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The purpose of this paper is to prove the

FUuNDAMENTAL CONJECTURE. Every homogeneous Kihler manifold is a holomor-
phic fiber bundle over a homogeneous bounded domain in which the fiber is (with the
induced Kdihler metric) the product of a flat homogeneous Kihler manifold and a
compact simply connected homogeneous Kiihler manifold.

This conjecture has been stated first by Gindikin and Vinberg [25] in 1967. At that
time it was known from results of Borel and Matsushima [1], [14] that the Fundamental
Conjecture holds if the manifold admits a transitive reductive group of automorphisms
(=biholomorphic isometries).

Gindikin and Vinberg proved the Fundamental Conjecture for the case that the
manifold admits a split solvable transitive group of automorphisms [25}.

What was known about the Fundamental Conjecture at that time (in 1967) is
contained in the very readible survey article {9].

In the following years only few results concerning general homogeneous Kihler
manifolds were published. There are clearly three basic types of homogeneous Kihler
manifolds occuring in the Fundamentai Conjecture. Here the flat type is trivial and the
compact type was known by the work of Wang [27]. Between 1970 and 1980 the
structure of bounded homogeneous domains and their infinitesimal automorphisms has
been classified by various authors. Knowledge of the ‘‘fine structure’ of homogeneous
bounded domains is used in several places of our proof of the Fundamental Conjecture.

In the last five years or so several papers have been published discussing the
Fundamental Conjecture under various additional assumptions. A survey on these
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results can be found in [7]. We would like to mention two developments in more detail,
since their combination eventually led to a proof of the Fundamental Conjecture.

On one hand, a few authors investigated homogeneous Kéhler manifolds without
flat homogeneous Kihler submanifolds. The main result, proven by Nakajima [17] is:
Fundamental Conjecture holds for homogeneous Kihler manifolds without flat homo-
geneous Kihler submanifolds and for homogeneous Kéhler manifolds associated with
effective j-algebras. He obtained the above result by using techniques developed in [26]
and [16].

The second string of investigations allows flat homogeneous Kahler submanifolds
but uses ‘‘solvability conditions’’. The following results were proven by Dorfmeister
[6], [8]: (a) If a homogeneous Kihler manifold admits a solvable transitive group of '
automorphisms, then the Fundamental Conjecture holds, and (b) (Radical Conjecture)
If an effective Kihler algebra (g, f,Jj, ¢) contains a solvable ideal t such that g=r+jr+f{,
then there exists a solvable Kihler subalgebra 3 of g satisfying g=3+f and 3nf=0.

This latter result is particularly important for our proof of the Fundamental
Conjecture and is used frequently in this paper. Especially, it plays an essential role at
the starting point of our investigation of Kahler algebras.

We now explain our method more precisely. After some preparations in §1, we
introduce in §2 the notion of a quasi-normal Kéihler algebra and prove that for every
homogeneous Kihler manifold M, one can find a quasi-normal Kihler algebra (g,§,/, 0)
which generates a transitive subgroup of Aut(M) (Theorem 2.1). This can be done by
using the Radical Conjecture and modifications [6]. The major part of our paper is
devoted to proving: Every quasi-normal Kahler algebra (gq,f,/, 0) is decomposed as
g=a+0, where a is an abelian Kahler ideal and ) is a Kéhler subalgebra such that the
homogeneous Kihler manifold corresponding to §j is a holomorphic fiber space over a
homogeneous bounded domain and the fiber is a compact simply connected homogene-
ous Kihler manifold (Theorem 2.5).

Let (g,f,/,0) be an effective Kahler algebra and n the nilpotent radical of g.
Consider the subalgebra g’'=n+jn+{. By the Radical Conjecture together with {6], we
can decompose g’ as g'=a+t+f, where a (resp. 1) is a Kihler subalgebra correspond-
ing to a flat homogeneous Kéhler manifold (resp. to a homogeneous bounded domain).
We consider the two cases where t=0 and where t=+0 separately.

In § 3 we study the first possibility. Using arguments like in Case 1 of [8] we show
that if t=0 then jrad(g) c rad(g)+{ where rad(g) denotes the radical of g (Theorem 3.2).
Then the orthogonal complement ) of rad(g) relative to g is a j-invariant subalgebra. If
we further assume that g is quasi-normal, then rad(g) becomes abelian and § is semi-
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simple. Now the decomposition g=rad(g)+1 satisfies the desired properties of Theo-
rem 2.5,

§§4, 5 and 6 are devoted to the study of the case t=0. In this case, we denote by ¢
the maximal idempotent of t and let g, denote the weight spaces of the real part of ad je.
We then have g=g_,,+g,+d,,+4, and g,=jg,+3, where § is a j-invariant subalgebra
containing f (Theorem 4.4). Proofs and techniques are similar to those of [7]. In the rest
of §4, we follow [16] in our setting and prove that ad g,|g, is the Lie algebra of a
transitive group of automorphisms of a homogeneous convex cone in g, (Proposition

4.8).
Next, in §5, we show that g_,,+4q,, crad(g) (Theorem 5.1). To do so, we first

reduce to the case dim g,=1. This is an improvement over a similar reduction used in

[8]. To prove that (under our assumptions) a maximal semisimple subalgebra of g has to
be contained in g,, we use a second weight space decomposition. It is determined by an
element E € g, which is more convenient in the present situation than the element f, € g,
used in [8].

In §6, we first study the structure of g, in great detail under the additional
assumption that g is quasi-normal. To obtain the description of g, that we need, we use
the results obtained in the previous sections and in addition the knowledge of the fine
structure of homogeneous cones (Theorem 6.2) which will be proven in Appendix 1.

Finally, set d=g_,,+rad(8¢)+[e, a,,]. where 8,={x€ 3; [x, g,]=0}. We show that
d is an abelian Kahler ideal of g (Theorem 6.5). Let §) be the orthogonal complement of
@ relative to 0. Then from the arguments of [17] the decomposition g=a-+} satisfies the
properties of Theorem 2.5.

In §7, we construct a fibering of the homogeneous Kahler manifold M and prove
the Fundamental Conjecture. Let G be as in Theorem 2.1. Then M=G/K for some
subgroup K. Taking the universal covering group instead of G, we may assume G is
simply connected. Let a and n be as in Theorem 2.5. Denote by L the connected
subgroup of G corresponding to a+1t. One can show that L is a closed subgroup of G
containing K and obtain a fibering: M=G/K—G/L. We show that this fibering has the
desired properties of the Fundamental Conjecture. Here we use properties of the
decomposition of a quasi-normal Kihler algebra and construct a G-equivariant holo-
morphic imbedding of M onto an open set of a complex homogeneous space of a
complex Lie group. This last part of our proof follows an idea of [25].

In Appendix 1, as is mentioned before, we give a proof of Theorem 6.2 which
describes a decomposition of a homogeneous convex cone C according to an arbitrary
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transitive algebraic subalgebra § of Lie AutC. Here we use the results of [26] on
J-algebras, regarding % as a subalgebra of Lie Aut D(C), where D(C) denotes the Siegel
domain associated with the cone C.

In Appendix 2, we state and prove a result involving Levi decompositions of a Lie
algebra, which is used frequently in this paper. We would expect that this result is well
known; but we were unable to find a reference for it.

§ 1. Preliminaries
1.1. Let G be a connected real Lie group and K a closed subgroup of G. Then the
homogeneous manifold M=G/K is called a homogeneous Kdhler manifold if it is
endowed with a G-invariant Kahler structure.
Let g and f be the Lie algebras of G and K respectively. Then the G-invariant
Kibhler structure induces an endomorphism j of g and a skew-symmetric bilinear from g
on g such that for all x,y, z€ g and k€ the following conditions hold {9].

jtct, jfx=—x(mod?) (1.1.1)

[k, jx] = jlk, x] (mod¥) (1.1.2)

[ix, jyl =[x, y1+jljx, y1+/lx, jy] (mod ) (1.1.3)
o(jx,jy) = o(x,y) (1.1.4)

olk,x)=0 (1.1.5)

o(lx, y1, 2)+elly, 2}, x)+e(lz, x1,y) = 0 (1.1.6)
o(jx,x)>0 if x¢f. (1.1.7)

Conversely, let g be a Lie algebra equipped with an endomorphism j and a skew-
symmetric bilinear from @ and let f be a subalgebra of g. Then the system (g,¥{,/, 0) or
simply g is called a Kdhler algebra if the above conditions are satisfied.

PropositioN. Let (g,t,j,0) be a Kihler algebra. Let G be the connected and
simply connected Lie group with Lie algebra g and let K be the connected subgroup of
G corresponding to t. Then K is closed in G and the homogeneous space M(g)=G/K
admits a G-invariant Kihler structure corresponding to j and o.

Proof. If K is closed in G, then M(g) is a manifold and it is straightforward to
define on M(g) a G-invariant Kéhler structure which corresponds to j and . Therefore
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it suffices to show that K is closed. Set 3=g@®R and {=f®R and define an algebra
structure on § by

[[xPa,y®@b]]=[x,y] Dolx,y) for x,yEg, a,bER.

Then § is a Lie algebra relative to [[ , 1] and R=0®R is an ideal of §. Extend j to an
endomorphism j of § by putting /(R)=0 and define a linear form w on § by setting
w(x®a)=a for x€g, a€R. Then w([[xPa, y®b])=p(x,y) for x,yEg and a,bER.
Therefore we know that (g, £ Jj,—dw) is a Kéhler algebra. Let G be the connected and
simply connected Lie group with Lie algebra § and consider the subgroup
K'={g€G;w(Adgx)=w(x) for all x€ 3§} of G. Clearly, K’ is closed in G and the Lie
algebra ¥ of K’ consists of all y€§ satisfying w({y, x])=—dw(y, x)=0 for any x€ §.
Therefore ' =f, whence the connected subgroup K of G corresponding to f is the
identity component of K’. In particular, K is a closed subgroup of G. Since 0®R is an
ideal of §, g=3 mod (0®R) and G is simply connected, the canonical homomorphism
from § onto g induces a homomorphism 7 of G onto G. The kernel € of 7 is the closed
and connected subgroup of G corresponding to 0®R. Since 0®DR is contained in the
center of §, C acts trivially on M(§)=G/K. Hence, from G=G/C and K=K/C it follows
that G acts on M(§) in a natural manner and that the isotropy subgroup of G at the
origin K of M(3) is the group K. Therefore K is a closed subgroup of G proving the
proposition.

From now on, we denote by M(g) the homogeneous Kéhler manifold associated
with the Kihler algebra g by the proposition above.

1.2. A Kibhler algebra (g, {,/, 0) is called of flat type, of domain type, or of compact
type if M(g) is a flat Kihler manifold, or a homogeneous bounded domain with a
G-invariant Kihler structure where G is the Lie group associated with g, or a compact
simply connected homogeneous Kihler manifold, respectively.

Let j' be another endomorphism of g satisfying jx=j'x (modf{) for all x€ g. Then
(a,!,J', 0) is also a Kihler algebra and its associated homogeneous Kihler manifold is
the same as one associated to (g, {,/, ). Such a change of j will be called an inessential
change of j.

Let g’ be a subalgebra of g satisfying jg'< g’ +¥. Hence, after an inessential change
of j, we can assume jg'< g'.Then (g’, ¢’ n{,/, o) is also a Kihler algebra. We call such a
subalgebra g’ of g a Kdhler subalgebra. The notion of a Kdhler ideal is defined
similarly.

It is easy to see that for any ideal t of g, g¢'=r+jr+f is a Kihler subalgebra of g.
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1.3. A Kdhler derivation of a Kihler algebra (g, 1,, 0) is a derivation D of the Lie
algebra g satisfying the following conditions: Df c f, Djx=jDx (mod?) for all x€ g and
o(Dx, y)+g(x, Dy)=0 for all x,y € g. Clearly, the set of all Kihler derivations of the
Kihler algebra g is a Lie algebra. We will denote this Lie algebra by Derg (g).

Let % be a subalgebra of Der,(g) and consider the sum of vector spaces

g(MW)=g®DA. We introduce an algebra structure on g() by
[x®D,,y ®D,]=[x,y]+D;y—D,x® [D,, D,]

where x,y€ g and D, D,€ .

It is easy to see that g(?) is a Lie algebra. Set {(%)=f®@% and extend j and o to
g(A) by putting jA=0 and o(g(A), A)=0. Then (g(A), {(N), j, o) is also a Kihler algebra.
Clearly, M(g(2))=M(g).

1.4. For a Lie algebra g we denote by rad(g) the radical of g and by nil(g) the
nilpotent radical of g, i.e. nil(g)=[g, glnrad(g)=rad([g, g]). We note that for any
representation 7 of g on a finite dimensional vector space V,z(x) is a nilpotent
endomorphism of V for all x € nil(g) ([2]).

A Kihler algebra (g,1,/, 0) is called effective if f contains no non-trivial ideal of g.

LEMMA. Let g’ be a Kahler subalgebra of the effective Kihler algebra g and let ¥,

be the largest ideal of g’ contained in =g’ nNt. Then there exists an effective Kihler
ideal, §' of §' such that ¢'=§' ®1,.

Proof. Let ) be a maximal semi-simple subalgebra of g’. Then
fo=rad(g")nf,@Hnt,.
We set
p = {x€Erad(g');ad x has only real eigenvalues on g}. (1.4.1)

Then p is an ideal of g’ containing nil(g’). From the effectiveness of g we derive
pni=0. Thus we can find a subspace ¢ of rad(g’) so that rad(g’)=p@rad(g")nf,Dc.

Since f is semi-simple, there exists a semi-simple ideal §’ of § satisfying h=5'@Hn {,.
We set §'=p@c®Y’. Then ¢'=§ ®f, and §’ is an effective Kahler ideal of g'.

Remark. By the result above we can treat g’ as an *‘effective’’ Kahler algebra.
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1.5. In this subsection and the following ones we recall some facts on symplectic
representations.

Let W be a real vector space together with a complex structure J and skew-
symmetric bilinear form Q. We say W is a symplectic space if the following conditions
are satisfied

QUw,Jw')=Qw,w’) for w,w €W
QUw,w)>0 for we€W,w=0.
An endomorphism p of W is called symplectic if p satisfies
Qpw, w)+Qw,pw')=0 for w,w €W,
The following fact is used frequently in this paper.
Lemma ([19])). Let p and q be symplectic endomorphisms satisfying
[p.ql=q and poJ—Jop=g+Jjogol.
Then p is semi-simple and W is decomposed into the sum of subspaces
W=W_ ,+W,+W,, such that for A=0,%£1/2
(a) p leaves W, invariant and every eigenvalue of p on W, has real part A,

(b) IW,=W_,,
(©) q|Wy+W,,=0 and qw=jw forw€W_,,.

1.6. For a symplectic space W with complex structure J let 3p (W) denote the Lie
algebra of all symplectic endomorphisms of W. We also set {(W)={f€ sp(W);fol=
Jof}.

LEMMA. Let (g,t,j, 0) be a Kdihler algebra of flat or compact type and let T be a
homomorphism of g to 3p(W). Assume that t(Y)c (W) holds and assume that
(jx)oJ—Jot(jx)=1(x)+Jot(x)oJ for all x€ g. Then t(x)oJ=Jor(x) for all xE g, i.e.
7(g) c H(W).

Proof. Let Sp(W) and K(W) be the connected subgroups of GL (W) corresponding
to 3p(W) and (W) respectively. The homogeneous space Sp(W)/K(W) is well known as
*‘Siegel’s upper half plane’’. Here the endomorphism I of 3p(W) corresponding to the
invariant complex structure is given by I(g)=4[J, g] for g € 3p(W) (cf. [18]). Let M(g) be
the homogeneous Kihler manifold associated with g. From the assumptions, we obtain
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(H) W) and t(jx)=I t(x) (mod¥(W)) for any x€g. This means that 7 induces a
holomorphic mapping of M(q) to Sp(W)/K(W). Since M(g) is biholomorphically equiv-
alent to CV or compact, the image of M(g) must be a single point. This implies that
7(g) < W) holds, proving the lemma.

1.7. Let x be an element of a real Lie algebra g. Consider the endomorphism ad x.
There exist pairwise commuting derivations R, I and N of g such that R has only real
eigenvalues, I has only imaginary eigenvalues, N is nilpotent, R and I are semi-simple
and adx=R+I+N. We note that R, I and N are polynomials in ad x without constant
term [3]. We call R, I and N the real part, imaginary part and nilpotent part of adx
respectively and write Re(ad x) for R and also Im(ad x) for I.

§ 2. Quasi-normal Kihler algebras

2.1. Let M be a homogeneous Kihler manifold and let Aut(M) be the group of all
biholomorphic isometries of M. For the study of M, we have to find a transitive
subgroup of Aut(M) which has nice properties.

We say a Kahler algebra g is quasi-normal if ad x has only real eigenvalues for all
x €rad(g).

We want to prove

THEOREM. For every homogeneous Kihler manifold M, there exists a connected
subgroup G of Aut(M) satisfying

(a) G acts transitively on M,

(b) The Lie algebra g of G is quasi-normal.

This theorem will be proven in section 2.4.
2.2, We show the following

LEMMA. Let (q,%,j,0) be a Kihler algebra and let x€rad(g). Assume that
Im(adx) is a Kdahler derivation of the subalgebra q'=rad(g)+jrad(q)+f of g. Then
Im(ad x) is also a Kahler derivation of g.

Proof. Let R, I and N be the real, imaginary and nilpotent part of ad x respectively.
We can decompose g as g=@ ., g, so that Plg,=a’. Since Igcg’, g, is contained in g’
if a#+0. We want to show

0(gy, 8)=0 for a=*0. (2.2.1)
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Let uy€ g, and v, € g,, a+0. Then we have
d tadx tadx — tadx
Eg(e Uy, e v, )=opolx, e [0, Vo)) (2.2.2)

Since [u,,v,] € ¢" and since [ is a Kéhler derivation of g', we have
o(x, " [ug, v,])=0(x, €™ - ™ [uy, v,]).
For the proof of (2.2.1), it is sufficient to show go(u,, v,)=0 under the additional

assumption that u, and v, are eigenvectors for R. This implies that (2.2.2) is of type

% e’ (X(¢) cos at+ Y(#) sin at) = ¥ Z(1), (2.2.3)

where X(f), Y(¢) and Z(¢) are polynomial functions of ¢. An integration of (2.2.3) ;/ields
e (X(r) cos ar+ Y(t) sin at) = e” W(t)+const., (2.2.4)

where W(r) is also a polynomial. Since a#0, the equation (2.2.4) implies X(r)=
Y(£)=W(r)=0. This proves (2.2.1).
From our assumption we know Ifct and o(Ix, y)+o(x, Iy)=0 for all x, yE @, a,.

Using (2.2.1) we obtain o(Ix, y)+o(x, Iy)=0 for all x,y € g. Hence it remains to show
that I commutes with j modulo f. Consider the set u={x€g;o(x, g')=0}. Then
Iucung’'=t. Since u is j-invariant, we also have /ju=0 (modf). Therefore Iloj=
jol(modf) on u. On ¢’ this identity holds by assumption; hence it also holds on
g'+u=g. This finishes the proof of the lemma.

2.3. Jet (g,f,j, 0) be an effective Kéhler algebra. We set
po = {xErad(g);ad x has only real eigenvalues},
p, = {x€rad(g);0(jx,y) =0 for all yEp,}.

Since [g, rad(g)]<nil(g)<p,, the space p, is an ideal of g. Moreover, { leaves p, and b,

invariant, whence [f, p,]=0.
LEMMA. Let x€p,, then Im(adx)€ Der(q).

Proof. By Lemma 2.2, it is sufficient to show that Im(ad x) is a Kéhler derivation of
g'=rad(g)+jrad(g)+f. From the Radical Conjecture (see Introduction) together with
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the consideration in section 1.4, we can find a solvable Kéhler subalgebra & such that
gorad(g) and g’=3+f. Here 3n¥ may not be zero but we know that $nf is abelian. Let
us set 3'={x € 3; ad x has only real eigenvalues in g}. Then {3,8]<3’ and 8’ nf=0. Let ¢
be a complementary subspace of 3’+3nfin & and put 3"=3"+c¢. Then 8" is an ideal of §
satisfying 8=3"®@3n¥{. By construction we have g'=3"®f hence 3" is a Kihler subalge-
bra of 3. Therefore we may assume that 8" is j-invariant. By [6], every solvable Kahler
algebra with vanishing isotropy subalgebra is a modification of a split solvable Kahler
algebra. Therefore there exists a linear map D (called a modification map) of 8" to
Der(3") satisfying the following properties (1) and (2):

(1) [D(x), D(»)]1=0, D(Ix, y)=0, D(D(x)y)=0 for x, y€ 3"

Define a product ( , ): 8"X3"—3" by

(x,y) =[x, y1+D(x)y—D(y)x for x,y€3s".

From the properties (1) it follows that the product ( , ) also defines a Lie algebra
structure on 3” and that (8",0,/, 0) together with the product ( , ) is a Kéhler algebra.
Moreover, this new Lie algebra has the additional property

(2) the adjoint representation relative to ( , ) has only real eigenvalues.

We define the set s5={x€3";D(x)=0} and s}={x€s"; o(jx,y)=0 for all y€53}.
Then ¢"=4;@®3|. Using the properties (1) and (2) we can easily show

(3) D(g")g7=0.

(4) If x€3” and D(s")x=0, then D(x)=—Im (ad x)

Therefore, for any x € 8", D(x) can be expressed as a polynomial without constant
term of ad z for a suitable z€ ". Next we show for x€ 3",

(5) D(x)=0 if and only if Im(ad x)[3"=0.

First we note that both endomorphisms are semi-simple and map 3{ into $; and
leave g; invariant. Therefore it suffices to prove (5) for the restrictions to 3;. We note

ol
9.

that on 8 we have D(x)y=(x, y)—[x, y]. Assume now D(x)=0, then ad x|3 has only real
eigenvalues, whence Im(ad x)|3;=0. Assume on the other hand that Im(adx)|g;=0
holds. Then ad x has only real eigenvalues on 3;. Since 3" is solvable, it is easy to see
that the map y—(x,y)—[x,v],y€ &, has only real eigenvalues. Hence D(x)|3;=0,
proving (5). From (5) we obtain 8’'<3;. Hence (8, 3]cnil(3)c=8’ = &j. Therefore & is an
ideal of 3. Noting that 8" is an ideal of §, and that $n¥ leaves invariant & and &, we
then have [8], 8nf]=0. In particular, Im(ad x){s N {=0 for all x € 5]. Now let x€p, and
z€rad(g). Then x=x,+x, and z=z,+z,, where x|,z,€ 8" and x,,2,€38n¥. For y € 5] we
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thus obtain o(Im(ady)x,jz)=—0(DO)x,,jz)=0(x,,/D¥)z))=0(x,jIm (ad y)z)=0, be-
cause Im(ad y)z € p,. Hence we have D(y)x,=Im(ad y)x=0 for all y € 8| Then, by (4),
Im(ad x,)|8" € Derg(3"). Since [f,p,;]=0 and 8nf is abelian, we have [x;, 3n{]=0. This
implies Im(ad x,) € Derg(3) and Im(ad x)=Im(ad x,)+Im(ad x,). Hence we also have
Im(ad x) € Der,(3). Consequently, Im(adx)€Der,(g’) because g'=$+f and Im(ad

x)|f=0. Thus we have proved the lemma.

2.4. In this section we prove Theorem 2.1. Take a subgroup G satisfying (a). Let K
be the isotropy subgroup of G and f the Lie algebra of K. Assume that rad(g) n{=0.
We can find a subspace ¢ of rad(g) so that rad(g)=nil(g)®(rad(g)NHDc. We set
g’'=nil(g)® c®Y, where } is a maximal semi-simple subalgebra of g. Clearly g=g'+{
and rad(g’) Nf=0. Therefore, by taking the subgroup corresponding to g’ instead of G,
we may assume rad(g) nf=0.

Let p, and p, be as in section 2.3. Take a €p, and set I=Im(ad a). Then, by Lem-
ma 2.3, I € Der(g). Consider the Kahler algebra g(?l) constructed in section 1.3, where
A=R1. We also write g=p,®Ra@p’' DY, where } is a maximal semi-simple subalgebra
of g and p’cp,. Define a linear map &: g—g(U) by &(x)=x if x€Ep,Dp’' @} and &(a)=
a—1. Set §=£&(g). Then § is an ideal of g(A) since [g(?),a(WA)]=[gq, gl=
nil(g)+Hcpy+hcg holds. Moreover, rad(g(A))=rad(g)@RI because [/, g(A)]<nil(g).
This implies rad(d)=rad(g(A))n §=&(rad(g)) and we also obtain rad(g)nHA)=
&(rad(g) nH=0. It is important to note that Im(ad x)=0 in § for all x € £(p,+Ra). We thus
have dim f)o>dim p, Where p, is defined for § as p, is for g in section 2.3. A repetition of
this procedure will therefore yield the assertion if we are able to find a subgroup
GcAut(M) which acts transitively on M and has § as its Lie algebra.

Assume first that M is simply connected. In this case it is straightforward to see
that our assertion holds. With this all assertions in the rest of this paper hold under the
additional assumption that M is simply connected. In particular the Fundamental
Conjecture holds in this case. Let now M be arbitrary. Let G* and G be the simply
connected Lie groups corresponding to g and g() respectively. We denote by W the
l-dimensional connected subgroup of Gy generated by A=R1. We then have Gy=G*W
(semi-direct product) and both G* and W are closed subgroups of G,. Let & denote the
projection G*—G and K*=n"'(K). Then M=G*/K* and M*=G*/K}=Gy/K%W is the

universal covering space of M, where K% is the identity component of K*. As is

3-888288 Acta Mathematica 161. Imprimé le 10 novembre 1988
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mentioned above the Fundamental Conjecture holds for M*. Therefore M* is a holo-
morphic fiber bundle over a homogenous bounded domain D and the fiber is C"XN, N
denoting a compact simply connected homogenous Kahler manifold. Then D=G*/L*,
C"XN=L*/K%, N=L*/F* and C"=F*K?% for some connected closed subgroups
L*>F*>K%. We can see K*<L* in a similar way as in the proof of Lemma 7.6. Then
using the arguments of [28; Appendix] we have K*cF*. We also have D= G,/L*W and
N=L*W/F*W. Therefore f+RI is a Kiahler subalgebra of g(¥), where f is the Lie
algebra of F*. We can find a Kihler ideal a of f such that f=a+1 (cf. section 3.3) and a
is decomposed as a=ay+a,, where ay=[a,a] and a, is the orthogonal complement
of a, in a ([6]). Here we can assume that a>nil(f). But then a, q, and a, are invariant
under 1.

We want to show that AdkI=I for all k€ K*. Since Adga=a (modnil(g)) for all
g€G*, AdK*a=a follows. Therefore we have AdkoJo Ad k™'=1 for all k€ K*. This
means that Adk/—1 is in the center of g. Recall that both a, and a, are abelian ([6]).
We have

K*=(K*nexpa,-exp a,) K%

Therefore we may assume that k=exp x,-exp x,, where x,€ a. Then AdkI-I=—Ix,—Ix,
—[x,, Ix,]. Since Ix=0 for any x contained in the center of g, we have Ixy=1Ix,=0. Hence
AdkI=1, proving our assertion. But then K,=K*W is a closed subgroup of G,.
Therefore Gy acts on M=G*/K*=G,/K,. Clearly this action is holomorphic and
isometric.

Let G be the connected subgroup of G, generated by §. From the above arguments
it follows that G acts transitively on M. Since rad(g) nf=0 we obtain § nf(V)cf, whence
G acts almost effectively on M. Therefore, after dividing by a discrete subgroup (if
necessary), we can assume GeAut(M). As mentioned before, from this the theorem
follows.

2.5. From Theorem 2.1 it follows that for the study of homogeneous Kahler
manifolds we only have to know the structure of quasi-normal Kidhler algebras.
The following theorem is a fundamental result of our paper.

THEOREM. Let (g,1,/,0) be an effective quasi-normal Kéihler algebra. Then g is
decomposed as
g=a+h, where an h=0 and o(a, ) =0,

and where a is an abelian Kdhler ideal of g and § is a quasi-normal Kihler subalgebra
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containing Y. Moreover, there exists a reductive Kihler subalgebra u of Y which
satisfies the following properties:

(a) u containst, the semi-simle part of W is compact, the center of U is contained in
f, and [(u, jx]=jlu, x] (mod u) holds for all u€u, x€¥YH.

(b) Let H be the connected simply connected Lie group with Lie algebra ) and U
the connected subgroup of H corresponding to u. Then U is closed in H and the
homogeneous space H/U, equipped with the H-invariant complex structure induced
from the operator j, is biholomorphically equivalent to a homogeneous bounded
domain.

Remark. Let K be the connected subgroup of U corresponding to f and consider
the homogeneous Kéhler manifold U/K. From (a) we also know that a connected
compact semi-simple subgroup of U acts on U/K transitively. Therefore, by [1], U/K is
compact and simply connected. But then from the proof of [17; Theorem B], we know
that there exists a linear form w on § so that (b, f,, @) becomes a j-algebra in the sense
of [18]. Therefore our decomposition g=a+10 is a generalization of a result of [25] and
[9] which is obtained under the additional assumptions that g is solvable and {=0.

2.6. In order to prove Theorem 2.5, we divide effective Kahler algebras (g,t,j, 0)
into two classes as follows. Consider the Kéahler subalgebra g'=n+jn+f, where
n=nil(g). By the Radical Conjecture [8], there exists a solvable Kéhler subalgebra m of
g’ such that g'=m+¥fand mn¥=0. In view of [7;4.7], we can assume that m contains n.
Hence after an inessential change of j we can assume m=n+jn. By [6] every solvable
Kihler algebra with vanishing isotropy subalgebra is decomposed into the sum of
Kihler algebras of flat type and of domain type which are orthogonal to each other.
Hence we can write m=a+t where ant=0 and g(a, t)=0 and where a (resp. t) is a
Kihler algebra of flat type (resp. of domain type). We will consider the following two

cases:
Case I: t=0 (containing the case where n=0).
Case II: t=0.

Clearly, in the first case, g' is of flat type and in the second case ¢’ is not of flat type.
From the next section on, we will investigate Kihler algebras of type Case I and of
type Case II separately and prove Theorem 2.5 in both cases.

§3. Kihler algebras of type case I
3.1. In this section, we shall study the structure of a Kahler algebra g for which the
subalgebra nil(g)+jnil(g)+£ is of flat type. We first show
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ProrosiTION. Let (g,f,j,0) be an effective Kdihler algebra. Then nil(g)+
Jnil(g)+t is of flat type if and only if rad(g)+jrad(g)+f is of flat type.

Proof. Set §=rad(g)+jrad(g)+t and ¢’'=nil(g)+/nil(g)+{. It is easy to see that g’
is an ideal of @ and that §/g’ is abelian. Consider the Kéhler subalgebra b given by
b={x€§d; o(x,y)=0for all yE g’}. Then { is an ideal of b. Therefore, by Lemma 1.4 we
can find a Kahler ideal b of b such that b=b@¥. But then g=g'®b, [b,]=0 and
o(g’,b)=0. Since /g’ is abelian, we know that b is abelian. We may assume that D is
Jj-invariant. Then D is a Kahler algebra of flat type.

Let x€b. Consider the action 7(x) on V=g'/f induced from the adjoint representa-
tion. The vector space V equipped with the skew-symmetric bilinear from € induced by
¢ and with the complex structure J induced by j is a symplectic space. Then z(x) is a
symplectic endomorphism. From (1.1.3), we have (jx)oJ—Jot(jx)=1(x)+Jot(x)oJ.
Therefore, by Lemma 1.6, we have z(x)oJ=Joz(x) for any x€b. This means
[x,jyl=jlx,y] (modf) for any xEb and y€g’. Since also [b,f]=0 and o([x, al, b)
+o(a, [x, b])=0(x, [a, b])=0 for all a, b€ § we have adx|§€ Der,(g) for any x€D. Set
B={adx|d;x€ b}. By section 1.3, §(B)=3®DB is a Kihler algebra and M(3(B))=M(3).
Let b'={x—ad x|g; x€Db}. Then b’ is abelian and both §’ and g’ are Kihler ideals of
d(B). Moreover, §(B)=q' @®b’'DB holds. Therefore, M({)=M(g')xM(b’). Since M(b’)
is flat, M(§d) is flat if and only if M(q’) is flat. This finishes the proof of the proposition.

3.2. In the following five sections we will prove the theorem below. Our argu-
ments are similar to the ones used in [8] for the corresponding (flat) case.

THEOREM. Let (q,%,/,0) be an effective Kihler algebra of type Case 1. Then
rad(q) is a Kdahler ideal of g of flat type.

3.3. Let (q.f,/, 0) be an effective Kihler algebra of type Case I and let a=n+jn
where n=nil(q). As in [8], we can choose j so that a is a Kéhler ideal of ¢’ =n+jn+f{. In
fact, since g’ is of flat type, every semi-simple subalgebra of ¢’ is compact. Therefore
we can assume that a maximal semi-simple subalgebra of g’ is a subalgebra of f. But
then g'=rad(g’)+f. Let p be defined as in (1.4.1). Then we can find an ad f-invariant
subspace ¢ so that rad(g’)=p@rad(g’)N{@¢. Then ¢'=p@DcDf and pPc is an ideal of
g’ containing n. We can assume that p@c is j-invariant. But then n+jn=p®c¢, whence
n+jn is an ideal of g’. We then have [k, jx]=jlk, x] for k€f and x€a. Set az=[a,a]. By

[6;3.3], a, is an abelian Kahler ideal of a and its orthogonal complement a, in a relative
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to o is an abelian Kahler subalgebra. We also know from [8;1.2] that n=n,+n, holds,
where n,=nna,;, 1=0,1. We would like to point out that a is regarded as the Lie algebra

of a transitive subgroup of euclidian transformations of some C’. Therefore, if ad x| a is
nilpotent, then x generates a translation. As a result, {x, y]=0 holds for x, y € a if both
adx|a and ady|a are nilpotent. Using this we have

Lemma ([8;1.3]). (1) n+jng is abelian and for any x€n+jn, adx is a nilpotent
endomorphism of g.

(2) [ny, a]=0.

(3) jn, is an abelian ideal of jn,+f and we have

Im(adjx)|jn,+f=0 forany x€En,.

3.4. In this section we show that sections 1.5 and 1.7 of [8] are still valid in our
context. The first part of the lemma below can be proven as in [8; 1.5] and will therefore
be omitted. The proof of the second part is a simplification of the proof of
[8;1.7].

LemMA. For every x€n,, adx has only imaginary eigenvalues and

Im (adjx)oj=joIm(adjx) (modf).

Proof. Since [f,n,] is adl-invariant, we can find a subspace n; such that
n=[f, n,]®n{ and [, n;}=0. Then j[t, n,]=[f.jn,]< nil(a), whence Im(ad jt, x])=0 for
x€n,. Therefore it is sufficient to show the assertion for every element x satisfying

[x, {]=0. But then [jx, {}=0. Hence both ad x and ad jx, induce an endomorphism of g/,
which will be denoted by g and p respectively. We also denote by J the complex
structure of g/f induced by j. We then have

poJ—Jop=g+JogoJ (3.4.1)
because of (1.1.3). We also know from Lemma 3.3,
[p,q]=0, ¢*=0 and goJog=0. (3.4.2)

Let p, denote the J-linear part of p. From (3.4.1) and (3.4.2) we can easily see that the
semi-simple part of p coincides with the semi-simple part of p, (see [6; p. 173]). This

implies the assertion, because p has only imaginary eigenvalues.
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3.5. Set U={Im(adx);x€ n,}. Then U is an abelian space of semi-simple deriva-

tions of g. Let U denote the closure of the connected subgroup of GL (g) generated by
{I. Then U is a compact group. Define a skew-symmetric bilinear from ¢ on g by

olx,y)= [ olux,uy)du for x,y€agq,
U

where du denotes the normalized Haar measure of U. By Lemma 3.4, (g,f,/,0) is a
Kihler algebra and ll=Der(g; ). Consider the Kahler algebra (g(11), {(11), j, ¢) where
g(l) and ¥(11) is defined in section 1.3. We can perform an inessential change j* of j so
that j'x=jx for x€n, and j'x=jx—Im(adx) for x€En,. We set a’=n+j'n. From the
construction, it is clear that a’ is a solvable subalgebra of g(il) and that adx is a
nilpotent endomorphism of g(ll) for all xEa’'. Moreover a’ Nnf(11)=0 and [a’, f(1)]ca’.
Since o' is of flat type and ad a’ consists of nilpotent endomorphisms, we can conclude
that a’ is abelian. Then the arguments in sections 1.11 to 1.16 of [8] are still valid for our
g(l) and a’. In particular, we have

J'n e rad(g(ll)). (3.5.1)

3.6. Since [g(11), g()]=[g, g], n coincides with nil(g(11)). But then, a’ is an abelian
Kibhler ideal by (3.5.1). Let § be the orthogonal complement of a’ in g(1l) with respect
to ¢. Then § is a Kihler subalgebra containing f{(l1). Since a’'nf(ll)=0, we have
g(ll)=a’'®}. Clearly nil(h)=0 and hence | is reductive. Let ¢ and §’ be the center of §
and the semi-simple part of §j respectively. By [14], ¢(¢, §")=0 and both ¢ and §)’ are
Kihler ideals of §. Clearly §’<=g and rad(g(ll))=a’@c. This implies that §’ is maximal
semi-simple in g, whence g=rad(g)®f’'. Moreover, since ¢(rad(g(l)),§’)=0 and
rad(g)=rad(g(l1))ng we also have g(rad(g), §’)=0. Since j''ch’+i(U) and j§'=/'’
(mod ¥(11)) we obtain j§’'<b’+f. Therefore the orthogonal complement of §' in g
relative to ¢ is j-invariant and it coincides with rad(g)+f. Thus we have jrad(g)c
rad(g)+1. Therefore rad(g) is a Kihler ideal. Now Theorem 3.2 follows from Proposi-
tion 3.1.

3.7. As a final preparation for the proof of Theorem 2.5 we remark

LeMMA. Let (g,t,/, 0) be a Kihler algebra. Assume that rad(g) is a Kdhler ideal of
g. Then there exists a semi-simple Kdihler subalgebra Yy satisfying

(a) g=rad(g)+§, o(rad(g), §)=0,
(b) t=tnrad(g)+inh.
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Proof. Let 3 be the orthogonal complement of rad(g) in g relative to ¢. From the
assumptions it follows that 3 is a Kihler subalgebra containing f. Since 3+rad(g)
(mod rad(g))=3 (mod 3 Nrad(q)) is semi-simple we obtain rad(8)=rad(g)n3ct. Let f) be
a maximal semi-simple subalgebra of 3. Then 3=rad(3)®}. Since rad(g)ct, b is a
Kibhler subalgebra satisfying (a). Let k=k,+k, be an element of f, where k, €rad(g) and
k,€Y. Then o(k,,rad(g))=0(k, rad(g))=0. Therefore g(k,, 9)=0, whence &, €, proving

(b).

3.8. In this section we prove Theorem 2.5 for Case I. Let g be an effective quasi-
normal Kahler algebra of type Case 1. By Theorem 3.2, rad(g) is a Kéhler ideal of flat
type. Let g=rad(g)+}, be a decomposition of § as in Lemma 3.7. Since g is quasi-
normal, rad(g)nf=0. Therefore rad(g) is the Lie algebra of a transitive group of
eluclidian transformations on M(rad(g)). Hence ad x has only imaginary eigenvalues for
any x€rad(g). But g is quasi-normal, whence adx is nilpotent and rad(g) is abelian.
From rad(g)n¥=0 we also know h>o¥ by LLemma 3.7. Since b is a semi-simple Kahler
algebra, we know from [1] (see also [21]) that a maximal compact subalgebra u of §
containing ! satisfies the properties (a) and (b) of Theorem 2.5. This completes the
proof of Theorem 2.5.

§4. The canonical decomposition of Kihler algebras in Case II

4.1. Let (g,,/, 0) be an effective Kahler algebra of type Case 1l and let n, g’, m, q, and
t be as in section 2.6.

In the sections 4.1 to 4.4, we essentially assert that the statements 4.8 to 4.32 of (7]
still hold with minor changes in our setting. (Recall that we use n=nil(g) here.)

Note that t is the Lie algebra of a Lie group which acts simply transitively on a
homogeneous bounded domain. Let ¢ be the principal idempotent of the maximal
abelian ideal of t of the first kind. (For the definitions of an abelian ideal of the first kind
and its principal idempotent, see [26].) We call ¢ the maximal idempotent of t. By [26]
we have

t=ty+1t,,+1,, 4.1.1)
where t, is the eigenspace of R=Re(adje) for the eigenvalue A.
Jtn=tp Jjt,=t and e€t,. 4.1.2)

[jx,e]=x for x€t,. 4.1.3)
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It is not hard to see that e is the unique element of t having the properties (4.1.1) to
(4.1.3). We decompose the Lie algebra g into the sum of eigenspaces g; of R. From the

properties of modifications [6;3.1] it follows immediately that adje and ade leave a
invariant. Clearly m and n are adje-invariant. Hence a, m and n are also invariant
under R and decompose into eigenspaces a,, m,; and 1, respectively. Using Lemma 1.5
we have ([6])

a=a_,+a,+a, Ja,=a_;, 4.1.4)

[e,x]=jx for x€a_,, and [e, a,+qa,,]=0. (4.1.5)

We can use the proofs of 4.10 and 4.11 of [7] without change in our setting and

obtain
n =t (4.1.6)
My = a;p+(t, Ny, 4.1.7)
N+, = My +m_y,. (4.1.8)

4.2. The following result has been stated in [7] without proof.

LemMma. [f,e]=0.

Proof. Let M(g’) denote the homogeneous Kahler manifold associated with g’. By
[6], the Fundamental Conjecture holds for M(g’). Thus M(g') is a holomorphic fiber
bundle over a homogeneous bounded domain whose fiber is a complex euclidian space.
Then a+¥ corresponds to the group that leaves the fiber invariant. In particular
a+f is a subalgebra. Clearly t+f={x€g’;0(x,a+f)=0} by [6]. Then we obtain
o([t,f], a)=o(t, [f, a])=0. Hence t+{ is also a subalgebra. Since ad jx—joad x induces an
endomorphism of (t+f)/f, we can define a linear form ¥ on t+f by ywx)=
Trace (adjx—jox)|(t+0)/f for x€t+t. From [13] we know w([jx,jy])=y(x,y]) and
Y([x, f))=0 for any x, y €Et+f. Moreover, the form y([jx, y]) corresponds to the Berg-
man metric of the homogeneous bounded domain M(t +f). Therefore y([jx, x])=0 for all
x€t+f and equality holds if and only if x€¥. Since (t+f)Nn=tNn, we see that tN1 is an
ideal of t+f which contains e. It is straightforward to show y(t,,)=0 and y(t,Nmn)=0.

This together with (4.1.3) yields

Yx)=vy(je,x]) forany x€tnn.
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For any k€ and x €tNn we thus obtain
(ljle, k1, x1) = w(lje, k1, x]) = y(Lje,[k, x]]) = y([k, x]) = 0.

This implies [e, k]=0, because [e, k) EtNn, and finishes the proof of the lemma.

4.3. From Lemma 4.1 we obtain fcg,. Therefore, by (4.1.1) and (4.1.4) we have
g’ =gl ,+a8+8pta;, g;=g'ng;.

Then the results of 4.13 to 4.25 of [7] still hold in our setting. In particular for all u, v€ g
there exist a, b, c ER such that

o€y, ¥y = ela+e~'b+c 4.3.1)
holds. Moreover, we have
0(g;,8)=0 if A+u=+0,%1 (4.3.2)
g, =0 if 1472 4.3.3)
Jg,cg,+g;+tg, forall n€Z. 4.3.4)
feBz g, is a Kahler subalgebra. (4.3.5)

The following result is [7; 4.28]). We give here a somewhat shorter proof.
LEMMA. q,=0if 1€ {0, £1/2, £1, £3/2, -2}.

Proof. First note that by (4.3.2) we have o(g,, ¢")=0 if A+{0,+1/2,1} does not
contain any of the numbers 0, 1, i.e., if A& 4, where #M={0,£1/2, %1, £3/2,-2}.
Since jg'cg' this also implies o(jg;, ¢')=0. But jg,cg,+g’ by 4.15 and 4.18 of [7].
Therefore even jg,=g,+f holds for 1¢.#. Hence, from (4.3.2) we obtain o(jg,, 3,)=0
since 24%0, 1 if A ¢ 4 and g;=0 follows.

4.4. We prove in this section that the eigenvalues A=—1, £3/2, —2 do not occur.
First we note that rad(g) N g;=n, if A+0. Therefore

rad(g)ng, =0 if 14{0,£1/2,1)}. (4.4.1)
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Since R=Re(adje) is a semi-simple derivation of g, by Appendix 2, we can find a
maximal semi-simple subalgebra ) of g which is invariant under R. Then all eigenvalues
of R in §) occur together with their negatives. This implies that —2 does not occur in §,
whence g_,crad(g). This means g_,=0 by (4.4.1).

By (4.3.4), d=gq,+g, is a Kéahler subalgebra. Consider the subspace
3={x€ §; e, x] = (e, jx]=0}.

Then 8 is a j-invariant subspace containing . Moreover 3 is adje-invariant, whence
8=8,+3,, where 3,=3n¢q,. Using (4.1.3) and (4.1.6); we have x—j[x, e]l—[jx, e]€3
for any x€43. Therefore §=$+n,+jn,. Clearly 8n(n,+jn,)=0. From (1.1.3) we
have [je, jx]=jlje, x] (modf) for any x€3. This implies j§,c3,+f. Then by (4.3.2),
0(j3,, 3;)=0. Therefore 3,=0 and hence g,=n,. But this shows that R has not the
eigenvalue —1 in §. Hence we get g_,crad(g) and g_,=0 follows. We have also proved
80=Jg,+8 and 8={x€ g,; [x, e]=0}. In particular, $ is a j-invariant subalgebra of g,.
Since g_,=0, we derive from [7; 4.19] that the term in (4.3.1) involving ™' does not
occur. Thus (4.3.2) holds if A+u+0, 1. Therefore o(g_;,, g')=0. But then we obtain
8_3,=0 as in the proof of Lemma 4.3. It follows g,,<rad(g), whence g,,=0.

Since o(g_,,+ 81> Qo+ 6,)=0 and since g,+gq, is a Kihler subalgebra, we know
H8_pt8)cq 1t q,,+f Thus we have proved

THEOREM. Let (g, 1,j, 0) be an effective Kihler algebra of type Case 11. Let g, be
the weight space of Re(ad je) in g, where e is the idempotent given in section 4.1. Then

(1) =812+ 8o+ Q12+ 415

@ HG_1nt 81 1p+ Qi ks

(3) gotq, is a Kdhler subalgebra and g,=jq,+3, where 3={x€ g, [x, e]=0} is also

a Kahler algebra containing t.

Remark. The choice of t in g’ is not unique. But the subalgebra t+f is uniquely
determined in g’. Lemma 4.2 shows that t, is the maximal abelian ideal of the first kind

in t+f and e is its principal idempotent. As is stated in [26], the maximal abelian ideal of
the first kind is unique. Consequently, e is obtained uniquely from g. We can easily see
that Re(adje)=Re(adj'e) for any inessential change j' of j. Indeed, as in [26], from
[e,F1=0 and (1.1.2) we derive [je, flcf. Hence f is an ideal of the Lie algebra Rje+f.
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Since adf acts completely reducibly, there exists a one-dimensional subspace [ of
Rje+1 satisfying Rje+f=[+1{ and [{, f]=0. It is easy to see that the [-component x, of je

coincides with the [-component of j’e. Clearly Re(adje)=Re(ad x,)=Re(adj'e). There-
fore the decomposition g=@®gq, is obtained in a unique way from g and it is even

independent of the choice of j.

4.5. In the following sections we will study the structure of g,+g, somewhat

closer. It turns out that also in the present setting one can proceed along the lines of
[26] and [16]. Recall that we can choose j so that jg,=t, holds. The following lemma is

well-known.
Lemma ([26], [5], {16]). There exist ¢y, ..., c,, € g, and a decomposition

8,=D cickem ik

satisfying
(@) r;=Rc; and c|+...+c,=e,

(b) [Je,jc ]=0 and [jc, ¢ ]=04
(c) Let R=Re(adjc), then R=(5,+0,)2 on x,, and R;=(0,,—0,)/2 on jx  for all

S<Lt.

By [5], we also have

D(c)=0 forall DEDer.(jg,+4q). 4.5.1)

Since the family {R;;i=1,...,m} is abelian, we can consider the corresponding
“‘root space’’ decomposition g=@g!"l. Clearly q,=®gl', where g!/'=g"'ng,. Let us

denote by A, the root defined by A(R,)=0,. Then we have
q,= @kg[lm,mk)/zj and g[l(A'+Ak)/2]=rik' 4.5.2)
i<
Remark. An element ¢ of g, is called an idempotent if it satisfies [jc, c]=c. An

idempotent ¢ is called minimal if ¢ can not be written as the sum of two idempotents.
One can prove that the set {c,,...,c,} is nothing else but the set of all minimal

idempotents of g,. Note that this definition of an idempotent depends on the choice of

the operator j.
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4.6. From now on, we restrict our investigation to the subalgebra §=g,+g,. First
we consider the eigenspace decomposition §=® ., ® for fixed R,. Note that (1.1.3)
implies jg“c=g“+g", where g"=g,+jg,+f. We will use Lemma 4.2 of [16] in the

following section. For the convenience of the reader we state this result here.

LemMa ([16]). Let u€ 3 and put ¢P”=3%"ng,. Then ju=v+x+jy+k, where
vEF?, x,y € g'W+qal**V and kETL.

4.7. We need to know which eigenvalues of R, can occur in g,. The following result

is [16; Lemma 4.3]. Our proof follows the spirit of the proof there but is adjusted to the
present setting which is somewhat different from the one in [16].

LemMMa ([16]). g§+0 only if —1/2<a<1/2, where g¢”=3§“n g,.

Proof. Assume a>1/2 is the maximal eigenvalue of R, in g,. Let #€ g{. Then
Jju=v+x+jy+k as in Lemma 4.6. Note g**"=0, whence x,y€ g\®. Then j(u—y)—k=
v+x€3? and [j(u—y)—k,u~y]€ §®. Since 2a>1, we have §?¥=g%, whence
d%9=0 by the maximality of a. Note that for

A= (ju—y)—k), " (u~y)),
we have

dA(n)dt = o(jc,, €™ j(u—y)—k, u—y])=0.

Hence A(f)=A0)=0(j(u—y), u—y). But A(r) grows like ¢**, whence A(0)=0 follows.
This implies u—y €¥. Since u € g, fc g, and y € g,, we obtain y=0 and «€{. But adu is

nilpotent, because u € g{. Thus we get u=0.

Assume now b<—1/2 is minimal among all eigenvalues of R, in g,. Then for u € g,

we have ju=v+x+jy+k, where v€ g, x,y € g**? and k€t by Lemma 4.6. Then

Ju—y) —k=v+x€ g +40*v
and
(=) —k, u=y] = (v, u]l =[v, Y] +[x, u] € §*7+g*".
We have g**"=0, since 2b+1<0. Moreover, 2b<0 implies §*”'=g{?. But the mini-

mality of b now implies g?”=0, whence §?”’=0. Using the same argument as above we

arrive at g{”’=0. Hence the lemma follows.



FUNDAMENTAL CONJECTURE 45

4.8. By virtue of Lemma 4.7, we can carry out the proofs of Lemma 4.4 to 4.6 and
the proof of Proposition 4.1 of [16] without changes. In particular, we have

ay'=(gpngl'+sngy’ for T=(A—-A)2, isj. (4.8.1)

Trace (ad s

g,)=0 forall s€s. (4.8.2)

It follows from [26; § 1] that jg,+ g, is a Lie algebra of affine transformations of the tube
domain over some homogeneous convex cone C in g,. In such a realization we have
e€C and adjg,|q, is a subalgebra of Lie Aut C, the Lie algebra of the group of all linear
transformations of C. By (4.8.2) we can apply [24; IV, Proposition 4] and obtain

ProrosITION. ad g,|g, is a subalgebra of Lie Aut C and its isotropy subalgebra at
e is ad 8|g,. Therefore, ad 3|q, acts by skew-adjoint endomorphisms (relative to some

inner product on the vector space g,).

§5. The subspace g_,,+4d,,-

5.1. Let g=g_,,+q,+4,,+@, be the decomposition of the effective Kéhler algebra of

type Case II given by Theorem 4.4. We keep the notations used in §4. The purpose of
this section is to prove

THEOREM. q_,,+q,,crad(g).

5.2. By Theorem 4.4, after an inessential change of j, we can (and will) assume
J8-1n+812)=8_1n+a,,. Then it is easy to see [jg,,jg,,]</q,,. We set

,,={x€ g, Jx€q} and wu,,={x€g;jx€QG_n}. (5.2.1)

and show as in [8;3.7]

Q=W+t Wy =, cly, (5.2.2)
[Jap ] €. (5.2.3)

By (5.2.3), a,+jg,+1v,, is a Kéhler subalgebra of g.
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LeMMA. The homogeneous Kihler manifold associated with the Kdihler algebra
g,+jg,+,, is biholomorphically equivalent to a homogeneous bounded domain.

Proof. Since g,+jg, is a solvable Kihler algebra it is easy to see that g,+jg,+1p,,
is a solvable Kahler algebra with vanishing isotropy subalgebra. Therefore by [6], it is
the sum of a Kéhler algebra of flat type and of a Kihler algebra of domain type.
Suppose that the flat summand is not zero. Then there exists x=#0 such that [jx, x]=0
((6; Lemma 3.5.1]). We write x=x,+jx,+w, where x,x,€ g, and w€ tv,,. Consider the
function A(f)=p(e'**jx, e'*x). By (4.3.2) and (1.1.4) we have 0= o(g,, a,)=0(jg,,/8,)
and o(iv,,,jg,)=0(tv,, ,)=0. Therefore

A([) = Q(eladjejxl, eladjexl)+Q(etadjeJ-w) etadjew)+g(eladjejx2’ etadjexz).

tadje ;.

Since [je, jwl=jlje, w], we get e'**jw=je'*Yew. We also have for y€ gq,, [je,jy]l=

Jjlje, y1+jle, jyl=jlje, y1—jy, whence (ad je+id) jy=joadjey. Therefore

e!adje- —t t(adje+id) - tad je

iy=e"'e Jy=e'je'*y for y€q,.

We then have
A(t)=e"g(je'adj"x|, eladjexl)+g(jeladjew, eladjew)+e—tg(jezadjex2’ etadje xz).
From this it is clear that A(r) grows like €' if it does not vanish identically. But

dA(t)dt=p(je, ¢'*[ jx, x])=0, whence A(¢) is constant. This is a contradiction, proving
the lemma.

5.3. Let c,...,c

a_.1,=®a'",, g,,=@gll), introduced in section 4.5. Since v, is invariant by ad jc, for

be as in Lemma 4.5. Consider the decomposition

m

all i, we also have m,,=@mw!"]. From Lemma 5.2, one can derive the usual root space

decomposition of m,, (see e.g. {16; p. 280]),
AR . (802 AR
0y,= @m[wz' 1l = wl™, 5.3.1)

A similar decomposition holds for the subalgebra a of g’ defined in section 2.6.
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By (4.5.1), we know from [6; 3.3] that a is invariant under adjc; and ad ¢, for all i.

In particular, we also have the decompositions a_,,=®a"],, and a,,=@all).

[A;/2) 8,2

- A2
LEMMA. a,= @al ,a_,,2=®aE1,2 andja[ ]--a,,2
i

Proof. Since p(a, 1)=0, adjc; and ad ¢, are symplectic endomorphisms of a_,,+q,,
(relative to o and j) satisfying the conditions of Lemma 1.5. Therefore if al'J+0, then
[(R) € {0,£1/2}. Suppose I'(R)=—1/2. Then jaij}=[e, al}]]=0, a contradiction. There-
fore I'(R,)=0 or 1/2. Since X2, I'(R)=1/2, there exists exactly one i such that ['(R)=1/2
and T(R)=0 if k+i. Thus we have a,,=®aly ") Since jal Plcal o ) the remaining

assertions also hold and the lemma is proven.

5.4. Since {R,,...,R,} is a commutative family of semi-simple derivations of g,

Appendix 2 assures the existence of a maximal semi-simple subalgebra b invariant by
R, for all i. Hence we have the decomposition h=®5!", where b= gl'". From (5.2.2),

(5.3.1) and Lemma 5.3, we already know

Gin =@ gl (5.4.1)

Therefore, if bi}}+0, then T=A,/2 for some i. Since b is semi-simple, §!"'+0 if and only

if H71+0. Hence we have
Al [—a;2
bip= C’?b[l/z' L= @l (5.4.2)
Recall that rad(g)ng_,,c=n_,,ca_,,. Thus by Lemma 5.3 and (5.4.2), we have

Qoin= =@ gl 1A . (5.4.3)

Next we show

a2, 1A

Lemma. g v +@in | is j-invariant.

Proof. We already know;g[,z' Acgl ,fz /2]+q[A 1. For an element x of S_1pt Q1o We

r1

denote by x!™ the g'"-component of x. Let x € gL' and decompose jix as jx="2(jx)!r.
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Since
Lcpix] = [en x] +iljci x] +ilciix],
[c»x]€ Qg‘/ﬁzm
and

A L [AR an A
Jlewix] =ile, Giol M e gly ™+ gl

we have [ jc, (j0)™]=(j[jc, x]) for T+#A,/2. Denote by a, the mapping of g\’ to
g™ defined by ap(x)=(jx)!"). Then adjc,oa,=aroadjc, for T++A,/2. This implies
Roar=aroR, for ++A,/2. As a consequence we obtain a.=0, because R,=—1/2 on

Ui and R,=0 on g™),+g!T} if [++A,/2. Hence the lemma follows.

5.5. Recall the decomposition g,=jg,+$ given in Theorem 4.4. From (4.8.1) we

derive

m
gV = @®Rjc,®sng
i=1

Set
g’ =gngldl (5.5.1)

In the following sections we investigate ¢’. We start by showing
LEMMA. j3'cg'+1.
Proof. By (4.5.2), (5.4.1) and (5.4.3), the equality g®=g!" holds. Since
[Jewix)=ilJe, x] (mod g, +jg,+)
for any i and for any x€ g,+q,, we have j3'cqll'+g,+jg,+f. We also know js'c2. Let

x€3’. Then jx=x"+y+jz+k for some x'€ g\, y,z€ g, and k€L, Further x'=x"+jr for

some x" €3¢’ and r€ q,. Since jx € 3 we obtain jx=x"+k, proving the lemma.

5.6. In this section we show
LemMa. (1) 3'={x€ gi; [x, ¢,]=0 for all i}.

(2) ¢'+Rjc;={x€ g{,ol; [x, ¢ }=0 for all k=i}.
(3) Both, &' and $'+Rjc, are ideals of gl
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Proof. Clearly, [8', ¢;]=Rc;. By Proposition 4.8, ad x|g, has only imaginary eigen-
values for any x € 5. Therefore, [8’, c;]=0 for all i. Now the lemma follows immediately

from the equations g{"=@®"7_, Rjc,®3' and [jc; ¢,]=6; ¢,

5.7. The following result provides an important piece of information on &'.
Lemma. rad(8") is a Kdhler ideal of 3' of flat type.

Proof. Let Y be as in section 5.4. It is easy to see that Y is reductive. From
(01 — [0]

this we obtain rad(gy)=g” nrad(g)+c,, where ¢, is the center of b . Therefore
nil(g™)cnil(g). Since &' is an ideal of g, nil(3")cnil(g®) cnil(g). By Lemma 5.5, we
can assume that &' is j-invariant. Hence &' is a Kahler algebra, whence by the Radical
Conjecture we may assume that nil(8')+jnil(3') is a solvable subalgebra of 3'. Recall
that gy=t,+a,+f, ty=jg, and [a,, €]=0. Therefore gyns=a,+f. Consequently, nil(s")+
Jjnil(3"Yca+{. This shows that nil(8')+jnil(8’) is of flat type. An application of Proposi-
tion 3.1 and Theorem 3.2 to 3’ yields the assertion.

5.8. For every i we consider the subspace
g = gl +8 +Rjc+ gl +Re,. (5.8.1)

Lemma 5.4 and Lemma 5.5 show that, after an inessential change of j, we can assume
that g(i) is j-invariant. Since [g[__,g’n], c,]=0 if i+k, we have

A (AR Vi
[Q[-I/z' l QE/:’ ]] c 8’ +Rjc;

by Lemma 5.6. Therefore q(i/) is a subalgebra of g. It is easy to see that
f)[__,ﬁ’/21+[b[__,f2’/2], E)E/Az‘/zl]+{)£g‘/2] is a semi-simple subalgebra of q(i). Therefore in order
to prove Theorem 5.1, it is enough to show for all i

A7)

. )
Q[l/z [ ]

+g.y, " crad(g()). (5.8.2)
In what follows, we only consider the Kéahler algebra g(i) for fixed i and prove (5.8.2).

To simplify the notation, we use g,f,c, g,,. 8y, $ and g_,,, instead of g(i), N q(), c,,

(A2
Qi

Then r=@®r,, where r,=rng,;, A=0,%1/2,1.

] 3'+R Jjc,, 8', and g[__lfz"/z] respectively. We also denote by r the radical of g(i).

5.9. The purpose of this section is to prove

4-888288 Acta Mathematica 161. Imprimé le 10 novembre 1988
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LEMMA. After an inessential change of j we obtain rad(g,)=rad(8)+R jc.

Proof. By Lemma 5.7 and Lemma 3.7, we can find a semi-simple Kihler subalge-
bra §)’ of 3 satisfying 3=rad(3)+5§’, o(rad(8), §")=0 and f=fnrad(8)+In}’. Since 3 is an
ideal of g4, adjc leaves § invariant. Hence there exists a unique element 4 of §’ such
that ad(jc—h) maps §’ into rad(8). Then for any KEFNY’, we obtain [k, kI=[jc, kl=
Jle, k]=0 (modrad(3)+¥). This implies that ad 4 leaves ¥n})’ invariant. It is well-known
that the normalizer of the isotropy subalgebra of a semi-simple Kéahler algebra coin-
cides with the isotropy subalgebra (see, e.g. [14]). Therefore h€f. Consider the
inessential change of j given by j'c=jc—h. Note that Re(ad;’'c)=Re(adjc) by Remark
4.4 and [j'c,b’']lcrad(8) by construction of k. From this it is easy to derive
rad(g,)=rad(3)@R;’c, proving the lemma.

5.10. Let ) be a maximal semi-simple subalgebra of g invariant under Re(adjc).
Then g=tr+b and h=5_,,+b,+5,,, where b,cg;,. There exists a unique element E of |

such that ad E|f),=A. Clearly E is in the center of f,, whence E € rad(g,). From Lemma

5.9, we obtain
E=qgjc+s, a€R and s €Erad(s). (5.10.1)

Since E is a real diagonal element of the semi-simple Lie algebra b, adE is a semi-
simple endomorphism of g with only real eigenvalues (see, e.g. [15]).
An important property of the element E€} is proven in

LEmMA. ad E=0 on g,

Proof. By Lemma 5.7, ad sy|g, has only imaginary eigenvalues. The same is true
for adjc|g,. Noting that jc and s, are contained in the solvable subalgebra rad(g,), we
obtain that also ad E|g, has only imaginary eigenvalues. But as mentioned above, ad E

has only real eigenvalues on g and the lemma follows.

5.11. Denote by P* (resp. Q°) the eigenspace of ad E in v_, (resp. 1,,) correspond-

ing to the eigenvalue a.

LEMMA. t_,,=P’+P™"2,

Proof. If [P%, b,,,]#0, then a+1/2=0 by Lemma 5.10. In this case a=—1/2. Assume
[P¢,8,,]=0. Then P* is ad b-invariant. Therefore Trace (ad E|P?)=0, whence a=0.
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5.12. In the remaining sections of this § 5 we discuss the possibilities a=1, a=0 and
a+0,1 for the coefficient a in (5.10.1).

LeEMMA. The case a=1 does not occur.

Proof. First we note that if a=1, then [E, c]=c holds, because [c, s4]=0. Therefore
P41+ Q" +gq, is ad b-invariant. Then the trace of ad E restricted to this space is

equal to zero, whence dim P~"2>dim Q"2. On the other hand, jP~"*=[c, P~'*]cQ"?.
Therefore dim P~"?<dim Q"?, a contradiction. Hence the case a=1 does not occur.

5.13. Next we will discuss the case a=0. To do this we need a generalization of a
result of Matsushima. Our proof follows the corresponding arguments of [14] in our
setting.

PRrROPOSITION. Let (g,¥,/, 0) be a Kihler algebra and let §) be a semi-simple ideal
of g. Denote by t the centralizer of §) in g. Then §) and t are Kéhler ideals of g and the
Sfollowing equations hold.

q=t®h, o(f,h)=0 and t=tni®InBH.

Proof. The first equation follows immediately from the complete reducibility of §.
Further we have o(t, h)=o(f, [B, B)=0((E, B], )=0. Let k=k,+k, be an element of f,
where k, €t and k,€§. Then o(k,, )=o(k, £)=0, whence o(k,, g)=0. This means k,€f.
Hence we obtain I=fnt@fnh. Since § is semi-simple, there exists a linear form » on b
such that dw=p on §. Moreover, there exists a unique w, € § so that w(x)=B(w,, x) for
any x€ 1§, where B denotes the Killing form of . It is easy to see that {0 coincides
with the centralizer of w, in §. In particular, w,€tnH. We can decompose § as
h=b'@f,, where {, is the largest ideal of ) contained in Hnt and b’ is an ideal of §.
Clearly, w,€ b’ nt. The ideal §’ can be regarded as the Lie algebra of a Lie group which

acts effectively and isometrically on a certain Riemannian manifold with §'nt as its
isotropy subalgebra. Therefore ad w, is a semi-simple endomorphism of ' and hence of

b. Let n denote the normalizer of §nt in f). Since ad wj is semi-simple, there exists an
ad wyrinvariant subspace 1’ such that n=fnt@n’. But then [wy, n’]en’ n(§n#)=0. This

means n'chnt, whence n=Hnt.
Let x€f and decompose jx=x,+x,, where x, €f and x,€fH. Let kEfnh. Then

[x,, k]=Ljx, k1=0 (modf). Therefore [x,, k] €{nB, whence x,€¢nh. This shows that t is
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a Kihler ideal of g. Finally h+f={x € g; o(x, £)=0} yields j H=h+t, proving the proposi-
tion.

5.14. In the following two sections we discuss the case a=0. Here we have
[E, c]=0. In this section we show

LEMMA. If a=0, then P""*=0"=0.
Proof. First we assert
r,,=0'+Q" (5.14.1)

In fact, if [Q §_,,]#0, then by Lemma 5.10, we have a=1/2. Assume
[@% 5_,,]=0. If also [Q° b,,]=0, then Q” is adb-invariant, whence 0=Trace (ad E|Q“)
and a=0 follows. If [0 §,,]#0, then a+1/2=0 since a=0. Moreover, @~ "?+q, is ad b-
invariant. Therefore 0=Trace (ad E|Q™"?+g,)=~dim Q""/2, proving (5.14.1). We then

have jP~"?=[c, P""?]cQ~"*=0, whence P"'?=0. On the other hand, P~"2+r,+Q"?
is ad h-invariant. Hence dim Q"?=dim P~'?=0, proving the lemma.

5.15. In this section we finish the case a=0.

LeEmMmA. If a=0, then g_,,+q,,crad(g).

Proof. Put 5={x€b;[x, r]=0}. Then § is an ideal of g. Moreover, from a=0 we
obtain r=P°+r,+Q%+gq, by Lemma 5.11, (5.14.1) and Lemma 5.14. This implies that

ad E vanishes on r. Hence [b_,,,r]=0, [h,,,t]=0 and §_,,+5,,=h follows. Let i be

the centralizer of § in g. Then ¢ € rci. By Proposition 5.13, jtci+f. Therefore there
exists k€f such that je—k €t. But then [jc—k, b_,,+b,,]=0, whence

Re(ad(jc—k)) §_,, =Re(ad(jc—k) b,,=0.
As in Remark 4.4, Re(ad(jc—k))=Re(adjc) holds. Therefore §y_,,=5,,=0, proving the

assertion.

5.16. In this section we exclude the cases a=0, 1. It is obvious that this finishes the
proof of Theorem 5.1.

LeEMMA. The case a=+0, 1 does not occur.
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Proof. Under our assumptions we have [§)_,,, c]#0. In fact, if [§_,,, c]=0, then g,
is invariant under adf), whence a=0 follows. Since a+1, [Q*"%, §_,,]=0. Therefore
Q* "+gq, is adb-invariant. It follows that (a—1/2)dim Q* "?+a=0. In particular,
0<a<1/2. Let Q° be any eigenspace of adE in 1,,. If [Q“, §_,,]*0 then a=1/2 and if
[Q% b_,,]=0 then a=0 or a—1/2 corresponding to [Q* §,,]=0 or [Q% b,,]*0. There-
fore 1,,=Q°+Q"+Q* 2. Tt follows jP’=[c, P’lcQ?=0 because 0<a<1/2. Hence
P’=0. Since jP "*=[c, P"")cQ* ", we have [jP~"? P~"?]=0. Therefore for any

x€P™"2, 0(e*Ejx, e**Ex) is constant. But o(e*Ejx, e*1Fx) grows as ¢~V if it is not
identically zero. Therefore it must vanish. Hence we get o(jx,x)=0 and P '2=0

follows. But then r_,,=0 and r,+Q"? is invariant under §. Therefore
0 = Trace (ad E|r,+Q"%) = dim Q"2
and 0"?=0 follows. Thus we have
r_,=0 and r,=0Q°+Q*". (5.16.1)

Let v, and u,, be the subspaces of g,, defined by (5.2.1). Note that 1, is

contained in r,,. But then [g_,,, u,,]=0 because of Lemma 5.10 and (5.16.1). From

£y), x€g_1n. ¥ €1y,

is constant. On the other hand, A(#) grows exponentially if it does not vanish identical-
ly. Therefore o(g_,,, 1,,)=0, whence u,,=0. Consequently jg,,=g,,. Then g,, is a

this the usual argument shows that the function A(t)=g(e2‘d Ey 24"

symplectic space relative to ¢ and j. Since we know o(3, g,)=0, ad x{g,, is a symplectic
endomorphism for any x € 8. Therefore, from Lemma 1.6 and Lemma 5.7, it follows
that ad s|g,, commutes with j for any s € rad(3). In particular, ad 3, has only imaginary
eigenvalues in g,,. From this and [s,, ajc]=[s,, E]=0 it follows that every eigenvalue of
adE in g,, is equal to a/2. This is a contradiciton, since a=+0, 1, and finishes the proof

of the lemma.

§ 6. Quasi-normal Kihler algebras of type Case II

6.1. We continue the investigation of the effective Kihler algebra g of type Case 1I. We
keep the notations used in §4.

Recall the decomposition go=jg,+3 (see Theorem 4.4). From Theorem 5.1 we
derive
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rad(go) = rad(g). (6.1.1)
Set

8o={x€3;[x, g,]1=0}. 6.1.2)

Clearly 3, is an ideal of g,. Therefore rad(3,) — rad(g).
Lemma. rad(8) is a Kéhler subalgebra of flat type.

Proof. Let x€nil(8), then adx is nilpotent. But by Proposition 4.8, adx|g, is a
semi-simple endomorphism with only imaginary eigenvalues. Therefore adx|g;=0.
Hence nil(3)=8,. Consequently nil(8)crad(3,)crad(g), whence nil(8)cnil(g). Then
nil(3)+/ nil(3) is a solvable subalgebra of m=nil(g)+ jnil(g). By [6], we can decompose
nil(8)+jnil(8)=a’+1’, where a' (resp. t’) is a Kéhler subalgebra of flat type (resp. of
domain type). If t'#0, then t’ contains a maximal idempotent e¢’. As before, we can see
e’ €nil(3). Recall that my=ty+ay, ty=jg, and that [a,, e]=0. Therefore we get e’ € ay,
because [e’, ]=0. But then Re(ad je')|a=0, because a is of flat type. This is a contradic-
tion since [je’, e']=e’. Hence nil(8)+;nil(3) is of flat type and the lemma follows from
Proposition 3.1 and Theorem 3.2

6.2. In order to obtain more detailed information about the structure of the
subalgebra 3 we need some knowledge of the fine structure of homogeneous convex
cones.

Let C be a (open) homogeneous convex cone in the real vector space V containing no
entire line and let F<Lie Aut C be an algebraic subalgebra which generates a transitive
subgroup of AutC. The following fact will be proved in Appendix 1.

THEOREM. Let e €EC and let §, be the isotropy subalgebra at e. Then there exist
pairwise commuting elements f,, ....f, of §, decompositions

V= @ VvV, ¥= @ F,0F

I1sisj<q I1<isj<q

and irreducible self dual cones C,cV; such that f,€ %; and
(1) f;=(6u+6lk)/2 on ‘/jka ad j;=(6u—6lk)/2 on %jk'
(2) B,={g€F; gv=0 for any vEDL,V,}.
Q) [Bo Fil=0 for i=1,...,q, [&; &;1=0 if iF), F; V;=0 if i%j.
(4) The spaces V), are invariant under §; and the restriction of §; to V; gives an

isomorphism between &; and Lie AutC,.
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(5) C;x...xC,=Cn(®L,V,) and e=LL e where e,€C,.
6) B =@L,(F.NT») ©Fo» FNF;={fEF,; fe,=0}.

This theorem is obtained in [4] and [24] for the case F=Lie AutC.
From (4) it follows that each ¥; is reductive and its semi-simple ©; is a simple
Lie algebra. Set ;=% N&:. Then

F:=Rf,® 9, and 1I, is a maximal compact subalgebra of 9,. 6.2.1)

We also have

rad(§)=® B+ O RS, O 630

i<j
6.2.2)
nil (§)=®
i<j
where €(%¢) denotes the center of &,.

Recall that &; is the Lie algebra of the automorphism group of the irreducible self
dual cone C;. The study of selfdual cones is mostly due to Koecher and his school.
These cones and the corresponding Lie algebras have been completely classified and
are listed in the table below (see e.g. [20; I, §8)).

cone Lie algebra isotropy center

Pos (n,R) 3l (n,R)+Rid. 30(n) n=2,30(2)
Pos (n, C) sl(n,CO)+Rid. su(n) -

Pos (n,H) su*(2n)+Rid. 3p (n) -
Pos(3,0) es—260T Rid. fa -

Light cone go(n, 1)+Rid. 30 (n) n=2,30(2)

Note that the two cases above with non-trivial center in the isotropy algebra are
actually identical. From the table above we obtain immediately

U, has non-trivial center if and only if §;=g[(2,R). In this case dimll;=1. (6.2.3)

6.3. In what follows, we assume that the Kihler algebra g under consideration is
quasi-normal (see section 2.1 for a definition).

We set V=g, and B=ad go|g;. Denote by § the algebraic hull of 2. Let C be the
cone associated with the Kihler algebra g,+jg;. (See also section 4.8.) From Proposi-
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tion 4.7 we obtain FcLie Aut C and . NLW=ad 3|V. Since [F, F 1=[28,2W)], we obtain in
view of (6.2.1) and (6.2.2)

q
® = <é)lRﬁ®(€(%0))nﬂB+©%y+§Jal 040 Fo]- 6.3.1)
i= i<j i=

Here the first term is contained in rad(Z8)=ad(rad(g,))|V. Therefore it is equal to
(®LR f,) NW, because ad x has only real eigenvalues for x € rad(g,)crad(g) by assump-

tion. Hence we have

ad 3|V = ® 1, [, Fo]. 63.2)
i=1 .

Let I be the subset of {1,...,q} consisting of all i/ such that %;=gl(2,R). From
(6.2.3) we have

adrad(3)|V= @ U.. 6.3.3)

i€l
For the subalgebra 3, of 3, defined by (6.1.2), we show
LemMA. rad(8y) is an abelian Kihler subalgebra of g.
Proof. Set g*=@L, (V,+jV;)+4. Then g* is a j-invariant subalgebra of g because

ad(jV;+8) |V, +8., [8tB., V)V, and [jV,

i’

3] =j[Vi 8] (mod 3).

Clearly rad(3,)+®Z,V, is a solvable ideal of g*. Therefore, by the Radical Conjecture,
there exists a solvable Kihler subalgebra b of g* such that b+{=@L (V,+jV,)+
rad(8,)+jrad(8,)+¥f. We can assume that bo®@%,V +rad(sy) holds. Since b is a Kahler

subalgebra, after an inessential change of j, we can assume jbcb. For any x€ g*,
we set o(x)=adx|V,. Then g; is a homomorphism of g* to LieAutC, Let i€l

Clearly %,V,=0(b)+11|V,. Since b is solvable, we have F,|V,+0(b). Therefore
ob)n(1)V,)=0, because dim1l,=1. We also obtain from (6.3.2), o(jrad(3y))=U|V,.
Therefore o(jrad(8,))=o(b)n(U|V,)=0. By Lemma 6.1 and Lemma 3.7, there exists a

semi-simple Kihler subalgebra §) of 3 such that 3=rad(8)+Y and f=rad(3)nt@Hnt.
Clearly o()=0 for i€1. Let x€ rad(§y)crad(8). Then jx=y+z, where y€rad(g) and

z€h. Since Lemma 6.1 implies jx€E€rad(3)+fnf, we have z€fnh. Then o0(y)=0
because o(jx)=0/(2)=0 as shown above. It follows from (6.3.3) that even ady|V=0

holds, whence y € rad(,). This shows that rad(,) is a Kéahler subalgebra of g. Since
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rad(8,)crad(3), we know that rad(8) is of flat type. However, since ad x has only real

eigenvalues for x €rad(3,) by assumption, we conclude that rad(3,) is abelian.

6.4. Let g* be the orthogonal complement of rad(3,) in g,+g, relative to g,
g% = {x€g,+q,;0(x,rad(3,)) =0}.

By Lemma 6.3, g* is a Kihler subalgebra of g,+g, and g,+g,=g*+rad(3,) holds.
Since g is quasi-normal and rad($)crad(q), we have fnrad(3,)=0. Therefore
g#nrad(§0)=fnrad(§0)=0. It is easy to see that @(3;, q,)=0 holds. Therefore
g"¥>g,+jg,+f, whenge, putting 8¥=g*n3, we have

g% =g,+jg,+35%, js¥cs® and 3=3%+rad(3)).

1t follows nil(3*)cnil(3)n g* = rad(8,)n g*=0. This shows that 3* is a reductive

Kiéhler subalgebra containing f. Let ¢*=rad(5¥) denote the center of &* and let
b*=[8*, 8*]. By [14], both ¢* and §* can be assumed to be j-invariant and f=
Inc*®@fnh*. We want to prove

LeMMA. ¢® is contained in {.

Proof. Since 3=8%+rad(3,), we have rad(g)=c*+rad(3,). Therefore adrad(s)|V=
ad c*|V follows. Then from ¢*nrad(3,)=0 and (6.3.3) we have

F=@1L, (6.4.1)
i€l
Consider the j-invariant subalgebra q,=@®,¢,(V,+jV,)+3*. We will show that §* is
a Kibhler ideal of g,. More precisely we claim

b* = {xE (@jvii+é“); [x, ® v,.,.] = 0}. (6.4.2)

i€l i€l

To verify this we denote by d, the right hand side of (6.4.2). Then b, is an ideal of
g, Moreover, [x, e]=0 for all i €] implies b,c$¥. Since ad H*|V,=0 for i€ I, we obtain
H*<b,. To prove the converse inclusion we consider x €, and write x=h+u where
h€YH®, u€ c*. Then [x, v;]=[u, v] for all v,EV,

.» 1€1. The assertion follows now from
(6.4.1).
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Let r* be the centralizer of the j-invariant semi-simple ideal §* in g,. Then
g,=t*@H* and o(r*, H™)=0 (cf. Proposition 5.13.). Moreover, t* is a Kihler ideal of g;.
Therefore after an inessential change of j, we can assume that jt*cr®. We note also
¥ =@,¢,(V,+jV,)+c*. Finally we consider the map 7 from (®,¢,jV,)+c" to @, F;

which is given by the equation z(x)=ad x|®,¢, V. From (6.4.1) and the choice of I it

follows that 7 is an isomorphism. Therefore, to the ideals £,=#;, there correspond

i’

ideals b, of (®,¢,jV,)+c*. Since N,cH, we obtain *=@,¢,(h;nc*) and dim(h,;n c*)=1
for each i€1. Since o(h,, h)=0(b,, [b; b,D=0([b;, §;], H)=0 if i=/, we have

o(c*, )= @ o(h;n ¢*, ;N c*)=0.
From this the lemma follows, because jc*cc*.

6.5. 1In this section, we show the following.

THEOREM. Set G=g_,,+rad(8y)+[e, g_,,]- Then & is an abelian Kihler ideal of g.

Proof. From Theorem 5.1, we obtain g_,,=a_,,, [e, §_,5]=a), and v,,=t,,,
where v, is the subspace given by (5.2.1). From the description of solvable Kihler
algebras in [6], we have [a,, t]ea,.,, if A#0. (Recall that D(a,)=0 if A+0, where D is a

modification map.) In particular, [jg,, a,,]=[t,, a;,]=a,,. We also have

[8:ain]=[e. [2: a-in]l<[e: G- 1n]=ayp

Therefore [g,, @]cd. We also have [q_,,. 8,]=[a_y,, t,]<=a,,, whence [&, g,]=d. Next
we prove [g,,, @jcd. We already know that [g,,, ai,]=[t,, a,,]+][a,.a,,]=0. Since
8,,=a;,+0,, and since [gy, a,,]=a,,, we know that for any x € rad(g) there exists an
endomorphism 7(x) of 1v,;, such that [x, wl=r(x)w (mod qa,,,) for any w € tv,,. The space
m,,, equipped with g and j, is a symplectic space. Hence, from g(3,, ,)=0, o(a,,, v,
=0 and from Lemma 6.3 it follows that 7 is a symplectic representation satisfying the

conditions of Lemma 1.6. Therefore r(x) commutes with j and its eigenvalues are all
imaginary. On the other hand, since rad(3,)crad(g), 7(x) has only real eigenvalues. This

implies 7(x)=0, whence [rad(3,), g,,]<q,,- Moreover,

[[8-120 81r2)s 81]=[12> 812] =0
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shows that [g_,,, 9,,]=8,Nnil(g)=rad(8,) holds. Therefore [&, g,,]c@. From [6] we
also know [g_,,,a,,]=[a_,,, a,,]=0, whence [a,g_,,]cd follows. Thus we have
proved that & is an ideal. Since [a_,,a,,]=0 the adjoint representation of
rad(8y) on a_,,+a,, is also a symplectic representation satisfying the conditions of
Lemma 1.6. Therefore, as before, [rad(3y),a_,,+a,,]=0 follows. This together with

Lemma 6.3, implies that a is abelian. It is clear that d is j-invariant. Hence we have
shown that @ is an abelian Kéhler ideal of g.

6.6. We are now in a position to prove Theorem 2.5 for the effective Kahler
algebra (g.t,j,0) of type 1I.

We set h=g,+jqg,+v,,+8%. It is clear that g=a+, anH=0 and o(a, §)=0 holds.
Therefore by the theorem above, §) is a j-invariant subalgebra. We show that the
decomposition g=a+1 satisfies the desired properties of Theorem 2.5. It remains only
to show that in § there exists a Kihler subalgebra u satisfying the properties (a) and (b)
in Theorem 2.5. Recall that 8% is a reductive Kihler subalgebra containing f and the
center ¢* of 8% is contained in f by Lemma 6.4. At this point we can follow the
arguments of §4 to § 5 in [17]. Note that to this end we only have to change the letters §,
g,, v,, and 3% to g, r, I, and 3. Now putting u=c*+u®* where u®* is a maximal
compact subalgebra of §* (=[s%, $*]) containing §* nf, we know from the proof of {17;
Theorem 11] that u is a reductive Kahler subalgebra of § satisfying (a) and (b). This
completes the proof of Theorem 2.5 in Case 1I.

§ 7. Proof of the Fundamental Conjecture

7.1. Let M=G/K be a homogeneous Kihler manifold and let (g,1,/,0) be the corre-
sponding Kahler algebra. By Theorem 2.1 we can assume that g is effective and quasi-
normal. Moreover, by replacing G by its universal covering group we can assume that
G is simply connected. Let g=a+1§ be the decomposition of g given by Theorem 2.5.
Denote by A and H the connected subgroups of G corresponding to a and §. These are
closed simply connected subgroups of G and G=AH is a semi-direct product. Let u be
the subalgebra of § as in Theorem 2.5 and denote by U the connected subgroup of H
corresponding to 1. Then UoK|,, where K denotes the identity component of K. We

already know that
(i) H/U is a homogeneous bounded domain and the projection from M())=H/K,

onto H/U is holomorphic.

.
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(i) U/K, is a compact simply connected homogeneous Kihler manifold.

We set [=a+u, which is a j-invariant subalgebra. Let L denote the connected
subgroup of G corresponding to [. Clearly L=AU and L is closed in G.

7.2. The homogeneous space G/K, is the universal covering space of M and it has

the natural G-invariant Kihler structure.

LEMMA. G/L admits a natural G-invariant complex structure, with respect to
which G/L is a homogeneous bounded domain and the projection n*: GIK—GIL is

holomorphic.

Proof. Recall that [u, jx]=/j{u, x] (mod 1) for u € u and x € ). Since a is an ideal of g,
we obtain the relation [/, jx]=j[/, x] (mod [) for /€[ and x € g. This combined with (1.1.3)
and with j{ < [ implies that G/L admits a G-invariant complex structure so that z* is
holomorphic. Since G=AH and since HNL=U, we have G/L=H/U. It is clear that the
invariant complex structure of G/L coincides with the one of H/U. This finishes the
proof of the lemma.

7.3. The spaces L/K, U/K, and A have, as complex submanifolds of G/K, invari-

ant Kihler structures. Since L=AU and A N U={e}, we have the natural decomposition
LIKy=AXUIK, as real analytic manifolds. Here the action of fEL on AXU/K, is

expressed as f(g,,8,K)=(f1f,8.f7 . f,8,K)) for (g,,8,K) EAXUIK,, where f=f,f,,
fi€A, f,EU. Note that (u,,j, 0) is a Kihler algebra of compact type. Then the adjoint

representation of 1 on the abelian ideal a is a symplectic representation satisfying the
conditions of Lemma 1.6. This implies that the map g,—f, g,f; ' is an automorphism of

the flat Kihler manifold A. Consequently, L acts on AXU/K, as a holomorphic and

isometric transformation group. It is now clear that the Kibhler algebra structure of [
induced from the holomorphic isometric transformation group L of the Kiahler manifold
AXLI/K, coincides with the Kihler structure of [ as the Kihler subalgebra of g.

Therefore we obtain

Lemma. L/Ky= AXU/K, as Kdhler manifolds.

7.4. We introduce some notation which will be used in the rest of this paper. For a
Lie algebra 3, we denote by 5 the complexification of s and if t = 3¢, we write n(3¢, t)

for the normalizer of t in .
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7.5. In this subsection, we collect some remarks on homogeneous bounded do-
mains and compact simply connected homogeneous Kihler manifolds.

Let S/B be a homogeneous Kihler manifold of a connected Lie group S by a closed
subgroup B. (We do not assume the effectiveness of the action of S here.) Let (3, b,j, 0)
be the corresponding Kihler algebra. Set

g_={x+V -1 jx;x€3}+b..

It is easy to see that 3.=8+3_ and 3_N&=b hold. Moreover, $_ is a complex

subalgebra of 3.. We define a closed subgroup B’ of S by
B ={g€S;Adgs_=3_}.

It is easy to see that an element g€ S belongs to B’ if and only if the following
conditions are satisfied

Adgb=b and Adg-jx=jAdgx (modb) forany x€s. (7.5.1)

Clearly B'>B. Denote by b’ the Lie algebra of B’. From (7.5.1) we derive that 0’ is
J-invariant and that the following relations hold (cf. [11}).

b'=n(8c,$.)N& and n(8c,5_)=35_+0".

LEMMA. Assume that S/B is a homogeneous bounded domain or a compact simply
connected homogeneous Kdhler manifold. Then B'=B and n(3.,%_)=¢_.

Proof. From our assumption it follows that the Ricci tensor of S/B is negative
definite or positive definite. As in the proof of Lemma 4.2, we define a form y on 3 by

w(x) = Trace(ad jx—joad x)|s/t.

By [13], the symmetric bilinear form —y([jx, y]), x,y €4, corresponds to the Ricci
tensor of S/B. As a result, (3,1,/, ) is a Kahler algebra, where n=—dy or dy. A simple
computation shows

Y(adgx) = y(x) for any g€B’ and x€ 3. (7.5.2)

This implies y([b', 8])=0. Therefore b’=b and hence n(s, s_)=5_.
Since S/B is simply connected, B is connected. Therefore B is the identity compo-
nent of B', whence S/B is a covering space of S/B’. By (7.5.1) and (7.5.2) we know that
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there exists an S-invariant Kahler structure on S/B’ so that the projection S/B onto S/B’
is holomorphic. In the case where S/B is a homogeneous bounded domain, the equation
B=RB’ follows from a result of [12]: Every homogeneous complex manifold which has a
homogeneous bounded domain as universal covering space is simply connected. In the
latter case, S/B’ is a compact homogeneous Kihler manifold with positive definite Ricci
tensor. Therefore a semi-simple group acts transitively on S/B’ as an automorphism
group. Hence by [1], S/B’ is simply connected and we get B'=B.

Remark. In [11], the equation n(8., $_)=4_ is proved in a more general setting.

7.6. We return to the investigation of the homogeneous Kihler manifold M.
Consider the homogeneous Kéahler manifild H/K, and the homogeneous bounded

domain H/U discussed in section 7.1. As in section 7.5, we set

b ={x+V —1 jx;x€h}+{.,
b = {x+V =1 jx;x€h}+ug,
K'={g€H;adgh_=1_}.

We already know from Lemma 7.5,

n(he, h*) = h*. (7.6.1)

We want to show

LemMma. (@) K' =K,
(®) n(b¢c. b )="5_.

Proof. Let k be an element of K'. From (7.5.1) we derive that k induces a
holomorphic transformation y, of H/K, given by y,(gK,)=gkK, for gK,€ H/K,. Con-

sider the map n* o y,, where x* denotes the projection H/K,—H/U. Then n*oy, (U/K,)
consists of a single point, because U/K,is compact. This implies that k Uk™'=U

holds, whence Adku=u. Clearly Adkjx=jAdix(modu) for any x€4. Therefore an
application of Lemma 7.5 to the homogeneous bounded domain H/U yields k€ U. Now
we apply Lemma 7.5 to U/K,, and obtain k€ K. We thus infer K'=K. Hence we also

have n(, H_)=5h_ and the lemma is proved.

7.7. In this section we obtain the Fundamental Conjecture up to the fact that the
fiber bundle is holomorphically locally trivial. This property will be established in the
following section.
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LeMMma. K=TK,, where I is a discrete subgroup of A contained in the center of

G. In particular K< L.

Proof. Let k be an element of K. We can write k in the form k=kk,, where
k,€A andk,€EH. Since a is an abelian ideal of g and since § is the orthogonal
complement of a, we have Adka=a and Adkh=1. Moreover Adk, x =x(moda) for
any x€g. This implies Adkx=Adk,x(moda) for all x€}. It follows that Adk,x=
Ad kx=Ad k, Ad k, x holds for all x €Y. Consequently, Adk [§is the identity map. From
this we conclude that k, is in the center of G. It is clear now that &, has the following
properties: Ad k,f=f and Ad &, jx=jAd k, x (mod {) for any x €f). Therefore by Lemma
7.6, k, is an element of K. Putting '=KnA, the assertion of the lemma follows.

Combining Lemmata 7.2, 7.3 and 7.7, we have shown

ProrositioN. The homogeneous Kihler manifold M=G/K is a real analytic fiber
bundle over the homogeneous bounded domain D=G/L with a holomorphic projection
7. M—D and the typical fiber F=L/K is, with the induced Kihler structure, the direct
product of the flat homogeneous Kihler manifold AT and the compact simply connect-
ed homogeneous Kdhler manifold U/K,,.

7.8. The final step of the proof of the Fundamental Conjecture is to show that the
fiber bundle obtained in Proposition 7.7 is holomorphically locally trivial.
Let G, be the simply connected Lie group with g as its Lie algebra. We denote by

Ac and H the connected subgroups of G corresponding to a¢ and f. respectively.
We also denote by ¢ the natural homomorphism of G into G. It is clear that o is
injective on A and that Gc=AcH is a semi-direct product. We denote by H_ and
H* the connected subgroups of H, corresponding to b_ and h* defined in section 7.6.
By (7.6.1) (resp. Lemma 7.6), the group H* (resp. H_) is the identity component of the
normalizer of §* (resp. §_) in H.. Therefore both H* and H_ are closed complex
subgroups of H.

Next we define subspaces a, and subgroups A, by

a, ={a€ac;ja==xV -1 a},
A, ={expa;a€a.,},
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where exp denotes the exponential mapping from ac to A.. We put
G_=0M)A_H_ and G*=A.H*.

Note that [a_, h_]<a_. Therefore both, G_ and G%, are closed complex subgroups of
G, and G*>G_. From the definitions of G_ and G* it follows that o(K)cG_ and
o(L)cG* hold (recall [=a+u). Therefore ¢ induces G-equivariant mappings
D :G/K—>G/G_ and ¢: GIL—-G/G*. Clearly n.0 ®=¢ oz, where n. denotes the pro-
jection of G¢/G_ onto G/G* and n: M—D was defined in Proposition 7.7. The Funda-

mental Conjecture will be a direct consequence of the

ProPOSITION. The mappings ® and ¢ are holomorphic imbeddings of G/K and of
G/L onto open sets of Go/G_ and of G./G* respectively. Moreover ® maps L/K onto

G*IG_.

Proof. Clearly jx=V —1 x(moda_+b4_) for any x€ g. This implies that ® and ¢
are holomorphic. Let g be an element of G. We decompose g as g=g,g,, where g,€A
and g,€H. Assume that o(g) €G_. Then o(g,)€o(I')A_ and o(g,) € H_. Since o is
injective on A and since o(A)NA_={e}, we have g,ETl'. From o(g,) € H_, we obtain
Adg, h_=b_. Therefore, by Lemma 7.6, we know g, € K, whence g € K by Lemma 7.7.

This implies that & is an imbedding.
Next we assume that o(g) € G*. The Lie algebra g* of G* is given by

a*={x+V -1 jx;x€q}+I..

Therefore an application of Lemma 7.5 to the homogeneous bounded domain G/L
yields g € L. This shows that also ¢ is an imbedding.
Clearly, dim G/K=dim G./G_ and dim G/L=dim G./G*. From this it follows that

®(G/K) and @(G/L) are open sets of G./G_ and of G /G* respectively. Hence
®(L/K) is also an open set of G*/G_=A /o(I) A_xH /G*. Since Ac=A, A_, we obtain
D(AN)=A/o(I') A_. We also have ®(U/K)=H/H*, because U/K, is compact. There-
fore ®(L/K)=G*/G_, completing the proof of the proposition.

Remarks: (1) From the proposition above it follows that the fiber bundle
(M,n,D,F) is the restriction of the holomorphic fiber bundle (GJ/G_,n¢, G/G*,

G*/G_). Therefore it is also a holomorphic fiber bundle. This finishes the proof of the

Fundamental Conjecture.
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(2) Moreover, in the above fibering the structure group can be taken to be the
complex Lie group G*. Therefore, as is mentioned in [25], this bundle is holomorphi-

cally trivial by a result of [10] because the base space is topologically trivial. Thus we
get.

THEOREM. Every homogeneous Kihler manifold is as a complex manifold, the
product of a homogeneous bounded domain and C"/T" and a compact simply connected
homogeneous complex manifold, where T denotes a discrete subgroup of translations
of C".

Appendix 1: Description of algebraic transitive Lie algebras
on homogeneous convex cones (Proof of Theorem 6.2)

Al.1. We will give here the proof of Theorem 6.2.
Recall that C is a homogeneous convex cone in a real vector space V, & is an
algebraic Lie algebra which generates a transitive subgroup of AutC, and that %,

denotes the isotropy subalgebra of F at a point ¢ € C. Consider the sum @=VOF. We
can introduce in & a Lie algebra structure as follows.

[Li®f,, 1,® ] =fiv =A@ [f).f;] for v,v,€EV,f, LEF.

Then & can be regarded as the Lie algebra of a transitive subgroup of Aut D(C), where
DO)={x+V -1 y;x€V, y€E(C} denotes the Siegel domain of the first kind associated
with the cone C and 3, is the isotropy subalgebra at the point V ~1 e€D(C). Let j

denote an endomorphism of & corresponding to the complex structure of D(C) and
satisfying ji¥, <%, Then (&, ¥,,/) is a j-algebra. It is clear that V is an abelian ideal of

the first kind [26] and e is its principal idempotent. Since ¥ is algebraic, we can
decompose F as F=T+3F,, where T is a split solvable subalgebra [23]. Then for any

SEZT, adf has only real eigenvalues in (§. By a suitable change of j, we can assume that
JV=2 holds.

We note that if v € V satisfies [v, §,]=0, then [jv, ¥,]=0. Indeed, as in Remark 4.4,
we can write jv=x+y, where y€¥, and [x, §,]=0. Then adjv|i¥,=ad y|5¥,. Since adjv

has only real eigenvalues, we have adju[¥,=0. In particular, we infer [ je, §,]=0.

Al.2. Let c,...,c,, be the elements of V used in Lemma 4.5 and consider the

decomposition V=®,_,r,. Since I is split solvable, V+X is a normal j-algebra.

5888288 Acta Mathematica 161. Imprimé le 10 novembre 1988



66 J. DORFMEISTER AND K. NAKAJIMA

Therefore we have the following

LemMma (Takeuchi [22]). Let ¢ be an element of V satisfying [jc, c]=0. Then c=
L;esC;, Where I is a subset of {1,...,m}.

We also note that from the description of normal j-algebras in [19] we know
adjc,=Re(adjc,) for all i. Therefore we have adjc=Re(adjc) for every element c€V

satisfying [jc, c]=c.

Al.3. Let V|, be an -invariant subspace of V of minimal dimension. Then V,, is
an abelian ideal of the first kind in &. Let e, be its principal idempotent. Then
[e;»&.]=0 ([26]) and hence [je,,,]=0. By Lemma Al.2, there exists a subset
I of {1,...,m} such that e;=L,, c,. Recall that by [26] the equality V| ={x€®;
adje,x=x} holds. Therefore we have V, =@, Ty Set V= e 1, and
V(,’=69,-_,‘e,i ty, where I}={1,...,m}\1,.We note that 1, =0 if i€Ijand k€1I,. Indeed, for
such i, k we have [c,,jr,] =V,,, because V,; is F-invariant. But [c,,jr,]=—1;, whence
1, =0. Therefore we have V=V, ®VI?®V?. Clearly, V,;, Vi? and V} are §,-invariant
and [jV,,+V,,,jVi+V{]=0 and [jV}?, V,,]=0 holds. In particular, the group generated
by jV,,+8, acts irreducibly on V,,.

Set e;=e—e,, C,=exp(jV,;+&,) e, and C;=exp(jVI+F,)e,. Then C, and C; are
homogeneous cones in V,, and V¥, Moreover, C,xC|<C.

Consider the j-invariant subalgebra &'=V}+jV?+3,. If there exists a (jV{+3&,)-
invariant subspace of V?, then by the same arguments as before we find subsets
I, I,cl;, a decomposition Vi=V,,+V}?+ V) and cones C,, C}.

Repeating the procedure above, we obtain I,=1,,,UI,,, and subspaces

a

— si2 —
Vaa=™ ®iver,tiv Va = Biey rer T and Vg—®i,k€l(;rik'

Thus we get
q
{1,...,m}= U I, (disjoint union) (AL1)
a=1
e,= Ee,
i€l

and a decomposition

V= G—)asﬂ V.5 where V ;= @,-e,a_ke,ﬂ Ty
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Note that V.’= @ ,;V,z and Vo= @ .., V;, holds. Set f,=je,. By construction, we

have
adf,|Vs, = (0,5+0,,)2 and adf,|jVs, = (0,4—0,)/2. (Al.2)
We also have
[/Vaat Ve iVestVgg]=0 if a#p. (Al.3)

Al.4. We have chosen e, so that [e,, ¥,]=0 holds. Therefore [je,, %¥,]=0. Hence

all V, are invariant under ,. Set
C,=exp(jV, ,+&.e,
We already know that C, is a homogeneous convex cone in V,, and

C5C,x...xC (Al.4)

o
Consider the subalgebra F=®7_,jV,.+&,. The correspondence g,:f—f|V; gives a
homomorphism of % to Lie Aut (C,). Then g, is an irreducible representation. There-
fore Aut(C,) acts irreducibly on V_,. But then the following facts are well-known:

(i) C, is an irreducible self dual cone.

(ii) Lie Aut (C,) is reductive, its semi-simple part is simple, its center is 1-dimen-
sional and generated by g(je,).

We decompose ¥ into the sum of root spaces of {jc,,....jc,}, 5=@F . Let
Fo={fEF:f|V,,=0 for all a}. Then F,=F, because e€ED®V . Moreover, F,=
N?_, Kernel g, and it follows that ¥, is an ideal of §. It is easy to see that Fo=7’. Since
‘8‘/%0 is identified with a transitive subalgebra of ®@¢_, Lie Aut(C,), we know from [26]
that every root I is of the form (A;—A))/2 and for i <k, ‘R'(A"_A‘)/2=jr,-k holds. For each a

we set

(A —A N2 (A-A )2 (A —Ai)lz
D,= @ FOTWIL D [FAM? Fan)

i, k€I, i, k€l
i+k ik

%aa = ‘ba+Rfa'

It is obvious that g4(F,,) =0 if a+B and [F, §,,]=0-
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LEMMA. g, is an isomorphism of §,, onto Lie Aut C,.

Proof. Let §=Lie AutC, and let f=p_(jc,) for i €I,. We decompose & into the sum
of root spaces of {f;i€1,}, =@F". Clearly, for i, k€I, we have

(A—4p2 (A~AQR
0 F ) F T

We also know from [26] that if " +0, then T is of the form (A,—A,)/2 for some
[,k€Il, and that %(A"»—A*)/2=Qa( Jty) for i, k€I, satisfying i<k. From the irreducibility, it
follows that o (%) is reductive. Therefore o (§")+0 if and only if o (F T)+0 and
dimg (F)=dimp (7). The same assertions also hold for " and § . We thus obtain
that g (§,) is an ideal of & contained in the semi-simple part [§,5 ] of %, whence 0,(9,)

=[%, %). It is now clear that 0, is injective on §,,. This implies the lemma.

Al.5. By Lemma Al.4, we have

q
F=@ F.®F, (direct sum of ideals). (ALS)
a=]

It is clear that F,=@%_ (¥, N F,)PF, and that F, N F,,={f€ T, fe,=0}. Now we set
Bap=JVeg for a<p and get the decomposition F=@, 4 8op © - Theorem 6.2 now
follows from (Al.1) to (ALS).

Appendix 2. On maximal semi-simple subalgebras of Lie algebras

Let g be a Lie algebra over R or C. It is well known that there exists a maximal semi-
simple subalgebra fj such that g=rad(g)+5. In this Appendix 2, we shall prove the
theorem below by using ideas similar to the ones used in [15]. We remark that this
theorem can also be proved by using [8; Appendix].

THEOREM. Let D be an abelian family of semi-simple derivations of a Lie algebra
g. Then there exist a semi-simple subalgebra b of g such that g=rad(g)+§ and Dhcb.

Proof. We prove this theorem by induction on dim g. Let r=rad(g) and r'=[r, t].
Assume that t'+0. Consider §=g/r’. Clearly rad(d)=t/r’. Since every element f€ED
induces a derivation f of g/t’, we can apply the induction hypothesis and obtain a semi-
simple subalgebra § of § such that §=rad(§)+% and fhch for any fED. Set g'=7"'(§),
where n denotes the projection of g onto §. Then dim g¢’<dim g and rad(g’)=t". By
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construction Dg’=g’. Therefore, applying again the induction hypothesis, we can find
a semi-simple subalgebra ) which is invariant under D such that g’=r'+} holds. But
then g=1+0 and we obtain the assertion in this case.

Now assume t'=0. We consider the semi-simple Lie algebra §=g/r. For every
fED, we denote by fthe induced derivations of §. First we consider the complex case.
Then g and § are decomposed into the sum of ‘‘root spaces” g=®g" and Q=®rgr,
where g'={x€ g; fx=T(f)x for any fED} and §'={x€ §;fx=I(f)x for any fED}.
Take a semi-simple subalgebra § so that g=r+0. Since §j is isomorphic to §, b is
decomposed as h=®j", corresponding to the decomposition of §. Let x€ H'. We write
x=Lx*, where x*€ g*. Then x“€r if A+I. The correspondence x—x' gives an
injective map of of h' to g. Let x€HT and yEY". Then [x,y]EH™". We write
x=Zx' and y € Zy', where x", yT € g*. Since 1 is abelian, the g"*"'-component of [x, y] is
equal to [x", y"']. Therefore o"*"'([x, y)=[0"(x), 0" (¥)]. This shows that p=@®p" is an
injective homomorphism of §) to g. Then o(h) has the desired properties.

It remains to consider the case where ¢ is a real Lie algebra. In this case we take a
semi-simple subalgebra § so that g=r+} holds and consider the complexification
gc» be and (g/r)c. As before, we have g8c=@gt, (g/0):=D(g/v)L, h.=@YL and define
a map o=®p". We must prove that p(§)cg holds. It is clear that EE= gfc and b_f::bg
hold. Hence every element of §j is a sum of the form x+%, where x€ E)(r: and x€ E)E. Let
x" be the gg-component of x. Then the g{:-component of x is equal to **. Therefore

o(x+%)=x"+xT € g and the assertion follows.
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