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§ 0. Notation and conventions.

In this paper German capital letters denote Euclidean vector spaces of finite
dimensionality. Small German letters denote point sets in these spaces; and ¢ —¢’
denotes the (perhaps empty) set of all points which belong to r and not to t’. Script
letters denote classes of point sets, Clarendon type denotes points (or vectors) of a
Euclidean space. Ordinary italic type is reserved for scalar quantities. The symbol
= denotes implication, the arrow pointing from the premiss to the conclusion; and
the double-headed arrow < means ‘implies and is implied by’. Two statements I and
II, which together imply a third III, are linked by an ampersand: — ‘I & II=IID’.

§ 1. Intreduction.

Let y(z) be a continuous one-valued function of z, and consider the equations

lim 2, =z, (1.1)

lim (z,—z) =0, (1.2)

tim {y () —y (@)} = 0, (1.3)
lim y (z,) = y (). (1.4)

When z and z, are real variables, it is familiar that
(1.1) < (L.2) = (1.3) = (1.4). (1.5)
For random variables, the position is different. Slutzky (4) proved
(1.2)> (1.3) (1.6)

when &, is a random variable and z a real variable; while Fréchet (1) proved (1.6)
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in case z, and = were both random variables., It is an immediate consequence of
the definition of ‘lim’ for random variables that

(1.1)<(1.2) and (1.3)>(1.4) (1.7)
but the converse statements
(11)>(1.2) and (1.3)<(1.4) (1.8)

are generally false. It is, however, easy to find special cases in which (1.8) is true
for certain specific random variables; and then the question naturally arises whether,
given any random variables satisfying (1.1), we can always find at least one special
case such that (1.2) is also true. In Theorem 1 I shall give an affirmative answer
to this question: so that, combining Theorem 1 with the Slutzky-Fréchet theorem
(1.6) and with the second part of (1.7), we shall have established

(1.1)> (L.4) (1.9)

for random variables. However (1.9) is insufficient for certain practical applications;
and I shall prove a generalisation of it in Theorem 3: namely, that (1.6) and (1.9)
remain true for almost-certainly-continuous many-valued vector functions of a vector
variable.

A number of authors have discussed, in a few special cases, the distribution of
the zeros of a random polynomial. I hope to show elsewhere how the extended form
of (1.9) provides a general solution to this problem.

§ 2. One-valued random variables and their limits.

Let X denote an n-dimensional Euclidean space. A probability set function F[x]
is any one-valued real non-negative completely-additive set function defined for all
Borel sets ¢ of X and satisfying F[X] = 1. If r is the particular set of all points,
whose coordinates do not exceed the corresponding coordinates of a given point x
of X, we write F[r] = F (x) and call F(x) a: cumulative distribution function. Obviously
Fx] uniquely determines F(x), and the converse is a consequence of Lebesgue’s
theory of integration. A cumulative distribution function is monotone increasing and
everywhere continuous on the right. For the purposes of axiomatic theory it is
permissible to identify a one-valued random variable x* with a probability set func-
tion. Asterisks will hereinafter denote random variables. If the functional form of
F, either as a probability set function or as a cumulative distribution function, is
supposed given we say that F determines the random variable x* identified with it.
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This corresponds to saying that a real variable x is determined when the numerical
values of its coordinates are supposed given. A random constant a* is the random
variable identified with that probability set function F[r] which equals 1 or 0 ac-
cording as the fixed point a belongs to ¥ or not.

Let %;,2=1,2,..., m, be an m;-dimensional Euclidean space in which z; is a
typical Borel set. Let x{ be a one-valued random variable in X; determined by
Fi[z:]. In the direct product space X; X X, X --- X %, any probability set function
G is called a joint determination of xi, x3, ..., X, if it satisfies

GIX; X Xy X - X Xiy XL X X1 X -+ X X = Fi[x) (2.1)

for all values of ¢ and all Borel sets 1; of X;. The random variable identified with
G 18 written x§ X x3 X --- X x7,. We say that the x! are independently distributed if a
stronger form of (2.1) holds, namely

Gley X La X Xtm] = F1[5]1 Fe[2s] . . . Fru[Lm] (2.2)

for all Borel sets 1;<= ¥%;.

Let @ in (2.1) be a joint determination of xi, x3, ..., %y. Lety =y (%, X; .. ., Xn)
be a one-valued Borel-measurable mapping of X; X X3 X --- X &y, into a Euclidean
space ¥). Let 1) be a Borel set of ), and let £ (Y)) be the set of all points (X3, X5, . . . Xm)
in ¥ XX, X - XX, for which y(x, Xy, ..., Xn) €Y. Since y (X3, X, ..., Xp) i a
Borel-measurable function, r(y) is a Borel set. The function of several jointly deter-
mined random variables

Y =y &5, x5, ..., Xn) = y(E X xE X X Xp)
is defined to be the random variable identified with

Hy} = Gx(H)}

it being easy to verify that H[Y] so defined is a probability set function. Indeed
this is a particular case of some more general theory discussed by Hammersley (3).

In a Euclidean space X, let x* be a random variable determined by the cumula-
tive distribution function F(x) and let x;, v=1,2, ..., be a sequence of random
variables respectively determined by F,(x). If, as v — oo, F,(x) tends to F(x) at
every point of continuity of F(x), we say that x; converges in distribution to x*,

and we write
dlim x} = x*. (2.3)

y—> 00

Let a be a constant vector, and let g(a) denote the set of points x satisfying
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|x —a| <8, where >0 is any prescribed positive number. If to every prescribed
pair of positive numbers 6 >0 and £>0 we can find a positive integer vy = %, (6, ¢)
such that the probability set functions F,[r] of x; satisfy

F.lr(a)]>1—¢, v=%(9, ¢)

we say that X, converges in probability to a, and we write

plim x; = a, 2.4)
It is not difficult to see that
plim x} = a < dlim x; = a*. 2.5)

If, for each value of », x} and x* are jointly determined by some given G,, and if
the function x; —x* of such a pair of jointly determined random variables converges
in probability to the zero vector as ¥ — oo, we say that X; converges in probability
to x*, and write

plim x; = x*, (2.6)
Thus
plim (x; —x*) = 0 = plim x; = x* < dlim (x; —x*) = 0* 2.7

when x; and x* are jointly determined; and it is quite simple to show that
(2.7)> (2.3). This is a fuller explanation of the first part of (1.7). On the other hand,
the truth of ‘(2.3)=(2.7)’ depends upon the form of the joint determination of x*
and x;. We shall now prove in Theorem 1 that, amongst the class of all joint
determinations of any given pair of individually determined random variables x* and
x,, there is always at least one joint determination such that (2.3)=(2.7).

Theorem 1. If x* is a given one-valued random variable, and ifx;,v=1,2,...,

s a sequence of given one-valued random variables satisfying
dlim x} = x*, (2.8)
then, for each wvalue of v, there exists a joint determination of X* and X; such that
dlim (x;—x*) = 0*. 2.9)

Take X to be the Euclidean space in which x* is defined; and write x =
= {@y, s, ..., zn) for a typical point of ¥, and r for a typical Borel set of X.
Suppose that F[r] and F,[t] are the given probability set functions which determine
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x* and x} respectively, and that F(x) and F,(X) are the corresponding cumulative
distribution functions. Let >0 and £>0 be any pair of prescribed positive
numbers.

We can find a finite number U = U (¢) > 0 such that

(i) F(x) is continuous on each of the hyperplanes %;;, (¢t =1,2,...,n; j=1,2),
where By is the hyperplane x; = + U and Y is the hyperplane 2; = — U; and

(ii) F[xo) <3}e, where Ly is the set of all points which violate at least one of the
n inequalities — U<z < + U, +=1,2,..., n.

We can now find a finite sequence of numbers ug, k = 1, 2, ... m, where m = m (4, €),

such that

(i) —U=uy<u<- - -<up=+U; and

(iv) upsr—w<6/Vm, k=1,2, ..., m—1; and

(v) F(x) is continuous on the hyperplanes §*%, (¢=1,2,...,n; k=1,2,..., m),
where §i¥ is the hyperplane z; = ;.
Write M = M(J,¢)=(m—1)*; and let 3, p =1, 2, ..., M, denote the half-open

finite intervals in X

Up) <Ti=Ur@y+1, t=1,2,..., 70 (2.10)

enumerated in some specific order, where k() denotes an integer (depending upon 1)

gelected from the integers 1, 2,..., m— 1. Consider the non-negative numbers
a?’ = F[Xp], bl’ = F’[gp]’ P = 0) 1: 2’ vy M; (211)

where b, is a function of ». Since X, ¥y, ..., Iy» are mutually disjoint and cover

X completely
2p0p=Dpby=1. (2.12)

Let dp, denote the Kronecker delta (6,4 =1 or O according as p = q or p #q);
and let A(0) =0 if 0540 while 4(0)=1. Define for p,¢=0,1,2,..., M

_(+ by — | ap —by)) 6ng L (Iap —bp | + ap —by) (lag — ba| — a4 + ba), (2.13)

2 2425 ap — bpl)
In view of (2.12) and a, =0, b, =0, we find without difficulty
e =0, 2ptpq= by, DqCpq =0y, vty =1 —32plap—bpl. (2.14)

Let 3 denote the 2n-dimensional space X X X, and let 3’ denote any Borel set
of 8 which can be expressed in the form

3=t Xy’ 'S tp and "<y, for some p, g, (2.15)
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¢’ and y” being Borel sets. Define G’, depending upon », by
@' = F[L1F. [t cpel A(aphy), (2.16)

where the values of p and g are those appearing in (2.15). It is easy to see that
G’[3] is a non-negative completely-additive set function for all sets 3" satisfying (2.15)
for any fixed pair p, ¢. Now the intervals r, X I, are mutually disjoint and cover
3 completely; and any Borel set of 3 can be built up from an enumerable number
of sets of the form r’ X t”. Therefore we may uniquely define G[3] as that non-
negative completely-additive set function of Borel sets 3< 3 such that G[3] = G"[3']
for all sets of the type 3. Let r be any Borel set of X. There is a unique de-
composition
I=2,1 <1,
namely 2? =r-1,. Now
ap=0>F[?] =0; by=0%cpq=0;

and so (2.14) establishes

Gt X X] = 2po F[2P]1 Fo[tel cpol A(anby)

-5, N3, ek - 5, TELe o 5, pi - P @.17)
Similarly
GIX X1]=F 1] (2.18)
Hence

G[3l=GIXXX] = F[X]=1;

so that G is a probability set function. Whereupon (2.17) and (2.18) show that &
jointly determines x* and x;.

Now write z = {z;, 2, . . ., 224} for a typical point of 53, and let 3, be the set
of all points z which satisfy all the inequalities

|2 — znti] <O/Ym, e=1,2, ..., n
From (iv) and (2.10)

M
3o EPZ:IEP X Ips
and therefore by (2.14)

M M M M
Gl3] = G2 X L] = ZG[&’ X tp] = 2 eop = l_coo—i‘zlap—bpl
=1 =1 p=1 p=0

M M
2l—ao—%pgolap—bpbl—ie—%pgolap—bpl, (2.19)
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where in the final step we have employed condition (ii). Now each of the numbers
ap and b, can be expressed as the sum or difference of 2" quantities of the form
F(x) or F,(x) where X is an intersection of fixed hyperplanes §i¥, Consequently
(2.8) and condition (v) show that we can determine v, = %4 (6, £) such that, for each
D, |ap—bp| <el/(M + 1), =9, On substitution into (2.19) we get

G[30]> 1_8’ 72‘”0 (65 8):

which establishes (2.9) and completes the proof.

§ 3. Almost-certainly-continuous many-valued vector functions.

Suppose that, to each point x of an n-dimensional Euclidean space X, there
corresponds a system ¥ (X) of p points (not necessarily distinct) in a g¢-dimensional
Euclidean space 9). We call y(x) a p-valued g-dimensional vector function of x. If
there are defined a system of p one-valued functions of x

Y1 (%), Y2 (%), . . ., Yo (X) (3.1)

such that, having due regard to multiple points, the points (3.1) coincide with the
points y(x) for each x in X, then we call the functions (8.1) an ¢ndexing of y (x).
If y(x) possesses at least one indexing (3.1) such that y;(x) is a Borel-measurable
function for each fixed j=1,2,...,p, then y(x) is called a many-valued Borel-
measurable functton. In this paper we shall only be concerned with Borel-measurable
y(x); and we shall therefore assume that (3.1) is an indexing for which y;(x) is
Borel-measurable for each fixed j.

We say that y(x) is continuous in a Borel set 1, if, for every prescribed &> 0
and all points x€y,, there exists # = 5 (e, X)>0 and at least one permutation 1’,
2,...., 9" (possibly depending on ¢, x, x’) of the integers 1, 2, ..., p such that

XEL&|x—x|<n=|y;x) —yr )| <e, 1=1,2,...,p. (3.2)

If further F{r,] = 1, where F determines a random variable x*, we say that y(x) is
almost-certainly-continuous with respect to x*.

Theorem 2. If ¢>0 and 0>0 are prescribed, and if F[r] ¢s a probability
set function, and if y(X) is o p-valued Borel-measurable vector funciion, continuous in
a Borel set 1y, then we can find a Borel set T, satisfying F[E]= (1 — 0) F[x), and a
number n = (e, 0), independent of x, such that

x€&[x—x'|<y=y;®)—yix x)|<ei=1,2,...,p
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where yj(x, X’) is a Borel-measurable function of x and X’ for each fixred j = 1,2, ..., p,
and the set yi(x, X'), y2(X, X'), ..., Yo (X, X’) ts @ permutation (depending on x) of the
set Y1 (X'), Y2 (X'), ..., ¥p (X))

When p =1 this theorem reduces to one on uniform continuity over the ‘non-
trivial’ part of a probability set. Surprisingly enough, the standard textbooks on
topological measure theory do not mention even this special case, which therefore
seems new.!

Let m, k=1,2,..., pl, denote the permutations of p objects, and let (1%),
(2k), ..., (pk) denote the result of applying m; to the integers 1,2, ..., ». Let m
be a positive integer. Let Cn denote the class (containing at least the empty Borel
set) of all Borel sets  of X with the property

x€r&|x—x'|<ml=|y;(x) —yon ()| <e; §=1,2,..., p; some k; (3.3)

where ‘some %k’ means that there is at least one value of %k (possibly depending on
x and x’) such that (3.3) holds for all j with this fixed . We notice first that
Cm, m=1,2,..., is a monotone increasing collection of o-rings [Halmos (2)]: that

i8 to say
TECR &L ECh>L—1 €Cn; (3.4)
2€ECm §=1,2,...220€Cn; (3.5)
s=1
m << m’ = CmS Cm’ . (3'6)

Since F is a probability set function there exists M, the least upper bound of

F[z] for x€Cn. We have
1€Cpn> F[1] < Mp. (3.7)

Moreover we can find Ime€Cm, a=1, 2, ..., such that F[tma] = Mu—a~l. Write
x 2 . .

Tm = 2 Ima and notice that > Ima, #=1,2,..., is a monotone increasing sequence
a=1 a=1

of Borel sets. Then
8 8
F(tn] = Fﬁ[}jm lema] =ﬂlim F[_Z1 Ima] = sup Fltme] = sup (Mn—p7")=Mm. (3.8)

But (3.5), (3.7), and (3.8) now show
tn€Cm, Fltm] = Mn. (3.9)
When we have thus found g, to satisfy (3.9) for each m =1, 2, ... we define

m
=2, m=12...00. (3.10)
u=1

! Professor Kac has remarked to me in conversation that the special case p = 1 can be deduced
from Lusin’s theorem.
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Now (3.5), (3.6), and (3.7) show F [t™] < M,; and (3.9) and (3.10) show F[r™] = M.
So we have

I"€Cp, F[I™] = Mn. (3.11)

The definition of My, the fact that F is a probability set function, and (3.6)
demonstrate

Mp=Mp=1 m<m’; (3.12)

so M = lim M, exists. Further t™, m =1, 2, ..., is a monotone increasing sequence
m—>oo

of Borel sets. Thus
Fr*]=F[lim "] = lim F[y™]=lim M, =M. (3.13)

Since ¥, is a Borel set by hypothesis, r, —t* is a Borel set (perhaps empty). We
shall show that the supposition

Fl,—1r*]>0 (3.14)
leads to a contradiction.

In the n-dimensional space X, in which F[r] is defined, a bounded half-open
set of all points x = {x), %,, ..., s} which satisfy all the inequalities

ai—h<x<ai+h, a; and k finite, 1 =1,2,..., 0 (3.15)

is called a hypercube. Given a hypercube (3.15), the set of all points satisfying,
for each value of ¢, one or other (but not both) of the inequalities

G—h<x:i<a or ;<mm;<a;+h

is called a first hyperquadrant of the hypercube (3.15). We then inductively define
a (¢ + 1)th hyperquadrant of (8.15) as a first hyperquadrant of a gth hyperquadrant
of (3.15). The unqualified term ‘hyperquadrant’ will mean a gth hyperquadrant for
some unspecified positive integer g.

If (3.14) holds, we can find a hypercube f, such that

F(to—1*) - h]>0, (3.16)

because F is a probability set function. Let %’ denote the union of all hyperquadrants
b of B, which satisfy
F((xo—1*)-5] = 0. (3.17)

The set of hyperquadrants § satisfying (3.17) is at most enumerable, because it is
a subset of the enumerable set of all hyperquadrants of f,. Hence §)’ is a Borel

set, and
Fl(to—z=)-y1=0.
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Consequently, from (3.16)
Fl(to—1*) (B — 01> 0. (3.18)

Now (3.18) implies that (p —z*)-(§o — ") is not empty. So we can choose a point
X (hereafter fixed) such that

%o € (Zo — %) (ho — b"). (3.19)
Since (3.19) implies X,€f,, we may define fj, to be the gth hyperquadrant of B,

such that x;€l,. This definition is unique, because, for each fized ¢, the several
gth hyperquadrants of f) are mutually disjoint. Further

Fl(to—1t*)-B]>0, ¢=1,2,..., (3.20)

for otherwise xy €, < )’ in contradiction to (3.19).
Next (3.19) implies xy€%x,; so that y(x) is continuous at x, by hypothesis.
Therefore, x, being fixed, we can find a positive integer r = 7 (X,, £) = 7 (¢) such that

[x—xo| <27 !> |y (%) —Yin(X)|<3e; 7=1,2,...,p; some k. (3.21)

Let 8 denote the set of all points x satisfying |x — x| <r~1. If the value of %
[see (3.15)] for B, is kg, hg= 2"%hy— 0 as g—> oo because k, is finite. Hence we
can choose a value of ¢, say ¢ =¢, so that );=3. Now let x and x” be any two
points satisfying

X€(Lo—r?)-B and |[x—x'[ <L (3.22)
Then

XERS 8> |[x —xo| <rlx|x' — x| <2771
A fortiort
|x—x] < 27! and |x’' —xo| > 2771;
so that (3.21) shows that there exist integers ¥’ and &’ with 1 < ¥’, ¥/ < p! such that
|7 (%0) —Yaur (%) | < }&, |¥i(%o) — Vi ()| <}e, 1=1,2,...,p.

Whereupon
[Yor) (%) — Yo (X)) <&, 1=1,2,...,p.

Now apply the inverse permutation n;! to these last inequalities, and there results
|yi(x) —yoin )| <e; §=1,2,...,p; some k. (3.23)
Since (3.22)= (3.23), we have from (3.3)

(to—2*)-Be€Cr;
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and therefore by (3.5)
4+ (X—1r®) - heC,. (3.24)

Now r'<1x®; so t" and (rp—:®)-0: are mutually disjoint. Therefore, by (3.24),
(3.7), (3.20), and (3.11)

M, = F[" + (8 —2%) bl = F['] + F(to —2°)- %] > F[&'] = M-,

which is the required contradiction. So we must abandon the supposition (3.14);
and there only remains the possibility

Flto—1r*]=0.
Flyl=F[x*1=M ='}.1113°F[z'”]-

Consequently

This last equation shows that we can find an integer s such that

(1—06)Fx] = F[r]. (3.26)
We now choose 7 = 7 (e, 0) to satisfy 0 <7 <s~!, and put £ =*. We have
F[i]=(1—0) Flx), (3.26)

and, as a stronger case of (3.3)
€L &|x— x| <g=|yi(x) —yin ()| <e; 7=1,2,...,p; some k. (3.27)

Let 3 =X X X' denote the space of points z= (x, x’); and let R;, 1=1,2, ..,

be an enumeration of the rational points of §). For each value of k=1,2,..., 2!,

let 3z denote the (possibly empty) set of points z = (x, x’) which satisfy all the
inequalities

lyi(=) —yan (=) <e, 1=1,2,..., p; (3.28)

and let 3 denote the set of points for which (3.28) holds for some % (perhaps de-
pending on x and x’). Then

p!

The set of points X, satisfying |y;(x) —R;] <<ie for fixed j and fixed 4, is a Borel
set rj; since y;(x) is a Borel-measurable function of x. Similarly the set of points

x’, satisfying |ygr (X)) —R;i| <}e for fixed j and fixed % and fixed 4, is a Borel
set ’Gpa. Consequently

=11 {li (Tia X Tina)}

=1 =1
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is a Borel set. We define

x—1 p!
Fea— 2, x=2,3,..,0!, $#=83—23.
k=1 %=2
Then 3%, » =1, 2, ..., p!, are mutually disjoint Borel sets covering 3; so that their
characteristic functions
1if z= (x, x')€p"
I (X, X') = .
0if == (x, x')¢3"

are Borel-measurable functions of x and x’. The theorem is now proved by taking
7 2! ’ .
(%, X) = EIxu (x, X)¥gn(x), 1=1,2,...,p. (3.29)
The case of Theorem 2 which will interest us in this paper arises when y (%)
is almost-certainly-continuous, and we have F[f]=1— 0. The counter-example
0if z<0
yx)=z1, F@@)=qxzf 0<zx<1
lif z>1

shows that Theorem 2 would be false were § = 0 permitted.

§ 4. Many-valued random variables.

An unordered set of p probability set functions determines a p-valued random
variable, x*. Suppose that, for any given Borel set r, these p» probability set func-
tions are arranged in an arbitrary order and then denoted by Fjfz], 1=1,2,..., p.
This indexing may depend in general upon the set f chosen; but the symmetric sum

Flg) =273 Filz]

is evidently independent of the indexing. It is moreover easy to verify that F[z]
is a probability set function, which we call the condensed probability set function of
x*. The corresponding condensed cumulative distribution function is

F@ =573 Fix

where Fj(x) are specified by an indexing of the p cumulative distribution functions
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of x*. Further, F{x] and F(x) determine the same one-valued random variable,
which we call the condensation of x* and denote by °x*.

If x* is a one-valued random variable, and y(x) is a p-valued Borel-measurable
function with an indexing (3.1) of one-valued Borel-measurable functions, then

yi =Y¥i(x*), i=1,2,..,9p

will be p one-valued random variables determined by H;[y] say. Whereupon
P
H9) = p 3 Hyly]

will be the condensed probability set function of the many-valued random variable
y(x*), and will determine a condensation denoted by °y(x*).

Theorem 3. If x* and x/,v = 1,2, ..., are onc-valued random variables satisfying

dlim x; = x*, 4.1)
P—>00
and if y(x) ts a many-valued Borel-measurable function which is almost-certainly-con-
tinuous with respect to xX*, then

dlim cy (%) = y (x). (4.2)

It will be noticed that y (x) need not be almost-certainly-continuous with respect
to x} for any value of » at all.

Suppose that F[r] and F,[t] are the probability set functions determining x*
and x; respectively. Let £¢>0 and 6> 0 be any pair of prescribed positive numbers.
Since y(x) is almost-certainly-continuous with respect to x* we can find a Borel

set T, satisfying
F[i]=1—16, (4.3)

and a number 7 =7 (¢, 0) such that
xef&|x—x'| <= |yi(x) ~yi(x, X)|<e, §=1,2,...,p (4.4)

where ¥;(X, X') is defined by (3.29).

Let 3 =X XX be the space of points z = (x, x’). By (4.1), we can take the
probability set function G[3] defined in Theorem 1 to be a joint determination of
x* and x;. We put the quantity 6 of Theorem 1 equal to % (g, 6), and the quantity
¢ of Theorem 1 equal to the quantity 36 of the present theorem. Then, with 3,
denoting the set of points z = (x, X’) satisfying |x — x’| <, we have from Theorem 1
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Gt X X]=F[1]; GEXT]=F[K]; Gla]>1—10, v=w(s, 0);  (4.5)
where (¢, 0) = % {n(c, 0), $6}. Then, with 3 = £ X ¥’ we have
G[3]=F[i]=1—16. (4.6)
Then (4.5) and (4.6) show that
Gl30°31=1—G[B—(30-3)] =1 —G[(B —30) + (3 —3)]
Z1—G[8—3]—G[8—31=—1+G[]+GHEI>1—0, (4.7)
while (4.4) becomes
Z=(X,X)E3 3> |y,~(x)-—y,'-(x, x')| <e 1=1,2, ..., p. (4.8)
Now, since ¢ and 6 are arbitrary, (4.7) and (4.8) imply

plim {y;(x*) —yj(x*, %)} =0, j=1,2,...,p

and, since (2.7)>(2.3), we have

dim yj(x*, x7) = y;(x*), 1=1,2,..., p.

Summing the corresponding cumulative distribution functions over all values of j§,
~and remembering that a distribution function has at most an enumerable number

of discontinuities, we deduce without difficulty

dlim °y’ (x*, x7) =y (x7). (4.9)

We complete the proof by showing that y’(x*, x;) has the same condensed
probability set function as y(x)). Let Y denote a typical Borel set of the space ¥
of points y. Let 3(y)) denote the set of all points z = (x, x’) such that y;(x, x’) €Y;
and let 3;(y) denote the set of all z such that y;(x’)€y. Since y;(x’) and y;(x, X’)
are Borel-measurable functions 3;(y) and 3;(})) are Borel sets. The condensed prob-

ability set function of y’(x*, x7) is
? , » 2! , .
P 2600 =271 3, 360 H ) (£10)
where 3, x =1, 2, ..., p!, are the disjoint Borel sets covering 3 defined in Theorem 2.
i zeg*3;(y), (3.29) shows yj(x, X’) = Yy (X'); and so

3 3(0) = 3 36 ().
Substituting into (4.10), we get
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? , I o 2
p“ljglG ) =72 ,-Zl Gl g0m (9] = 971 2 ’ZIG (83 (9)]
? ! 2
=913 SO um) =27 36O

which is the condensed probability set fupction of y(x7).

§ 5. References.

{1] Frecukr, M.  Recherches Théoriques Modernes. Traité du Caloul des Probabilités et de
ses Applications, Tome 1, Fasc. III, 1° livre. (Paris: Gauthier-Villars, 1937).

[2] Harmos, P. R. Measure Theory. (New York: Van Nostrand, 1950.)

[3] HammErsLEY, J. M. “A theorem on multiple integrals.” Proc. Camb. Phil. Soc. 47
(1951), 274—8.

[4] Svurzey, E. “Uber stochastische Asymptoten und Grenzwerte.” Metron. 5, No. 3
(1925), 3—89.

Lectureship in the Design and Analysis of Scientific Experiment, University of Oxford.

17 — 632081 Acta mathematica. 87



