in the Poincar6 metric is equivalent to the 

existence of positive numbers a and b such that 

a~a(cp)(z)~fl(cp)(z)<~b for all TED. (5.1) 
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These inequalities in turn imply that (I) is quasiconformal with dilatation ratio <-b/a. We 

must therefore prove that if q0 admits a quasiconformal extension to/5, then (5. I) holds 

for some positive numbers a and b. 

Since G is a group of isometries in the Poincar6 metric, the conformal naturality of 

the map (p---)(I) implies that 

a(g o q~ o h) = a(cp) o h and fl(g o q~ o h) = fl(9) oh  

for all g and h in G+. Therefore it suffices to prove that 

and 

a(K) = inf {a(q0) (0); q0 E ~x(S~)} 

b(K) = sup {fl(9) (0); 9 E ~aK(Sl)} 

are finite positive numbers if ~t~ 1) is the set of q0 E ~+(S 1) that admit a K-quasicon- 

formal extension to /5  and fix the points 1,i, and - I .  That is easy. Theorem 1 implies 

that the functions 9~--m(tp)(0) and 9~f l (9) (0)  are positive on X%(sl). They are also 

continuous, by Proposition 2 and its corollary. Since the set ~ r (S1)c~+(S  1) is 

compact (see w of [13, Chapter II]), we must have 0<a(K) and b(K)<oo. Q.E.D. 

Remarks.  (I) The proof shows that for each K~> 1 there is a number K* such that 

is K*-quasiconformal if q0 has a K-quasiconformal extension. We shall estimate K* as a 

function of K in Sections 9 and 10. 

(2) The proof used only the fact that the set of q0E ~+(S !) admitting a K- 

quasiconformal extension to /5  is G§ x G§ invariant and has compactness properties. 

The fact that invariance and compactness properties of this kind characterize the 

q0 E ~+(S 1) with quasiconformal extensions to /9  was proved by Beurling and Ahlfors 

[6]. They also gave a simple geometric characterization of these ~p and defined a 

quasiconformal extension operator q 0 ~ .  Their extension operator is not conformally 

natural, but it can be taken to be Gr162 equivariant if Gr is the subgroup of G leaving 

a given point ~ E S 1 fixed. 

6. Dependence on lu 

The most important invariant of a quasiconformal map f ." /5~D is its complex dilatation 

P( f )  =f~/f~. 
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In this section we study how/t(r  depends on (p if r is quasiconformal. We need 

some notations. 

Let M be the open unit ball in the Banach space L~(D, C). For each/t EM there is 

a unique quasiconformal map f~' o f / )  onto itself that fixes the points 1,i, and - 1 and 

satisfies the Beltrami equation 

f z  =l~f'z 

in D. Let qr be the restriction o f f  ~' to S 1. By Theorem 2, E(qr is quasiconfor- 

mal, so its complex dilatation belongs to M. That determines a map 

g:/z ~ E  (q~)~/E(~)~ (6. I) 

from M to M. Since E((/r fixes the points I,i, and - 1 ,  (6.1) implies 

E(q~')=f  ~ for a l lpEM.  (6.2) 

PROPOSITION 3. The map o:M--+M defined by (6.1) is continuous. In fact, i f  

0<k< 1, then o is uniformly continuous on the set 

Mk = {1~ EM; ILull ~< k). 

Proof. Fix k E ]0,1 [. First we shall prove that the function p ~ o ~ ) ( 0 )  is uniformly 

continuous on Mk. If not, there are sequences (~,) and (v,) in Mk and a number e>0 

such that ILu,,-vnll--,0 but 

Io~u,)(0)-o(vn)(0)}>e for all n. (6.3) 

By passing to a subsequence we may assume that i f"  converges uniformly i n / )  to 

some if'. Since also converges to fl '  uniformly in / ) .  But then the 

corollary to Proposition 2 implies that of/t,,)(0) and o(v,)(0) converge to the same limit 

o(~) (0). That contradicts (6.3), so/~,--~a(u) (0) is uniformly continuous in Mk. 

We will use conformal naturality to finish the proof. First we identify M with the 

set of bounded measurable conformal structures on D by associating the function/~ E M 

with the conformal class of the metric 

ds = [dz+l~(z) d~]. (6.4) 

We denote by D~, the disk D with the conformal structure determined by (6.4). Thus, 

if': D~,--+Do is a conformal map. 

3-868285 Acta Mathematica 157. Imprim6 le 15 octobre 1986 
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The group G acts on M so that v = g , ~ )  if and only if the map g: D~---~D,, is 

if and only if /a = (vog)g'/g' for g6G+, 

if and only if ~ = (v o g) g~/g~ for g E G\G+.  

conformal. Explicitly, 

v = g . (u)  

v = g , ~ )  
(6.5) 

LE~IA 4. v=g,(~U) if and only zff~ogo(f l ' )  -I EG. 

Proof. By definition, v--g.(u) if and only if g:D~-~D, is conformal. Since 

f~:Dv--->Do and F :  D~,--~Do are conformal, v=g.(u) if and only if 

f~ o go(fa)-l: Do-->D o 

is conformal. Q.E.D. 

COROLLARY. The map o: M--->M is conformally natural. 

Proof. If g E G and v=g.(u),  then Lemma 4 gives 

f~og =hof~ 

for some bEG. Therefore tp~og=hotp u on S 1, so 

E(~V) o g  -- h o E ( ~ )  

in/) .  By (6.2), f~ so Lemma 4 implies o(v)--g.(a(p)). Q.E.D. 

End of proof of  Proposition 3. We have already proved that given k E ]0,1[ and e>0 

there is 6>0 such that 

[ o ~ )  ( o ) - o ( v )  (o)l < e 

if t~t-vIl<o and g, vEMk. If gEG, then (6.5) implies IIg,~)lI=l~ull and 

[[g,t~)-g,(v)ll--lLu-vll, so (6.5) and the corollary to Lemma 4 give 

[o~) (g-1(0))-o(v) (g-~(0))l = Io(g.0z)) (0)-o(g.(v))  (0)1 < e 

if ILu-vll<o and I~,vEMk. But g-l(0) is any point of D. Q.E.D. 

Remark. We shall prove in Section 8 that o: M---~M is a real-analytic map. 
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7. Teichmiiller spaces 

If F is a Fuchsian group (discrete subgroup of G), we define 

M(F) = {~u E M; 7,(~) = # for all 7 E r}. (7.1) 

Equivalently, by Lemma 4, 

M(F)= { l~EM; f l ' oyo ( f ' ) -~EG for all yEF}. (7.2) 

The Teichmi~ller space T(F) is defined by 

T(F) = {tpE ~(Sl); q0 = qr for some/~ EM(F)}. 

We denote by 1 the trivial subgroup of G, so that M(1)=M and T(1) is the set of 

tp E ~e(S~) that fix the points 1,i, and - 1 and admit a quasiconformal extension t o / ) .  

The conformal naturality of the assignment q0 ~E(tp) leads to a simple proof of the 

following theorem of Tukia. 

PROPOSITION 4 (Tukia [16]). For any Fuchsian group F, 

T(F) = {qgE T(1); ~oyoq0 -1 E G f o r  all yEF}. 

Proof. Put S={q0E T(1); q0o~,oq0 -1E G for all yEF}.  Then qq'ES for all ~t E M(F), 

by (7.2), so T(F)cS. Conversely, if q0 E S, then by conformal naturality 

E(cp)o?oE(qg)-tEG for all ?EF.  

Moreover, by Theorem 2, E(tp) is quasiconformal and E(q0) =f~', where/~ E M is given 

by 

It = E(q~)~/E(q~)' z. 

Since fl '  o ~ o (fl') - l E G for all y E F,/~ E M(F) and qr = tp E T(F). Q.E.D. 

The space M(F) inherits a topology from L| C), and T(F) is given the quotient 

topology induced by the map ~r: M(F)-.T(F) defined by zr(~)=qr It is clear from (6.5) 

and (7.1) that M(F) is a convex, hence contractible, subset of L~(D, C). Our next goal 

is to prove that T(F) is also contractible. That will be an easy consequence of 

LEMMA 5. /)el" is a Fuchsian group and tI: M - . M  is defined by (6.1), then 

(a) a maps M(F) into itself, 
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(b) there is a continuous map s: T(F)---~M(F) such that so:r= o: M(F)--~M(F), 

(c) :root = :r: M(F)---~M(F). 

Proof. (a) Let/~EM(F). Then tpuE T(F) and, as we saw in the proof of Proposi- 

tion 4, 

E(c~)oToE(qr for a l lyEF.  

By (6.2), E(q/ ' )=f ~ so cry) EM(F). 

(b) By definition, if :r(~)=:r(v), then qg'=q0 v, so E(q~U)=E(q0 v) and cr(~)=o(v). 

Hence there is a well defined map s: T(F)---~M(F) such that s o:r=cr on M(F). The map s 

is continuous because tr is, by Proposition 3. 

(c) Since E(qC~)=f ~ q9 ~ is the restriction of E(qr to S 1. Therefore 

q0~162 ' and :r(o(u))=:t(/z). Q.E.D. 

THEOREM 3. The Teichmiiller space T(F) of  any Fuchsian group F is contractible. 

Proof. By Lemma 5, :r o s o :r= :r o o= :r, so :ros: T(F)--~T(F) is the identity map. 

Since M(F) is contractible, so is T(F). An explicit contraction is the map 

(q0, t)--~:r((1 - t )  s(q~)) from T(F) x [0,1] to T(F). Q.E.D. 

Remarks. (1) For more information about Teichmiiller spaces see Bets [5] and the 

literature quoted there. 

(2) It is classical that T(F) is contractible when T(F) is finite dimensional (i.e. F \ D  

has finite Poincar6 area). The contractibility for all F was conjectured by Bets [3, 

Lecture 1], who introduced the infinite dimensional Teichmtiller spaces. Bets' conjec- 

ture was proved for F= 1 in [11] and announced for finitely generated subgroups of G+ 

in [9]. Tukia [15] proved that T(F) is contractible for many infinitely generated groups 

F, and indeed is homeomorphic to a Banach space in many cases. He also informed the 

second author in 1983 that the methods of [16] can be extended to prove that all T(F) 

are contractible. 

(3) If FOG+, Proposition 4 has an equivalent formulation. By results of Bers [4], 

there is a homeomorphism 0 from T(1) onto an open subset A of the Banach space B of 

holomorphic functions f o n  C \ / )  with norm 

I~l = sup  z)l(1-1zl2)2; Izl > 1} < 

G+ acts on B so that g . f=h  if and only i f f=(hog) (g ' )  2. Bers proves that 0 maps T(F) 

homeomorphically into 
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B(F) = OVEB;y . f=f  for all 7 E F ) ,  

so O(T(F))cB(F) N A. If  

S =  {q0ET(1);qooToqo-lEG for all ?EF},  

then the Lemma in [8] says that O(S)=B(F)N A, so Proposition 4 is equivalent to the 

statement 

0(T(F)) = B(F) N A. 

For further comments  on Proposition 4 see Section two of Tukia [16]. 

8. Analytic dependence on ~u 

In this section we shall prove that t~: M--->M is a real-analytic map. First we need to 

strengthen the corollary to Proposition 2. 

LEMMA 6. For each qJoE ~(+(S') there is a holomorphic function f: V->C, defined 

in an open neighborhood V o f  q~o in ~(S 1, C), such that 

If(~0)l < 1 for  all cp E V, (8. I) 

f(cp) = E(Cp)z(O)/E(qg)~(O ) for  all q~ E VN ~(+($1). (8.2) 

Proof. The proof of  Proposition 2 shows that for each tpoE ~+(S 1) there is a real- 

analytic function h(z, qg), defined for (z, qg) near (0,~o) in C xqg(S1,C), such that 

E(qJ) (z)=h(z, q0) if q0 E ~+(S 1) and (z, q0) is in the domain of h. The complex derivatives 

h~(0, tp) and hz(0, q0) are real-analytic functions of q0, and 

Ih~-(0, q~o)l < Ihz( 0, tP0)l, 

is real-analytic and satisfies (8.1) and (8.2) in some open so f(tp)=h~(0, q0)/h~(O, r 

neighborhood V of  tpo. 

Now the map H: qg(S 1, C)---> ~(S l, C) defined by 

H(~0)(r = Cexp(i~p(r for all ~ES 1 and ~ E  ~r 1, C) 

is holomorphic. Choose ~0oE~(SI,C) so that H(~o)=q0o. By the Inverse function 

theorem, H maps some open neighborhood W of ~Po biholomorphically onto an open 

neighborhood H(W) of tpo in ~(S1,C); we may assume H(W)cV.  Since the function 
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f o i l  is real-analytic in W, there is a holomorphic function F, defined in an open 

neighborhood W'~-W of 1/,o, such that IF0P)l<l for all ~pEW' and F = f o H  in 

Wn~(SI,R).  The function F o i l  -1 is holomorphic in H(W') and equals f on 

H(W') fl ~+($1). Q.E.D. 

THEOREM 4. The map o: M--->M defined by (6.1) is real-analytic. 

Proof. Let M(C) be the open unit ball in L| C), and define a conjugate linear 

involution/z~-->/z* of L| C) onto itself by 

/z*(z) =p(1/~)(z/~) 2 for all zEC. 

Let M*=~uEM(C);/z=/~*}. The map that sends/z to its restriction to D is a real- 

analytic equivalence of M* with M, and we shall identify M with M* for the remainder 

of this section. 

The projection operator P/~=~+/z*)/2 has norm one, and so does l-P; note that 

P(M(C)) =M*. 

For each g E M(C) there is a unique quasiconformal map fl '  of the extended 

complex plane onto itself that fixes the points 1,i, and - 1  and satisfies the Beltrami 

equation 

f z =lZf'z 

in C. Let qr be  the restriction o f f  to S 1. For ~ E M*, f~'(D)=D, so the new definitions 

off l '  and tp u agree with the old ones. 

Now the results of Ahlfors and Bers [2] show that i f 0<k '<  1 there is r '>0  such that 

19"(01<2 i f ~ E S  1, I~ull<k' and ILu-e~l l<r ' .  

Further, the map/~ ~qr from 

V(k', r') = {1 z E M(C); Itull < k' and ILu-P/~II < r'} 

to ~(S l, C) is holomorphic (and bounded). Since the set V(k', r') is convex, it follows 

that/z~-->9 u is Lipschitz continuous on V(k, r) if O<k<k' and O<r<r' .  We conclude that 

given any kE]O,l[ and 6>0, there is r>O such that 

IIr < 6 if ~ and v E V(k, r) and Itu-vll < r. (8.3) 

Now fix kE]0,1[ and put M~=~uEM*;l[ull<k}. The set 

Ak = {tpE ~+($1); 9 = q~u for some/z E M~} 
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has compact closure in (~(S 1, C). Therefore, by Lemma 6, there is 6>0 such that for 

every r there is a holomorphic function f:B(cpo,6)---*C that satisfies (8.1) and 

(8.2) with V=B(q~0, 6). Given that 6>0, choose r>0 so that (8.3) holds. 

By construction, for each #oEM~ there is a holomorphic function F(g)=f(qr 

defined in the convex open set V(k, r) N B(go, r), such that 

IFQ~)I < 1 (8.4) 

and 

F(/z) = o(#) (0) if/z E M*. (8.5) 

These open sets cover V(k, r), so analytic continuation produces a holomorphic func- 

tion F: V(k, r)-->C that satisfies (8.4) and (8.5). 
Again we will use conformal naturality to complete the proof. Formula (6.5) 

defines an action of G on L=(C,C), and the map P from L=(C,C) to itself is 

conformally natural. Therefore the set V(k, r) is G-invariant, and we can define a map H 

from V(k, r) to the Banach space B(D, C) of bounded complex valued functions on D by 

putting 

H(~) (w) = F((gw),(g)) for all # E V(k, r) and w ED. 

(Here gw is defined as in formula (1.1).) Since (gw), and F are holomorphic, the 

f u n c t i o n / ~ H ( # )  (w) is holomorphic for each w E D. Since [H(~)(w)]< 1 for all w E D 

and/~ E V(k, r), H is holomorphic (see for instance Lemma 3.4 in [10]). Finally, (8.5) and 

the conformal naturality of the map o imply that H(g)(w)=o(g)(w) for all/~ E M~ and 

wED.  Therefore o is real-analytic in ML Q.E.D. 

9. The derivative of o(#) at p = 0  

5. The derivative o f  o: M---> M at I~=0 is the linear P R O P O S I T I O N  m a p  

o'(0): L| C)--,L| C) given by 

~176 f f. v(w)(1-1zl2)  f~ all z E D  and vEL=(D' C)" (9.1) 

Proof. Fix any v E L| C). For t E R sufficiently close to zero, Theorem 4 implies 

that 

o(tv) = w'(O) v+o(t). 
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By the results of Ahlfors--Bers [2], 

q)tV(~)  = ~ + t(p(r t) 
and 

uniformly for r E S 1 

o"(z) = f~")(z) = z + t f ( z )  + o ( 0  

Further, f~= or'(0) v. 

Now, for z E D, the definition of O(z) gives 

for all zED. 

Therefore 

and 

1 ~_ ~ ( ~ ) - r  O-Iz[ ~) 
0 = ~ ~, 1-Ot'(z) q0'v(~) [z-~[ 2 IdOl 

=12~ fs' [ ~ + t {  :p(~,-j(z,+(~-z,(~z)+~:p(~))~]~id~i+o(t)'l-~ (1-2~) 2 JJ ,Z-~' 

0 1 ~ [ r + 2(~.z)q~(~) ](z) 
= ~ .~, L T ~  (1 _2~)2 1-2~ 

1 (.~0(r ~l-zz 2 (1-1zl 2) ~z)= Idr 

r162 ]~z) ] ~ dtt )- 
(1--~r 2 J IZ--r 2 ~' 

1 fs ~ b ( ~ ) ( ~ 3  d~ 2~ti ~ \ - - g /  ~-z '  

a'(O)v(z)=fz(z)=2~ fs' ~(~) (1-1zl2)2(I-2~)4 d~. 

Now the Ahlfors--Bers theory gives 

~(0 = - w - ~  

where h is continuous in / )  and holomorphic in D. Since 

3 i  fs ~h(~) (1--]Z[2)2(1--~)4 d~=O for all zED, 

by Cauchy's theorem, (9.2) gives 

o'(o) v(z) = ~ , \ ~ j j ~  ~_~  / (~-z~) ~ 

(9.2) 
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An application of Fubini's theorem and Cauchy's formula gives (9.1). Q.E.D. 

C O R O L L A R Y  1. IIo'(o)vll<<_311vll for all vEL~(D, C). 

Proof. For all z E D, 

fo (|--]Z12)2 Io'(0) v(z)[ ~< II-~wl '~ dudo = 3iivil. Q.E.D. 

COROLLARY 2. For q~ E ~-($1), put 

K(tp) = inf{K; tp has a K-quasiconformal extension to/)} (9.3) 

and let K*(q~) be the coefficient of  quasiconformality of  dP=E(q~). Given any e>0 there 
is 6>0 such that for all qJE ~+(S 1) 

K*(q~)~<K(q0) 3+~ /fK(q0)~< 1+6. 

Proof. We may assume that K(tp)<~ and, by conformal naturality, that q0 fixes 1,i 

and -1 .  Then there is/z E M such that tp=qr and 

K(~)= l+l~ll 
1-1t~ll" 

In addition, since ~=f~) ,  

l+ll~)ll 
K * ( ~ )  = 1-11o(u)ll  " 

By Corollary 1, if c>3, then Ilo0~)ll~<clLull and 

r*(~)-< l+cl~ll 
l-elLull 

if/z is close to zero. Furthermore, if 3<c<3+e ,  then 

for small positive numbers t. 

l+__xt < (l+,V+~ 
1 - c t  \ - ~ /  

Q.E.D. 

Remark. If v(z)- l ,  then a'(O)v(z)=3(1-[zl2) 2. Therefore the operator o'(0) has 

norm three, and the exponent 3+e in Corollary 2 cannot be replaced by any number 

less than three. 
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10. Estimating K*(q~) 
We shall give an explicit upper bound for the coefficient of quasiconformality K*(q0) of 

O=E(q~) if cp admits a K-quasiconformal extension to/5. The estimates here provide a 

second proof of Theorem 2. 

PROPOSITION 6. Suppose q9 EH+(S l) admits a K-quasiconformal extension to 19. 
I f  ~=E(cp) fixes OED, then for all ~1 and ~2ES 1 

a(K)-l (l~' ~6~2-----~l) r <~ icp(~,)--rp(~2)l <~16 a(K) tt,,--~21'/r (10.1) 

where 

a(K) = 4( 1 + Vr2 -) (16/V'~-) x . (10.2) 

Proof. Let ~p: D--->D be a K-quasiconformal extension of tp, let w=~p(0), and put 

~p=gwo~p. Then ~p(0)=0, so the boundary values ~=gwotp of ~ satisfy the HOlder 

inequalities 

//I I \  ~ K 
/ ' ~ - r  ~< 1~(~0-r162 ~< 161r ~/x for all ~ and ~2ES ~ \ 1 6 /  

(10.3) 

(see [13, p. 66]). In addition E(~)(O)=gw(O)=-w. We shall estimate Iw I. 

If J=[a, f l ' -"]c  S ~ is any arc with la-fll<~c=(x/-3/16) x, then (10.3) implies that 

q~.(r/0)(J)~<l/3. Choose rE]0,1[ so that the arc J~=[al,a~ "-'-'~] with lal-all=C is seen 

from r with an angle 3~r/2 in Poincar6 geometry. As in the proof of Proposition 1, 

Lemma 1 and conformal naturality imply that ~r inward on C r. Thus 

Iwl--IE(r (0)[<r, and 

l--r) 
-i-Gr 1~-~21 ~< Ig-w(r -g-w(~2)l ~< ~ l+ r~  \ l-r/1r162 (10.4) 

for all ~1 and ~2ES 1. Since ~p=g_wor (10.3) and (10.4) imply (10.1) with 

a(K)=(1 +r)/(1-r).  

It remains to show that (I +r)/(1-r) is bounded by the right hand side of (10.2). Put 

al----e it, where 0<t<:d2 and larad=2 sin t=c. The defining property of r E ]0,1[ is that 
gr(al)=e 3~ri/4. That implies 

2+X/-2(cos t - s in  t) _ c+(4-c2) 1/2 
r - -  

2cos t + V 7  2+ cV~- ' 
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SO 

_ _  _ (1 +V'2") (2+(4--C2) 1/2) < 4(1 +V~-)  

and (10.1) gives 

lei~"')_ei*to I = Ig( ei")-cp( eir)l 

I> (16/Ca(K)) -l = 6(K) > 0. 

Hence v/(t')-~p(t'9~6(K), and H(t, u) is bounded below on [0, 2a] x [~r/3, 2~r/3] by 

l + r  Q.E.D. 
1 - r  c c 

PROPOSITION 7. There are positive numbers A<4x  108 and B<35 such that 

K*(9)<.A exp(BK(9)) for all q0E ~+($1). (10.5) 

Here K*(9) is the coefficient of quasiconformality of ~=E(9) ,  and K(tp) is defined 

by (9.3). 

Proof. Assume that K=K(9)< oo, and put ~=E(q0). Suppose that *(0)=0, so that 

satisfies the H61der inequalities (10.1). Implicit differentiation yields the formula 

1 1~'(0)12... _ (IF~(0,' 0) 1 2_ IF~-(0,' 0) 1 2) (iFw(0 , ,  0)1 2 _ iF,(0,, 0)12) (10.6) 

I ,'z(o)l 2 IF~(0, 0) F~-(0, 0) -F,~(0, 0) F~(0, 0)[ 2 

Here F(z, w) and its derivatives at (0,0) are given by (3. I) and (3.2). We must estimate 

the right side of (10.6). 

The inequality 

IF~-(0, 0) F~-(0, 0) - F'(0,  0) F~(0, o)12 -< 4 

is immediate from (3.2). Moreover, (3.5) implies that 

(l).l 0)12 >~ H(t, u) sinu dudt >t e 
J,=0 Ju=~/3 2~ 

if H(t, u)~e in [0, 2~] x [~/3, 2~/3]. According to (3.6), H(t, u) is the sum of four terms 

sin (~( t ' ) -~ ( f ) ) ,  

and each increment ( t ' - f ' )  E [~/3, 2~/3] if u E [~/3, 2~/3]. Therefore 

[eir-eir I >I 1, 
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4 4 

e(K) = min { Z  sin aj; ~ aj = 2at and %. I> 6(K) if 1 ~<j ~< 4} 
j = l  j=l 

= 3 sin 6(K)-  sin 36(K) > 3.996(K) 3. 

Therefore IF~(0, o)1=-If~-(0, 0)15 > 3.996(K)3/2~. 

Next, (3.3) gives 

with 

1 f ,~(z)Idzl, IF'(0' 0)12-IF'(0' 0)12 = ~ 3s, 

,[ A(z) = ~ -  , I~o(O=-~o(z)=l=ld~l. 

Given z E S 1, find z' so that ep(z')=-q~(z). Then 

1~o(05-~(z)21 = I (~ (0 -~o(z ) ) (~o (0 -~o(z ' ) ) l .  

The inequality (I0.1) and H61der's inequality imply that 

4=A(z) I> 6(K)4 ~, l(r (~-z')15rldr 

I> 6(K)42x+l:~, 

where 6(K)=(16Xa(K)) -I  as before. Therefore 

IFL(0, o)15-IF'(0, 0)15 > 2K-16(K) 4 

and (10.6) gives the inequality 

1 I~-(z)l= 

I~,~(z)l = 
- -  > 3.99X2K6(K)7/16~L 

first when z=c}(z)=O, then in general, by conformal naturality. 

If  k - sup (l%(z)/'~=(z)l, z ~ O ) ( < I), then 

l+k* 4 
K*(qT) = I ' k *  < 1-(k*) z" 

(10.7) 
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Therefore (10.7) and the definition of 6(K) imply that 

K*(~) < 64:r • 227K a( K) 7 /3.99 , 

with a(K) given by (10.2). Q.E.D. 

Remark. For purposes of comparison, we note that if h: R-->R has a K-quasicon- 

formal extension to C. then it has a Beurling-Ahlfors extension w: C-->C with coeffi- 

cient of quasiconformality 

1 nx K(w) <-~- e . (10.8) 

Indeed the assumption on h implies that h satisfies a "Q-condition" with 

q( h ) < ~ e '~r. 
l O  

(For a proof see p. 65 of [1].) This in turn implies that h has a Beurling-Ahlfors 

extension w satisfying (10.8), by results of M. Lehtinen (see [14]). 

11. The higher dimensional case 

Let q):sn-1--->S n- I  be a homeomorphism, n~>3. The methods of Sections 2 and 3 

generalize to extend q~ to a continuous map ~:/~,,__>/~n. First we must define the 

conformal barycenter of a probability measure # on S n- 1 with no atoms. As in Section 

2, Remark 4, let 

1 ( l o g l _ ~ 2 d / t ( u ) ,  x E B  n, 
h~,(x) = -~- Js ~-1 Ix-u[ 

and let ~, be the gradient of h u in Poincar6 (hyperbolic) geometry. The proofs of 

Proposition 1 and Lemma 1 generalize to show that ~u has a unique zero in B". By 

definition, that zero is the conformal barycenter BOz) of/z.  The map / ,~B(u)  is 

conformally natural (with respect to the group G of all M6bius transformations that 

map B" onto itself). 

For x in B", the (hyperbolic) harmonic measure t/,, on S "-1 is defined using the 

hyperbolic Poisson kernel: 

fix(E)= 1 f. s ( 1 -1x~" - ldw(u ) .  
.-, \ Ix-ut / 
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Here dco(u) is the (n-1)-dimensional Hausdorff measure on S n-l, and con_l is the 

total measure of S n-1. Now, as in Section 3, we extend the homeomorphism 

cp:S~-I--~sn-1 to B" by putting q~(x)=B(tp,(r/x)) if x E B  ~. The proof of Lemma 2 

generalizes to show that ~:/~"-~/~" is continuous. The map q 0 ~  is conformally 
natural. 

The proof of Proposition 2 in Section 4 also generalizes, but the statement must be 

modified because in general ~ is not a homeomorphism. The general statement is 

PROPOSITION 2'. The assignment cp~-~c~ defines a continuous map of  ~e(S~-l) into 

cC~(B", R")fl cr R~). 

Here ~[(S "-l)  and ~f(/~",R") have the compact-open topology, ~ ( B ~ , R  n) has 

the ~ topology, and r162 R") fl ~(/~", R n) has the topology induced by the diagonal 

embedding in %~(B ~, R~)x c~(/~, Rn). 

Given these preliminaries we can prove the following theorem about quasiconfor- 

mal extensions, which was pointed out to us by Pekka Tukia. 

THEOREM 5 (Tukia). Given any M>I  there is a number K>l ,  depending only on M 

and n, such that i f  q~:S~-l--~S~-I is K-quasiconformal, then c~:B~---~B ~ is a quasi- 

conformal homeomorphism and 

M- ld(x ,  y) <~ d(q~(x), ~(y)) ~< Md(x, y) for  all x, y EB ~. (l 1.1) 

Here d is the Poincar6 distance in B n. 

Proof. We imitate the proof of Theorem 2. Given q0 E ~e(S~-l) and x E B", put 

a(q~)(x) = inf [ (1-llxll2)H*'(x)u]l" uE sn-'~ 
t l_ll (x)ll 2 , j '  

(x)= sup f (l-Ilxll )ll q''(x) ull. sn-l . 
L l_ll (x)ll2 ' J 

LEMMA 7. Given any M>I  there is K>I ,  depending only on M and n, such that i f  

q~: S~-I---~S~-I is K-quasiconformal, then 

M -  1 <~ a(cp) (x) <. fl(cp) (x) <. M for all x E B n. (I I. 2) 

Proof. Since G is the group of isometries of B" in the Poincar6 metric, the 

conformal naturality of the map q 0 ~  implies that 

a(g o cp o h) = a(cp) o h and fl(g o cp o h) = fl(cp) o h 
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for all g and h in G. Therefore  it suffices to prove the existence of  K >  1 such that 

M -  1 ~ a(~/9) (0) ~ ~(q)) (0) ~ M 

if tp: S~-~---~S n-1 is K-quasiconformal and fixes the points el,  - e l ,  and e, .  The p roof  

is by contradiction. I f  no such K exists, a compactness  argument produces a sequence 

(q~k) of  quasiconformal maps and an element  g E G such that q0k--*g in ~e(S"- l) and, for  

each k, either a(q0k)(0)<M -~ or  /~(~vk)(0)>M. Now Proposition 2' implies that the 

functions q0~a(tp) (0) and q0~-->fl(q0) (0) are continuous on ~Le(S~-I). Since 

a(g)(O)=fl(g) (0)= I we have reached the required contradiction. Q.E.D.  

End o f  p roo f  o f  Theorem 5. If  M > I ,  let K > I  be given by Lemma 7. If  

9: Sn-1--->Sn-I is K-quasiconformal,  the left hand inequality in (11.2) implies that the 

Jacobian of  �9 is never zero,  so dP:Bn--~B ~ is a local homeomorphism. This in turn 

implies that qb:/~"-->/~" is a homeomorphism,  and (11.2) then implies both that �9 is 

quasiconformal and that inequality (I 1.1) holds. Q.E.D.  
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