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Let G be a discrete subgroup of SL(2, C)/{•  1}. Then G operates as a discontinuous 

group of isometrics on hyperbolic 3-space, which we regard as the open unit  ball B a in 

Euclidean 3-space E a. G operates on S 2, the boundary of B a, as a group of conformal 

homeomorphisms, but  it need not be discontinuous there. The set of points of S 2 at  

which G does not act discontinuously is the limit set A(G). 

If we fix a point 0 in B a, then the orbit of 0 under G accumulates precisely at A(G). 

The approximation is, however, not uniform. We distinguish a class of limit points, 

called points o/aproximation, which are approximated very well by translates of 0. The 

set of points of approximation includes all loxodromic (including hyperbolic) fixed points, 

and includes no parabolic fixed points. In w 1 we give several equivalent definitions of 

point of approximation, and derive some properties. We remark that  these points were 

first discussed by Hedlund [7]. 

Starting with a suitable point 0 in B a, we can construct the Dirichlet fundamental 

polyhedron P0 for G. I t  was shown by Greenberg [5] that  even if G is finitely generated, 

P0 need not have finitely many sides. Our next  main result, given in w 2, is that  if P0 is 

finite-sided, then every point of A(G) is either a point of approximation or a cusped 

parabolic fixed point (roughly speaking a parabolic fixed point is cusped if it represents 

the right number of punctures in (S2-A(G))/G). 

The above theorem has several applications: one of these is a new proof of the 

following theorem of Ahlfors [1]. 

I / P o  has finitely many sides, then the Euclidean measure o/ A(G) is either 0 or 4~. 

Our next  main result, given in w 3, is that  the above necessary condition for P0 to have 

finitely many sides is also sufficient. In  fact, we prove that  any convex fundamental 

polyhedron G has finitely many sides if and only if A(G) consists entirely of points of 
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approximation and cusped parabolic fixed points. As an application of this we give a new 

proof of the following theorem of Marden [11]. 

Every Dirichlet /undamental polyhedron is /inite sided or none are. 

w  

Let  ~a be the 1-point compactification of E 8, the added point is of course called c~. 

Then G acts on ~a as a group of orientation preserving conformal homeomorphisms. 

In  ]~a, the unit  ball B 3, and the upper half-space 

m = {(~, ~)l~eC, ~eg, ~>0) 

are conformally equivalent. When convenient, we will regard G as acting on H a, and on C, 

its boundary. 

In  E a we use Jx-yJ for Euclidean distance, and in B a or H a, we use Q(x, y) for non- 

Euclidean distance. 

The action of G on ]~a is most  easily seen via isometric spheres. We assume tha t  co is 

not fixed by gEG, and tha t  g(B a) = B a. Then there are two 2-spheres Sg and S~, called the 

isometric spheres of g and g-Z, respectively, with the following properties: Sg and S~ both 

have the same (Euclidean) radius Ro, and are both orthogonal to S ~. The action of g is 

the composition of inversion in So, followed by  reflection in the perpendicular bisector 

of the line segment joining the centers of Sg and S'g, followed by  a Euclidean rotation 

centered at the center of S~. The importance of this description is tha t  g is the composition 

of inversion in Sg and a Euclidean isometry (which maps g-i(oo) to g(oo)). 

We enumerate the elements of G as (gn}, and let Rn be the radius of the isometric 

sphere of g~. I t  was shown by  Beardon and Nicholls [3], tha t  for every positive e, 

~ R~+~< ~ ,  

while ~ R~ < c~ 

if G is discontinuous at  some point of S 2. 

I t  is useful to compare R o with Jg(0)l and Ig(~)J  (0 is now the origin). As S a and 

S 2 are orthogonal, 
R~+ 1 = Ig(oo)l ~ 

and as g(0) and g ( ~ )  are inverse points with respect to S ~, Ig(0)l. Ig( )l =1.  I f  G=(gn} 

is discrete then ]gn(r and so 

�89 -0 ]gn(oo)] - 1  N 1 -]gn(0)J .  
a s  n - + o o .  
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We can use the above description of g to derive the following result, the plane ver- 

sion of which is trivial. I f  g is a conformal isometry of B a and if x and y are in 

E a -  {co, 9-1(cr then 
R~lx-yl 

Ig(x)-g(y)[- ix_ g.l(oo)l ly_ g_, (oo)1 (1) 

The proof is easy. I f  J denotes inversion in S~ we have tha t  

]g(x) -g(Y)[ = [J(x) - J ( Y )  I 

and also tha t  the triangles with (ordered) vertices g-l(oo), x, y and g-l(o~), j(y), J(x) are 

similar. These facts lead easily to (1). 

Now let K be a compact  subset of ~ ( G ) = ~ a - A ( G ) .  I t  is easily seen from (1) t ha t  

there are positive numbers  k I and k 2 (depending on G and K) such tha t  for all x and y in 

K and all but  a finite number  of n, 

21 R2 ~ Ign (x) -- fin (Y)]'<< k2 R2" (2) 

A limit point  z is called a point o/approximation of G if and only if there is a point  x 

in ~(G), a positive constant  2 and a sequence gn of dist inct  elements of G with 

Is -g . (z )  I < 2R . (3) 

We remark  tha t  by  (2) this holds for one x in ~(G) if and only if it holds for all x in O(G). 

Further ,  the approximat ion (3) is uniform on compact  subsets of O(G). 

Another  observat ion is t ha t  the rate of approximat ion by  points in ~(G) as expressed 

by  (3) is the best possible. Indeed  if we replace g, x and y in (1) by  g~',  z and 0 we find tha t  

(4) 

where 23 is positive and depends only on G. 

The ident i ty  (1) can be used to characterize points of approximat ion  in another  way. 

We pu t  y = z  in (1) and deduce tha t  z is a point  of approximat ion if and only if for one 

(or all) x other than  z, there is a positive number  k and a sequence g~ of dist inct  elements of 

G with 

I I 2. (5) 

Again, if this holds for some x (~=z) it holds uniformly on compact  subsets of ~,3_ {z}. 

I n  the other  direction if (5) holds uniformly on a set A we find tha t  z is no t  in the closure 

of A. 

The conditions (3) and (5) are metrical: we now seek to describe points  of approxi- 

mat ion  topologically. Observe first t ha t  if a is a hyperbolic line in B a with end points  
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x and  z, say, t hen  (5) holds  for a class of g .  if and  on ly  if the re  is a compac t  subse t  K of B a 

wi th  
g.(a) N K # 0 (6) 

for the  same class of g~. W e  may ,  of course, t ake  K to  be {xEBa: ~(x, 0) ~<Q0} a n d  wr i te  

T = (xEB3: q(x, a) ~<~o}. 

W e  then  see t h a t  (6) holds  if and  on ly  if 

g~(x) -~ z 

in T for one (or all) x in  K.  A Stolz region a t  z is a cone in B 3 of the  form 

{xeB': Iz- l  k,(l-Ixl)} 

and  near  z, T conta ins  and  is con ta ined  in Stolz regions a t  z. 

W e  collect toge ther  the  above  results .  

THEOREM 1. The following statements are equivalent. 

(i) 
(ii) 

(7) 

z is a point o/ approximation. 

For some (or all) x in ~(G) there is a positive number k and a sequence o/dist inct  

elements gn in G such that I z - g , ( x ) l  <k .R~.  

(iii) For some x other than z, there is a positive number k and a sequence o/dis t inc t  

elements gn in G such that ]gn(x)-g,(z)I  >~k. 

(iv) There exists a sequence g, o/ distinct elements o/ G such that Ig , (x ) -g , ( z ) [  is 

bounded a w a y / r o m  zero uni/ormly on compact subsets of ~ a _  {z}. 

(v) I f  (~ is any hyperbolic line in ]]a ending at z then there is a relatively compact 

subset K o / B  a and a sequence of distinct elements gn in G such that g,(a) N K 4 0 .  

(vi) For some (or all) x in B 3 there is a Stolz region T at z and a sequence of distinct 

elements g~ in G such that g~(x)--->z in T.  

I f  h is now a MSbius t r ans fo rma t ion  which maps  B a onto  H a, t hen  hGh -1 acts  on 

H a and  C and  so m a y  be r ega rded  as a group of matr ices .  The  po in ts  of a p p r o x i m a t i o n  of 

hGh -1 are the  images  under  h of the  po in ts  of a pp rox ima t ion  of G a n d  Theorems (1)(v) 

shows t h a t  th is  def in i t ion  is conjuga t ion  i nva r i an t  and  so is i n d e p e n d e n t  of h. 

I n  the  special  case when A(G) is a p roper  subset  of S ~ we can choose h so t h a t  

c~ qA(hGh-1). I n  th is  case we let  a be the  ver t ica l  l ine t h rough  z on C and  we conclude t h a t  

z is a po in t  of a p p r o x i m a t i o n  if and  only  if the re  is a posi t ive  cons tan t  k wi th  

k 
for in f in i te ly  m a n y  g in hGh -1. 
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W e  now le t  hOh -1 = {g,} where  

g '=  c~ d g  a~dn-  bncn= 1 

and  we have  p roved  the  following result .  

PROPOSITION l .  I n  the above situation z is a point o/ approximation o/ hGh -1 i/ 

and only i/there is a positive number k such that 

 klc,,I 
/or inlinitely many gn in hGh -1. 

PROPOSITION 2. 17/Z is a/ ixedpoint  o/the loxodromic element gEG, then z is a point o] 

approximation. 

Proo/. W e  can assume wi thou t  loss of genera l i ty  t h a t  z is the  a t t r a c t i ve  f ixed point .  

Then for eve ry  x E ~ ( G ) ,  g-h(x) converges to  the  o ther  f ixed  point .  

The parabol ic  case is somewha t  more  compl ica ted .  W e  normal ize  G so t h a t  i t  acts  on 

1t 3 and  so t h a t  z-~ z + 1 e G. L e t  J be the  s t ab i l i t y  subgroup  of ~ ;  i.e., J = {g e Gig ( ~ )  = ~ }. 

W e  recal l  t h a t  in  general ,  if we have  a discrete  group G ac t ing  on, say  H 8, and  a 

subgroup  J c  G, then  the  set A c t I  3 is precisely invariant under J if for every  g E G e i ther  

(i) g e J  and  g(A)=A,  or 

(ii) gCJ and  g(A)NA =0. 

I t  is well  known  (see, for  example ,  Leu tbeehe r  [9] or  K r a  [8, p. 58]) t h a t  if 

z ~ z + l E G ,  t h e n f o r e v e r y g = ( :  bd) w h i c h i s i n O b u t n o t i n J ,  Icl>~l. Asan immedia te  

consequence of this ,  we ob ta in  

L~MMA 1. Let z-->z + l be an element o/ the discrete group G acting on H a. Then 

A = { ( z , x ) E H a l x > l  } 

is precisely invariant under J, the stability subgroup o/ co. 

W e  conclude t h a t  no orb i t  can approach  oo in  a Stol tz  region a t  oo and  so we have  p roven  

PROPOSITION 3. I /  Z is the /ixed point o/ a Tarabolic element o/ G, then z is not a 

point ol approximation. 

w 
I n  th is  sect ion we explore  the  re la t ionship  be tween poin ts  of a p p r o x i m a t i o n  and  

f in i te-s ided f u n d a m e n t a l  po lyhedra .  

W e  need a def in i t ion  of f u n d a m e n t a l  po lyhed ron  when there  are  no t  necessar i ly  

f in i te ly  m a n y  sides. I n  th is  paper ,  we res t r ic t  ourselves to  convex polyhedra .  
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A (convex) polyhedron P is an open subset of B 3 (or of I t  3) defined as the intersection 

of countably many  half-spaces Q~ with the following property. Each Q~ is bounded by  a 

hyperplane Si; the intersection of Si with P,  the closure of P in B 3 is called a side of P.  

We require tha t  any compact subset of B a meets only finitely many  of the S~: then the 

boundary of P in B 8 consists only of sides. 

The polyhedron P is a (convex) [undamental polyhedron for the discrete group G if 

(a) no two points of P are equivalent under G. 

(b) Every  point of B a is equivalent under G to some point of P .  

(c) The sides of P are pair-wise identified by  elements of G. 

(d) Every  x in B 3 has a neighbourhood tha t  meets only finitely many  translates of P. 

We remark that  there is a Fuchsian group and a polygon P which satisfies (a) and 

(b), but  not (c). For Fuchsian groups (d) is a consequence of (a), (b) and (c). 

PROPOSITION 4. A point o/ approximation z o/ G cannot lie on the boundary o/ a 

convex/undamental polyhedron Po o/G. 

Proo/. As P0 is convex we can select a hyperbolic line a joining a point x in P0 to the 

point of approximation z. Theorem 1 (v) is applicable and this is in direct contradiction 

with the defining property (d) of P0. 

One easily sees tha t  the identification of sides of P induces an equivalence relation on 

P,  each equivalence class containing only finitely many  points. 

I t  is well known tha t  there is at least one convex fundamental  polyhedron for every 

discrete group. A particularly well known example is the Dirichlet/undamental polyhedron 

P0 formed as follows: We start  with say 0EB a where 0 is not fixed by any element of G. 

For each non-trivial g E G, we form 

Qg = {yEBaIQ(y, 0)<~(y, g(0))}. 

One easily sees tha t  Qg is a half-space, and tha t  P0 = NgQg is a fundamental  polyhedron 

for G. 

For any polyhedron p c  B a, p is the relative closure of P in Ba; we let P* be the 

intersection of S * with the closure of P in ~a. 

Our next  definition is concerned with parabolic fixed points; they are limit points 

but  they may  have aspects similar to ordinary points. We assume tha t  z EC is fixed 

point of some parabolic element of G, and let J be the stability subgroup of z. J is then a 

Kleinian group with exactly one fixed point; all such groups are known (see Ford [4], 

p. 139). In  order to examine the possibilities, we assume tha t  G acts on H a, and tha t  z = c~. 
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A cusped region U is a subse t  of C with the following properties. U is precisely 

invar iant  under  J ,  and U is the union of two disjoint non-empty  open half-planes. 

One easily sees t ha t  a cusped region U can exist only if J is a finite extension of a 

cyclic group, and in this case U N A(G) = 0 .  We say tha t  z is a cusped parabolic fixed point  

if either there is a non-empty  cusped region U, or if J is not  a finite extension of a 

cyclic group. 

The existence of parabolic fixed points which are no t  cusped is given in Maskit [12]. 

TH~OR]~M 2. I] there is a convex/undamental polyhedron P / o r  G with/initely many 

sides, then every limit point o/ G is either a point of approximation or is a cusped 

parabolic fixed point. 

Proo/. We start  with the well known fact  t ha t  every point  of P* is either in ~(G) or 

is a cusped parabolic fixed point.  Unfor tunately ,  there is no ready  reference for this fact,  

and so we outline a proof here. 

The identifications of the sides of P induce an equivalence relation on P ,  and on P*. 

For  each point  z EP*, the set of points  equivalent  to z is called the (unordered) cycle at  z. 

Since P has finitely m a n y  sides, the cycle contains finitely m a n y  points.  

We now consider z in P* and conjugate so tha t  z = oo and the elements of G act  on H 8. 

We choose gl . . . . .  gr in G so t h a t  the cycle of co on P* is (g0(w), g~l(oo) .. . . .  grl(OO)} where, 

for convenience, go is the identi ty.  

Now let J be the stabilizer of co in G and J0 the subgroup of parabolic elements (and 

go) t h a t  fix ~ (J0 m a y  be trivial). I f  ~ eg(P*) where gEG we can construct  a geodesic a 

f rom a point  in g(P) to  ~ .  This implies t ha t  for some i, 0 <~i <r, g~g-l(a) is a geodesic ending 

at  ~ and so g~g-lEJ. We conclude tha t  

J EJ U Jgi U ... U Jg~. 

B y  Proposit ions 2 and  4, J can conta in  only elliptic and parabolic elements and we see 

f rom [4, p. 140-141] tha t  in this case there are elliptic elements e~ ... . .  e~ such t h a t  

J = Jo U Joel ... U Joe s. 

We conclude tha t  g lies in one of a finite number  of cosets John, h~EG. 

I f  J0 is trivial, then  a neighbourhood of oo in H a U C meets only a finite number  of 

images of P and so ~ e~(G). 
I f  J0 is no t  a cyclic group, then  by  definition, ~ is a cusped parabolic point.  

Final ly if J0 is cyclic the images of P lie under  one of the finite number  of euclidean 

curved sides of P or the  h~(P) or are t ranslat ions under  J0 of these images and so a 

cusped region exists in this case. 
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We now assume without loss of generality, that  0EP. Let zES 2, and let a be the line 

from 0 to z. If  a intersects only finitely many translates of sides of P, then for some 

gEG, g(z)EP*, and so by the above remark either zE~(G) or z is a cusped parabolic fixed 

point. Observe that  this situation must arise if zE~(G), for the euclidean diameter 

of translates of P must converge to 0. 

The only possibility left is that  a passes through infinitely many translates of some 

side M and in this case zEA(G). Then there is a sequence {gn} of distinct elements of G, 

and there is a sequence of points {Yn} on M, so that  g~(a) N M = {y~}. We can assume that  

y=-~y. If  yEB 3, then by Theorem 1 (v) z is a point of approximation. If, as we now assume 

y CB 3, then by the remarks above, y is a cusped parabolic fixed point. We again change 

normalization so that  y = ~ ,  and we let J be the stability subgroup of ~ .  

If  J is not a finite extension of a cyclic group, then there is a compact set K c  C, 

so that  for every z'EC, there is a j E J  with j(z')EK. Hence, we can choose a sequence 

{?n) of elements of J so that  j~ogn(z)EK, and j '~ogn(0)-~.  Observe that  this latter 

condition implies that  infinitely many of the {inog=} are distinct. 

If  J is a finite extension of a cyclic group, then we can assume that  z ~ z + l E J ,  

the cusped region is V = {z [ lira z ] ~> t}, and that  no translates of z lies in V. Exactly as 

above, we can find a sequence {~} of elements of J so that  

lira 0"~og~(z))] < t, IRe (i~og~(z))] < �89 

This concludes the proof of Theorem 2 as we have now verified Theorem 1 (iii). 

We remark first that  as a corollary to the proof, we have the following well known 

statement. 

COROLLARY 1. Let P be a convex [inite sided polyimtron /or G. Let p*o be the relative 

interior o/ P*. Then no two points o/ p*o are equivalent under G, and every point o/ 

~(G) N S 2 is equivalent under G to some point in the closure of p*o. 

For the following applications we recall that  G is elementary if A(G) is a finite set. 

COROLLARY 2. Let G be non-elementary. Then the set o/points o/approximation has 

positive Hausdor// dimension. 

Proo/. I t  was remarked by Myrberg [13] that  every non-elementary discrete group q 

contains a Schottky subgroup G1, defined by say 2n circles. G 1 is then a discrete group 

of the second kind, with a finite-sided fundamental polyhedron. I t  was shown by 

Beardon [2] that  for every such G1, A(G1) has positive Hausdorff dimension. Since G 1 

is purely loxodromic, A(G1) contains only points of approximation for G1, and so for G. 
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COROLLARY 3. Let G have a finite-sided /undamental polyhedron, then the points o/ 

approximation o/A(G) are uniformly approximable, i.e., there is a constant k > 0 so that,/or 

every point of approximation z, there is a sequence (gn} of distinct elements of G with 

I <kR . 

Proof. Let Pl ..... Pr be the parabolic vertices on P .  In  the notation of the proof of 

Theorem 1 we find tha t  if yn-~y, y =pj, then jnog,(O) remains outside some neighbourhood 

of the set (jnogn(z)}. I f  we consider G as now acting in B a this means tha t  (retaining 

the same notation despite conjugation), 

]hog~(z) -i~ogn(0) l >/k 

The result now follows by  (1) and (2). 

A corollary of the above is the following theorem of Ahlfors [1]. 

COROLLARY 4. Let G have a finite sided ]undamental polyhedron. Then the 2-dimen- 

sional measure o/A(G) is either zero or 4~. 

Proof. The proof is essentially immediate from Corollary 3, and the fact remarked 

above, tha t  if G is of the second kind, then 

R$< 
geG 

Exact ly  the same considerations yield 

COROLLARY 5. I f  G has a finite-sided fundamental polyhedron, and if 

< 

geG 

then the t-dimensional measure of A(G) is zero. 

w 

In  this section we prove the converse of Theorem 2. Specifically, our goal is to prove. 

THEOREM 3. Let P be a convex/undamental polyhedron/or the discrete group G, where 

every point o/A(G) either is a point o/approximation or is a eueped parabolic fixed point. 

Then P has finitely many sides. 

Proof. Throughout we assume tha t  P is a convex fundamental  polyhedron for the 

discrete group G which, for the moment,  is assumed to act  on B a. I f  P has infinitely many  

sides, these accumulate at  some point z on P.  We begin by  showing tha t  zEA(G). 
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LEMMA 2. Let M1, M~, Ms, M~ be sides o/ P where there are pairing trans/ormations 

gl, g2EG with g~(M,)=M~. Then, gl=g~ i~ and only i / M I = M  ~. 

Proo[. Let  S1, S 1' be the  hyperplanes  on which M1, MI ' ,  respectively,  lie, and  let 

Q1, QI' be the  half spaces which are bounded  by  $1, $1", respectively,  and  which contain P.  

I f  M S does not  lie on S1, then  M s c  Q1, and  gl(M~) N Q1 '= 0.  We conclude t h a t  gl(M~) can be 

a side of P only if M2cS1; i.e., M~=M 1. 

This l emma shows t h a t  infinitely m a n y  dist inct  images of P accumula te  a t  z. As P 

is convex and locally finite the  euclidean d iamete r  of the  images of P under  G converge 

to zero, thus  zEA(G). 

Proposi t ion 4 together  wi th  the  hypotheses  of the  theorem now imply  t h a t  z is 

necessarily a cusped parabolic f ix-point .  We complete  the proof  b y  showing t h a t  this is 

inconsistent  wi th  the  assumpt ion  t h a t  infini tely m a n y  sides of P accumula te  a t  z. 

We shall assume t h a t  G acts  on H a and  tha t  z = ~ .  Now let J be the stabilizer of 

co and  J0 the  subgroup of parabolic  e lements  of J .  We m a y  assume t h a t  Jo contains 

z - + z + l :  Jo is ei ther cyclic or of r ank  2. 

We will need the  following r emark  abou t  convex polyhedra.  

LEMMA 3. Let (z~, x~), i = 1 . . . . .  n, be a finite set of points o/P.  Let B be the Euclidean 

convex hull o/the points z I . . . . .  z~. Then 

(i) there is a t > 0  so that {(z, x)EHa]zEB, x > t } c P ,  and 

(ii) no two distinct points o/ B are equivalent under J. 

Proo/. Since J keeps each horosphere x = c o n s t a n t  invar iant ,  conclusion (ii) follows 

f rom conclusion (i). 

Since P is convex and  co EP*, if (z, x0) EP,  then  so does (z, x) for every  x > x 0. Con- 

clusion (i) now follows f rom the fact  t h a t  if ~ is the  non-Eucl idean line f rom (zl, xl) to 

(z2, x~), then  the  project ion of v onto the  z-plane is the  Euclidean line f rom z 1 to  z 2. 

This  leads easily to 

LV.MMA 4. Let z ~ - ~  in P with Zn=(un+iv~, X,). 

(i) I /  Jo is cyclic, then v~ +x~ is unbounded. 

(ii) I / J o  is o/rank 2, then u~ +v~ is bounded, x~ is unbounded. 

Proo/. If the  conclusion of (i) fails then,  b y  L e m m a  3, P contains a subset  of the  fo rm 

[u', + oo) • Iv', v"] • [x', + co) (v' < v ' )  and  this contains points  equivalent  under  J0. The  

proof  of (ii) is similar. 
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We immediate ly  deduce tha t  if z n is a sequence of dist inct  points  in A(G)N P* then 

z~+-~ co. Indeed  in (i) we have xn=O and z~r U so Ivnl ~< V* whereas in (ii) x~=O. The 

hypothesis  of the Theorem together  with Proposit ion 4 now implies t ha t  P* contains only 

finitely m a n y  limit points, in part icular  the cycle of ~ is finite. 

I f  infinitely m a n y  sides M n of P meet  co we can select g~ in G where g~(P) abuts  P 

along M~. By  L e m m a  2, these g~ are distinct. I t  is evident  t ha t  P can abu t  at  mos t  one 

other translate of g(P) under  J0 and so we conclude tha t  the g~ lie in infinitely m a n y  distinct 

cosets Jog. This implies t h a t  the set (g~l(co)} is an infinite subset of P cont rary  to our 

previous remark.  We have proved 

LEMMA 5. Only /initely many sides o / P  pass through co. 

We have assumed there is an infinite sequence of sides Mn of P accumulat ing at  co. 

The previous lemma implies t ha t  we m a y  assume tha t  none of these contain ~ .  We 

select z n on M ,  with z~-~co and choose dist inct  g~ so tha t  gn(P) abuts  P along M~. 

As co r M~ we conclude tha t  gn(co) E C and we can find a sequence ]~ in J0 with ?'~ o gn(co) 

lying in a compact  subset K of C. By  Lemma 4 we observe tha t  j~(z~)-~co. I f  ~ is the 

geodesic in ]~og,(P) joining j~(zn) to  j~og~(~) we find tha t  the ~ meet  a compact  subset 

of H 3 cont rary  to  the assumption tha t  the tesselation is locally finite. The proof is now 

complete. 

We remark in closing tha t  we have used the fact  tha t  we are dealing with 3-dimen- 

sional hyperbolic space in a crucial manner  only in the precise definition of cusped para- 

bolic fixed point. I n  dimension 2, it is well-known, and one easily proves using L e m m a  1, 

t ha t  every parabolic fixed point  is cusped. I t  is also well-known (see Greenberg [6] or 

Marden [10]) t ha t  a Fuehsian group has a finite sided fundamenta l  polygon if and only 

if it is finitely generated. Combining these with the trivial fact  t ha t  a Fuchsian group has 

a finite sided fundamenta l  polygon if and only if as a Kleinian group it  has a finite 

sided fundamenta l  polyhedron,  we obtain 

COROLLARY 6. A Fuchsian group G is /initely-generated i/ and only i/ A(G) 

consists entirely o/points o/approximation and parabolic/ixed points. 
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