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Let G be a discrete subgroup of SL(2, C)/{+1}. Then G operates as a discontinuous
group of isometries on hyperbolic 3-space, which we regard as the open unit ball B? in
Euclidean 3-space E3. G operates on 82, the boundary of B3, as a group of conformal
homeomorphisms, but it need not be discontinuous there. The set of points of 82 at
which G does not act discontinuously is the limst set A(G).

If we fix a point 0 in B3, then the orbit of 0 under @ accumulates precisely at A(G).
The approximation is, however, not uniform. We distinguish a class of limit points,
called points of aproximation, which are approximated very well by translates of 0. The
set of points of approximation includes all loxodromie (including hyperbolic) fixed points,
and includes no parabolic fixed points. In §1 we give several equivalent definitions of
point of approximation, and derive some properties. We remark that these .points were
first. discussed by Hedlund [7].

Starting with a suitable point 0 in B3, we can construct the Dirichlet fundamental
polyhedron P, for G. It was shown by Greenberg [5] that even if @ is finitely generated,
P, need not have finitely many sides. Our next main result, given in § 2, is that if P, is
finite-sided, then every point of A(®) is either a point of approximation or a cusped
parabolic fixed point (roughly speaking a parabolic fixed point is cusped if it represents
the right number of punctures in (82— A(G))/G).

The above theorem has several applications: one of these is a new proof of the
following theorem of Ahlfors [1].

If P, has finitely many sides, then the Euclidean measure of A(G) is either 0 or 4.

Our next main result, given in § 3, is that the above necessary condition for P, to have
finitely many sides is also sufficient. In fact, we prove that any convex fundamental

polyhedron G has finitely many sides if and only if A(G) consists entirely of points of
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approximation and cusped parabolic fixed points. As an application of this we give a2 new
proof of the following theorem of Marden [11].

Every Dirichlet fundamental polyhedron is finite sided or mone are.

§1
Let B3 be the 1-point compactification of E3, the added point is of course called oo.
Then G acts on B3 as a group of orientation preserving conformal homeomorphisms.
In B3, the unit ball B3, and the upper half-space

H3 = {(z, z)|2€C, zER, x>0}

are conformally equivalent. When convenient, we will regard G as acting on H3, and on C,
its boundary.

In E? we use |z—y| for Euclidean distance, and in B* or H?, we use g(, y) for non-
Euclidean distance.

The action of G on B? is most easily seen via isometric spheres. We assume that oo is
not fixed by g€@, and that g(B?) = B3. Then there are two 2-spheres S, and 8, called the
isometric spheres of g and g-1, respectively, with the following properties: S, and S; both
have the same (Euclidean) radius R,, and are both orthogonal to S2. The action of g is
the composition of inversion in S,, followed by reflection in the perpendicular bisector
of the line segment joining the centers of S, and S, followed by a Euclidean rotation
centered at the center of S;. The importance of this description is that g is the composition
of inversion in S, and a Euclidean isometry (which maps g—1(o°) to g(°°)).

We enumerate the elements of & as {g,}, and let R, be the radius of the isometric
sphere of g,. It was shown by Beardon and Nicholls [3], that for every positive ¢,

z Rt‘+s < oo,
while > Ri< o
if @ is discontinuous at some point of §2.

It is useful to compare R, with |g(0)| and |g(=o)| (0 is now the origin). As S, and

82 are orthogonal,

RS +1=|g(c0)[*
and as g(0) and g(oo) are inverse points with respect to 82, |g(0)] - |g(o°)| =1. If G={g,}
is discrete then |g,(c°)[—>1 and so ’

3R: ~ |gu(o0)| —1 ~ 1—|g,(0)].
as n—> oo,
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We can use the above description of g to derive the following result, the plane ver-
sion of which is trivial. If g is a conformal isometry of B® and if # and y are in
E3~ {0, g71(o)} then
_ R le—y|
=g (o) [y —g7" ()]

lg(x) — 9(v)| (1)

The proof is easy. If J denotes inversion in S, we have that

lg@) —g(m)| = |J ()~ I (y)]

and also that the triangles with (ordered) vertices g~1(o<), z, ¥ and g—1(<0), J(y), J(x) are
similar. These facts lead easily to (1).

Now let K be a compact subset of Q(G)=E3—A(G). Tt is easily seen from (1) that
there are positive numbers &, and k, (depending on G and K) such that for all  and y in

K and all but a finite number of =,
klR§<|gn(x)—gn(y)|<k2R§. 2)

A limit point 2 is called a point of approximation of @ if and only if there is a point x

in Q(G), a positive constant k and a sequence g, of distinct elements of G with
|2 —gn(x)| < kR (3)

We remark that by (2) this holds for one z in Q(@®) if and only if it holds for all z in Q(@).
Further, the approximation (3) is uniform on compact subsets of Q(G).
Another observation is that the rate of approximation by points in Q(G) as expressed

by (3) is the best possible. Indeed if we replace g, x and y in (1) by g5, z and 0 we find that
|z2—gn(o0)| > k3 R7 (4)

where k3 is positive and depends only on G.
The identity (1) can be used to characterize points of approximation in another way.
We put y=z in (1) and deduce that z is a point of approximation if and only if for one

(or all) x other than 2, there is a positive number % and a sequence g, of distinct elements of
G with
|9n(2) —ga(2)| > k. (5)

Again, if this holds for some z (+z) it holds uniformly on compact subsets of £ {z}.
In the other direction if (5) holds uniformly on a set 4 we find that z is not in the closure
of 4.

The conditions (3) and (5) are metrical: we now seek to describe points of approxi-

mation topologically. Observe first that if ¢ is a hyperbolic line in B? with end points
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z and z, say, then (5) holds for a class of g, if and only if there is a compact subset K of B3
with

gu(0)NK +O (6)
for the same class of g,. We may, of course, take K to be {x€B3: g(x, 0)<g,} and write

T = {z€B?: p(z, 0) <g,}.
We then see that (6) holds if and only if
gal®) > 2 (7
in T for one (or all) z in K. A Stolz region at z is a cone in B? of the form
{z€B3: |z—z| <k(1-—|z|)}

and near z, T contains and is contained in Stolz regions at 2.

We collect together the above results.

THEOREM 1. The following statements are equivalent.

(i) z ©s a point of approximation.

(ii) For some (or all) x in Q(G) there is a positive number k and a sequence of distinct
elements g, in G such that |z—g,(x)| <k-Rj.

(iii) For some x other than z, there is a positive number k and a sequence of distinct
elements g, in G such that |g,(x) —g,(2)| >k.

(iv) There exists a sequence g, of distinct elements of G such that |g,(x)—g.(z)| is
bounded away from zero uniformly on compact subsets of B3—{z}.

(v) If o i3 any hyperbolic line in B?® ending ot z then there is a relatively compact
subset K of B® and a sequence of distinct elements g, in G such that g,(c) N K 3.

(vi) For some (or all) x in B3 there is a Stolz region T at z and a sequence of distinct
elements g, in G such that g,(x)->z in T.

If & is now a Mébius transformation which maps B? onto H3, then AGh~! acts on
H3 and C and so may be regarded as a group of matrices. The points of approximation of
hGh-! are the images under % of the points of approximation of ¢ and Theorems (1)(v)
shows that this definition is conjugation invariant and so is independent of .

In the special case when A(G) is a proper subset of 82 we can choose % so that
co § A(RGh1). In this case we let ¢ be the vertical line through z on C and we conclude that
z is a point of approximation if and only if there is a positive constant k& with

l9(2)—g(2)| > &
for infinitely many g in AGh™1.
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We now let hGh—'={g,} where

In= (an 311)’ andn_bncn=1
n

cn
and we have proved the following result.

ProrosiTION 1. In the above situation z is a point of approximation of hGh-1 if
and only if there is a positive number k such that
|z +d,/c,| <k|c,|?
for infinitely many g, in RGh-L.
PROPOSITION 2. If z is a fized point of the loxodromic element g € G, then z is a point of

approximation.

Proof. We can assume without loss of generality that z is the attractive fixed point.
Then for every x€Q(F), g~"(x) converges to the other fixed point.

The parabolic case is somewhat more complicated. We normalize G so that it acts on
H? and so that z—>2z+1€G. Let J be the stability subgroup of oo;i.e., J ={g€G|g(c0) = oo}.

We recall that in general, if we have a discrete group G acting on, say H3, and a
subgroup J< @, then the set A< H?3 is precisely invariant under J if for every g€(@ either

(i) g€J and g(4)=4, or

(il) g¢J and g(4)N A4 =0.

It is well known (see, for example, Leutbecher [9] or Kra [8, p. 58]) that if

z—z+ 1€ @, then for every g= (Z b) which is in @ but not in J, |c| > 1. As an immediate

d

consequence of this, we obtain
LemMmA 1. Let 2—>2+1 be an element of the discrete group G acting on H3. Then
A={(z,z)€H3|z>1}
18 precisely invariant under J, the stability subgroup of oo.
We conclude that no orbit can approach < in a Stoltz region at o and so we have proven

ProrosiTioN 3. If z is the fixed point of a parabolic element of G, then z is not a
point of approximation.

§2
In this section we explore the relationship between points of approximation and
finite-sided fundamental polyhedra.
We need a definition of fundamental polyhedron when there are not necessarily

finitely many sides. In this paper, we restrict ourselves to convex polyhedra.
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A (convex) polyhedron P is an open subset of B3 (or of H?) defined as the intersection
of countably many half-spaces @, with the following property. Each @, is bounded by a
hyperplane §;; the intersection of S; with P, the closure of P in B2 is called a side of P.
We require that any compact subset of B3 meets only finitely many of the S;: then the
boundary of P in B? consists only of sides.

The polyhedron P is a (convex) fundamental polyhedron for the discrete group @ if

(a) no two points of P are equivalent under G.

(b) Every point of B3 is equivalent under @ to some point of P.

(c) The sides of P are pair-wise identified by elements of G.

(d) Every z in B?® has a neighbourhood that meets only finitely many translates of P.

We remark that there is a Fuchsian group and a polygon P which satisfies (a) and
(b), but not (¢). For Fuchsian groups (d) is a consequence of (a), (b) and (c).

ProPOSITION 4. A point of approximation z of G cannot lie on the boundary of a
convex fundamental polyhedron P, of G.

Proof. As P is convex we can select a hyperbolic line ¢ joining a point « in Py to the
point of approximation z. Theorem 1 (v) is applicable and this is in direct contradiction
with the defining property (d) of P,.

One easily sees that the identification of sides of P induces an equivalence relation on
P, each equivalence class containing only finitely many points.

It is well known that there is at least one convex fundamental polyhedron for every
discrete group. A particularly well known example is the Dirichlet fundamental polyhedron
P, formed as follows: We start with say 0€B3 where 0 is not fixed by any element of G.

For each non-trivial €@, we form
@, = {y€B%|o(y, 0) <e(y, 9(0))}.

One easily sees that @, is a half-space, and that Py=[, @, is a fundamental polyhedron
for G.

For any polyhedron P<B?, P is the relative closure of P in B3; we let P* be the
intersection of §? with the closure of P in E3.

Our next definition is concerned with parabolic fixed points; they are limit points
but they may have aspects similar to ordinary points. We assume that z€C is fixed
point of some parabolic element of @, and let J be the stability subgroup of z. J is then a
Kleinian group with exactly one fixed point; all such groups are known (see Ford [4],
p-139). In order to examine the possibilities, we assume that G acts on H3 and that z=co.
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. A cusped region U is a subset of C' with the following properties. U is precisely
invariant under J, and U is the union of two disjoint non-empty open half-planes.

. One easily sees that a cusped region U can exist only if J is a finite extension of a
cyclic group, and in this case UN A(G)=0. We say that z is a cusped parabolic fixed point
if either there is a non-empty cusped region U, or if J is not a finite extension of a
cyclic group.

The existence of parabolic fixed points which are not cusped is given in Maskit [12].

TaEOREM 2. If there is a convex fundamental polyhedron P for G with finitely many
sides, then every limit point of G is either a point of approximation or is a cusped
parabolic fixzed point.

Proof. We start with the well known fact that every point of P* is either in Q(G) or
is a cusped parabolic fixed point. Unfortunately, there is no ready reference for this fact,
and so we outline a proof here.

The identifications of the sides of P induce an equivalence relation on P, and on P*.
For each point z€P*, the set of points equivalent to z is called the (unordered) cycle at z.
Since P has finitely many sides, the cycle contains finitely many points.

We now consider z in P* and conjugate so that z= oo and the elements of G act on H3.
We choose g, ..., g, in G so that the cycle of oo on P* is {g(°°), g7*(°°), ..., g7 ()} where,
for convenience, g, is the identity.

Now let J be the stabilizer of o in & and J, the subgroup of parabolic elements (and
go) that fix oo (J, may be trivial). If oo €g(P*) where g€G we can construct a geodesic ¢
from a point in g(P) to co. This implies that for some 4, 0 <i<r, g,g7(0) is a geodesic ending
at oo and so g¢;971€J. We conclude that

JEeJUJgU...UJg,.

By Propositions 2 and 4, J can contain only elliptic and parabolic elements and we see
from [4, p. 140-141] that in this case there are elliptic elements e;, ..., e; such that

J =JgUdye, ... Udge,.

We conclude that g lies in one of a finite number of cosets Joh,-, h,€G.

If J, is trivial, then a neighbourhood of oo in H3U C meets only a finite number of
images of P and so o0 €Q(G).

If J, is not a cyclic group, then by definition, o is a cusped parabolic point.
~ Finally if J, is cyclic the images of P lie under one of the finite number of euclidean
curved sides of P or the (P) or are translations under J, of these images and so a

cusped region exists in this case.
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We now assume without loss of generality, that 0€P. Let 2€82, and let ¢ be the line
from O to z. If o intersects only finitely many translates of sides of P, then for some
g€Q, g(z) €EP*, and so by the above remark either z€Q(@G) or z is a cusped parabolic fixed
point. Observe that this situation must arise if z€€Q(G), for the euclidean diameter
of translates of P must converge to 0.

The only possibility left is that ¢ passes through infinitely many translates of some
side M and in this case z€ A(G). Then there is a sequence {g,} of distinct elements of G,
and there is a sequence of points {y,} on M, so that g,(c)N M ={y,}. We can assume that
y,—Yy. I y€B3, then by Theorem 1 (v) z is a point of approximation. If, as we now assume
y ¢B3, then by the remarks above, y is a cusped parabolic fixed point. We again change
normalization so that y=cc, and we let J be the stability subgroup of oo.

If J is not a finite extension of a cyclic group, then there is a compact set K<C,
so that for every 2z'€(, there is a j€J with j(z')€K. Hence, we can choose a sequence
{jn} of elements of J so that j,og,(z)€K, and j,0¢,(0)—oc. Observe that this latter
condition implies that infinitely many of the {j,o0g,} are distinct.

If J is a finite extension of a cyclic group, then we can assume that z—-z-+1€J,
the cusped region is U ={z| |Im z| >¢}, and that no translates of z lies in U. Exactly as

above, we can find a sequence {j,} of elements of J so that

|Im (jrog,(2))| <, |Re (jnoga(2))| <.

This concludes the proof of Theorem 2 as we have now verified Theorem 1 (iii).
We remark first that as a corollary to the proof, we have the following well known

statement.

COROLLARY 1. Let P be a convex finite sided polyhedron for G. Let P*® be the relative
wnterior of P*. Then no two points of P*® are equivalent under G, and every point of
Q() N 82 is equivalent under G to some point in the closure of P*O.

For the following applications we recall that G is elementary if A(Q) is a finite set.

COROLLARY 2. Let G be non-elementary. Then the set of points of approximation has
positive Hausdorff dimension.

Proof. It was remarked by Myrberg [13] that every non-elementary discrete group G
contains a Schottky subgroup G, defined by say 2n circles. G, is then a discrete group
of the second kind, with a finite-sided fundamental polyhedron. It was shown by
Beardon [2] that for every such G, A(G;) has positive Hausdorff dimension. Since G,

is purely loxodromic, A(G;) contains only points of approximation for &,, and so for G.



LIMIT POINTS OF KLEINIAN GROUPS 9

CoROLLARY 3. Let G have a finite-sided fundamental polyhedron, then the poinis of
approximation of A(G) are uniformly approximable, i.e., there is a constant k>0 so that, for

every point of approximation z, there is a sequence {g,} of distinct elements of G with
|2 =ga(0)| <ERL.

Proof. Let py, ..., p, be the parabolic vertices on P. In the notation of the proof of
Theorem 1 we find that if y,,—y, y =p;, then j,0g,(0) remains outside some neighbourhood
of the set {j,09,(2)}. If we consider ¢ as now acting in B?® this means that (retaining

the same notation despite conjugation),

|7409n(2) —1n09.(0)| > &

The result now follows by (1) and (2).
A corollary of the above is the following theorem of Ahlfors [1].

COoROLLARY 4. Let G have a finite sided fundamental polyhedron. Then the 2-dimen-

sional measure of A(G) is either zero or 4am.

Proof. The proof is essentially immediate from Corollary 3, and the fact remarked
above, that if G is of the second kind, then

> Ri< oo,

geq

Exactly the same considerations yield
CoROLLARY 5. If G has a finite-sided fundamental polyhedron, and if
2 Ry <o,

ge@

then the t-dimensional measure of A(G) is zero.

§3

In this section we prove the converse of Theorem 2. Specifically, our goal is to prove.

THEOREM 3. Let P be a convex fundamental polyhedron for the discrete group G, where
every point of A(Q) either is a point of approximation or is a cusped parabolic fized point.
Then P has finitely many sides.

Proof. Throughout we assume that P is a convex fundamental polyhedron for the
discrete group G which, for the moment, is assumed to act on B3. If P has infinitely many
sides, these accumulate at some point z on P. We begin by showing that z€ A(G).
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LEMMA 2. Let M,, M1, M,, M; be sides of P where there are pairing transformations
91> 92€G with g(M))=M;. Then, g,=g, if and only if My=DM,.

Proof. Let S;, S,’ be the hyperplanes on which M,, M,’, respectively, lie, and let
@., @, be the half spaces which are bounded by S;, 8,’, respectively, and which contain P.
If M, does not lie on §,, then M,<@Q),, and ¢,(M,) N @," =D. We conclude that g,(M,) can be
a side of P only if M,=8,; ie., My=M,.

This lemma shows that infinitely many distinct images of P accumulate at z. As P
is convex and locally finite the euclidean diameter of the images of P under G' converge
to zero, thus z€A(G).

Proposition 4 together with the hypotheses of the theorem now imply that z is
necessarily a cusped parabolic fix-point. We complete the proof by showing that this is
inconsistent with the assumption that infinitely many sides of P accumulate at 2.

We shall assume that G acts on H? and that z=o0. Now let J be the stabilizer of
co and J, the subgroup of parabolic elements of J. We may assume that J, contains
z—~>z-+1:J, is either cyclic or of rank 2.

We will need the following remark about convex polyhedra.

LemMaA 3. Let (z,, 2,), i=1, ..., n, be a finite set of poinis of P. Let B be the Euclidean
convex hull of the poinis z,, ..., z,. Then

(i) there is a t>0 so that {(z, ) €H3|z€ B, >t} <P, and
(i) no two distinct points of B are equivalent under J.

Proof. Since J keeps each horosphere z =constant invariant, conclusion (ii) follows
from conclusion (i).

Since P is convex and oo €P*, if (2, z,) EP, then so does (z, z) for every z>x,. Con-
clusion (i) now follows from the fact that if 7 is the non-Euclidean line from (z, ;) to
(29, %3), then the projection of T onto the z-plane is the Euclidean line from z, to z,.

This leads easily to

LEmMa 4. Let z,~> < in P with z,=(u, +1v,, z,).

(1) If J, is cyclic, then v2+x% is unbounded.
(ii) If J, is of rank 2, then u>+v? is bounded, x5 is unbounded.

Proof. If the conclusion of (i) fails then, by Lemma 3, P contains a subset of the form
[w, +o0)x[v',v"] x[2’, + o) (v"<v") and this contains points equivalent under J,. The
proof of (ii) is similar.
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We immediately deduce that if z, is a sequence of distinet points in A{G)N P* then
2z,+> oo, Indeéd in (i) we have x,=0 and 2,4 U so |v,| <V* whereas in (ii) z,=0. The
hypothesis of the Theorem together with Proposition 4 now implies that P* contains only
finitely many limit points, in particular the cycle of oo is finite.

If infinitely many sides M, of P meet o we can select g, in G where ¢,(P) abuts P
along M,. By Lemma 2, these ¢, are distinct. It is evident that P can abut at most one
other translate of g(P) under J, and so we conclude that the g, lie in infinitely many distinct
cosets oJ, 6g. This implies that the set {g;'(c)} is an infinite subset of P contrary to our

previous remark. We have proved
LEMMA 5. Only finitely many sides of P pass through oo,

We have assumed there is an infinite sequence of sides M, of P accumulating at oo.
The previous lemma implies that we may assume that none of these contain co. We
select z, on M, with z,~oo and choose distinct g, so that g,(P) abuts P along M,.

As oo ¢ M, we conclude that g,(o0) €C and we can find a sequence j, in J, with j,0g,(°)
lying in a compact subset K of C. By Lemma 4 we observe that j,(z,)—oc. If 7, is the
geodesic in j,0¢,(P) joining j,(2,) to j,0g,(°°) we find that the 7, meet a compact subset
of H3 contrary to the assumption that the tesselation is locally finite. The proof is now
complete.

We remark in closing that we have used the fact that we are dealing with 3-dimen-
sional hyperbolic space in a crucial manner only in the precise definition of cusped para-
bolic fixed point. In dimension 2, it is well-known, and one easily proves using Lemma 1,
that every parabolic fixed point is cusped. It is also well-known (see Greenberg [6] or
Marden [10]) that a Fuchsian group has a finite sided fundamental polygon if and only
if it is finitely generated. Combining these with the trivial fact that a Fuchsian group has
a finite sided fundamental polygon if and only if as a Kleinian group it has a finite
sided fundamental polyhedron, we obtain

CorROLLARY 6. 4 Fuchsian group G is finitely-generated if and only if A(G)
consists entirely of points of approximation and parabolic fixed points.

References

[1]. Arrrors, L. V., Fundamental polyhedrons and limit point sets of Kleinian groups.
Proc. Nat. Acad. Sci. USA, 55 (1966), 251-254.

[2]. BearpoN, A. F., The Hausdorff dimension of singular sets of properly discontinuous
groups. Amer. J. of Math., 88 (1966), 721-736.

[3]. BeArDON, A. F. & NicuOLLS, P. J., On classical series associated with Kleinian groups.
Jour. London Math. Soc., 5 (1972), 645-655.



12 A. F. BEARDON AND B. MASKIT

[4]. Forp, L. R., Automorphic functions, 2nd ed. Chelsea Publishing Co., New York, 1951.
[5]. GREENBERG, L., Fundamental polyhedra for Kleinian groups. Annals of Math., 84 (1966),

433-441.
[6]. —— Fundamental polygons for Fuchsian groups. J. Analyse Math., 18 (1967), 99-105.
{7]. HEDLUND, G. A., Fuchsian groups and transitive horocycles. Duke Math. J., 2 (1936),
530-542.

[8]. KRra, 1., Automorphic forms and Kleinian groups. W. A. Benjamin Inc., Mass., 1972.
[9]. LEUTBECHER, A., Uber Spitzen diskontinuierlicher Gruppen von lineargebrochenen

Transformationen. Math. Zeitschr., 100 (1967), 183-200.

[10]. MARDEN, A., On finitely generated Fuchsian groups. Comment Math. Helv., 42 (1967),
81-85.

[11]. —— The geometry of finitely generated Kleinian groups (to appear).

[12]. MaskrT, B., On boundaries of Teichmiiller spaces and on Kleinian groups: II. Annals of
Math. 91 (1070), 607-639.

[13]. MyRrBERG, P. J., Die Kapazitit der singuliren Menge der linearen Gruppe. Ann. Acad.
Sci. Fenn., Ser. A, 10 (1941), 19.

Received June 6, 1973



