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Introduction

The problem of studying the regularity of the free boundary that arises when con-
sidering the energy minimizing function over the set of those functions bigger than a given
“obstacle” has been the subject of intensive research in the last decade. Let me mention
H. Lewy and G. Stampacchia [14], D. Kinderlehrer [11], J. C. Nitsche [15] and N. M.
Riviere and the author [5] among others. In two dimensions, by the use of analytic reflec-
tion techniques due mainly to H. Lewy [13], much was achieved. '

Recently, the author was able to prove, in a three dimensional filtration problem [4],
that the resulting free surface is of class C! and all the second derivatives of the variational
solution are continuous up to the free boundary, on the non-coincidence set. This fact has
not only the virtue of proving that the variational solution is a classical one, but also veri-
fies the hypothesis necessary to apply a recent result due to D. Kinderlehrer and L. Niren-
berg, [12] to conclude that the free boundary is as smooth as the obstacle. Nevertheless,
in that paper ([4]), strong use was made of the geometry of the problem: this implied that
the free boundary was Lipschitz. Also it was apparently essential that the Laplacian of
the obstacle was constant.

In the first part of this paper we plan to treat the general non-linear free boundary
problem as presented in H. Brezis—D. Kinderlehrer [2]. Our main purpose is to prove that
if X, is a point of density for the coincidence set, in a neighborhood of X the free boundary
is a C? surface and all the second derivatives of the solution are continuous up to it. In
the second part we will study the parabolic case (one phase Stefan problem) as presented
by G. Duvaut [7] or A. Friedman and D. Kinderlehrer [9]. There we prove that if for a
fixed time, £, the point X, is a density point for the coincidence set (the ice) then in a
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neighborhood in space and time of (X, t,} the free boundary is a surface of class C* in
space and time and all the second derivatives (in space and time) of the solution are con-
tinuous up to the free boundary. The solution is hence, a classical one in that neighborhood.
The appendix contains some Harnack type inequalities and some geometrical lemmas.

I would like to thank D. Kinderlehrer for helping me clarify the presentation of this work.

1. The elliptic case

1.1. The case considered by H. Brezis and D. Kinderlehrer in [2] is the following: given are
Q, a bounded, open, connected subset of R", & locally coercive C%-vector field a,(P); (P=
(P, ---» Pn)) and a function p (the obstacle) satisfying, € C*Q), y <0 on 8Q.

It is proven there that a solution, %, to the problem

uEK;f a(Du)D,(v—u)dX >0 forall vEK
Q

with K ={v: v is Lipschitz, v >¢, v|,0=0} is of class C*'}(M) for any M <Q, compact. On
Q one distinguishes the subsets D ={X: u=¢} and Q\ D. On (8D)NQ, u=¢p and Vu=Vp
and on QN\D=W, A(u)= —8,(a,(Vu)) = —2 a,(Vu)u,;, =0 where 4 is elliptic.

If ¢ is assumed to be of class C4((Q) and Ag, V(4¢) do not vanish simultaneously, it
was observed in [5], that if X €(8D)N L), then 4(p)<0 in a neighborhood of X, Hence
locally we have the following situation: Given are an open set W, a ball B,(X,) and two
functions:

PECHBY(X,)), Alp) <29 <0 on By(X,),
ueCI.I(BQ(XO))’ u[ By (Xo~W = @5
uz@ on ByXy), Au=0 on W N B,(X,).

(In particular Vu=Veg on (9W) N B,(X,).)

Finally, if we subtract ¢ from w, v =u —¢ satisfies, in a new subneighborhood B,(X,),
ay(Vp) Dy(u—@) =f>0 on W N By(X,).

As observed in [5], f can be extended by —a,(Ve) D (p) to be a CV3(B,(X,)) function,
since near (W) N B,

a, (Vo) D,y(w) = a,(Vu) Dyy(w) +Od(X, oW)) =0(d(X, oW))

and in the interior the growth of the Holder norm of D, (u) is controlied by the Schauder

estimates.
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Therefore, if we assume a,,(P) to be O? functions, the general problem reduces to the

one treated next.

1.2. We are given an open set W, a linear elliptic operator Au=2 a,(X)8,0,u with coeffi-
cients a,;€C? in a neighborhood of W and a function v €C!}(W) and satisfying:

(H1) v=0, A(v)=f where f has a OV2 extension f*, to a neighborhood of W, f*>1,>0.
(f*€C¢ is all we will use.)

(H2) The boundary of W, oW, may be decomposed into o, W and oW\ 0, W, where
8, W is an open set of oW, and v|,, w=0, Vo|s, w=0.

The investigation of the regularity properties of 8; W are the purpose of this work for
which it suffices to restrict ourselves to an open subset F of ¢, W satisfyingd(F,0 W™\ 0, W) >
Uo>0. The dependence of the estimates obtained for F, on u,, |[v|[c1, ||f*||cv2 and 4, is
not going to be taken into account. The letter C' will denote a constant. When different
constants appear at different steps in a proof we will keep the same letter C unless we
want to stress the dependence of that constant on some new variable appearing in the

context.
1.3. We begin with the following observation, necessary in the proof of Theorem 1:

LEMMA 1. Let u be @ non-negative C11(B,(X,)) function with norm
[ ullct+ = sup (u) +sup (|Vu]) +sup (ju,]) =2

and assume that for some point Y €8B,(X,), u(Yy) =0 and Vu{¥,)=0.
Then given 8, 0<d<1/2, and a pure second derivative u,; there is a point Yy such that
[ Y5 X,| <(1-6/2)p and
u, (Ys) = —OA8Y2,

Proof. f Y;=(1-6)(Y,—X,) + X, then u(Y,) <34(dp)? and |Vu(Y,)| <A(dg). Now, in
the " or —i** direction the segment I=[Y,, ¥,], with origin ¥, and length }61/2p is con-
tained in Byi_s2,(X,) (the worst case of all takes place when I is perpendicular to the
radius [Y;, X,]). Then

0<u¥) = uT) £uF) (1¥a= Ta)+ [ [ug<4icer+5 60+ Gup w) 3¢
1

That is,
sup u, = — CA6"% Il
I

The next theorem is perhaps the most fruitful observation of the work.
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THEOREM 1. Let v, W and F be as in (H1), (H2) of paragraph 1.2, and v,, a pure second
derivative of v. Then there exist positive constants C and & depending only on f,, the smooth-
ness of the data, and ellipticity of the operator A, such that forany X €W, v,(X)> —C| (logp)| ¢
where p=d(X, F).

Remark. In the proof of this theorem the fact that f >0 is not used, only its C= char-
acter.

Proof. Let 0<g, |log ¢|~1 <M <1. We will prove, by means of the Harnack inequality
that, if »,(X)> —M for any X such that d(X, F)<g, v,(X)> —M+CM?**-1 whenever
d(X, F)<g/2. A simple iteration then shows that if for d(X, F) <gy, v,,(X)> —1, then for
d(X, F)<2%,, v,(X)> —Ck~12"-2_  Agsume, therefore, that d(X,, F)<g/2 and let us
consider the biggest ball B,(X,)< W, (¢’ <g/2). To this ball, Lemma 1 applies and therefore,
given §, there is a Y, as in Lemma 1, such that v,(Y;) > ~CVé and d(Y,, 0B,) > 36¢’.

We now apply the Harnack estimate in Lemma A1, choosing § =CM (C small enough)

and we get
v Xo) + M > CHE—D(M — Col/2) — O™,

Since we are willing to assume M > |log p|~!, choosing initially g, small enough,
v, (X)) + M = CM2 -1,

1.4. We will now study the geometric implications of Theorem 1. In order to do so, let us

introduce some notation.
Notation 1. We will systematically make use of half balls with inner normal #
HB,(Y,n) = By(Y)n{X:<X-Y,n >0}
If 5 is of no interest for us, we will delete it.

Notation 2. We will also consider the angle between two vectors Y and Z, which we

will denote by «(Y, Z).
Notation 3. We will use functions (¢>0)

ve(0) = Co |log ¢|,
y-(0) = Co |log o] —=.

The constant C' may vary from step to step. Obviously y.(y_.(g)) ~¢. The first geometric

consequence of Theorem 1 is
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COROLLARY 1. Let X €W and assume that

(8) v(X)=g6
(b) d(X, F)<g§, (0<¢&).

Then, if we choose the constant C=Cle, &') in y sufficiently small
HByelﬁ(g“)(X’ VU)C W.

Proof. Let us consider a ray, I =[X, X*] of HB, and see how far it may be traversed
before v becomes negative. Since v,(X), the directional derivative in the I direction is

positive (because {7, «) >0),

0=v(X*)=v(X)+v(X)|I|+ ff vy > 05— 3C|I*|log (| I|+ 08)| =
I

From this inequality, it is easy to see that |I| is at least of size y,z(go)- I

A further consequence of Theorem 1 is obtained by using the following lemma.

LeEMMA 2. Let X€W, d(X, F)<gy/2, and 0 <g <p,/2 be given. Then

supv > Co?
W aBy(X)

Proof. If X € F, this fact was proven in [5], Lemma 1.1;if o >2d(X, F), B,(X)> B,5(X")
for some X'€F and this case follows from the preceeding one. Finally, if o <2 d(X, 2Q),
using that for an appropriate selection of 8, A(v(¥Y)— (] ¥ — X|*)) >0 and the maximum
principle, we get

sup (v— 8(g/2)) > 0. I
dBo/2(X)
We are now ready to prove the next corollary, suggesting that the set of coincidence CW

is “almost convex”.

COROLLARY 2. Let S< CW have diameter g, and let T'(S) denote its convex envelope. If
d(X, CT'(8)) >y —-eral0o), then X ECW.

Proof. Assume that X€W. By Lemma 2, there exists a Y€B, _ on(X) verifying
v(¥) > Cly_,14(00)]2 Therefore, by Corollary 1 there is a direction # for which

HB (Y)=W.

Vei2l¥ — g/4(Q0))

Since y..5(y_c/a(00)) 304, and Y €L(S), HBNI'(8)=D and therefore HBN S0, a contra-
diction. I
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1.5. Let us introduce the following notation for the “spherical” disk
D(X, g5, 0,m) =0B(X)N{Y: a(Y — X, 7) <g}.

The next two lemmas are designed to prove the following fact. Consider for an X € F
and an g, (small enough) the disks D(X, gy, g, 7). The fact is that once ¢, has been fixed, if
for some 7, D(X, ¢, o, ) happens to be contained in CW for a small enough g, then for
any g, =2" we are going to be able to find again a disk D(X, &, g, n;) contained in CW.
That is, if CW “thins” when approaching X, it must do so in a uniform way. (Of course
for smaller ¢,’s the initial values of g(g,) will be smaller.)

The first lemma asserts that if that were not the case, the set CW would have a special

geometric configuration.

Notation 4. The symbol o(g) as used below will denote an increasing function of the
positive real variable ¢ verifying lim,, o(¢) =0. For instance, in the case below, o(g) is

in fact some small power of |log o| 1.

LemMma 3. Fix an angle 0 <oy <z/2 and an g,< Coy (O small enough). Then if X €F,
there exists a p,=0(gy) >0 such that, if for some p <g, and some n, D(X,, &y, 0, 7)< CW and
D(X,, £y, 0/2n' )& CW for any n', then (CW) N B, is contained in the acute angle between two
planes, 7w, and n,, verifying

(a) d(my Ny, Xo) <o(o)e
(b) afmy, 75) < ot

Proof. In order to understand better the idea of the lemma, let us first present the

proof in the two-dimensional case, for which the geometry involved is much simpler:

Since D, = D(X,, &, 0,7)<CW and X €0W, by Corollary 2

D, = D(X,, &,—C |log 0| /4, 0/2, n)= CW.
By hypothesis, if , (¢ =1, 2) denote the two directions such that

a(n,, ) = C |log @] =%,
there exists points X, verifying

X,€ wn D(X,, &9, 0/2, )= D(X,, &, 0/2, ’71)\1)2,

which is for =1 or 2 an arc of circle of apperture smaller than C |log g|~*/® tangent to D,

at each one of its endpoints. Therefore, again by Corollary 2 we can associate to each X
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a line L,, tangent to I'(CW N B,(X,)) and such that d(L,, X,)<y_.,(e). The L,’s are the
required 7;.

In the n-dimensional case, employing the same notations as before, we conclude
again that D,< CW, but there are now infinitely many directions #’, for which a(y, )=
C |log o[ ~/® and for each one of them we may find an

X, €D(X,, &, 0/2,7')N W = D,.0 W= D, \D,.

The set D, \ D, is no longer an arc, but it is located “on the same side of 77 as %’”” in the

sense that, if ¢ denotes projection onto the normal plane to »
(X, — Xo), @ly’ —n)) <7/2+C |log o]~/

(See Lemma A5, (a)). In turn, by Corollary 2 to each X,. we can associate a plane of
support for I'(CW N B(X,)), =, with d(X,,, 7,) <y..le). Therefore, by a small motion
of the 7,., we can find planes 7,., satisfying the conditions of Lemma A5 (b). But any point
X, of CW N B,(X,) verifyes d(X, Z)<C |log g| ¢/, and therefore a further translation of
the planes H, and H, determined in Lemma A5 (b) by C |log o|~¢/8 gives us the required
planes. l

It is interesting to notice that in the preceeding lemma we only made use of the
“almost convexity’”” of our coincidence set. To rule out the possibility of the situation

considered in it, we have to make use again of the properties of the free boundary.

LEMMA 4. Given &, there exists a gyle,) such that, if p <pyle,) and D(X,, gy, 0, )< CW,
then D(X, €, 0/2,%')< CW for some n'.

Note. g is chosen to be smaller than a fixed multiple of /2 depending on the ellipticity
of 4.

Proof. After an affine transformation we may assume that 4(Xy)=A (that is a,)(X,) =
d84). Assume for contradiction that the conclusion is false and that CW N B,(X), according
to the preceeding lemma, is contained between two perpendicular planes 7,, 7, and also
that d(X,, X,)<Cp |log g|* for some X, €m, N 7,.

The function V =(z,x,)/|X|["*? is harmonic outside the origin, and after a rotation
we may assume that V(X —X,) is positive in the angle between 7, and 7, enclosing CW.

Let us apply the Green formula to the domain D,N W, where

D, = Byo( X))\ B, _, st X1).
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From the formula

L VX = X) Ao—oAV(X ~ X;)}dX = (VX =X)8,v—v8,V(X —X,)}do,
Q

HDe W)

which is easy to verify (cf. 5], Lemma 3), we deduce that

f V(X ~X)|<C
DoN'W

and hence

|1]= <C.

f V(X - X,)
DoNcw

But, the application of Corollary 2 to D(X, g, g, %) U {X,} implies that the truncated
cone of inner radius y_ /5(0), outer radius ¢ —y_, 4(0) and aperture g, — |log o | =¢/® is contained
in D, N C(W). Therefore:

[1] > Cef" |log (|loge])]

which contradicts that | I} <C. I
1.6. Let us reevaluate the situation in geometric terms. To do that, let us introduce the

Definstion 1. Given a set S R”, the minimum diameter of § is the infimum among
the distances between pairs of parallel planes enclosing S.

Obviously, min diam (S)=min diam I'(S) and it is proven in the appendix in the
last part of Lemma A5, (b) that, if S is convex min diam (S) is proportional to the radius
of the largest ball that we can inscribe in 8. Therefore, in our particular case of “‘almost

convexity”’ we may prove that

LeMMa 5. Let A be the min diam. (CW N B,(X,)), (X,€(CW)), and assume that A>
Veis(0). Then we can inscribe a ball in CW N B,(X,) of radius proportional to A.

Proof. Since we can inscribe in I'(CW N B,(X,)) a ball B of radius proportional to 4,
by diminishing the radius of B by y_.(0) we obtain, according to Corollary 2, the required
ball. Hence the two preceding lemmas say that

CoroLLARY 3. There exists a modulus of continuity o,(p) (as in Notation 4), such
that, given a point X €F either min diam (CW N B,(X,) <oy(p)o or if for some g,,
min diam (CW N B,y (X)) >01(00)00s for any o <pg,, then

min diam (CW N B,(X,)) > Cay(ge)0.
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Furthermore, in the second instance, that is, if mindiam (CW N B(X,)) > 0,(00)0,
then for any point X, verifying d(X,, X,) <=,

min diam (CW N By.+(X,)) > 04(00)0,
since
By(X,)< B, (Xy)
But for a small enough p;

Co,(00)01 > 204(201) 04
From which we conclude the

COROLLARY 4. For any X,€B, (X, )N F

min diam (CW N By, (X)) > 04(20,) 20
and hence
min diam (CW N B(X,)) > 06,(20;)0, Vo <2¢,.

In particular, if |A| denotes Lebesgue measure of A, then

[(CW 0 B,(X,)|
I BQ(XI) I

Vo <20, and YX,€B,(X,)NF. (See Lemma 5.)

> C0,(20,)>0

A particular consequence is that whenever X,€ F has positive Lebesgue density &
with respect to CW, there is a neighborhood of X, for which each point X € F has density
C6 with respect to CW, uniformly on B,. (Thatis, [CW N B,(X)|/| B,(X)| > 08 Yo <g4(X,).)

1.7. The scope of this section is to prove that, if a point, X,, of ¥, has positive Lebesgue
density for CW, then ¥ admits a representation as a Lipschitz function in a neighborhood
of X,.

In order to prove this, our first step will be to improve the “almost convexity’’ of
CW near X, by obtaining new estimates for the v, If v, were harmonie, well known
theorems would say that v,,(X)> —Cpt, YXEW N B, x,(X,), where g =d(X, F).

It is not difficult to adapt those theorems to our situation, as it is shown in the lemma

below.

Lrmma 6. If there exists a go and a K >0 such that

|CW n B,(X)|

1B,X)| >K>0 Vo<p,

then, v (Y)> —Cp¢ for any Y such that |Y — X | =p <g, for some & >0 depending only on K
and the operator A.
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Proof. We assume that for | ¥ — X | <3~%g,, v;,> — M, and we show that for | ¥ —X| <
3~%+g.. v, >AM (A<1) (provided that we also assume M >C(37 %" g )1/2).

To do so, we first notice that
By—te+1g,(X) < By 3- e+ 139, ( ¥} © By tie+135,{ X );
then we add a correcting factor u:
Au = Av,,, “|332.3—(k+1)e, =0.

A(v,) can be prolonged as the second derivative of a CV2 function to the whole ball, see

also Lemma Al
sup |u| <CgV?, (o =3-"*+Vg,).

We therefore have
(1) A(vy;—u)=0, and v;;—u>—M —Cp'* on W N B,,(Y).
(2) v;;—u> —Cp2 on F N Byy(Y).

Hence, if we consider
h =min (v, —u, —2Cp"?)

Lemma A2 applies and we obtain
h(Y)> —a(M +Co?) — (1 —a) (Co?) > —AM,
since we are willing to assume M >pV2. That is
vy u> —AM
or v;;> —A'M (since u <(Cp!/?).

Now, a standard iterative argument completes the proof. I

From now on we restrict ourselves to the subball B, (X,), where the hypothesis of

Lemma 6 hold.
There, we immediately obtain an improvement of Corollary 2,

CoROLLARY 5. If 8 is a subset of CW with diameter, diam (8) <g, and X, verifies
d(X,, C(I'(8)) > Cp+e/2
then X, € CW. (e from Lemma 6.)

Notation 5. Similar to our previous notation y,(g), we use now the notation &,(p) for
Co'+a, where the constant C may assume different values.
The new estimate for CW gives us an interesting asymptotic behavior for CW along

lines, that says



THE REGULARITY OF FREE BOUNDARIES IN HIGHER DIMENSIONS 165

LEMMA 7. Assume that X € CW and X, =(X,+1t,n)EW then, for any t>2t,>0,

W N D(X,y, Kot't, 0,m) =D for a suitable K.

Proof. Suppose the contrary. Applying Corollary 5, inductively on £k, if

D(X,, K(27%g)*/4, 27%9, ) =CW
then
_D(XO, K(2_.k9)e/4 *0(2"2))5/2, 2—-k+10’ 77)C CW
If we choose K such that

K—-C>K2-¢2
we obtain
D(X,, K(2-*+Dg)ers, 2~k+Dp py= CW.

But then, Corollary 5, gives us a contradiction if we choose % verifying
2-hi2g L gy < 24D,
Now we are in conditions to prove the desired theorem.

TurorEeM 2. If X is a point of positive Lebesque density for CW, then in a neighbor-
hood of X, F can be represented as the graph of a Lipschitz function.

Proof. We are going to prove that there exist constants y and g, such that in an appro-

priate system of coordinates, for all X € F N B, (X,) the truncated cones
Dy={Y: (Y ~X,e,) <y, | Y —X| <0}
Po={Y:(Y-X,e,) >n—p, | Y ~X| <p,}

verify I'ya CW, Fyc W. (e,=(0, 0, ..., 1)).

For any ¢ <g,, CW N B,(X,) contains a ball of radius proportional to g, By,(X,),
according to Lemma 5 and Corollary 3.

Let us choose a p, small enough as to make Kp}"**<0p, and a p,<p,.

In an appropriate system of coordinates, where X,, — X is parallel to e, assume that
the points X and Y =X +tn, t>0, verify

(a) X, Y€B,,(X,)

(b) «n, e,)<b

(c) Xe(CW), YeW.

Then, according to Lemma 7,

Dn W = D(-X3 KIXQR_XDIEM! IXQQ_XOI’n)n W:#Q’
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but, because of (a), (b) and the way we choose g, and gy, D< By, (X,,) © CW. Thisis a con-

tradiction and completes the proof.

1.8. Our next step is to prove that if the free boundary is Lipschitz, it is really a C! surface
and the second derivatives of v are continuous up to it. More precisely, let us fix a system
of coordinates (x, ..., z,_;, ¥). We will, from now on, denote by X a point in R*-1 and

(X, y) a point in R™. The techniques here employed were used by the author in [4].

THEOREM 3. Assume that on a cylinder C(oy, 8,) ={X, y: | X| <0p, |y| <8¢}, the free
boundary, may be expressed F N Clo,, 8,) ={X, y: y=9(X)} where g is a Lipschitz function,
and W={X, y: y<g(X)}. Without loss of generality, assume also g(0)=0, |g(X )| <80/2. Then,
for any subcylinder C(p,, 8,), ¢ 48 a function of class C*, its modulus of continuity being in-

dependent of X, and any second derivative of v, v, is continuous up to F N C(g,, d,).

Proof. The proof of the theorem is basically divided in two steps: First we bound g

below and then above:

LeEMMA 8. Al any point X € B,,(0), g(X) has a convex cone of tangent rays, C(X), which

146

g approaches by below faster than o**¢ (for some &).

Proof. Our candidate for a tangent ray is the lim sup over all possible chords in a given
direction. In order to show that such a ray is tangent, and that the estimate from below

holds, we notice that if X,=# (5 a unit vector in R"-1), whenever 0 <#, <{y/2,

g(-Xh)t:l_ g(O) < g(th)tz_ g(O) + Ct§/2 (18.1)

(we are replacing X by 0 for simplicity). In fact, consider the ball
B=Beiite(Xy,, g(Xe,) + c't*).
Since g is Lipschitz, for C’/C” big enough, B< CW. On the other hand, if

9(X.) — 9(0)

b
does not satisfies the inequality for a big enough C, the set of points X, of Lemma 7 applied
to (0, g(0)) and (X, g(X,)) would hit B or pass over it. In any case a contradiction. A

similar argument shows that such a cone is convex (see {4], lemma). |

Proof of Theorem 3. The proof of the theorem follows now from an argument similar to

that of Lemma 4. Let us present the proof for the point (0, g(0)) =(0, 0) supposing that
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A(0)u=Aw. If 7 is a plane of support for the convex cone C at (0,0), with normal » and V,,
is the second derivative of ¥ =1/| X|"~2, it is easily seen from the properties of » that

f V,y Av
CenW

where O, =C(g,, 8;) —C(eo, d,) Or also
f Vi
cenw

(Since |Av(X)—Av(0)] <|Av(X)—Av(X)| + | Av(X)—Av(0)| <C|X|). Then |fo,ncw V|
<K and if C;=C, N {(X, y) below x}, since

v
fc;ncw i

(because of the uniform approximation by below to the convex cone proved in Lemma 8)

’ Vvy
(C—Co)N'W

Integrating in y, since V, vanishes on 7z —(0, 0) we obtain

d((X, g(X)), =)
aX
L<|X|<Qo |X, g(X) |'l

|
<K,

<K.

<K'

we obtain

<K.

<.

Let us show that for ¢ small enough we must have d(X, g(X), z) <C|X| |log | X ||~ In
fact, if it wasn’t so, and we wrote d(X, g(X)) in polar coordinates d(p, ) we would obtain

f f 9’ D g-2dgdo| <
£<@<Qo

If é(p,, o) > Co, |log g,| ¢, using that g is Lipschitz d(g,, 0) > Cp, |log g,| ¢ for ¢ in a solid
angle of apperture C |logg,|~¢, and applying (1.8.1) of Lemma 8, once again for any ray
in that solid angle, any ¢>2p,, &(p, 0')>C"p|log p| *—Cg***. But if g, is taken small

17]=

enough, the integral I will surpass any constant C, a contradiction.
This proves that g is . To show that v,; is continuous up to G we will prove that if
(Xo, ¥o) € F and v is the inner normal to F at (X, y,)v,; converges to

(4v) (Xo, yo) <& ¥> <Gy ¥

Qiym V1 Vim

Since this last function is continuous on €2, our result will follow. To prove this, on the
other hand, it is enough to prove that if (i, »> =0, v,,—~0. This we prove by means of the
Harnack inequality. Assume that we have been able to prove that |v,,| <M for any (X, y)
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such that d((X, ), (X,, 9(X,))) <e and assume that for any (X, g(X)), such that d((X, g(X)),
(Xo» 9(XN) <o, a(vx, gy, ¥o) <e. Take (X, y) verifying

| (X, ) — (X, 9(X0))| <2

and B,(X, y) the biggest ball contained in W. Chose X, such that (X, g(X,)) €0Be (X, y) N F.
Then a((X,, g(X;) — (X, ¥)), vy) <e. We integrate v, along a segment I, in the i-direction, with
length 6%’ and such that, d(I, (X,, g(X,))) <Cd¢' and d({, B,)>C"d¢’. (If ¢<d this is
possible) and if §V2=CM we obtain as in Theorem 1, |w;,(X, y)| <M —CM?*™, (Note that
[ rwy| <|wy(Xy)] + |wi(X,)| <Cde if & is much smaller than 4.) Il

Remark. To this situation, (free boundary of class C* and continuous second deriva-
tives), applies the result of David Kinderlehrer and Louis Nirenberg [12] asserting that the
free boundary is as smooth as the data in a neighborhood of the point under consideration

(linear or nonlinear case), and analytic if the data are analytic.

Comment. It is our opinion that a much more accurate description of the exceptional set
should be possible. For instance, improvements can be done when some topological in-
formation is available, as in the work by Friedman [8], or the elasto plasticity problem as

treated by Brezis—Stampacchia in [3] (see also [6]).

2. The parabolic case

In the parabolic case, we will limit ourselves to a localized version of the one phase
Stefan problem, as treated by G. Duvaut [7] and A. Friedman and D. Kinderlehrer [9].
They found, by the methods of variational inequalities a solution to the problem in different
geometric settings. The local properties of interest to us possessed by the solution in ques-

tion, in a neighborhood of the free boundary could be summarized as follows:

2.1. Given are:

(PH1) A domain W< R"™ x [t,, t;1, W is known to be increasing in time (that is if (X, t)EW,
then X, V€W, Vi<t <t,).

(PH2) A function v, with bounded second spatial derivatives (v€C%'(W)) and bounded
time derivative (vE€EAJ(W)), v,20 on W, satisfying Hv=Av—v,=1.

Remark. The C%' character of » was pointed out to me by D. Kinderlehrer. The proof
follows the lines of the work by H. Brezis and D. Kinderlehrer [2]. A penalization function

as in [9] is used.
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(PH3) On an open portion o, W of 6W, v and V yv vanish and if we prolong v, to CW
by zero, across &, W, Hv,=Av,~v,>0 in the sense of distributions. (Although this is not
explicit in [9], v, is proven, there, to be the limit of a sequence of functions v,, with that
property.)

As in the elliptic case, we will restrict ourselves to a portion F of ¢, W that stays far
from 8W™\ 0, W. This part of the work can clearly be divided into two parts: First we prove
spatial regularity by using the elliptic techniques. For temporal regularity a further effort

is required.
2.2, The equivalent of Lemma 1, would be
LemMA 9. Let u be a non-negative function on the cylinder
F,={|X] <o, 0<t<0Cp?},

w€CY' (T) NA{T,), and assume that for some X,, |Xy| <o, u(X,, 0)=0, Vyu(X,, 0)=0
then given a pure second spatial derivative uy; and a 6<1/2, AX,, with [X,| <o(1-§/2),
such that

u, (X, (09)?) = ~CoY2.

Proof. We first go inside the ball a distance dp (if necessary), where u satisfies u(X,, 0) <

C(090)?, then we go up a distance (d9)? and there u still satisfies
(X, (90)%) < CY@d)*.

Finally, we observe that, since « remains positive in a ball (in space) of radius (gd) around

(X,, (30)?), |Vu| <(dp). The proof follows now that of Lemma 1.

THEOREM 4. If v,, denotes a pure second spatial derivative of v, v, (X, t) > —C |log o| =,

where g denotes the parabolic distance to F.

Proof. The proof is the same as that of Theorem 1, using now the Harnack inequality
of Lemma A3.

2.3. Let us denote by W,, the restriction of W to a fixed time ¢,; since on W,,, Av=1+v,>1,
Lemma 2 is still valid (replacing W by Wy, and F by F,) (see also the last section of [5]):

LemmaA 10. Let (X, t) be given and assume that d((X, t), F,) <g,/2. Consider a o such
that 0 <g <g,/2. Then

sup = Cp’ I
Wi 1 9Bg(X)
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It follows then that Corollaries 1 and 2 can also be transplanted to Wy, and F,, since they
depended only on the conclusions of Theorem 1 and Lemma 2.

We restate them for completeness.

COROLLARY 6. Let X €W, and assume that

(a) v(X, t)) =05
(b) d(X, Fy,)<g5, (0<¢).

Then if we choose the constant Cle, €') in y sufficiently small (¢ now as in Theorem 4).
HB, (X, V)= W,

CoROLLARY 7. Let S<(CW);, have diameter pg and let T'(8) denote its convex envelope.
If d(X, CI'(8))>y_esalo), then X €(CW ),

2.4. Of course, we could also reproduce Lemma 3, but since in Lemma 4 we must now
replace V by a parabolic singular integral and to infer that this integral diverges we must
go backwards in time, we need not only to force W, to stay between z, and 7, but we also

need, in an appropriate system of coordinates
(CW), < {t—t, < Az, — Bp?, 0 <t,—t <g}.

To accomplish this we employ these basic ideas: recalling the geometric configuration
from Lemma 3 (with W, instead of W), the disc D, = D(X,, ¢,, 0, 77) as well as the point X,
are contained in (C(W)), for ¢t <¢, due to the increasing nature of W. Therefore, to show
that (CW), does not grow too much as ¢ decreases from the time ¢, it would suffice to assess
its behavior half way between D, and X, in particular, near X, (cf. Lemma 3).

For that we first need an estimate in v,.

LeMMma 11. Assume that
D(X,, &, 0.m) < (CW),
and (X, o) EF. Then, there exists a & such that of (X, 6)EW (t<t,) and
d(X, D(Xo, &, 0/2, 7)) <20
(with C |log p|~¢/® <y<<1).
Then 0<v,(X, t)<C¥’.

Proof. For any X as above

| Bieol X) N CW|

>A,>0
| Buo(X)] ¢

becanse of the “almost convexity” of CW in Corollary 7.
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Hence Lemma A4 can be applied inductively to v, for those » of the form »=8*%

and the conclusion follows. I

COROLLARY 8. Assume that X €W, and

d(X, D(X,, &, 0/2, 7)) < Cp |log o] =2
Then
B, {X)NW,+=0

for any 0 <t,—t <C(vo)2/»’.

Proof. There exists a Y € B,o(X)N W,, such that o(Y, t,)>C(vg)2. Since v,(Y, )<+’
for ¢t <t, the corollary follows. I

Now we reformulate Lemma 3.

Lemma 12, Let 4, B, g, be positive numbers, 1/2> Bj A&y, and assume that X € F,,
D(X,, &, 0, )< (CW),, and that for any n’

D(Xy, £0,0/2,7') O W, &= D.

Then, there exists a g, =py(co, 4, B) such that for any o <g,, in an appropriote system of

coordinates

(@) |Xo| <elloge|—=
(b) For 0<t,—t<Kp? K= K(g, B, A)<1 a constant

(CW) N BO)= {t—ty < Azi— Bz ,}.

Proof. Let us begin the proof of this lemma, for (CW), at the point of Lemma 3
where we construct the points X, and let us consider a ¢ such that |£,—t| <»*%* with v
to be choosen. According to Corollary 8, there is a Y, such that (Y, t)€W, and | Y, —
X, | <Dt —nH2

Therefore there is a plane of support sy for I'((CW),), verifying d(myi X, )<
OV (¢t — )2 <.

Since D(X,, &y, 0, ) and X, must stay on the same side of ny,,

B(X,, 0) Ny < {X: d(X, 7ty) < C[Y(t,— T2}
where C=C(g;).

Therefore

By(X) N (CW) = {X: d(X, [(H{ UHZ)) < O[Va(to—t)]m}'

(where H;" denotes the half plane bounding the acute angle of Lemma 3). If » is taken

small enough the proof is complete. |
12— 772905 Acta Mathematica 139. Imprimé le 30 Décembre 1977
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2.6. We are now in conditions to prove

LEMMA 13. Hypothesis as in Lemma 12, gy<<n/2 then there exists a p,=py(e,) such that
tf 0 <, then for some n’
D(X,y, &, 0/2,7") < [C(W))ee
Proof. As in Lemma 4 we argue by contradiction about the convergence of a certain
integral. We consider & second derivature of the fundamental solution

4 A% (23— 2u) + 2481 1 .
H=F22—2F11=[ E e ) ]t_n’_zeAIXIIt.
In the system of coordinates of Lemma 13, after an eventual rotation, we obtain that
for any — Kp?<t<0
X ¢~ BIXPIta~0)

— > =1
H(X, t—1) I(cw>,n BEONBy_ @@~ (g gz +E

(because of Lemma 12), and also (CW), contains a truncated cone of exterior radius g,

interior radius y_,(0) and aperture g, — jlog ¢} ~*".

Hence as, in Lemma 4, we obtain on one hand, that

Kot
f f H(X,t,—t)dXdt|<C
0 W, 0 Be(0)\ BV—eIS(o)

because of Green’s formula applied to H and v and on the other hand that |I| surpasses

1=

any constant when g is taken small enough. I
From Lemmas 12 and 13 we are able to obtain the same conclusions that we discussed
in Corollary 3 and 4 for the elliptic case, i.e., that if X,€ F,, either

min diam ((CW),, N B(X,))
e

<ole)

for any p or, in case X, is a point of positive Lebesgue density for Fy, any other point in
F, 0 B,(X,) also has that property. But a simple observation will allow us to extend this
property to a neighborhood in time of (X, £,).

Remark. If B,(X,)<[C(W)];, then for an appropriate constant C
B,-on = [C(W))ysms.

Proof. Assume that Y€ (B,_cn(X,)) N (W) sn then
sup (Y, t,+ h*) > Ch?

Bg(Xo)
(by Lemma 10).
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Since v, is bounded,
sup »(Y,t,)>0

Bo(X)
if the constants are properly chosen. I

CoroLLARY 9 (see Corollary 3). There exvists a modulus of continuity a,(0) (as in
Notation 4) such that given a point X,€ F,, either min diam (CW),, N B,(X,) <oy(0)o or, if
for some gy, min diam (CW), N B, (X¢) >01(00)es, then there exist constants Cy=0C\(g,) such
that for any t=t,, for any 6<g,/2

min diam ((CW), N By,(X,) = C1lay(0o) — Calt — 1) *]e.
2.7. In particular, Corollary 9 tells us that

CororrLarY 10. If X is a point of positive Lebesgue density for (CW ), then there exist
constants A, g, and a neighborhood

Q = By (Xy) x [ty—e&, ty+¢]
such that for any (X, t)€EQ N F, for any g <g,

|C(W), N By(X)|
_——_IBQ(X)I >A>0. Il

This corollary allows us to easily reduce the problem of space regularity for F,N @ to the
elliptic theory as soon as we make the following remark.

Remark. (a) There exists a d, 0<d<1, such that for any (X, #$)€Q, 0<v (X, ?)<
[d(X, F)P.
(b) In particular, Av}y, is of class 0%*.

Proof of remark. To prove (a) we apply iteratively Lemma A4 to the points (X, t)

verifying
dX, F) <27,

To show (b) we use Schauder’s estimates to prove that v, is Holder continuous. i

Furthermore, Theorem 2 and 3, which, according to the remark, hold now for each
F,N B, (X,) (0301, 0, 88 defined in Corollary 10, |¢—¢,| <¢) can be done uniform in

time.



174 L. A. CAFFARELLI

THEOREM 5. Assume that X, is a point of Fy, of positive Lebesque density for (CW),,

then, there exist constants &, p,, k, and a system of coordinates X = (x,, ..., z,) on which
Fno=Fn{X: (@, ... %1)| <ga |2, <k, |t—8,] <&}
can be represented as the graph of a function
Tp =gy, ..., Tp_q, 1)
where g is (uniformly in t) of class C* on the space variables x,, ..., z,_, and CV2 on the t-

variable and W N @ ={x, <g(wxy, ..., T, 4, 1)} N O.

Proof. The only new assertion in this theorem is the fact that the system of coordinates
can be chosen to be the same for a whole interval of ¢’s around ¢, and the ¢-regularity. To
verify that, we must simply go back to the proof of Theorem 2 and notice that the ball
Bgo.(X;) can be taken to be the same for those values of ¢ close enough to f, because of
the remark after Lemma 13. The Hoélder continuity in ¢ follows also from the remark after

Lemmas 13. "

2.8. From now on we restrict ourselves to a subneighborhood of ® (as determined in
Theorem 5). We denote a point in R” by (X, y) where X ={(x,, ..., z,_;) and y=x,,.

We want now to obtain further regularity in time.

The idea is to use v, as a barrier for v, and obtain the boundedness of v, (¢ a direction
in R") from that of v,; and then, that of v, from that of v,,.

First we make the following observation.

Levma 14. There exists a neighborkood of
(X, 9(X, 1), 8)
on which v,,>21,>0. In particular, —v, (X, g(X, t) =6, t) > A40.

Proof. On F,, according to Theorem 3, v, =(y, v)2>1>0 where v is the normal vector

to the surface F,. I
Notation 6. Iy (X, t,) will denote the cylinder
{Y,8): | Y —X,| <o, ty—& <5<t}
We are now in the position to prove
Lemma 15. There exist constants C such that in a neighborhood of F

(X, y, 1) < —Cry(X, y, 1) + Cod((X, 3), F))2
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Proof. Fix (X, yo) € Fy, and for t,—e<t<ty, [(X, y)—(X,, ¥o}| <@, compare the two
solutions of the heat equation, v,and w= —Av, +[(2n +1)"1(| X - Xy |2+ (y —yo)2 + (8, —£) —v]
in the boundary of the set

[W N T o((Xo, %o), to)]-

Clearly v, is bounded in (0L, ) 0 W and vanishes in F NI, ., and w is non-negative in
FNIy,. and strictly positive in (oI, ) N W if 4 is chosen big enough. Therefore, multi-
Plying w by a suitable constant we obtain the desired result. I

The preceeding lemma shows that when considered in the appropriate domain of
definition D,, the space h-incremental quotients A, v, of v, remain bounded by those of
w in that part of 8D, that arises from F. A localization argument will give us the following

theorem.
THEOREM 6. The derivatives v, ; and vy are all bounded.

Proof. Let @ be a C§ function with support
S8 < Lo e41{Xg, Yo to+1)
and ¢ =1 in a neighborhood of (X, y,, &) €. Then
H{gv,) = v(Hp) + (Vo) Vo,

Since v, €C¢, we can construct, just by convolving with the fundamental solution, a func-

tion wE€CEy, in [Ty.e41(Xo, Yor to+1)] and satisfying
Hw = H{gv,).

Hence the incremental quotients (in space), A,(w—¢v,) are uniformly bounded at the
boundary of Iy, «(X,, ¥, to) and in particular Vo, is bounded in a neighborhood of (X, ¥y, £,)-

Now we look back at H(pv,), with a @ having smaller support, and notice that it is
bounded in a neighborhood, IV of (X, ¥, ;). Hence

wE(C%SNCH(I) Ya< 1

which tells us that v,€C{(W N I"), since the incremental quotients in ¢, A, v, are uniformly
bounded on FNT, by A,v,.
" Therefore, for any £>0, they grow at most like

C.
[4((X, ), T
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on (6I';) when approaching F because of Schauder’s inequality. If we represent A, v, by their
boundary values on WNI', we obtain that in a subneighborhood of (X, y,, t,), v..; is
bounded. I

CoroLrLaRY 11. If B(X, y)<= (CW), then for a sustable C, B, cn < (CW)isr. In parti-
cular g€ A} (is Lipschitz in time).

Proof. See the proof of the remark after Lemma 13.

2.9. We need now to use the a.e. existence of non-tangential limits to prove the next lemma.
For that, we refer to J. Kemper [10].

LemMa 16. Let v, denote any pure second directional derivative in space and time (that
18 § s @ unit vector in R**"). Then v,(X, y, t)> — Co* for some £>0, where o =d((X, y, t), F).

Proof. Since v, is bounded, and Hv,;;=0, it would be enough to show that if {,; denote
the L®(u) boundary values of v;; on F (u=caloric measure), f,,0 a.e., (see [10]).
In order to do that, let —M be the essential infimum of f;, on F, and K any compact
subset of F. Let
D, ={(X,y,t): (X, y,t)+AEW, YO <A <h}

and on D,, consider the two functions
2 [ .
Fl= 7 J; fo v (X, y, t) +rj)drds

B .
Fh=;2 . v (X, y,t) +rj)drds.

Clearly HF},=0, and F} converges to v;, on W when A—0. Since

UU(X» Y, t) > —M—CKQ;K
(where o, =d((X, y, t), K).
Fi>-M—Crok (i=0,1)

But if we call

0,D,={(X,y,t)€0D,, (X,y,t) +AjEK for some 4, 0 <A <h},

and for =0 or 1, Fy> —$M — Cgk’, because, if, for instance, A <A/2 in the definition of
6, Dy,

h s
f f vy((X, y, t) +rj) drds =v((X, y, 1) + hj) > 0.
A JA
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Therefore

(F}L+F%.)|6.Dh > —~IM — Ok’
that is,

Fi+Fi> —IM —Cr(o%+K)

But Fj+ F} converges to 2v,,, and hence,
essinfv, > — M,
K
a contradiction. |

COROLLARY. At any point X, t, g(X,t) has a convex cone of tangents C(X, t), which
g approaches by below faster than plte.
Since g is C%, C(X, t) is composed of two hyperplanes.

Proof. That of Lemma 8 (see also Lemma 7). (
We have now all the necessary tools to prove

THEOREM 7.

(a) g(X,t) is of class Ok,
(b) all second derivatives of v are confinuous up to F
() {(Vxyve)- Vxuly —9(X,8)> = — Dy —g(X, ¢)) on F.

Remark. Part (c) asserts that the solution is a classical one near ¥.

Proof. We begin by proving that the tangent cone ((X,, §,) is really a tangent plane
m={y =9(Xo, to) +<4- X~ Xo> +C(t—t)}.

Let us suppose that for ¢ =#, the X-tangent plane to g(X,, t;) is horizontal and hence the

two tangent half planes are given by

{y =a(t —te) +9(Xq, to), t >t}
{y = b(t _to) +g(X0» to), t< to}, (b < a’)
and let o be the (uniform in ¢) modulus of continuity of Vyg as a function of X and of all

second spatial derivatives v,; as functions of X, y. That is, for any |t —t,| <6, |(X:, ¥ —
(Xo, 9(X4, tg))| <9, these inequalities hold:

(i) |V(X,, t)—Vg(X,, 8)| <o(] X, — Xq|)
(i) |vy(Xy, g1, 8) —vi5( X, Y2, )| <o(| (X, 1) — (Xas ¥2)])-
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We look now at three points in a vertical segment
A =(X,, g(Xo, ) —, to)
B = (X, g(Xo, t) —, &+ )
C = (Xy, 9(Xos to) —, tg— ).
We are going to select §=0¢'/?(a!/%) . Then we have

|v(4) — 32| <o(o)al.
Also, let us decompose
9(Xo, to+ ) = 9(Xo, to) +af +&(B)
9( Xy, to—B) = 9(Xo, t) —bB +ex(B)  (edB) > —Cpe).

We want to show that a =6 and that ¢, are uniformly bounded above by some o(g).

We do it as follows: First we notice that
[v(B) —1/2(af +&(B) + x)?| < Clo(Ma)+0(o?) +o(a¥/?) o] o?

(M an absolute constant).
To obtain this estimate we notice that

v, ( X o, 9(Xo, b+ ), to+B) = (cos 6)2

where 0 is the angle between the y-axis and the spatial norm to g at (X, f,+/f) and we
estimate 0. Since g is increasing in ¢, we obtain for 8 the estimate (D any real number,

-8, <D<, for some §, depending on § in the definition of o)
(tg0)D—a(|D|)| D] +aB+e(p) =o(|D|)|D|.

In particular, if we make D= — 2, we obtain
|sin 8] < o(B3) + 17—

Using that af +¢£,(8) < Ko'/?(«'/?)a by the Lipschitz character of g, we get

'vw(Xo, g(Xo, t0+ﬂ)r to’*‘ﬂ) 21 ’0[0’2([31/2) +0'(ﬂ1/2)p]

and the desired estimate on v(B).
A similar estimate may be obtained for v(C). Hence, if we consider the second differ-

ence
»(0) +v(B) —20(4) > (a —b}a*c™/*(x!/?) + (& &) a — Cla(e*)] o
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On the other hand,

v(B) — v(A4) — [v(4) — v(C)] < [sup v, — inf v,] 6" %(&'?) & < Co(a''®) 2®

1 Iz
(v, being bounded). This is possible only if =5 and
&; < Colal®) a = o(f).

That completes the proof of part (a). Part (b) and (c) follow from the fact that if v,;isa
second derivative in X, y and ¢, and ¢ or § is tangential to g at (X, ¢,), v, converges to zero

at (X, 9(Xos to)s t)- This can be done by approximating v;; by
1 .
Fh = ;L [Ul((X’ Y, t) + h?,) - UI((Xi Y, t))

as in Lemma 15 and that, if ¥ is the spatial normal to g, v,, converges to one. I

Appendix
In this appendix we collect several lemmas related to the Harnack inequalities. Although

probably some of them can be found in the literature, perhaps in more general form, we

have been unable to find them.

LEMMA Al. Let A(u)=2 a,(X)2,0,u be a second order uniformly elliptic operator,
with a,€C3(By(X)) (0 <1) and f a CV2(B,(X)) function, then, there is a C''*(B (X)) function

v such that
A@w) =fy,=D,f on By(X)

(in the sense of distributions) and
v|os,0 =0.
Furthermore
Iollor 2, < C|f| ez

where C depends only on the ellipticity and smoothness of 4.

In particular, the following Harnack inequality holds. If w is a non-negative solu-
tion of A(w)=f,; on ByX) and Y € B(X), w(X)+C|f|lc2e"?= {w(Y) — Ct||f[|cv= 02} x
(d(Y, 6B)/g)"*.

Proof. We first solve
Aul ={, u®| ;5 =0.
Such a u° is of class C2V2(B):
Jutlorsn < Ol
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(See S. Agmon, A. Douglis, L. Nirenberg [1].) Formally, Au}=f,,—2 2 8(a)up—
2 (@) uj. We now solve
.Aul = 2 2 a‘(a//k)'u/?k, ullaB = 0
Formally again
Aul =2 2 0,(@p)ups — 2 04,0 5%,
and y'€(?1/2
l[wtlc22r2 < Cllfllcree-

Finally we solve
A(u?) =2 0yy(ap) (uh +ujk)
and again
[l < Cllflom.

To obtain the correct boundary value we solve
Aw=0
wlago(x, = +u} +ul

and ul+wu} +u?—w is our solution.

About the Harnack inequality, given w, we consider

h =w+v+Cpl/?
that satisfies A(h)=0, A >0.
The necessary estimates of the Poisson kernel to obtain the usual Harnack inequality

can be found in Serrin [15], section 2 (The Parametrix). |

The next lemma asserts some super-mean value properties:
LeMMA A2. Let A be as in Lemma A1, and assume that w € C(B,(X)) satisfies A(u)<0
(in the sense of distributions), then, there exists a continuous function Px(Y), with

(a) 0 <a <PyY)<p,
(b) f P(¥)=| B{X)|
Bo(X)

such that

w(X) > 5 (Y)Py(Y)dY

| B, (X)| f
In particular, if u= —M on ByX) and

|{u> — M/2 0 By(X)}|
| B X)|

>a>0,
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31 =Ma) <1 such that
w(X)> —AM.

Proof. P4(Y), for | X — Y| =¢’, is of course, the normalized Poisson kernel on 0B y(X),
the estimate (a) can be found in Serrin [15], and the estimate (b) is standard.
The next two lemmas are dedicated to the parabolic case and they are, as Lemmas

Al and A2, a Harnack inequality and a mean value property.

LeEMMA A3. Let u be a positive solution of the equation Hu=Au—u,=0 in the cylinder
IP={|X| <1 0<t<C} (C depending on the dimension) and let (¥,t) verify |¥|=1-6
t=0% with 8 <min (C/2, 1/2). Then u(0, C)>C10"2u(Y, t).

Remark. Estimates for ¢ close to C can also be obtained.

Proof. Let Gy, (Y, s) denote the Green function of the cylinder {| Y| <1} with pole at
X, t. As usual, we must simply estimate 0,G, , by below and 9, Gy, ¢_: by above on the sides
of " and G, , by below and Gy, . by above on the top of I.

In order to simplify the proof we will avoid normalization factors and assume that

the fundamental solution takes the form
1 2
w(X|t)= e enIX,

Then, for | X| =1

—nf2(t+1) _
W,(l,t)=**t/n,2(72—~—)e e

and if we choose C<2/n, W is increasing on ¢ along the sides of I'. Therefore the function
W X|,0)—W(, ) <Gy ol|X]|, 8

for any | X| <1, t<t, and hence

1
(2) 8, Gol1, ) > |8, WL, t0) | = s €.
1 - -
() o2 (7€ —e 1Y < Gy o | X |, C).

To bound Gy,;, we use the Green function of the half space X, tangent to I" along the

line {X=(1,0,0...)=¢,}
1 _[ (_|X—Y|2)_ |X—Y*|_2)
(s~t)"® °xp s—t exp(— s—t

(Y*, the reflection of Y respect to 9%.)

W;, t(X ] 8) =
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Since Gy, < W%, we have

(a) On the side of T', for s >¢

2y |e;— Y2
0, Gy, (e, 8) < (s— t)rluzﬁ exp <_ (; -y )

Since |e, — Y| >8 and (s —t) <42 we get

c

31' GY,t <(anrl e .

(b) On the top, if y,z, are coordinates respect to X

1 2y, . 2y, x, C y,x, c
Gy (X, 0)< > [exp (-— gz ") —exp (—— —#—”)] < ':32”<6n—+2 (1-1X|)
and the proof is complete. f

Levma A4. Let u be a bounded semicontinuous subcaloric function on
P={X,t:|X|<1, 0<t<l1}.

That is, assume that for any subcylinder "< T, and any Y, s€([),

u(Y,s)<f G(Y — X, s~ tyu(X, ) doydi+ f QY — X, s—to) w(X, t) dX.
7% o 0. I

Then, if usM on I and
IT n {u<M/2}|
T

>2,>0,

dy =y(4y) <1 such that
u(0, 1) <yM.

Proof. The proof is an application of Green formula over an appropriate subeylinder

of I, I
Lremma A5, (a) Assume that o(n, ') =¢. Then if X€D(0, &, 1, n')\D(0, g,—¢%, 1, %),
the following inequality holds
ol@(X), (') <7:/2+ Clep)e (89 <7/20, € small).
(b) Let I'(ey) < {X: a(xr, ) <&y} and assume that, for each v’ we have a plane 7,., tangent
to T'(ey), with normal v verifying olp(n’), p(»)) <n/2, then, if H(z, ) denotes the half space

containing ' and Z= N Hn,., X 1is contained between two half planes H,, H, forming an angle
o(H,, H,) <Ce, where C depends only on the dimension.
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Proof. (a) The critical case would take place when X €[0.D(0, &y, 1, %')]1 N [6.D(0, g, —e2,

L, m)].
In that case, in a suitable system of coordinates
n=(10,..0),
7" =(cos g, sing, 0, ..., 0),

X = (cos (g, —¢€?), sin (g, — &%) cos o, sin (g, —&?) sin ),
because X €6.D(0, g, —¢2, 1, 1), and also, since X €9.D(0, &, 1, '),

d(X,n") = [cos (¢, —&?) —cos £]2+[sin (g, ~£2) cos ¢ —sin ¢]?
+sin (g, —£?) sin ¢ = (2 sin {¢,)2
That is

2—2 cos ¢ cos (g, —£€%) —2 8in (g, —£%) cos o 8in & = 2 2 cos ¢,.

Hence cos > —Cgfsin (g, — &%) > — Clgy)e.
(b) Let us first notice that I'(g;) is the cone of largest aperture contained by 2.
For contradiction assume there is a cone I'(y’, o)< X, with ¢ >¢,. Fix
n=(1,0, .., 0)
7' =(cosf,sinf, .., 0 (0<6<m)

and let d=(-—sin ¢, (cos g)») be the exterior normal to 7, (v a unit vector in R"-1),

v=_(vy, ¥5, 0, ..., 0). Then », >0 and since the vector

y=n+{(sing)d€l'(y’, o) =X, then {y, 8> <0.
That is
—(cos 0) sin gy + sin G cos g,]v, +sin o <0
or
sin ¢ < sin g,

which proves our observation.

Therefore, if we slice X with a plane & passing through % and perpendicular to it we are

left with a convex set 2* =X Nz such that the maximum ball that it inscribes, I'(5, o) N7

has radius oy =tg 6. We will prove under these circumstances, £* is contained between

two parallel planes 77, and n, with d(m,, 77,) <C(n) .

For n=1, the sphere and the convex set are both a segment and hence C(1)=2. For

a general n, assume that X* is bounded, and suppose its diameter D is realized by (— D/2,
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,0) and (D/2,0, ..., 0). Let E, be the coordinate plane E, ={X =x,=0} and suppose

that the closest planes on E, that contain E, N 2* have the form

{X:xy,=a}nNE;, and {X:x,=b} (b<0<a,a—b=h).

Then, one one hand X*< {X: —2h<x,<2h} and on the other, by inductive hypothesis,
Z*N E, contains a sphere of radius A/C(n—1) which means that Z* contains a sphere of
radius K(h/C(n+1)), (0<K <1) and that completes the proof.
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