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CHAPTER II. NON-LINEAR COHOMOLOGY

7. Lie equations and their non-linear cohomology

Let R,<J,(T) be a differential equation; set Ry ,=J,_y(T), Ry s=Jy_o(T), Byy =
VIR S T), Rhii=Rpi 0 J%(T), Rewi=v RS Jii(T), and  set  J(Ry)—
W (RS i(T). For 1> —1, let g, ST (T)*®@JH(T) be the kernel of my,, ;:

By~ Byyy g or of ey g2 By~ By .

Definition 7.1. A differential equation R, <J(T) is a Lie equation if [T:’,c, ﬁk]c ﬁk
It follows from (1.15) and (1.16) that

[Risss RIS Ry, and [Rypy, Rp]C Ry (7.1)
On the other hand, we have, for all 10,
[Risrs Resr] S Ricy (7.2)

(cf. Proposition 4.3 of [19]). In particular, if R, is a vector bundle, then R, , is a Lie
equation and
By =17 (Ry) (7.3)

where };: Jp, (T)~>J . 1o(T). We remark that the sheaf Sol (R,) of solutions of R, is stable
under the Lie bracket of vector fields. We say that B, is formally transitive if my: R—J (T
is surjective. The differential equations J,(T; o) and J,(V) considered in § 6 are Lie equa-
tions, and J(T'; ) is formally transitive. \

A differentiable sub-groupoid P, of ¢, is a Lie equation (finite form) if it is a fibered
submanifold of z: @,—X. For x€X, I(x)€P, and Viyu(P,) determines a subspace K, ,
of J(T),. The vector sub-bundle R,=J(T) such that R, ,=v(E, ) is a Lie equation
(infinitesimal form); we say that P, is a finite form of R,. For example, the sub-groupoids
Qx(o) and Q,(V) of @, are finite forms of J,(T'; o) and J,(V) respectively. We have R, F =
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Ve(P,) for FEP,, and R is formally transitive if and only if the restriction to P, of the
projection 7ty @~ X x X is a submersion. We denote by D, the sheaf of sections of P, and
by ﬁk =DeN ak the sheaf of invertible sections of P,; we set

Dio = {FED, o] Fla) = L(a)}
fora€X.

For each Lie equation R,<J,(T), we can construct a corresponding finite form P, in
the manner described in [19]. In fact, the sub-bundle {RkF | FE€Q,} of V(Q,) is integrable
since 7, (see § 2) is a morphism of Lie algebras from I'(X , Ju(T)) to the algebra of vector
fields on @),; therefore it defines a foliation on @, which is transverse to ;. The set of leaves
passing through I, forms a germ of submanifold of ¢, in the neighborhood of I, and we
can choose a representative P, of this germ which is a differentiable sub-groupoid of @,
and hence a finite form of R,. Since any finite form P, of R is a representative of this
germ, the group f)}c, « depends only on R, and not on the choice of the corresponding finite
form P, of R,.

Let R,<J,(T) be a Lie equation and P a finite form of R,. Then the sub-bundle
{JUB,) F|F€Q.1»} of V(Qu.r) is integrable and defines a foliation on @, ;, which is
transverse to j,(I;) =A,(I,,,). The set of leaves passing through j,(I;) forms a germ of sub-
manifold of @, ,, along §,(I,); the set J(P,)=J,(P,) N Q.. of jets of order I of sections
of i)k is a representative of this germ. Suppose that R, ,, the I-th prolongation of R, is a
vector bundle and hence a Lie equation, and let P, be a finite form of B, ,. In view of
(7.3) and the commutativity of (2.8), we conclude that P, ,=(1,)~1J,(P,) in a neighborhood
of I, Thus P,,; coincides with the I-th prolongation (P,),;=(A)"YJ (Py) N A{(@x.1)) of
P, in a neighborhood of I, ; therefore 7, P, ,,< P, in a neighborhood of I, and n,-cf)}ﬁl = ﬁ}c.

Let RB,<J,(T), where m >k, be a Lie equation such that m,(R;,) = R,, and let P, <@,
be a finite form of R;,. Then by the implicit-function theorem we have m(P;,) =P, in a
neighborhood of I . Thus m;: i);,',,aeﬁ;c_a is surjective for all € X. Assume that B, isa
vector bundle and that a,: B, ,~> B, is surjective; then there exists a finite form P, of R,
such that 7, (Py)..; Py is surjective (see [19], Proposition 6.1). If moreover g, is 2-acyclic,
the finite form P,, regarded as a differential equation in J,(#) where £ =X x X is viewed
as a bundle over X via pr;, is formally integrable by Theorem 8.1 of [4] and Lemma 6.15
of [19] ((19], Theorem 6.16). If R, is assumed to be formally integrable, we deduce from
these remarks the existence of a finite form P,<@, of R, which is formally integrable;
for such a finite form P,, the structure of affine bundle of (Py), (4 over (Py),, gives, by
restriction of 8: QET}, 1~ S* T (TY*®Jo(T), an isomorphism of bundles of Lie groups

a: Q£1;+1 n (Pk)+(l+1)_>gk+t+1 (7-4)
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(see [19], § 6). We remark that @i(0), @(V), with £>1, are formally integrable and their
I-th prolongations are @, (0), @y, (V) respectively.

We summarize and amplify some of the above considerations as a proposition.

ProrosiTiown 7.1. Let R,<J,(T) be a Lie equation and assume that, for all 1 20, R, ,,
is a vector bundle and that Py, <Q,,, is a finite form of R, ,. Then:

(1) Py ts equal to the l-th prolongation (Py),, of Py in a neighborkood of I, and
T 1 Pry1.m S Pryy 10 a neighborhood of I, for all 1, m = 0.

(il) For m=>k and a€X, the groups ﬁ',,,_ « depend only on Ry, and the mapping
Ty Q1@ induces a mapping 7w, D~'m+,_a—>75'm,a for 1>0.

(iii) Let R, <Jo(T) be a Lie equation with m >k and m(Ry,) = By, and let Py, be a finite
form of R,. Then m(Py)=P; in a neighborhood of I, and m,: f):,',,a»‘jj}c is surjective for all
a€X. Moreover, if FE€D, , with F(a)=I,(a), a€X, and GE€J(P) with J (7)) G =j,(F)(a)
and 7y Q= I,(a), then there exists F' €D, , satisfying m, F' = F and j,(F') (@) =G.

(iv) If Ry is formally integrable, then it possesses a formally integrable finite form P,
and the mappings 7o, ZN)}C+,+1_,,~>75}C+,_ o are surjective, where Py ;= (Py) . for all 120 and
acX,

(v) Let R} < B, be a Lie equation and P} a finite form of R;. Then P} <P, in a neigh-
borhood of I,.

Let B, < J,(T) be a Lie equation and P, <@, a finite form of R,. Since P, is a groupoid,
if Feﬁ,m, a€X, by (2.5) the mapping (2.2) restricts to give a mapping

F: R, ,~R,, (1.5)
where b=target F(a). If F€(P;),,, by (2.4) the mapping (2.1) restricts to give a mapping

F: R, ,~R,, (7.6)
where a =source F, b=target F.

We have the following proposition:

Prorosition 7.2. Let R, J (T) be a Lie equation and P, Q) a finite form of R,.
Let F Edk+1; then the following two assertions are equivalent:

(i) DFeT*®R,;
(i) DFEJ(T*Q R,
If mp F Ef)k, then (i) and (ii) are equivalent to:

(iii) FEPoi = 41T1(De) N y(Qpein))-
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This proposition is a consequence of Lemma 2.2, (i) and (ili), and Proposition 6.9 of
[191.
Let R, = Ji(T) be a Lie equation; assume that, for all >0, R, is a vector bundle and

let P,,, be a finite form of B, ;. For I>0 and ¢ € X, we define the group
HYPyYos1.0 = {f € (Aut (X))a s € Diesn. o}
we note that it does not depend on the choice of P, ; and therefore depends only on E,. Let
(T*®@Be)" = (T7® Byy)) N (T*@J (T,
To(TV® By)" = (Jo(TV® Byp) 0 (T TV*@ T T))",

and
ZYR,.,))= {ue(g*®Rk+l)A I D,u =0},

ZY(By, ) = {u€ (T (T)*@Rer))" | Dyu=0}.

By Proposition 7.1, (i) and Proposition 7.2, we obtain, for I >0 and a € X, the following two

non-linear Spencer complexes

. . D
HO(Pk)k+l+1‘aﬁ+l_+‘l"Dk+l+l.aL (T*QRe)s — > (N2 T*@ Ris1-1)as

HO(Pk)k+l+1.aM jj'lc+l+1.a.‘_D'_> (Jo(g)* ® ﬁk+l)(/1\ '_Dl_’(/\zJo(g)* ® ﬁk+l—1)a-

According to (7.5), (7.6) and (2.43) the group ]5'“,“.“ operates on the right on ZY(R, ),
and Z*(Ry,,), in the manner of (2.31) and (2.40). Set

HYPii1,0 = 2 B o/ Dicrisr.00
El(PIc)lc+l.a :Zl(Rk+l)a/f)'k+l+1. a>

these non-linear Spencer cohomologies of P, are the sets of orbits under the right opera-
tions of ]N)}H;H'a. We shall say that the orbit [u] of w€ZXR,,,), (resp. ZYR,.,),) is the
cohomology class of u in HY(P,),,,., (resp. HYP,)is1.q)- Then u, v EZI(Rk+;)a (vesp. ZY( Ry, ))a)
are cohomologous if and only if there exists F Ef)}cﬂﬂ, « such that % =», and u is cohomo-
logous to zero if and only if u= DF (resp. u= DF) for some F € i)}c+z+1. o We denote by 0
the orbit of 0€ZYR,,,), (resp. ZYRy,)).) in HYPu)is1.a (resp. HY(Pp)e,1.0), and so these
cohomologies are sets with distinguished elements 0. Since the groups 75}C+,+1_ « depend only
on R,, these cohomologies depend only on R, and not on the choice of the finite forms
Py, Finally we remark that the vanishing of the cohomology H(Py),,;, . Or HYPirr.a
is equivalent to the exactness of the first of the above complexes at (T*® Ry..,)s or of the
second at (JO(U)*®T:’,¢+,){,‘, respectively.

All the cohomologies we shall consider are sets with distinguished elements 0. By a
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mapping of cohomology, we shall mean a mapping between two cohomologies sending 0
into 0 and, by an isomorphism of cohomology, we shall mean a bijective mapping between
two cohomologies sending 0 into 0. However, in the latter part of this section (namely, in
Propositions 7.9, 7.10, 7.11 and Corollary 7.1) and in § 10 (namely, in Theorems 10.3 and
10.4) mappings connecting cohomologies occur which are only bijective and do not neces-
sarily send 0 into 0.

Using Proposition 7.1, (ii), we see that, for I, m >0, a € X, the mappings 7, ;: Ry, 1om—

Ry, induce mappings of cohomology
Tttt HYPrluyrom,a > H Prlyt,00
et HY Py 1om.a > H Py 1.0
and we define the non-linear Spencer cohomology of P, to be the projective limits

Hl(Pk)a=](_-iI_nH1(Pk)lc+l.a;
ﬁl(Pk)a =lim FII(PIc)kH,a

for a € X. These cohomologies are also sets with distinguished elements 0, and they depend
only on R, and not on the choice of the finite forms.
According to Lemma 2.2, (i) and (iv), the mapping (2.44) restricts to give, for 1>0,
bijections
(T*® Bep))" > (Jo(T)*® By, (1.7)
ZM( Ry _>ZI(RIH-I)' (7.8)
According to Lemma 2.2, (ii), (7.8) induces for ¢ € X an isomorphism of ecchomology

Hl(Pk)k+l,u—>E1(Pk)k+l.a-
Thus:

Prorositiow 7.3. Let R,<J(T) be a Lie equation; assume that, for all 120, R, is
a vector bundle and let Py, be a finite form of Ry, Then the mapping (2.44) induces iso-
morphisms of cohomology, for all 1=>0 and a€X,

HYPesr,o > HHPiYrs, a0
Hl(Plc)a »El(Pk)a'

According to Proposition 7.3, we may identify HYP,), and HY(P,), and define the

non-linear Spencer cohomology of R, to be
Hl(Rk)a = Hl(Pk)a. =}_11(Pk)a

for a€X. We set
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H'(R)= U HYR)).
aeX

Definition 7.2. We say that the second fundamental theorem holds for R, if AY(R,)=0.
If R,< R, is a Lie equation all of whose prolongations R}, are vector bundles and
P, is a finite form of R}, for [>0, the inclusions B}, < R,,, and Proposition 7.1, (v)
induce mappings of cohomology
HI(P;c)k-H, a~> HY(Py)i+1, 05
'HI(P;C)IH—I.a —)H—I(Pk)k-f-l.a:

for all >0, and hence mappings of cohomology

H\(R}), > H(R,),
for e €X.

LeEMMA 7.1. Let B = J(T) be a Lie equation; asswme that R, . is a vector bundle and
that mmy: Ry, — Ry, is surjective. Let Py, be a finite form of By, and u€(T*®@Ry):, a€X. Then
there exists F e‘f)'kﬂ,a satisfying u* (@) =0 or DF*=u at a.

Proof. Let v€(T*® R, ;)5 with mv=wu(a). Since J,(P,,;) is an affine sub-bundle of
J1(@u11) 7., OVET Py, there exists G€ Dy, , such that G(a) = I;,(a) and

1(@) (@) = j1(Lyy) (@) + ([ @v 7).
By Proposition 2.2, (i), /,(F){(a) belongs to @ .., and hence GE]:N)}HLa. By (2.27) we have
(([d®@») DG (a) =i (7 G) (2)] = j1(mc F) (@) — ja(1x) (@) = ([ @y~ )i,

and so DG{a) =u{a). Taking F-1=@, we obtain the assertion of the lemma.

Now assume that R,<J(T) is formally integrable, that P, is a formally integrable
finite form of B, (which exists by Proposition 7.1, (iv)) and that P, is the /-th prolonga-
tion (Py),; of P,. Denote by Sol (P;) the sub-sheaf of Aut (X) composed of the f satisfying
i) € ﬁk; it is the sheaf of solutions of the non-linear differential equation P,<J,(H),
where E =X x X. By Proposition 7.2 we have, for >0, the following two non-linear Spen-

cer complexes:
. . D D
Sol (P) LMD, 1t —— (T*@ Ris)* —2> A2 T*@ R,

i 5D . D .
SOI (Pk)lﬂﬂ’ Dk+z+1 —_— (Jo(g)* ® RkH)A ”_1_"/\2 Jo(g)* ® Rkﬂ—h
which are finite forms of the linear Spencer complexes

j D D
00— 8ol (Rk) &‘I‘ﬂ’ Rk+l+1 ——»7* ®Rk+l ——‘/\2 J* ®Rk+l—17

S D . D )
0——Sol(Ry) ans Rirra1 Jg(ﬁ)"‘@:ﬁkﬂ-’—‘/\zJo(g)*(@RscH—b
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The vanishing of the cohomology HYP)y., ., for all ¢ € X, implies the exactness of the above

non-linear complexes.

ProrosiTioN 7.4. Suppose that B, J T) is a formally integrable Lie equation and

that g,, is 2-acyclic where ky>sup (k, 2). Then for all m >k, the mappings
Tt 2 Rppsy) > ZYR,p), (7.9)
T Z_l(Rm+1) AZl(Rm) (710)

are surjective.

Proof. Since the mapping (2.44) is compatible with the projections 7t J o (TV = (T),
Tt S pia(T)>J (T, and since the mappings (7.8) are bijections, it suffices to show that
(7.10) is surjective. Let u€ZY(R,), with m >k, and choose 2, €Jo(T)* @ Rp,y such that
Tty =u. Then Z—)lu E AW W(TV* ®g,, and

551“1 = *ﬁ(ﬁul — 3w, u]) = [ﬁu, Ty ®] =3[y Uy Ty U], Ty ] =0

by the Jacobi identity. Since g,, is assumed to be 2-acyclic, there is an element ¥€JWTV*®
Gums1 satisfying ov = D, u,. Then

Z—)l(ul—i-v) = Du, — v — 3w, u) =Z—)1u1~50 =0

hence «; +v belongs to ZY(R,,,) and satisties 7,,(u, +v) =u, that is (7.10) is surjective.

Remark. It can be shown directly that the mapping (7.9) is surjective without using
the isomorphisms (7.8) and, if this is carried out, one is led automatically to consider a

twisted d-operator, namely
O NT*Rg, > N1 T*Rg,_ 4, form =k,
where

6'Dw = [17, w] = [vl’ w]’ we/\]T*®gmy

and v is a section of T*®Jy(T) such that v: T'—J(T) is invertible, and v, is any section of
T*®J(T) such that mav, =v. It is easy to see that J, coincides with  when v=». The
cohomology of the complex (1.8) is not changed, up to an isomorphism, by replacing
with 8,,.

We deduce immediately from Proposition 7.4:

ProrositioN 7.5. Suppose that R,< J(T) 1s a formally integrable Lie equation and
P.<Qy is a formally integrable finite form of R,, and that g,, is 2-acyclic with ky>sup (k, 2).
Then for all m=ky, a € X, the mappings of cohomology
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Ty HI(Pk)m+1.a_*H1(Pk)m,a, (711)
Tt El(Pk)m+1.a "‘)H-I(Pk)m,a (7.12)

are surjective.

ProposiTioN 7.6. Let R,<J,(T) be a formally integrable Lie equation, and assume
that R, possesses a formally integrable and integrable finite form P,<@,. If the image of
o €EHY(Py) iy .0 (resp. G E€HY Py iy, a)y with m>k, a€X, in HYP)pn., (resp. ﬁl(Pk),,,,a)
vanishes, then o=0.

Proof. According to Proposition 7.3, it suffices to prove the assertion for @ € HYP,) ., o
Let Py, be the I-th prolongation of P,. Let w€ZY(R,,,,), and assume that the cohomology
class of 7,,u in HYP,), , vanishes. Then there exists FIE‘i)'mH,,, such that (m,u)" =0,
and we choose F, Ef)},ﬁg‘a with 7, 4 Fy=F;. Then 7 €J(T)*®g,,,, and

du' = ~ Dufr= — o, [u", ] =0,

since 7, (u"?) = (77,,%)"* =0. Since g, is 1-acyclic, there exists v€g,,, such that dv=u""
Since P, is formally integrable, the mapping (7.4) (with k4-I/=m+1) is an isomorphism
and @ =2~ belongs to Q13N Pye and, by (2.38),

D= 8o = —u".
Then Fy-G€D,,9.0 and

u € =y 4 DG =0.
Since P, is integrable, there exists f€Sol(P,), such that j, .(f)(e)=0G(a); then F=
Fy G jpia(f1) belongs to Dinse, o and

uf = (qu : G)7m+ 2D = (P2 = ()

showing that % is echomologous to zero in H{Py ). 1.

We suppose henceforth that 2>1 and continue to suppose that B, <.J{T) is a form-
ally integrable Lie equation and that P, is a formally integrable finite form of R,. Let
C% 41, 0411 be the images of Jo(T)*® By, (Jo(T)*® Ryy))" respectively in B, ;. Then

Ohrr = (Jo(TV* @ By, )0(Gres101)

and %, is a vector bundle since g, is, and (%, ;=C%. N BL,,. We set
Zl(Rk+l) = {ueé}lcﬂ I Dlu = 0}-
By Proposition 7.2 we obtain, for >0, the non-linear Spencer complex,

i1 2 D & D
Sol (P)-L=4. D, ., La—aBL,
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which is a sub-complex of {2.48) (with k replaced by k+1) and which is a finite form of the

complex

i D D
Sol (&) Liess (I)c+l Chni B

where O%,,= R,.,. According to (7.5), Proposition 7.1, (iv), Proposition 7.2 and (2.43),
for a€X the group f)}cﬂ, « operates on the right on Zl(Rk +1)e in the manner of (2.49). Set

Hl(Pk)k+l,a =ZAI(Rk+l)a/ﬁ-k+l. a

this non-linear Spencer cohomology of P, is the set of orbits under the right operations of

75'“1,,, and depends only on R, and not on the choice of the finite form P;. For an alterna-
tive description of this cohomology of P,, we refer the reader to [19], § 8. We denote by
0€HY(P,)s,. the orbit of 0€ 21(Rk +1)e» and we remark that the vanishing of the cohomo-
logy HYPy)es, o for all a€X implies the exactness of the above non-linear complex. For
I, m>0, a€X, the mappings my,;: By, 1om—> By, induce mappings of cohomology

Tyt Hl(Pk)k+t+m.a”Hl(Pk)kH,a

and, for a €X, we define the cohomology
Hl(Pk)a = l}_’?_-gl(Pk) k+la
which is a set with distinguished element 0.
Let us show that the projection Jy(7)*® &,,— C%, induces a mapping
ZYR,)~ZYR,) (1.13)
for m=k. Let w€ZY(R,,) and 4 be its lmage in Ch. By the exactness of (2.32), there exists
Feq, 11 such that DF =u. Choose F, €q,, 42 With 77, F'; =F; then u; = DF,eZ\J,, (7))

and 7,4, =u. Now Dlu is the class of 'Dlul in B%, and hence vanishes. We obtain there-
fore mappings of cohomology for m>%, a€X,

H_I(Pk)m,a ”’ﬁl(Pk)m,w (714)
HyP,), > APy, (1.15)

The commutative diagram

Jo(T)* ()a-gmé-l..__————_> 0m+1

fy . T

JoT)*® B, —— O},
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induces for m 2k a commutative diagram

ZRps1) > ZRps)
m Tm (7.16)
|
Z\(B,) ZY(R,)
and therefore also a commutative diagram
HYPns1,a —> H'(Py)ns1.a
Tom T (7.17)

L

Hl(Pk)m.a > Hl(Pk)m.a

of cohomology, for € X.

Prorosirion 7.7. Let R, =J,(T) be a formally integrable Lie equation, with k>1,
and P, <@, a formally integrable finite form of R,. Then:
(i) For m=k, a€X, the mappings (7.13) and (7.14) are surjective ond (7.15) is an iso-
morphism of cohomology.
(1) If gy, 35 2-acyclic, with ky=sup (k, 2), then all the mappings of diagram (7.17) are
surjective for m=k,, a € X.
(iii) If Py is integrable, then for m >k, a€X:
(a) if the image of « € HY(P,),, , vanishes in HYPy), ,, then a=0;
(b) if the image of océﬁl(Pk)mﬂ,a vanishes in HY(Py),, o, then a=0;
(c) if the image of «€ HYPy)p.y .o vanishes in HYPy)y.q then a=0.
(iv) If Py is integrable, then for m >k, a € X, the following assertions are equivalent:

@) HYPm.=0;
(b) HYPpo=0;
(C) fil(Pk)m,a =0.

Proof. (i) We first prove that (7.13) is surjective for m>k. Let ﬁeél(R,,,) be the image
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of w€(Jy(T)*® ﬁ,,,)". Choose uleJo(ﬂ)*®ﬁ,,,+1 with 7,4, =u. Then 75112 is the image in
B2, of Dyu, €ATo(TV* @R, Therefore D, u; € AT (T)*®g,, and

0 =7,y Dy, = Dy u;

so 4 is the image of w€ZYR,). Thus the mappings (7.14) are also surjective for m >Fk.
That (7.15) is an isomorphism of cohomology follows from the commutativity of (7.17).

(ii) is a direct consequence of (i) and Proposition 7.5.

(iii) We first verify (a). Let u €ZY(R,,),, with m >k, a € X; assume that the cohomology
class of the image 4 of » in 21(Rm)a vanishes. Then there exists F € f)',,,, o« such that 47 =0,
Choose F,€Dys1,a With v, Fy=F; thus u™ belongs to 8(g,,,) and we can write 4™ =3,
with v€g,,,,. Since P, is formally integrable, the mapping (7.4) is an isomorphism (with
k+1=m) and G=0"v belongs to Q.1 N Ppnyy and, by (2.38),

DG = —dv=—u™.
Then F,-G€ Dy . and

uf ¢ =yF 4 DG =0.

Since P, is integrable, there exists f€Sol (P;), such that §,,,(f)(a)=GC(a); then F=
Fy-G-j, 1 (f1) belongs to i)’mﬂ, «and u* =0, showing that u is cohomologous to 0in HY(P,),, ,.
By the commutativity of diagram (7.17), we deduce that (b) follows from (i) and Proposi-
tion 7.6, while (a) and (b) together imply (c).

(iv) The equivalence of the three assertions follows from (i), (iii), (a) and Proposition
7.3.

According to Proposition 7.7, (i), we may identify AY(R,), and HY(P,),, for a€ X.

ProrosiTioN 7.8. Let R < J,(T) be a formally integrable Lie equation and P, =@, a
formally integrable finite form of R,. Suppose that g, is 2-acyclic, with ky=k. For a€X,

the following assertions are equivalent:

(i) AYRy),=0;

(i) for all m=sup (ky, 2), HYPi)pm.o=0;
(iil) for all m=>sup (ky, 2), HYPp)p.o=0;
(iv) for all m>=sup (ky, 2), HYPy)p.o=0.

If moreover Py, is integrable, these assertions are equivalent to each of the following:
(v) for some m=sup (ky, 2), HYPi)n.o=0;
(vi) for some m=sup (ky, 2), HYP)p.o=0;
(vii) for some m=sup (ky, 2), HYPp)p.o=0.
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If P, is integrable, then each of the above assertions is implied by the equivalent conditions:
(viii) for some m=k, HWPy)p.,=0;

(ix) for some m=>k, HYPy)u,=0;
(x) for some m=k, HYPy),.,=0.

Proof. The equivalence of (i)-(iv) follows from Proposition 7.5, Proposition 7.7, (ii)
and [1], § 3, No. 5, Corollary 1. When P, is integrable, we deduce from Proposition 7.6 and
Proposition 7.7, (iii), (c) or (iv) that (v)-(vii) are equivalent to (i)—(iv) and that (viii)—(x)
imply (i)-(iv).

The following three propositions are closely related to results in § 5 and § 6 of [9];
in particular, the following proposition and its proof are related to Theorem 6.2 of [9].

ProrositionN 7.9. Let B, R <J (T) be formally integrable Lie equations and let P,,
P7 =@y be formally integrable finite forms of Ry, R} respectively. Let m=>k and F be a sec-
tion of é,,,ﬂ over an open set U< X such that f =my F is a local diffeomorphism of X and

F(Rp v)=R7% 1 (7.18)
F(Rm+1|U) =Eﬁ+ll[( v)- (7.19)

Let a€U and b=f(a).
(i) If By, and R% are formally transitive or if F =j,,(f), then the germ of F in dmﬂ.a

tnduces a commutative diagram

Hl(Pk)m.a_—-"Hl(P;f)m,b
H'(P)p,o ——H' (P%)m.» (7.20)

HI(Pk)m,a > H](Pt)m.b

whose horizontal arrows are bijective. Moreover if F =4, .1(f), then f induces an isomorphism
of cohomology
B(Ry)e— HY(R%),.
(ii) If esther the first or the second horizontal arrow in diagram (7.20) is an isomorphism

of cohomology, or a fortiori if HY(P%)m, » =0, there exists a local diffeomorphism g of X defined
on a neighborhood U, of a such that j,,,(9) (@)= F(a) and

Fr+1(9) (Biv,) = B v
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Proof. (i) Using (2.25) we infer from (7.18) and (7.19) that the restriction of DF-
to B7 is a section of B%*® R and hence, if RZ is formally transitive, that DF-'is a sec-
tion of T*®@ B} over f(U). From (7.18), if u€(T*@R,),, We see that F(u) belongs to
(T*®R}), Therefore, under one or the other of our hypotheses of (i), «* - belongs to
(T*®Rp),- Thus by Lemma 2.2, (i) and (ii), @™ belongs to (J(T*@RL), By Lemma

2.2, (ii) and (iv), we therefore have a commutative diagram
ZN(R,)a—Z'(R7),

ZMRo)y— ZM Ry (1.21)

2 (Rp——ZM B,
whose vertical arrows are given by (7.8} and (7.13) and whose horizontal arrows are bijec-
tive and send w€ZYR,,), (resp. ZYR,,),) into u* " €ZYRE), (vesp. Z(RZ),) and GEZYR,),

A

into 4™ '€ ZAl(Rﬁ)b. We denote by Ad F: Quni1)ux > @me1) oy sy the mapping sending
G, with source G=x€U, target G=y€U, into F(y)-G- F(x)-2. According to Lemma 6.1
of [9], we have by (7.19)

Ad F(Ppqjvrv) = Phetiranxran

in a neighborhood of I,;,1|xuy, and thus Ad F induces a bijective mapping Ad F: D~',,,+1, o=
ﬁﬁ;l_ﬂa). From (2.42), we have

(uG)F_l — (uF—l)Ad F.G
for u€(I*®R,,), or uG(JO(g)*®R~,,,)a, a€U and GEi)',,HLw and

(85" N (@™ F’l)Ad Ty F o G1

for #€CL,. o and G, € 75',,,_ o> Where Ad 7, F- G, =m,(Ad F- Q) if G, ==n,,G. Diagram (7.21) in-
duces the commutative diagram (7.20) whose horizontal arrows are bijective. If F—

Jms1(f), these arrows are isomorphisms of cohomology; furthermore for all p =k, we have
Jr+1(f) (Rpl u)= R;flf(v)s

and the diagram

Hl(Pk)p+l,a ‘—"’HI(P’lf)pH, [

nﬂ np
Hl(Pk)z).a Hl(Pt)p.b ’
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whose horizontal arrows are the isomorphisms of cohomology induced by j,,,.1(f) and
jp1{f) respectively, is commutative for all p=>%, {>0. Thus we obtain an isomorphism of
cohomology HY(P,),—~HYP}),

(ii) If either the first or the second horizontal arrow in diagram (7.20) is an isomor-
phism of cohomology, there exists a section G of ]5’,",,+1 over a neighborhood of b such that
DG=DF- and Qa)=1I,.,(a). Since DG+ F)=FY D@+ DF =F(DG—-DF1)=0, by
(2.23) we can write G+ F' =4,,,,(g9) where g is a local diffeomorphism of X defined on a neigh-
borhood U, of a; it is clear that g has the required properties.

Let B,<J,(T) be a formally transitive Lie equation. An R,-connection is a mapping
of vector bundles w: Jy(T)— R, satisfying myow=id; we set @=v-towoy: T—E,. The
curvature Q of @ is the section of A2T*® RY, over X defined by

Q(EAn) = [@(&), dm)]—al&, 7]
for &, n€J. An R,-connection w determines covariant derivatives V in J,_,(7T") and JYT)
by setting
Ven =L(@(E))n, for €T, n€J,_y(T),
Vel =[@(8), L], for £€T, [€JyT).

If the curvature of w vanishes, then so do the curvatures of the covariant derivatives V
(see [9], Proposition 3.3). We say that a sub-bundle F of J,_,(T) (resp. Jy(T)) is stable by
Vit V(HcT*®JF.

The following proposition generalizes one aspect of Proposition 5.5 of [9].

ProrosiTioN 7.10. Let B, R;<J (T) be formally transitive and formally integrable
Lie equations. Let Py, P§ <@ be formally integrable finite forms of R,, R} respectively. Let
a, bEX and let $€Q(a, b) satisfy ¢(Ry,,) = RZE, v Given a local diffeomorphism f: X — X de-
fined on a neighborhood U of a with f(a) =0, for all m=>k there exists a section F,, ., of d,,, "

over a neighborhood U, ., < U of a such that F, (a) =7, ¢, wg F =] and
F i B Up 1) = BA |10, (7.22)
Fm+1(Rm+1|Um+1)=R£+1U(Um+1)~ (7'23)

Furthermore we have a bijective mapping

ARy~ HYRY),-

Proof. For m =k, consider P,(a), Pi(b) as bundles over the connected components of
a and b respectively via the projection “target’”’. For all m >k, we can find sections s, of

P, (a) over a simply connected neighborhood U,,= U of a and s% of Pa(b) over Up,=f(U,,)
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such that s,(a)=I,(a), s5(0)=1,(0), U, < Uy, and w,8pq =8, on U, and 7,851 =587
on U%,,. Define &,: T—R,, on U, by &,(E)=8m(&) s(@) for £€T,, 2€U,, and &}
TR on U} by &5(8) =shs(€)-s*(y)L for €T, y€ UL, It is clear that w,,=vod,0v'is
an R,-connection on U, and that w},=vo@dLov! is an R}-connection on U}, whose cur-
vatures vanish. Let F, () =s5(f(%)) 7,,¢ snu(x)-L, for z€U,,; then F, is a section of dm
over U, with 7y F,,=f and 7, F, 1 =F, on U,,,, and F,(a)=n,¢. By (2.5), for §€T,,
yeUs,
F o @8 = Fon smal 18 -8 1)) - Fonlf )™
= 5na(€) Ton - T ™! 87 (Y) T = BlE)

and thus F,(@,)=d% Then the sub-bundles F, . 1(Bu|vmi1), Bpjv?*

m+1

Of Jm(T)|U:f+1 and
F o d( Bt vysn)s R7%1 v, of Jo(T)u7,, are stable by the covariant derivatives in-

duced by whiy in J,(T) and JY  (T) respectively. Moreover, Fp.1(Rn o) =T ms1 (R, o) =
Ri, and Fpi(R%11.0) =1 $(Boi1,a) =Rir1s- Since Uy is simply connected, from

Proposition 3.2 of [9] we deduce (7.22) and
Fm+1(R0m+l| Umi1) =anl11|u,f+1- (7.24)
Since F i f(@mi1(T | ns1) = @nir(T v, ), clearly (7.23) follows from (7.24)., According
to Proposition 7.9, (i), for m >k the germ of F ., in d,,,ﬂta induces a bijective mapping
Fop: B Py, o = HYP ). v

Since 7,4 Fryri1 = Fmia o0 Upyyypg, the diagram
1 Fm+l+1 1 &
H (Pk)mﬁ—l.a—_———__')H (Pk)mTl,V
‘nm nm
F,
HY(Py) .o —"—H P%)m,»
is commutative for m >k, [ 0. Therefore we obtain a bijective mapping H*(Py),—~H(P%)..

ProPoSsITION 7.11. Assume that X is connected. Let B, < J, (T be a formally transitive

and formally integrable Lie equation. Then for all a, b€ X, we have a bijective mapping

HY(By), —~ HY(Ry).

Proof. By Proposition 5.4 of [9], for all @, bEX, there exists $€Q,(a, b) such that
S(R, o) =Ry, » and so the conclusion follows from Proposition 7.10.
The following proposition is an immediate consequence of Proposition 11.2 of [10]

and Proposition 7.9, (i).
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ProrosiTioN 7.12. Let R,, R;<J (T) be two formally transitive and formally in-
tegrable Lie equations and | a local diffeomorphism of X defined on a connected neighborhood
U of x€X such that

rsa(f) (Bejo) = B o
If Ny, Ni < J, (T) are formally integrable Lie equations, with k, >k, such that
[ﬁk1+1; nkl] < nkv [ﬁfﬁ'l’ nzl] < nlfx

and if

Frr1(f) (@) (N iy, 2) = New, rans
then

T N 10) =Ny
and f defines an tsomorphism of cohomology
B\(N)oa= BN ) 1
for all a€U.

CoroLLARY 7.1. Let R, R < J(T) be formally transitive and formally integrable Lie
equations and let N, = R, , N% < R7, be formally integrable Lie equations, with k, >k, such
that

[Ricrs, M= Wy [RE 1, HET < WE
Let a, b€X and let $€Q(a, b) satisfy $(By o) =R, » and ¢(N ) =N%, 5. Then we have a
bijective mapping
H\(R,),~ H\(R%), (7.25)
If this mapping is an isomorphism of cohomology, or a fortiori if HY(R%),=0, we have an
isomorphism of cohomology

YN )~ AN, (7.26)

Proof. Let P, and P% be formally integrable finite forms of R, and R7% respectively and
let m = k,. By Proposition 7.10, we have a section F of d,,, 41 over a neighborhood U of a,
with 7z, F =§, satisfying (7.18) and (7.19) and F(a)=mn,,,,¢, and a bijective mappirg (7.25)
such that the diagram

HY(Ry), OYR7),

7, 7,

H](Pk)m,a Hl(Pt)m.b
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is commutative, where the lower horizontal arrow is induced by F according to Proposi-
tion 7.9, (i). If the upper horizontal arrow of this diagram is an isomorphism of cohomo-
logy, then so is the lower horizontal arrow. Therefore, by Proposition 7.9, (ii) and Propo-
sition 7.12, we deduce the existence of a local diffeomorphism g of X defined on a neigh-
borhood U, of o such that j,,.,(9) (@) =n,,,¢ and

ir41(9) (Bryv,) = BT oo

Ia+1(9) W ieev) = N ocwnr-
The isomorphism (7.26) of cohomology is given by Propositon 7.12.

Remark. Even the assertion that (7.26) is bijective requires an additional hypothesis
because N, and N7, are in general intransitive Lie equations (cf. Proposition 7.9, (i)).

Assume that X is endowed with the structore of an analytic manifold compatible
with its structure of differentiable manifold. The following theorem is an immediate con-
sequence of Corollary 6.1 of {9] and of Theorem 10.1 of [10].

TaeoreM 7.1. Let R.=J (T) be a formally transitive and formally integrable
Lie equation and N, <R, a formally integrable Lie equation, with k,>k, satisfying
[Reiss Mo J= Ny, Let a€X. There exist on a neighborhood of a an analytic formally transitive
and formally integrable Lie equaiion R7 < J(T') and a formally integrable Lie equation N, < R,
satisfying (Rt 1, NE1< NF, and $€Qy(a, a) such that ¢(Ry, o) = Ris, or SV o0,0) =N, o

The hypotheses of Corollary 7.1 are satisfied by the equations R,, R%, N, N7, of
Theorem 7.1. Therefore Theorem 7.1 implies that the computation of the Spencer cohomo-
logy of formally transitive and formalily integrable Lie equations is always reducible to the
case of analytic Lie equations. If the second fundamental theorem holds for Rf, there

exists a local diffeomorphism f of X, defined on a neighborhood U of a € X, such that

Ter1(f) (Beyv) = B% 1o (7.27)
and

Fr1(f) (N ko) =NE s

The same conclusions hold under the weaker assumption that (7.25) is an isomorphism of

cohomology.

8. Vanishing of the non-linear cohomology of a multifoliate Lie equation

Let W be an integrable sub-bundle of 7' and suppose that ¥V N W is a vector bundle.
Let W, be the sheaf of p-projectable sections of W and Jy(W; g) the set of k-jets of sec-
tions of W,. Then J,(W; g) is a vector bundle and

13 — 762908 Acta mathematica 136. Imprimé le 8 Juin 1976
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(W3 0) = J(W) N Ji(T; g). (8.1)
Since W is integrable, we have
(W), (U= (W), (8.2)

where J (W) =v"1J(W). Since J(T; ) is a formally integrable Lie equation whose k-th
prolongation is Jy,,(7T’; o), it follows from (8.1) and (8.2) that Jy(W; p) is also a formally
integrable Lie equation whose k-th prolongation is Jy.,(W; g) (see [6], p. 20). The kernel
9 W3 0) = ST (TV* QT (W) of 7y,_y: (W 0) >y (W; @) is therefore 1-acyclic for £>1.
Let Q,(W; o) be a formally integrable finite form of J,(W; ¢) whose k-th prolongation
we denote by Q. (W; o). :

TaroREM 8.1. For all m>1, a€X, we have
HYQ,(W; 0))m,a =0

Proof. Set J(W;0)=v"1J,(W;0). Let u be a section of (ST (W; 0))" over a
neighborhood of a point @ €X, which we shall suppose is equal to X without any loss of
generality; assume that 51u =0. Now #, = (myu)o is a section of T*® W and, sinee id —,:
T —T is invertible,

id—dg WoW, id—dg V+-W—>V+W
are isomorphisms and
id—dgy V>V+W
is injective. We set u,=m,u and

Ve = (id — ) (V);
then
VenW=(@id—d,(V o W)
and

Vet W=V+W.
Since V is integrable, the sub-bundle V* is integrable by (6.3) and Lemma 1.3; therefore
so is V* N W. By Frobenius’ theorem, replacing X by a neighborhood of ¢ and Y by a
neighborhood of b=g(a), if necessary, there exist manifolds Z, S, surjective submersions
w. X7, A Y-8, 0: 28, 0: XY, X': Y-8 such that ¢'(a) =g(a) =b and the diagrams

’

x—%.y x-2 .y
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comnmute, and such that W, V+ W, V% are the bundles of vectors tangent to the fibers
of the submersions 7: X ~Z, go1: X8, ¢’: X~ Y respectively. Set

Y xsZ ={ly,2) €Y xZ|My) =0(2)},
(Y x5 ZY = {(y,2) €Y xZ|X(y) = 0(2)}.

Then VAW and V* 0N W are the bundles of vectors tangent to the fibers of the sub-
mersions (g, 7): X =Y xsZ and (¢, 7): X=>(Y xZ) respectively. By the implicit-function
theorem, there exists a local diffeomorphism ¢: ¥ Y defined on a neighborhood of &
such that g(b)=>b and the diagram

59 g

commutes. Then (g,id): ¥ x¢Z~(Y x5 Z)' is a local diffeomorphism defined on a neigh-
borhood of (b, z(@)) and, by the implicit-function theorem, there exists a local diffeo-
morphism f: X~ X defined on a neighborhood of @ such that f(a) =a and the diagram

! x

(¢:7) (@'>7)
yxszﬁ’_@_.(y xsZ)

of local mappings commutes. Therefore the diagram

-1
X ! X
Q ’
. 0
Y g > ¥ T
y) [ ) Py v
z id z
4 Y

id
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of local mappings is commutative. Thus we have a diffeomorphism f: X~ X defined on a
neighborhood U of @ which ig z-projectable onto the identity Z—Z and satisfies f(a)=a
and

' Vi) =Vis, (8.3)

Xy sy =W (8.4)

For k=1, let @ (W)<@, be the finite form of J, (W) consisting of all k-jets of local
diffeomorphisms XX which are 7-projectable onto the identity mapping Z—Z; it is

easily seen that Q.(W) N Q.(o) is a formally integrable and integrable finite form of J,(W; o)
whose I-th prolongation is @, (W) N @y,,{¢). We shall henceforth assume that

(W 0) = G (W) N Qxlo)

for >1, and set

QW 0) = QW) 1 Qulo)-
By Lemma 2.3, (ii),
F =5 —fod,
is a section of él over U; from Lemma 2.3, (iii), we deduce that 'I_)If’=u0 on U. Clearly
ji(f) is a section of @, (W) over U. By (8.4), (foii,)(x) belongs to T:® W, for all z€U;
thus by Proposition 6.1, (ii) and (2.20), F is also a section of @,{W) over U. By Lemma 2.3,
(i), (8.8) is equivalent to the fact that FE belongs to Jo( V)., for all £€J(V),, x€U; from
Proposition 6.1, (i), we deduce that F is a section of él(g) and hence of dl(W; p) over U
satisfying DF =u and (7ty F) (@) =a.

Finally, we also denote by F and « the germs of the sections F and u in Q~1(W; Q)
and (Jo(T)*®@J,(UW; 0)), respectively. The following argument then resembles that used to
prove Proposition 7.6. Choose F, € Qy(W; o), such that , F; = F. Then my(u’™ ') =0; hence
™ €(Jo(T)* ®gu( W 0)), and (see § 1)

SufT = — Dt = — L futT wFT ] =0.
Since g,(W;p) is 1-acyclic, there exists v€g,(W; p) such that dv=u" ' Since Q(W;p) is
formally integrable the mapping (7.4), namely

0: Q3 N Qo(W; 0) = go(W; 0),

is an isomorphism of Lie groups over X and thus G=8-1v belongs to Q; N Qu(W; 0). By
(2.38)

DG = —fp= ——u‘“_l,

and F'- GEQ,(W; o), with my(Fit- &) (a) =a and
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WP 0 i Do,

Since @,(W; o) is integrable, there exists h€Sol (Q,(W; p)), such that jy(k) (@)= Fi'(a)- Xa);
therefore F,= Fi'-G-j,(h1) belongs to dz(W; o)z and

-1, g\ ip—1 -1
uFa___(uFl G)lz(h )=Oiz(h )=O,

showing that u is cohomologous to zero in HY{Q,(W; 0)); ... Therefore HY(Qy(W; 0))1.o=0,
and the desired result holds by Proposition 7.8.

9. Non-linear cohemology sequences for projectable Lie equations

In this section we prove our main theorems concerning non-linear cohomology se-
quences. Before taking these theorems up, however, we accumulate various facts about
o-projectable Lie equations which are needed in the proofs, and we begin with the fol-

lowing lemma which is an easy consequence of the implicit-function theorem.

Lemma 9.1. Let i: E—~ X be a fibered manifold over X and F a fibered manifold over

Y. Let ¢: E—~F be a morphism of fibered manifolds over p such that the rank of
@i Ve(B) > Too(F| Y)

18 independent of e€ H. Then, if eq€ E, there exist an open neighborhood U of xy=7(ey) in X,
an open fibered submanifold E' of E |y containing ey, a fibered submanifold F' of F |y such
thot @(E')=F' and @: E'~F’ is an epimorphism of fibered manifolds over o: U—>p(U). If s’
s @ section of F' over a neighborhood of yy=p(x,) and if w€J,(E; p) satisfies myu=e, and
pu=74,(8") (o), there exists a section s of B’ over a neighborhood of x, such that j,(s) (x,) =u and
pos=s'op.

Let R,<J (T; g) be a Lie equation, and assume that there exists a differential equa-
tion R <Jy(Ty; Y) such that o(Ry ,) =R, o for all a€X. Then g: (Ri)o.o~> Riow 18 sur-
jective for all € X and, by (6.7), B} is a Lie equation.

Let P,<Qy(0), P <@(Y) be finite forms of R, and R respectively, and consider the
mapping g: P~ @(Y). If a€X then, by Lemma 9.1, there exist an open neighborhood U
of @, an open fibered submanifold E of P,y containing I,(a), a fibered submanifold " of
Qi Y) oy such that o(F)=E". For p€ E, the image of

st V(Pr) = Ty (Q( Y)/ Y)

is equal to R .- 0(p), where x=source p, and so

Tor (B"[0(0)) = B 07 - 0()-
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Since E” and P}, are integral submanifolds of the same distribution, we obtain the equality
E" =P}, on a neighborhood of Iy ;(o(a)).

From these remarks and Lemma 9.1, we deduce:

LEMMA 9.2. Let a €X and b=g(a). The following assertions hold:

(i) If F €Dy, o Fla)=1(a), then oF €D}, x= Qi( ¥)x with o F(a) =TIy (D).

(ii) If € Dk, x.q with ¢p(a)=1Iy ,(b), and if there is an element G €J,(Py) with J,(0)G =
71(#) (@), 7o G = I (a), then there exists F € P, , satisfying oF =¢ and j (F)(a)=G.

(i) If ¢E€PY. s, with ¢(b)=1Iy 1 (b), and if there is an element G€J (Py; o) with oG =
71(p) B), 72, G = I (@), then there exists FEPy ,. o satisfying oF =¢ and §,(F)(a) =G.

Definition 9.1. A differential equation R,<J, (T p) is g-projectable if, for each [ >0,
Ry, is a vector bundle and if there exists a differential equation R}, <J;,(Ty; Y) such
that o(Ryys,a) = RBir1.00) Tor all a € X.

If Y=X and p: X—X is a diffeomorphism, then Ji(T';p)=J(T) and g: J(T),~
Ji(T) gy, Tor @ € X, is the isomorphism j,,,(p) (@) and every differential equation R, < Jy(T')
all of whose prolongations are vector bundles is g-projectable.

We shall consider a formally integrable Lie equation R,<=J,(T’; p) satisfying the fol-

lowing conditions:

(I) R, is g-projectable;

(1) 7y B,= W and V N W are sub-bundles of 7 and R,< J(W).

Let R}, ;= J,.(Ty; Y) be the Lie equation such that o(Ry,; o) = R 1,00 foralla€X.
Since By, ;= Ry, N Jy.,(V) is the kernel of the epimorphism g: R, ,—~p 1R}, it is a vector
bundle. The third condition assumed satisfied is:

(III) for all I, m >0, the projections 7, ;: By ;,m—> Ry, are of constant rank.

For the most part, we assume only conditions {I) and (II} as, for example, in Theorem
9.1 and Proposition 9.1; condition (III) is used only at the end of this section.

If X and the fibers of p are connected and if R, is formally transitive, or more gener-
ally if there exists a formally transitive and formally integrable Lie equation Ny, <
J41(T; 0) such that

[ﬁk+l’ RJI<R,,

then condition (I) above holds by Theorem 11.1 of [10] and (II), (ITI) hold by Lemma
10.3, (ii) and Proposition 10.3, (i) of [10].

Let R, <J,(T; o) be a formally integrable Lie equation satistying conditions (I) and
(II). Let P, <=@Qy(o) be a formally integrable finite form of R, and let P, ;<@ (o) be the
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I-th prolongation of P,; for m >k, let P,,<Q,(Y) be a finite form of R, Since R, satisfies
(I) and (IT), W and V 0 W are integrable sub-bundles of T'; moreover the image Wy of £},
in Ty is an integrable sub-bundle of Ty such that oW, =Wy 4, for all a€X. Since my:
R~ Wy is surjective for m >k, its kernel R is a vector bundle. Therefore P, =P, N Q%(Y)
is a sub-bundle of Lie groups of @%,(Y) whose Lie algebra we identify with R under the
mappings (5.23). Thus (4.6) gives us a sub-complex of (6.38), namely

0 Dxr e (R)x

m, m

—— NP (RNx (9.1)

For m=k, let

(T*@Rp)y = (T*@R) N T* @I n(T;0))es

Zy(R,) = ZYR,) N (T*@Ry),
and let

Drn-e = Dm N dm(@)w
Din.o = {F€Dn.o.0| Pl@) = I(@)}
for a € X. According to Proposition 6.4, (iv), the group 13',,,“, o. o Operates on Z)(R,), and so

we define the cohomology
Hz(Pk) ma = Z;(Rm)a/i)'m-ﬂ,g, as

for m>k, a€X, to be the set of orbits under the right operations of the group f)'mﬂ,g‘ 2 O
Zy(R,,),. We denote by 0 the orbit of 0€Z}(R,,),. This cohomology is therefore a set with
distinguished element 0 and clearly does not depend on the choice of the finite form P,.

We have the mapping of cohomology
Hé(Pk)m,a - Hl(Pk)m.a

which sends the orbit of Hy(Py),, , passing through u € Z}(R,,), into the orbit {u” | F € ) o}
Let ky=sup (k, 2) be an integer such that g, is 2-acyclic.

TaroreM 9.1. Assume that B,<J,(T;0) is a formally integrable Lie equation satis-
fying the conditions (L) and (II). Then, for all m=k,, a € X, the mapping

Hy(Pi)p,o > H\Pym,a 9.2)

8 an isomorphism of cohomology. Moreover, if w€ZY(R,,),, then there exists Feﬁ'mﬂ, o« Such
that u"(@) =0 and u" €ZYR,),.

Proof. If u,, u,€Z}(R,), and if there is an F€ Z~)',,,+1' « With uf =u,, then by Proposition
6.4, (ii), FEDn,1.p.q and so (9.2) is injective.

Let w€Z'(R,,),; then since g,, is 2-acyclic, there exists, by Proposition 7.4, u, €ZY( R, ,5),
with 7,4, =u. By Lemma 7.1, there exists ¥, € ﬁ',,,M. « such that w{*(a) =0. We set uy =u{",
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Let Qy(W; ) be a finite form of the Lie equation J,(W; ). Since R,<J,(W; o) there exists,
by Theorem 8.1, F2Eéz( W; 0). satisfying (7, u,)"*=0. Since (71, 4,) (@) =0, it follows that
(DF,) (@) =(m;us) ™ (@) =0; hence by (2.27) we have j,(m; F,)(a)=7,(I;)(a). Therefore, if
f=myF,y, we have jy(f) (@) =71{1,)(a). Let @(W)<= X x X be a finite form of the Lie equa-
tion J (W)= Jo(T); since 7y J (W 0)->Jo( W) is surjective, f belongs to (j(,(W)[z by Pro-
position 7.1, (iii). Because m,: R, ,—~>Jo(W) is surjective there exists, by Proposition 7.1,
(iii), Faeﬁ;n+4‘ o such that ny Fy=f and §,(F;) (@) =j,(,44) (@). Since {DF,) (a) =uy(a) =0,
we see that ug*(a)=0. As myo((7,%,) ™) =0 and 7y F, =7y Fy, we have by Lemma 6.4
mo0(uz*) = 0.
Therefore w = p(u5°) belongs to (U* ®(R'm.s)x)s and w(a)=0; by Proposition 6.3, we have
D1 xjyW="Tp1sdxyw— §{w, w]=0.
Set w, =7, 2 wEW* ® (R'2:2)x; then w,(a) =0 and

D, xiv wy =d gy wy, ~— 3wy, w]=0,

where D, gy is the operator of the complex (9.1) with m +2 replacing m. By Proposition
4.1 applied to this complex, there exists $€Dr. o x. o satisfying Dyx/yd =w, and j,($) (@) =
71y, mi200)(@). By Lemma 9.2, (ii) (with G =§,(],.s)(@)), there exists F,€P,, ., , satis-
fying jy(F4) (@) =jy(Ins2) (@) and oF,=¢; clearly F,€ Dz, a.

Set w, =, ,, w; and write

~1
Uy = (1 (g )"

since (DF;")(a)=0, we have ug(a) =0 and
o(us*)=wy=Dxv ¢,

where Dy/y is the operator dm+2( = *®J 1 (Tys YY)y Since s, ¥, is p-projectable onto
the germ of the identity ¥ —Y, it follows from Lemma 6.5 that g(u;) =0 or equivalently
3 € F1(J 1 32(T); 0). We have

Dy uy = Dug—3{ug, us] =0,

where [u,, #,]1€ F3(J,.(T); 0) by (6.9). Hence Duy€ F3(J,(F); o). Set u,=mn,uy; by Pro-
position 4, (i) of [6], we see that u,€(T*®@J,(T; 0)),- Finally, we note that u,=«" and
u,{a) =0, where F=m, F, 7, Fy o, Fi lef);,,+1,a. Hence u,€Z}(R,,), belongs to the
same cohomology class in HYP,), , as «, showing that (9.2) is surjective and completing
the proof of the theorem.

We now recall some facts which may be found in the papers [6], [10]. For (>0, we
have B, ,~(R,),; since n,;: Ry~ R, is surjective for m>k and R}, < (R}),,, there
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exists by the Cartan-Kuranishi prolongation theorem an integer %, >sup (k, 1) such that
(Ri)1= R ., for all 120 and Ry, is a formally integrable Lie equation in Jy,(Ty; ¥).
For m=k and a € X, we define the group
n{f")€ Din, o and there exists G€(Qa,m (0) N Jl(Pm))a}
such that 7y G =1I,,(a) and oG = j,(j.(f")) (¢(2)) '

or equivalently, by Lemma 9.2, (ili),

HYP) ) o= {f” €(Aut ¥)yy

HO(P/I,cl) ma = {,f”e (A’llt Y)Q(ll)

j,,,(f”)ef)’;,,,g(a , and there exists FET}',,,,M
such that oF =7,(f") '

We note that this group is independent of the choice of the finite forms P, and P, and
depends therefore only on the Lie equations R, and RY,. Since P, @Q,(o), the elements of
HOP,),., are p-projectable; hence by Lemma 9.2, (i), we have the homomorphism of
groups
0 H(Py) 0> H(P'e) m.a-
For m>Fk, let P,, be a finite form of R, It is easily seen that P, =P, N@Q,(V) in a
neighborhood of I, and hence that

D.m.a = 75'”1.(1 N d(V)a,
fora€X.

We now define the operation of the group HY(P,)n 1.0 O0 HYPy)y o Let u€ZYR,),
and f" € HY Py mi1.q I FEf)'mH,Q, o satisfies g F' =j,(f"), then by Proposition 6.4, (iii)

oDF=DoF = Djnulf") =0,

and so DFET *®‘f{'m. By (7.6) and the commutativity of (6.25), P, preserves R, and so
FY(u) belongs to T*® T:’m. Therefore u” € ZY(R,,),. If [u] is the cohomology class in HYP,),, ,
of the cocycle u, we define [u]”” to be the cohomology elass [u”] of u” in HYP)), ..
We now verify that [u]” is well-defined, i.e., that it does not depend on the choice of ¥
or of u. To show that [} is independent of the choice of F, let Fleﬁ',,,ﬂ_g_ s With o Fy =
fmaa(f’). Then G'=F-1-F, belongs to ]5',,,“‘9, af ém+1(V)a, that is to ']5',,,“, a- Since F; =
F-@, we have u™ =(u*)%, and it follows that »™* belongs to the same cohomology class
as u” in HYP,),, ,. To show that [u”] does not depend on the choice of , we replace u by
4%, another point on the same orbit, where Geﬁ'mﬂ_a. Then G’ =F-1-G- F belongs to
]?),,,H,a and (u®)’ =(u")¥; therefore (u®)¥ is cohomologous to u in HYPy), . Finally, let
fI€HY P )mi1,0 and a€HYDP,),, ,; then

(YL =/, @ifo=g, (9.3)

and hence we have an action of the group HYP%,)p1.c 00 HY(P,),, .. In fact, let F, € ﬁ,,,ﬂ' 0.
with g F) =7,,,.(f1); then
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(Tl Y* = [ )s = (@)™ =" P = [u] .
We define
0" H'(PL) mir.a H(Pihma

to be the mapping sending the element f" € H(P}, ) 11,0 into 8%f={0})" =0"".
By Proposition 6.4, (iii) and Lemma 9.2, (i), for m =k and a€ X, we have the com-

mutative diagram

(T*OR,)L D, (A2 T*@Rom1)a

}
+1.g.a—7—)—»(9*®72m)$.a LR (NT*QRm-1)e.a (9.4)

lg je 0
ey (TS R ey 2 (A2 T Rl

m+1l.ela)
where B, =J,_(V), Be=Jpq(T;0) and Ri_=J,_(Ty; Y¥). The inclusion B,< R,
gives us therefore a commutative diagram

HNPy) o ——

H;(Pk)m,a

HI('P k)m. a

for m >k, a€X. For m >k, a€X, the mappings g of diagram (9.4) induce, according to

Proposition 6.4, (iv), a mapping of eohomology

0 Hy(P)m, o> HHP) moto
sending the cohomology class of u€Z)(R,), in Hy(Py),, , into the cohomology class of
U EZY B oy in HYPie)m, oy If m>=sup (ky, ky), combining this map with the isomor-
phism (9.2) of Theorem 9.1, we obtain a mapping of cohomology

0: H](Pk)m,a‘“)Hl(P’l’cl)m.g(u)
for a€X. One verifies easily that for m=sup (ky, k,), =1 and ¢ €X, the diagram of co-
homology

Hl(Pk)mH,a__'__’Hl(Pk)mH,a'—‘Q_’Hl(P/;c;)mH.g(a)
T ™ T,

HYPY s —2—> H (P} m ot

Hl(Pk)m.a
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is commutative; therefore we obtain a mapping of cohomology

o: Hl(Pk)a—)Hl(P;;x)g(a)
for all a € X.
It 4, B, C are sets with distinguished elements 0, we say that the sequence

4 %.g P
is exact (or exact at B) if §~1(0)=a(4) (and, of course, x(0) =0, B(0)=0).

ProrostrroN 9.1. Assume that R,<J(T;p) is a formally integrable Lie equation
satisfying the conditions (Iy and (II) and Ry, =J,,(Ty; Y) possesses a finite form which is
formally integrable and integrable. Then for m=sup (k,, ky), a €X, the cohomology sequence

H(P ) nr,a— BUP e, a2 P} mor,o e BB o a— H Py a2 HYP ) i
9.5)
is exact. Moreover, if fi, fo€H(Py)me1,a have the same image in H*(Py)m. o, i.e., % f1=
' fs, then fi=f"of; where, for some fEHP)nit, o " =0f; if o1, € €HYP,)m, o have the
same image in H'(Py)y, . then, for some f* € HY (P}, mi1. a» we have of = oy,

Proof. The sequence is clearly exact at HY(Py)mit.q. Y fEH (P i1, as I =0f, then
0" =[Djmi1(N1=0, and so &*-0=0. Let f;, fs€ H'(P}) ms1. and suppose that 07 = 0/s.
Then, if F,, FZEf)'mH_Q, o With 0F; =jun1(f1), 0Fs=7mi1(f2), there exists GE']S',,,H,(L such
that DF,=(DF,)%=D(F,-G). Hence F,-G=94,.1(f) - F, for some f€H*(Py) ns1,q; taking
the projections of both sides of this equation by ¢, we obtain

Fne1(f) =G mealf") « Fmia(fz) = Fmer(f 0f2),

where of =f” and hence f; = ["of;. In particular, if f; is the identity ¥~ ¥, in which case
0"* =0, we obtain f; =" = of. This proves exactness at H(P})m1. o

Next, if " € HY P} )pe1,o and FE f)',,,H,Q, o« with pF =4,..(f"), then the image of 0" in
HYP,),, , is the cohomology class of DF =07, and so therefore vanishes. Let u,, u, € ZYR,,),
and suppose that the cohomology classes of u, and u, in HY(P;),, , are equal, i.e., that there
exists F € DN'mﬂ, o« Such that

ui = FY(uy) + DF = u,. (9.6)

By Proposition 6.4, (ii), we see that F€ ]5',,,+1,9, a- BY (7.6) and the commutativity of (6.25),
P, preserves B, and so F—l(ul)eﬂ*(@ﬁm. Hence (9.6) implies, by Proposition 6.4, (iv),
that O0=p(DF)=DF", where F’ =gF€ﬁ';,;+1,Q(a). Therefore F"=j, ..(f") for some
" € HYP?)ms1,0o and we have, by (9.6), [,1" =[u,] in HY(Py), o I u; =0, then [u,]=0""
Thus the sequence (9.5) is exact at HYPy),, o
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Finally we prove exactness at HY(P,),, .. Let a € HY(Py), , With pax=0. By Proposi-
tion 7.5 and Theorem 9.1, there exists u€Zy(R,,,,), such that u(a)=0 and 7,[u]=«, if
[%] is the cohomology class of « in HY{Py),,.1... Then g[u] is equal to the cohomology class
of pu€ZY Ry 1)ey. Since mpo[u]=gn,[u]=px=0, our hypothesis concerning R}, and
Proposition 7.6 imply that ofu] =0. Therefore if b=g(a), there exists F” € f)”m'+2, » satisfying
(ow)”" =0. Since (ou)(d)=0, we have (DF”)(b)=(gu)" (b)=0; hence by (2.27), we have
§1(Fmi1 B (0) =91(Ly. mi1) (). By Lemma 9.2, (iii) (with G =j,({,,1)(a)), there exists
FEDn.1., 0 satistying j,(F) (@) =j,(I 1) (@) and oF —x,,,, F’. By Proposition 6.4, (iv), we
have o((7,,%)") = (omu)™+17" =0, and (m,u) €ZYR,,),. Thus a=[n,u]=[(w,u)"] belongs
to the image of HYP,),, -

Up to this point we have used only the hypothesis that the formally integrable Lie
equation R,< J(T'; p) satisfies conditions (I) and (II); now, however, we require condition
(ITI) since we shall construct from the R, ,, in the manner of the papers [5] and [6], a form-
ally integrable Lie equation R}, <J, (V) whose non-linear cohomology will replace that
of R, in a sequence which is a modification of (9.5).

Let us then assume that the formally integrable Lie equation B, satisfies condition
(ITT) as well as (I) and (II). For >0 and m >k, let R be the sub-bundle 7, R,,,; of J (V).
According to Theorem 1 of [6] (see also [5] and [10]), there exist integers m,=sup (k,, k),
l,>0 such that R, =R\ is a formally integrable Lie equation in J,,(V), whose r-th pro-

longation is equal to
'R,!ﬂn+7 = R%‘?ﬂ = R(rfz)u-#r
for all 1>, and g, is 2-acyclic.

For m>my, let Py, be a finite form of R;,. For m >m,, a€X, the inclusions R, <R,

R, < R, give us a commutative diagram of cohomology

HI(P:no)m.a g H](-Z_jk)m.a

(9.7)

Hl(Pk)m,a

For all m>m, and 1>1,, we have projections n,,: R,,,,~ R, which induce, by Proposition

7.1, (iii), surjective mappings 7,;: D1, a—>f):,',, « and therefore mappings of cohomology

ot H(Pi)mss,a~> HY(Prn) m, o (9.8}
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for a € X, such that the diagram of cohomology

Hl(P;no)mH.a Hl(Pk)mH.a Hl(Pk)mH.a

T o Ty T (9.9)

O e — H\Pypy — HY(Pi)p,a

commutes. Since the mapping 7, H(Pr)mi1,a=>H (Prm)m.« 1S surjective by Proposition
7.5, it follows that the mapping (9.8) is also surjective. Moreover, the mappings HY(Py,)m, o~
HY(P,),. ., induce an isomorphism of cohomology H(Pp,)o— HY(Py)s, for a € X.

For m >1mgy, 1 >1,, we now define the operation of the group H (P} ) 11310 0 HY P ) a
in such a way that

(T o) = 7,(c]) (9.10)

for o, €HYP )it 1" €HYP %) mi111.00 Where 7, is the mapping (9.8). Let c€HYP)n.q
and f' €EHY P} ) mirir.a if o EHYP,)yy. o satisfies 7,0 =, we define o’” to be the image
7a(ed’) of of under the mapping (9.8). We now verify that «’" does not depend on the
choice of «,. Let ocZEHl(Pk)mH,a satisfy 7,0, =0 and let u,, u,€ZYR,,.;), be elements
whose cohomology classes in HY(P,),,.; , are equal to «;, «, respectively. Then 7, u, and
7T Us are cohomologous in HY(P;,),, , and so there exists G € ]N)',,"H_ «such that (7z,,%,)% =7, u,.
Then G=m,, Gy With Gy € Dinsrer,a Let Fy€ Dinyiir.a With 0Fy=jspsa(f"); then G —
Fi{'-Gy- F, belongs to 5‘,,,““,,, and G =m,,,,G, belongs to D1, o Since G-F=F-@¢
where F =m, 4 F,, we have

Tom(U5") = (T Ua)" = (7 1) & F = (0 )™ & = (7, (u1)) ¥,

and so 7,(¢f")=m,(4"). Finally, (9.3) holds for x €H(P’) m. o and ", f1E€EH (Py)mi1+1. o
We define

o HO(P,I/cl)m—H-(-l, a > HI(P:n.,)m. a
to be the mapping sending f" € HY(P},)m+1+1,4 into 87" =0"".

For m =my, 121, a€X, consider the cohomology sequence
0 7 8# 1 ’ 1 Q 1 4 .
H (Pk‘)m+l+1,a_'_"’H (Pmn)m,a'—_—"H (Pk)m,a—’—’H (Pkl)m,g(a), (911)

since (9.5) is a complex, diagrams (9.7) and (9.9) are commutative and (9.10) holds, it

follows that (9.11) is a complex.

THEROREM 9.2. Assume that R, is a formally integrable Lie equation satisfying the
conditions (1), (II) and (III). Then:
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(i) If R, possesses a finite form which is formally integrable and integrable, the sequence
(9.11) is exact at HY(P},),, o for all m>my, 1>1,, a€X.

(i) If R’ possesses a finite form which is formally integrable and integrable, the sequence
(9.11) 45 exact at HY(Py), , for all m>mg, a€X.

Proof. (i) Let «a€HYP},),n., and assume that the image of « in HYP,),, , vanishes.
Choose o, € HY(P,) .14 Such that 7z,,0, = . Then by the commutativity of (9.9), our hypo-
thesis concerning R, and Proposition 7.6, the image of «; in HY(P}),,, , vanishes. There-
fore by Proposition 9.1, there exists f' € HYP%,)mi141.0 Such that o, =07, By (9.10), we
have a=mx,(0")=28%{", proving the exactness of the complex (9.11) at HYP, ). o

(ii) Let w € HYP,,),, , with pax=0. By Proposition 7.5 there exists o, € HY(P,),,,, , such
that 7,0, = a. Since 7,004 =ga=0, we have pa, =0 by our hypothesis concerning R}, and
Proposition 7.6. By Proposition 9.1, there exists §, € H I(Pk)mﬂ,a whose image in HY(P.), ., ,
is equal to «. Then the image of =8, € HYP )y o in HYP,),, , is equal to «. Thus the
complex (9.11) is exact at HY(Py),, ..

Let m, >mq be an integer such that g, is 2-acyclic.

THEOREM 9.3. Assume that R, is a formally integrable Lie equation sotisfying the con-
ditions (1), (I1) and (XIY) and suppose that R, =0. Then:

(i) The mapping
o: Hl(Plc)m.a - Hl(Pllln)m,q(a)

18 surjective for all m=my, a €X.
i) If o, 03 €HY Py mii1.00 Where m=my, 121, a€X, have the same image in
HYP )+ 121, oy then mpoy =, a5 as elements of HY(Py)p. o
(i) The mapping
o: Hl(Pk)a”’Hl(P,l/n)efa)

s an isomorphism of cohomology for all a€X.

Proof. (i) Let a€HYPY,), » Where b=p(a); by Proposition 7.5 and Lemma 7.1, there
exists w€ZY R}, 4, 11), With u(b) =0 and m,,[u] =a. Choose v€(T*® Ryyi011)e,a With v(a)=0
and gv=u. Then v€(T*® R, 141)0.« and gD,v=D,u=0 by Proposition 6.4, (iii). It fol-
lows that D,v€A2T*QR,, +1 and hence 7, D,v€A2T*®R;,. Therefore, writing v’ =x,,2,
we have D,v" =mn,,_;D,v=0 since R}, =0, and o' €ZY(Ry),, , satisfies p[v'}=[n,u] =a.

(ii) By Theorem 9.1, choose representatives u,, u2€Z§(Rk)m +i+1,a OF 0y, 0y Tespectively
with u,(a) =ug(a) =0. Qur hypothesis implies that there exists F” € ﬁ',’,;“ﬂ, », Where b =p(a),
such that (pu,)" =pu,. Since (gu,)(b)={(ou,)(b)=0, we have {DF")(b)=0, which implies
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by (2.27) that §,(%nyry F")(0) =711y, my11) (). Hence by Lemma 9.2, (iii), there exists
Fe ‘]5‘,,,““,9' « satisfying §,(F) (@) =§,(1 1 141) (@) and o F =m7,,,,.1 F". By Proposition 6.4, (iv),
we have p((7,,,%,)") =0(7t . 1 %e) and it follows that (i, ,u%,)" —7,,,, 4, belongs to T*@ R
Since R}, =0, we obtain the equality (7z,u,)"™+1" =7,,4,, 1.e., 7,4, and s, u, represent the
same class in HY(P),, ..

(iii) The injectivity of g: HY(Py),—> HY(P%,) e follows immediately from (ii). To prove
that g is surjective, it suffices by the Mittag-Leffler theorem (see [1], § 3, No. 5, Corollary
2) to show that if (a},) EHY(P%,) ey With o € HY (P, )m. ooy M > ky, then, for all m>m, and
all 7=m+1l,+1 and all € HYP,) . 1010 Such that (o) = oy, 1,41, there exists o’ € HY(P,),
such that m, & =m0, o’ =o,. To verify that this condition is satisfied, by (i) choose
o €EHYP,),,, with o(«’)=a;. Then m,,, ., and « have the same image & ;41 iD

HY P mitot1, o@- Hence by (ii), mw, o =, .

10. Non-linear cohomology of transitive Lie algebras

Consider the real line R endowed with the discrete topology and linearly compact
topological vector spaces over R, i.e., those which are topological duals of real vector spaces
endowed with the discrete topology. A transitive Lie algebra L is a topological Lie algebra
over R whose underlying topological vector space is linearly compact and which possesses
a neighborhood of 0 containing no ideals other than 0. A monomorphism (resp. epimor-
phism) of transitive Lie algebras is a continuous monomorphism (resp. epimorphism) of
Lie algebras and an isomorphism of transitive Lie algebras is an isomorphism of Lie al-
gebras which is also an isomorphism of the underlying topological vector spaces.

A transitive Lie algebra L possesses an open subalgebra L° containing no ideals of
L other than 0, which we call fundamental. We define subalgebras D L? of L by induction
on k by setting:

DI =L, DiL*={(€Df'L°|[L &\« DL}, for k=1,

then DZLP is a fundamental subalgebra of L and {D7L%,., is a fundamental system of
neighborhoods of 0 and N%_e D4LO=0.

If a€ X, let J¥(T'), denote the subalgebra of J (T, which is the kernel of the projec-
tion my: J o(T)g—J(T')e- Then J (T, is a transitive Lie algebra whose subalgebras J%(T),
are fundamental and D’J‘w(T)aJ"(T)a:J"(T)a. If $€Q(a, a), then ¢: J (1) o(T), is an
isomorphism of transitive Lie algebras such that ¢(J%(7),) =J%(T),. A closed subalgebra
L of J(T), such that oL =Jy(T), is a transitive Lie algebra whose subalgebras LF =
LnJYT), are fundamental, and is said to be a transitive subalgebra of J(T),; in fact
LF=D}L0. By Theorem III of [13), if L is a transitive Lie algebra and L°<L is a funda-
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mental subalgebra and if the dimension of L/L° is equal to the dimension of X, then, for
a€X, there exists a monomorphism of transitive Lie algebras ¢: L—J(7"), such that
i(L) N J%(T)e=%4(L% and 3(L) is a transitive subalgebra of J(T),; then i induces an iso-
morphism L/L%—J(T),. Thus every transitive Lie algebra is isomorphic to a transitive
subalgebra of J (T'), for some manifold X and a€X.

Let B,<J,(T) be a formally transitive and formally integrable Lie equation; for o € X,
the subalgebra R, , of J (T, is a transitive subalgebra of J (T),. If N, < Ry, is a form-
ally integrable Lie equation, with k, >k, such that [ﬁklﬂ, 1= Ny, then, for a€X, by
Lemma 10.3, (iii) of [10], N, is a closed ideal of R, ,. We shall always consider such Lie
algebras B, , and N , endowed with the topologies induced by J (1'),.

Definition 10.1. We say that a formally integrable and gp-projectable Lie equation
R, J(T;0) 18 a prolongation of the formally integrable Lie equation Ry <J, (Ty; Y)if
0(R,.0) =Ry ooy for all a€X and m >sup (k, k,) and if g: Ry, ,— Ry, (o) I8 an isomorphism
for all a€X.

If a formally integrable and g-projectable Lie equation R, <J(T’; p) is a prolongation
of a formally integrable Lie equation R}, <J,(Ty; Y) and satisfies conditions (I) and
(ITI) of § 9, then the equation R, constructed from the equations B, ,= R, ;N J,. (V)
vanishes and the hypotheses of Theorem 9.3 hold for R,; hence for all a€ X, we have an
isomorphism of cohomology o: HY(R,),~ HY( R, )y a)-

Taking ¥ =X and g to be the identity map of X, we see that the I-th prolongation

R, of a formally integrable Lie equation R, =J,(T) is a prolongation in the above sense.

TareoREM 10.1. Let L, L" be transitive Lie algebras and ¢: L—L" an epimorphism of
transitive Lie algebras. Let I< L, I"<L" be closed ideals of L and L” such that ¢(I)=1". Let
I’ be the closed ideal of L which is the kernel of ¢: I—~1". There exist connected analytic mani-
folds X, Y, points x€X, y€Y, an analytic submersion g: X— Y with o(x) =y, formally in-
tegrable and formally transitive analytic Lie equations R,=J(T;0), Ri,.cJ(Ty; Y), with
k =k, formally integrable analytic Lie equations N, = R,, N, < R,, N, < R}, and isomor-

phisms of transitive Lie algebras y: LR, ., y": L'~ Ry, , such that
[ﬁk+1’ nk] < nk; [ﬂk+l: n;c] < n’ky [ﬁ‘,;tﬂ-ls n/;ﬁ] < n/;tp (]‘01)
and Ry, N, are p-projectable and
Q(Rk,H. a) = R,;q-H.q(a)’ (10.2)
o(Ni11.a)= Nl;ﬁ+l.g(a))
for all 120, a€ X, and the diagram
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L Roo,z:
$ 0 (10.3)
2+ r.
s commulative and
Y =Nep2, ¥I)=Nes $'(I")=Ng, (10.4)

Furthermore, if V is the bundle of vectors tangent to the fibers of p: X~ Y, there exists an in-
teger 1,0 such that
N = (N1 N T gt V) (10.5)

for all m=k, 1=1,. If ¢: I>1" is an isomorphism, then N =0 and N, is a prolongation of
N,

Proof. Let L"® be a fundamental subalgebra of L”. By Corollary 6.1 of [9], there exist
a formally transitive and formally integrable analytic Lie equation R, <J, (Ty; Y) on
an analytic simply connected manifold Y, a point y€Y and an isomorphism of transitive
Lie algebras y7: L'~ Ry, , such that y;(L"%) = R. ,. Let L® be a fundamental subalgebra
of L such that ¢(L%<L"%. By Theorem 12.2 of [10], there exist an analytic simply con-
nected manifold X, an analytic submersion g: X— Y, a point z € X with p(x) =y, a formally
transitive and formally integrable analytic Lie equation R,<J(T'; o) and isomorphisms
of transitive Lie algebras y: L— R, ., v": L' >Ry, , such that (L% = RY, . and y"(L"%) =
R, and such that diagram (10.3) commutes and (10.2) holds. Replacing R, by one of
its prolongations R, and R} by one of its prolongations R}, if necessary, we may as-
sume that &k, >k and according to Theorem 10.1 of [10], there exist formally integrable
analytic Lie equations N,< Ry, N, < R,, N% < R}, such that (10.1) and (10.4) hold. From
Theorem 11.2 of [10], we deduce the remaining properties of N, N and N%,.

Let Z be a differentiable manifold whose tangent bundle we denote by T,. Let R\, <
Jo(T'y; Y), Ry =J (T4; Z) be two formally transitive and formally integrable Lie equations.
Let N3, < R}, N7 < R, be two formally integrable Lie equations, with p, >p, ¢, >¢, such
that

[Roer, IS M, [RG, MEF1 WG
Let y€Y, 2€Z. Assume that ¥ and Z are endowed with structures of analytic mani-

folds compatible with their structures of differentiable manifolds.

TuEOREM 10.2. Suppose that R, and Ry* are analytic Lie equations. If the pairs of
topological Lie algebras (Ry, 4, Nuo, y) and (Ri ., NoZ ) are isomorphic, we have a commuta-

tive diagram of cohomology

14 — 762908 Acta mathematica 136. Imprimé le 8 Juin 1976
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H\(N,), —— BYN)),

(10.6)

HY(R;), AYRY),

whose horizontal arrows are isomorphisms of cohomology.

Proof. By Theorem 12.4, (i) of [10], our hypotheses imply the existence of a differenti-
able manifold X, submersions p: XY, o*: X—Z, a point 2 € X satisfying o(x) =y, 0” (®) =2,
a formally transitive and formally integrable Lie equation R,<J(T; 0) N J(T; 0”) and a
formally integrable Lie equation N, < R, such that

[Resss M M,

7

and such that R, is a prolongation of R, and of Ry* and N, a prolongation of N}, and
N/. Replacing X, if necessary, by a neighborhood of z, according to the remarks at the
beginning of § 9 we may suppose that R, and N, satisfy conditions (I), (IT) and (III) of
§ 9 with respect to both submersions ¢ and p*. The equations R, and N, therefore satisfy
the hypotheses of Theorem 9.3 with respect to both submersions g and ¢*. So Theorem 9.3

yields a commutative diagram

#
;)2 A, L Ay,

e e* 7
Hl(R;)y Hl(Rk)z __)HI(RZ#)Z s
whose vertical arrows are induced by inclusions of Lie equations and whose horizontal

arrows are isomorphisms of cohomology, from which we deduce diagram (10.6).

The following result is a consequence of Theorem 7.1, Corollary 7.1 and Theorem 10.2:

TuroREM 10.3. If the transitive Lie algebras Ry, , and Ry, are isomorphic as topo-
logical Lie algebras, we have a bijective mapping

B\(R}),~ H'(B*),. (10.7)

If the pairs of topological Lie algebras (Ry, 4, Neo, ) and (Reg ., Nog ) are isomorphic, and if

the mapping (10.7) is an isomorphism of cohomology (or a fortiori if HY(R}),=0), then we
have an isomorphism of cohomology

YN, ~ B NGY)..

According to [10], the linear Spencer cohomology H*(Ry), = @ j»0 H!(R,), of a formally
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integrable Lie equation R,<J,(T) at 2€X is a graded Lie algebra whose bracket on
HO(Ry), is the Lie bracket of germs of vector fields.

Henceforth, we shall identify two graded Lie algebras of linear cohomology which
are isomorphic, and two non-linear eohomologies if there is an isomorphism of cohomo-
logy between them.

Let L be a transitive Lie algebra and I be a closed ideal of L. According to Corollary
6.1 of [9] and Theorem 10.1 of [10] (see also Theorem 10.1), there exist a formally transitive
and formally integrable analytic Lie equation R,—J,(T) on an analytic manifold X, a
point € X, a formally integrable Lie equation N, < R,,, with k, >k, such that

[ﬁknﬂ, N J= Ny,

and (B, ,, N, .) and (L, I) are isomorphic as pairs of topological Lie algebras. We set

H*L) = H"(Ry),, H*(L, I)=H*(Ny,),,

AYL) = BYRy),, BYL, I)=HYN,,),,
and call H*(L) and HY(L) respectively the linear and non-linear Spencer cohomology of
L, and H*(L, I} and HYL, I) respectively the linear and non-linear Spencer cohomology
of the closed ideal I of L. We have H*(L, L)=H*(L) and AYL, L)=HAYL). These linear
cohomologies are graded Lie algebras and these non-linear cohomologies are sets with
distinguished elements 0. The linear cohomology was introduced in [10] and was shown to

be well-defined; we now extend certain properties of the linear cohomology to the non-

linear cohomology.

TuEOREM 10.4. (i) The non-linear Spencer cohomology HY(L, I) of a closed ideal I of
a transitive Lie algebra L s well-defined and depends only on the isomorphism class of (L, I)
as a pasr of topological Lie algebras.
(i) Let z€Z and let R <J [Tz 2Z) be a jformally transitive and formally integrable Lie
equation and N3 < R% be a foerly integrable Lie equation, with ¢, =q, such that
[R1 M1 MG,

and such that the pairs of topological Lie algebras (L, I) and (R%, ., NZ..) are isomorphic.
Then we have a bijective mapping
A4y~ AYR}),.
If this mapping is an isomorphism of cohomology, or a fortiori if HY(L)=0, then
AN, )= A(NY),.
If AYLY=0, then
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H*(L)=H"(R7),, HY(L,I)=H*(Ny)s;

moreover, if Z is connected, the equations Ry, N7, are integrable.

(iii) Let ¢: L—>L" be an epimorphism of transitive Lie algebras and I<L, I"<L" be
closed ideals of L and L" such that $(I)=1". Let I’ be the closed ideal of L whick is the kernel
of ¢: I~>1I". If BYL, I'Y=0 and HL", I")=0, then AY(L, I)=0.

(iv) If ¢: I—>1" is an 1somorphism, we have an isomorphism of cohomology

ayL, - gy, 1v).

Proof. (i) follows directly from Theorem 10.2. The statements of (ii) concerning non-
linear cohomology follow from Theorem 10.3. As for the remainder of (ii), if A}L)=0,
then by Theorem 7.1 and the results of the end of § 7, there exist on a neighborhood of 2
an analytic formally transitive and formally integrable Lie equation RYcJ,(T,; Z), an
analytic formally integrable Lie equation N% < R% and a local diffeomorphism f of Z
defined on a neighborhood U of 2€Z such that f(z) =z and

[Rq‘+l3 ]C nau
Jas1(f) (BE0) = Ropvys  Jaerld Wiyo) = Noyy reon

Since R, N%, are integrable differential equations, so are R}y, N,y Thus if Z is con-
nected, it follows by Proposition 5.4 of [9] that R} and N7 are integrable. By Proposition
11.2 of [10], f induces isomorphisms
[ HBF),~ H*Ry),, f: HHNZ),~ H*(Ng,).,

implying the remaining assertions of (ii).

(iil)~(iv) We apply Theorem 10.1 to ¢: L—L" and to the ideals I, I’ of L and I” of
L’, and consider the various objects and relations connecting them whose existence is as-
serted by that theorem. We may assume that £ > 2 and that the kernels of my_y: N,~J,, (7)),
Myey: N> T (T) and my,_y: Ny~ T _1(Ty; Y) are 2-acyclic. Let PkCQk(Q), PLc@lV)
and P}, <@y (Y) be formally integrable analytic finite forms of N,=J(T; 0), NI (V)
and Ny, <J,(Ty; Y) respectively. Since P}, is integrable and N, satisfies conditions (I),
(IT) and (IIT) of § 9 (see the remarks at the beginning of § 9) and N satisfies (10.5) for all
m=k, 1 1, Theorem 9.2, (ii) gives the exact sequence of cohomology

Hl(P’k)m.x“’H](Pk)m.z‘*HI(Plllcl)m.g(z) {10.8)

for all m>k,. If AYL, I')=0 and AYL, I')=0, then by (1) we have HYP;),=0 and
HY P, oy =0. Accordmg to Proposition 7.8, it follows that HYP, ")m.s =0 for all m >k and
HYP) ;. ory=0 for all m>k,. The exactness of (10.8) now implies that HY(P,),, ,=0 for
all m>k,, and hence that HY(P;),=0. By (i) and the properties of N, we:have AL, I) =
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AY(N,), =0, proving (iii). If ¢: I->1" is an isomorphism, by Theorem 10.1 we know that
N, =0; we may therefore apply Theorem 9.3, (iii) to N, and deduce that p: H{(P;),~
HY(P)y is an isomorphism of cohomology, giving us the desired isomorphism by (i)
and concluding the proof of the theorem.

CoroLLARY 10.1. Let ¢: L-—>L" be an epimorphism of transitive Lie algebras and let J
be the kernel of ¢. If HVL, J)=0 and HYL")=0, then HYL)=0.

THEOREM 10.5. Let L be a transitive Lie algebra, L® a fundamental subalgebra of L.
Let M be a closed subalgebra of L such that L=M +L°. Then M 1is a transitive Lie algebra.
If J is a closed ideal of M contained in a closed ideal I of L, then we have a mapping of co-
homology

ayu, Jy- AYL, I). (10.9)
It I is a closed ideal of L contained in M, we have an isomorphism of cohomology
AvM, 1)~ AL, I).
Proof. By Theorem 13.2 of [10], there exist formally transitive and formally integrable

analytic Lie equations R}, R, in J,(T) on an analytic manifold X and formally integrable
analytic Lie equations N < R}, N, < R, and a point x€ X such that

'N;CC le
[k;c+17 Nl <M, [klﬁ-p M=,
and (M, J) and (R, 5, No, ;) (resp. (L, I) and (R, ,, N, ,)) are isomorphic as pairs of topo-
logical Lie algebras; moreover, if I=J, then Nj=N,. The mapping (10.9) is determined
by the map
HI(N’k):: g Hl(Nk)x

given by the inclusion N, < N;.

11. Abelian Lie equations and their cohomology

Definition 11.1. A formally integrable Lie equation Ry=J(T) is said to be abelian
if [Ryeyq, Byyq]=0.

From Lemma 1.4, we deduce that if By<J,{T) is an abelian Lie equation, then, for
all >0,

[Rk+l+1’ Rk+l+l] = 07

and if &, 9 are solutions of R,, then [&, 5]=0.
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We now construct examples of abelian Lie equations. Theorem 11.1 implies that
under mild assumptions integrable abelian Lie equations are:locally of the type of these
examples.

Let Z be a manifold, 7: X—~Z, 0: Z— Y be surjective submersions such that the dia-

gram

X

z—2% oy

is commutative. Let A be an affine bundle over ¥ whose associated vector bundle we de-
note by F. Assume that 7: X —Z is equal to the induced affine bundle 6~1A4 over Z, whose
associated vector bundle is 0-1F. If W is the integrable sub-bundle of 7' of vectors tangent
to the fibers of 7, we have a canonical morphism of vector bundles A: W—F over p such

that the corresponding mapping
AW —g-IF (11.1)

i3 an isomorphism of vector bundles aver X. A section [ of ¥ over ¥ determines a diffeo-

morphism y,: X~ X sending x into 2+ f(p(x)) and a vector field y, on X given by
d
p#(z) =2 @+ tfe@)) im0 TEX,

which is a section of W;. If f,, f, are sections of F over Y, then

ViCVre = ViV = Vir+se (11.2)
(ri por.}=0. (11.3)

We obtain the injective mapping
VoW F; ¥) = QW)

sending (=, j.(f) (%)) into ji(y,) (x), where z€ X and y=g(x). The mapping
2T W5 2) > T(F; Y)

given by (3.1) is a morphism of vector bundles over g sending j(u,)(x) into () (y) such
that the corresponding mapping

Ay (W A) =g~ (F; Y)
is an isomorphism of vector bundles over X. From (11.3), we deduce that

(W5 4), Ju(W; 4)] =0 (11.4)
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and that J,(W; 4) is a formally integrable Lie equation. The image @,(W; 1) of y is a sub-
bundle of @, (W) and a finite form of J(W; 1). Let
o QW3 2) ~ Ty (W; 4),
B: Qu(W; A) > o' JW(F; Y)
be the bijective mappings sending j,(y;) (z) into ji(u,) (x) and (x, j,(f) (y)) respectively. Then
f=Aoo and a(I)=0 and B(I;)=0.

We shall identify J4(F; Z) with F. Let jx be the sub-sheaf of F of sections v of F
satisfying the following condition: the section A +dy,,v of W*® 5 F is invertible, where 1 is
the isomorphism (11.1). If € F, one verifies easily that v€ I « if and only if f~1(v) belongs
to do. Moreover, if € T*®@J,(W; A), then w€(T*RJ(W; A))" if and only if the element
A+ A(rpu) of W*® x F is invertible, where A(wyu) is defined by

Margu) (€) = Amqu(§), for EEW.
We sob Qu(W: 2) = QN Qu(W; 4).

Prorosirrox 11.1. (i) The diagram

Genr(W: ) =2 7 @1, 1) ~Ps n2 T2 0. 7,,(W9; 1)
. id id (11.5)

Teer(10: 1) =2 5 @ T (W 2) —2s A2 T* @ T, (W5 A)

18 commutative.
(i) If $EQu1(W;2), then ¢ belongs to Qe (W 1) if and only if Da($) belongs to
(T*@J (W5 2)".

Proof. (i) The commutativity of the left-hand square of (11.5) follows from formula
(5.3) of [19] and the definition of D given in [19}], § 1. As for the commutativity of the right-
hand square of (11.5), it is a consequence of (11.4).

(ii) Let ¢ €Qy (W A); then by the commutativity of (3.2)

Mrrg Dax($)) = 79> M( Do) = 700 d 512t $)) = 709* A x/28($) = dx,28(70 $)-
Thus De(¢) €(T*@J,(W; A))" if and only if B(rr,$) € Fx, or equivalently if FEQu 1 (W 2).

Let Ry<J,(F; Y) be a formally integrable differential equation. Let R, = J;,(W;4)
be the inverse image of p1R%,; under the isomorphism A: Jy (W; A)=p~, (F; ). Ac-
cording to Proposition 5, (i) of [6], Ry ;=(Ry),; for [>0, and R, is formally integrable.

Theorem 3 of [6] gives an isomorphism
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H’(Rk)a - HI(RI;C)Q(a)
for all >0 and a €X. By (11.4), we have
[Bys1s Byyi] =0, for alll = 0;

therefore by Proposition 4.4 of [19], R, is an abelian Lie equation. Let Py, ;=aEy,);
by (11.2), P, is a groupoid. If a € X and f is a section of F over a neighborhood of b =g(a)
such that f,,(7) (b) € By, 1, then the element of &, ,

Fosit) @)= s ) @)

belongs t0 Vi, (Py.i)s since jii(yy) (@) €Pyys. Thus Rk+l.ac Vi@ (Pryi); as the di-

mension of these vector spaces are equal, we see that Py, is a finite form of B, ;.

ProrosiTion 11.2. Let a € X and b =p(a). If HY(R}), =0, or equivalently if HY(Ry), =0,
and if R}, is integrable, then HY(R,),=0.

Proof. Let m, >k be an integer such that HY(R,),, ,=0 for all m>m,. Let m>m; and
w€(T*QR,). satisfy D,u=Du=0; by our hypothesis, u=Dv for some v€ER,,,; ,. Then
v(a)E R, .1, , and we can write Av(@) =J,..(f) (b), for some solution f of R}, over a neighbor-
hood of b. We see that &=u, is a A-projectable section of W over a neighborhood of a
which is a solution of B, and satisfies j,,,,(£) (@) =v(a). If we also denote by & the germ of
&in W,, clearly v, =v —j,1(&) belongs to R,,,,, and satisfies v,(a) =0 and Dv, =u. We set
¢ =a"Y(v,). Then ¢(a)=1,,,(a) and ¢ belongs to dm+1(W; A) according to Proposition 11.1,
(ii); furthermore D¢ =w, by Proposition 11.1, (i). Since P, ,;=a Y R,,,) is a finite form of
Ry, ,, for 10, we see that € ]5',,,“. o satisfies D¢ =u, showing that HY(P,), ,=0.

LeEMMA 11.1. Let W, V be integrable sub-bundles of T, with W<V, and let &, ..., &,
N1 s Ns be vector fields such that {&,, ..., &} is a frame for W and {&,, ..., &, Ny, -or 15} 5 @
frame for V and

[éb fj] = 0, [51‘, nl] = 01
fori,j=1, .., 7, 1=1,..,s Forall z€X, there exist coordinates 2, ..., ", 2%, ..., 2°, ', .., y"
on a neighborhood U of = such that &,=08/0x', i=1, ..., r, and {0/0a, ..., bjox", 8/éz, ..., 8/0="}

is a frame for V over U.

Proof. We proceed by induction on s. For s =0 or 1, the lemma is a standard conse-
quence of Frobenius’ theorem. Assume now that s>1 and that the lemma holds for s —1.
Since &, ..., £,, 7, are commuting vector fields, the lemma with s=0 gives us a function
g defined on a neighborhood of « such that ,-g=1 and &;-g=0, for i =1, ..., r. We set, for
1=2,..,s,
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N =1~ (095
then {&,..., &, 71, N2 s s} is a frame for V over a neighborhood of z. For =2, ...,s
and =1, ..., 7, we have ;-¢g=0 and

(£, "7;] =Eonl—eDEnm]l—Erne @)= @& g)n =0.

Since [1}, 75]°9=0, for I, p=2, ..., s, we have

S T
(11, Mp] = ch§’an+ 2 diyés
&

i=1

similarly [7,, 77;]-g =0, which implies the relation

8 r
[ 1= 2261”772+ 2 di§;. (11.6)
g~

i=1

By our induction hypothesis applied to W and the integrable sub-bundle V' of T gene-
rated by the vector fields &i, ..., &, %2, ..., s over a neighborhood of z, there are vector
fields 73, ..., s and functions f1, ..., f', 9%, ..., ¢° on a neighborhood of  such that {&,, ..., &,

Tas -s s} is & frame for ¥’ and
[51‘:"7;,]:0: ["72’: 7];’7]=O: Ei'fi::ali: 51‘9P=0, ”];"fj;"oy "7?‘917: lpa
for ¢, 5=1,...,7, I, p=2, ..., 8, on a neighborhood of x. Then by (11.6),
s T
[, 1= 2 afn+ Zlbié (11.7)

q=2 i=

for =2, ...,s. We set
ni=1m -122 (-9~ 21 (- f) &

Fori=1, ..., r, we have

&, m1] =&, M) -Ez{(m PV )+ (& m gy = ~ gz M1+ &- 9"y =0.

1
Since 71+ /=0 and 7} - ¢’ =0, we have

g1, m1-f=0, D1, m1]-97=0, (11.8)
fori=1, ...,r, I, p=2, ..., s; on the other hand by (11.7),

1= 3 afne+ 2 biE,.
q=2 i=1

From (11.8), we deduce that ¢7=0 and 5!=0 and so [%1, 517]=0. Therefore, we obtain a
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frame {&, ..., &, %1, ... 75} of commuting vector fields for V over a neighborhood of z;
the lemma with s =0 gives us coordinates 21, ..., 2", 2%, ..., 2°, %%, ..., ¥™ on a neighborhood
U of « such that &;=0/ox', 9; =0/07", for i =1, ..., 7, I=1, ., .

TesoreM 11.1. Let B, <J(T), with k>1, be an integrable and formally integrable
abelian Lie equation such that 7y B, is a sub-bundle W of T. Assume that there exists an in-
tegrable and formally integrable Lie equation N,<J(T) such that R, + N, is a sub-bundle
of J(T) and (B + N,) is a sub-bundle V of T and

[Np1s Byepy] = 0. (11.9)
Then, for all x€X, with X replaced if necessary by a neighborhood of , there exist manifolds
Y, Z, surjective submersions o: XY, 1: X—>Z, 0: Z~ Y, an affine bundle A over Y whose
associated vector bundle we denote by F, a diffeomorphism ¢: X->g—t4 of X onto an open
subset of the. induced affine bundle o-*A over Z, whose associated vector bundle is o—LF,
and an integrable and formally integrable differential equation Ri<J (F; Y) such that:

(i) the diagrams

X X —> ¢4
. : .
o
Z Y Z

are commutative;

(i) W, V are the bundles of vectors tangent to the fibers of T: X —~Z, o1 X~ Y respectively;

(iii) identifying X with an open subset of o~14 via @, if A W—F is the canonical mor-
phism over p given by the structure of affine bundie of 624 over Z, we have Ry, <J, (W; A),
for all 10;

(iv) of A J oo (W5 A>T o(F; Y) is the morphism given by (3.1), then

Z’(Rk‘)‘l. a) = R/;H—I,Q(a)a

for all 120 and a €X;
(v) if a € X and b=p(a) and if HYR'),=0, or equivalently if H*(Ry), =0, then AYR,),=0.

Proof. Since Ry, is a Lie equation, W is an integrable sub-bundle of 7. If € X and
u€ R, ,, since R, is integrable, we can write u =, (£)(a), for some solution & of R, over a
neighborhood of a; as & is a section of W, wesee that u€J (W)and B, J,{W). Since B, is
integrable, there exist sections &, ..., &, of W which are solutions of B, over a neighborhood
of @ such that {&,, .., &} is a frame for W over that neighborhood. As
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Ny 4 By & (N + By s (11.10)
it follows from Proposition 4.4 of [19] and (11.9) that N, + B, is a Lie equation. Thus V

is an integrable sub-bundle of 7' containing W. Since N is integrable, there exist sections
My --» 1, of V which are solutions of N, over a neighborhood of z such that {&, ..., &,,
N --s Yy 18 a frame for V over this neighborhood. Since R, is abelian and (11.9) holds,

we deduce from Lemma 1.4 that
[Ei) Ej] = O’ [Eb 7]1] = 03

for 1 <4, j<r, 1 <I<s. By Lemma 11.1, there exist a neighborhood U of z and coordinates

a2, 2 L, 20,y .,y on U such that the mapping
p: U—~R" xR xR"

given by these coordinates is a diffeomorphism of U onto an open subset U, x U, x U, of
R"xR*xR™, where U,<R’, U;<R?, U;<R™ are connected open subsets, and &,=8/ox",
for =1, ..., r, and {8/oa", ..., 8/0x", 802, ..., 8/0z°} is a frame for V over U. Replacing X
by U, setting Y =U,, Z="U, x U; and letting 4 be the trivial vector bundle F of rank r
over Y, and o: Z— Y be the projection onto the second factor, g: X~ Y be the composition
of ¢ and the projection of U, x U, x U, onto the last factor and 7: X +Z the composition
of ¢ and the matural projection of U, x U,x U, onto Z, we thus obtain the mappings
satisfying (i) and (ii). During the remainder of the proof, we shall identify X with its
image by ¢: X—~014; then 7: X—Z is a fibered submanifold of the affine bundle ¢4 ~Z.
As ¢71F is the associated vector bundle of 6—14, we have a canonical morphism of vector
bundles A: W F over g; if a € X and f€ Fy,,, then

Md(a+tf)[dt] o) =f

and the corresponding mapping A: W—>p=1F is an isomorphism of vector bundles. Denot-
ing by &, ..., & the sections of the canonical frame of F over Y, we see from the construc-

tion of ¢ and p that
A& (a)) =eo(@)), i=1,..,r, a€X. (11.11)

Now let & be a solution of R, over an open set U’ < X; then we may write £=>7_,¢'&;
and by Lemma 1.4 and (11.9),

0=[,81= 3 (5-¢)E, 0= é1= 3 (n-0)5,

for i=1, ..., r, 1=1, ..., s. Therefore &;-¢'=0, 5, ¢’ =0; since {&,, ..., &, 1, ..., 95} is a frame
for V over X, we have dx,y¢’=0 for j=1, ..., . Any point a,€ U’ possesses a neighborhood
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U"c U’ such that the fibers of g: U”~pU" are connected. Thus there exist functions 4’
on gU" such that ¢! =bdfop on U”, for j=1, ..., 7, and

E=73 (bog)§; {11.12)
i=1
on U”"; by (11.11), we have

As(a) = El b(o(a)) &(o(a))

for all a€U”. Therefore £ is a A-projectable section of W over U”. As R, is integrable, we
have Ry, =J;,,(W; 4) for all 1>0.
Let us show that, for a, b€X, we have

MByi,a) =AM Byyrp) (11.13)

whenever g(a) =o(b). Let a,€ X and I>0; since R, is integrable, we choose sections &1, ..., &,
of W over a neighborhood of @, which are solutions of R, and which can be written in the
form (11.12) such that {ji,1(&1); .- i)} is a frame for R, over this neighborhood.
For t=(f, ..., F*)ER™, with [t] = [f}| +...+ |{'**] <e, let ¢, be the local diffeomorphism
of X detined on a neighborhood U, of a, sending (z, z, y) into (2311, ..., "7, 2! 0
22+1*%, ). We may assume that the vector fields &) are defined on U, and ¢4(U,) for
[t] <e. Then for a€U,, i=1, .., p, |t]| <g,

bux(E1) (@) = Ei(di(a)).
Thus

T+ 141(Pe) (@) * eyl {e) = fk+z(§;) (¢da));
because of our condition on &, ..., £, we therefore have
Jer12(0) (@) (Bryr,a) = Brv g,

Furthermore, the diagram

Rew, afk+z+1(¢t) (@)

By 11,0,

A A

id
T et Voey—— Tt (F ¥y

is commntative. Hence A(Ry.1,0) =A(Bk+1.6,w), for a€U,, |t] <e. Since {¢dap)| |¢| <e}isa
neighborhood of g, in the fiber of p passing through a, and the fibers of g: X~ Y are con-
nected, we obtain (11.13). Therefore there exists a differential equation R, ;= J (F; Y)
whose fiber at g(a) is equal to A(R,,; ). From Proposition 5, (i) of [6], we deduce that
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R ., is the I-th prolongation of R} and that E} is formally integrable. Since R, isintegrable,
50 is R}, proving (iv). Therefore, R, is the restriction to an open set of 0—14 of the equation
on 0714 obtained from R} and so Proposition 11.2 implies (v).

Let X =@ be a Lie group and let E be a vector bundle over X. Assume that E is a
G-bundle, that is possesses the structure of a G-space such that g: £~ E is a morphism of
vector bundles over the left-translation g: XX, for g€ X. Then F has a natural trivia-
lization B ~ X x H,, where x, is the identity element of @. We have a morphism of vector
bundles

g: J(B) > J(B)
over g: XX defined by
g°7(8) (%) = jilg 597 (g %),
where s is a section of F over X and z€X; thus J,(F) is a G-bundle.

We say that a differential equation B, < J (&) is G-invariant if B, isa G-invariantsub-
bundle of J,(E); for such an equation, there exist a G-vector bundle F over X and a G-
morphism of vector bundles ¢: J,(E)~ F such that ker ¢ = R,.

If G=R" we say that a G-invariant differential equation R,<J,(E) is a differential
equation with constant coefficients. For such an equation R, the theorem of Ehrenpreis-
Malgrange implies that H/(R,)=0, for j>0.

Levma 11.2. Let G be a Lie group, E a vector bundle over an open set X < G and R, < J,(E)
a differential equation. Assume that there are an open set U< X, a neighborhood H<= G of the

identity element of G and a mapping
vy Hx Eyy—~E

sending (g, e) into y,(e) such that p,: E\y,—E is a morphism of vector bundles over the left-
translation g: U—X for all g€ H and

Y.V, = V1401

as mappings B,~E,, ..., forall g, . €H, a €U with g,-g,€H and g,-a€U. If y,: J\(E) v~
J(E) ts the morphism of vector bundles over y, sending j,(s)(a) tnto j,(p, s-g71)(g-a), where
s 18 a section of E over a neighborhood of a €U and g€ H and if

Yo(By v)=Ry|gu (11:1%)

for all g€ H, then for each poini x€U there are a neighborhood U'<.U of x, a G-vector bundle
E’ over @, a G-invariant differential equation R,<J (B’ ; Q) and a morphism of vector bundles
x: Bjv~> By such that Ji(x) (Rejv)= Ri\ . If Ry is formally integrable; so is R and y in-

duces isomorphisms
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2 (B o> (B o (11.15)

for §20.

Proof. Let F be the quotient J (E)/R, and ¢: J,(E)~ F the natural projection. For
g €H, it follows from (11.14) that g, J(E),y~J,(E) induces a morphism of vector bundles
g Fyy— F-over the left-translation g: U~ X such that the diagram

T B)jy—2—Fy
1/)0 /'IDF

J(B)—L—F

commutes. Thus for g €@ and a section s of E over U, we have

@iy 5971 =9, (@) 97 (11.16)

on gU. Let « be a fixed point of U. Let ¢}, ..., €2 be a basis for E, and f}, ..., f a basis for
F,; consider the frames {e,, ..., ¢,} for E and {f,, ..., f,} for F over H-zx, where the sections
e; of E-and f; of F' are defined by

eg @) =yled)  filg-2) =wy(f)),
for 1<i<r, 1<j<gq. Then for g, h€H with g-h€H, h-2€U, we have
Yoei(h-x) =eilg-hox), y,fih-z) =filg-h-x);
hence for 1 <i<r, 1 <j<q, we see that
Yoei(@) =ei(g-a), y,fa)=fg-a),

for all & belonging to a neighborhood U,< U of = and all g belonging to a neighborhood
H,< H of the identity element of @, with H,-U,< H-x. Therefore, if s is a section of ¥

over U, and ¢ is a section of F over U, and
4 q
s= 7 se, t=21f,
i=1 j=1
then for g€ H, we have
T q
(We-s-97") (a)=i§18’(9’1~a)€s(a), AygrtogT) (a)"—‘%t’(g“l-a)ff(w), (1L.17)

for a€gU,. Let {p,}.c4 be a basis for the space of left-invariant differential operators of
order <k on G. There exist functions ¢’/ on H-z such that
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Pie) = 3 (D'},

=
with
Dis= > cip,s, j=1,...,q,

for all sections s=>7_;s'¢, of £ over H-x. From (11.16) and (11.17), since the differential

operators p, are left-invariant, we deduce that for g€ H,

(g™ @) = ¢ (a)
for all a€gU,, x€A, 1 <i<r, 1 <j<gq; hence

¢i(gx) =i /()

for all g€ H, and so the functions ¢’ are constant on the neighborhood U’'=H, -z of x.
Let E’, F' be the trivial G-vector bundles G xR, @ x R? respectively, that is, for g€@,
the morphisms g: £'~ %', g. F'— F' send (h, u) into (g-h, u), where h€G, u€R" or wER
Let y: B y-— B\ be the isomorphism of vector bundlessending >7_; ble,(a)into (a, b, ..., b"),
with a €U’, and let ¢': J (B'; ()~ F" be the morphism of vector bundles sending j(s),
where s=(s!, ..., s") is a section of E’ over @, into the section ((¢'7,(s)), .-, (@'5(s))?) of
I over @, where

(@'j(8)) = 2,4 (@) past, §=1,...,q.
i=1,...7

Clearly the kernel Ry J,(E’; G) is a G-invariant sub-bundle and Ji(x) (Rxv’) = Bx v
Since

Jeri(X) (Brsrjv) = Rigar v (11.18)
for all 1>0, if R, is formally integrable, then so is R} y; as R is G-invariant, it is there-
fore formally integrable over G. From Lemma 1.1 and (11.18), it follows that y induces the
isomorphisms (11.15).

THEOREM 11.2. Assume that the hypotheses of Theorem 11.1 hold. Suppose that
By + Ny, s a vector bundle and that there exists an integrable and formally integrable Lie
equation S, <J (T) such that 7, Sy is a vector bundle and

[Skr1 Ska] =0, [Sesr, Beiy]< By, (11.19)
[Ski41r Nipal=Ji(V), (11.20)

and
V+7 Sy = T (11.21)

Then, for x€X, we may assume that the manifold Y given by Theorem 11.1 is equal to an
open subset of R™, that there is an R™-vector bundle F’' on R™, a formally integrable differential
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equation Ry J(F'; R™) with constant coefficients and an isomorphism of vector bundles
g F~F{y such that J,(x)(R)= R,y Furthermore H(R,)=0 for j>0 and HR,), =0 for
all a€X.

Proof. We fix x€X and then consider the objects described in the course of the proof
of Theorem 11.1. By (11.21}), since 8, is integrable we choose vector fields {;, ..., {,, which
are solutions of S, over a neighborhood of « such that {&;, ..., &, 7y, ..., N5, &3y oy C} I8 B
frame for T over this neighborhood. By (11.19) and Lemma 1.4, we have

[Cas $) =0, (11.22)

for 1 <a, §<m. Since 7, Sy is a vector bundle, 8, is integrable and
[Ski1r Braa + Niy]< B+ SV < T (V),

and since 77g(Ryq +Neyy) =Jo(V) and (11.10) holds, we deduce from Lemma 6.1 that
8= J{T; g). Therefore replacing X and Y by neighborhoods of x and p(x) respectively,
we may assume that ,, ..., [, are g-projectable vector fields on X and, by Frobenius’

theorem, that there are coordinates y'%, ..., ¥'™ on Y such that
0
0x Cala) = pwr (0(a))

for all a€X, a=1, ..., m. We shall consider ¥ as an open subset of R™ by means of these
coordinates. Let 8% < 8;, be the formally integrable Lie equation generated by the sections

581D -or TlCm) Of Sy Then
SENJ(V) =0; (11.23)
this implies that S% 4 R, is a vector bundle. As
Sia+ Ry (S?: + R,

by Proposition 4.4 of [19] and (11.19), it follows that S + Ry is a Lie equation, which by
(11.23) satisfies
(S% + R)NJ (V) =R, (11.24)

since R, <J (V). Then by Proposition 7.1, (v), there are neighborhoods U'< X of x and
H<R™ of 0 such that for t= (&, ..., #™) €H the local diffeomorphism of X
o, = {exp 1£;)0...0(exp I"(,,) (11.25)

is defined on U’ and is a solution of a finite form of §% and of a finite form of S} + R, and
satisfies ¢y, =10, where ¥, is the translation of R™ by ¢ sending b€oU’ into t4+-bEY.
Therefore

Tre1(ye) (@) (B, o) = (S% + Biyr
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for all a€U’, t€H. As jj,,(v;) is & section of Q,,,(0), we have

Tera (W) (@) (Bye, ) ST V)y
and by (11.24),

Jesa(9e) (@) (By,0) = Bry, 00 (11.26)

for all a€ U, t€ H. We may assume that the fibers of g: U'—>gU’ are connected by replac-
ing U’ by a smaller neighborhood of  if necessary. From (11.26), we deduce that p;«(&)
is a solution of R over y(U’) for all i=1, ...,r, t€H. Therefore there are functions gion
H xpU’ such that

M-

vex(Ei(@) = 2 9ilt, 0(a)) &,(yia)) (11.27)

j=1

I

for all a€U', t€H, i=1,...,r. For t€H, let 97: F\,y-— F |50 be the morphism of vector
bundles over ¢, defined by

YEe®) = 3 gt et +b),
=
for bepU’. By (11.27), for a€U’, t€H, the diagram

Wa Pex Ww, (a)

A A (11.28)

#
t
{(a) > Ft +gla)

F

o
is commutative; from (11.22) and (11.25) we now deduce the equality
YLoVh =i, (11.29)
of mappings F,—~ F, .., ,», Where b€pU’, t€EH satisfy ¢, + {,€H and t,-+b€pU’. For t€H,
let
YT F; Y u— T F3 Y)
be the morphism of vector bundles over 9, sending j,(s) (b) into ji (97 -8-9_;) (¢ +b), where s

is a section of F over a neighborhood of 6 €¢U’. The commutativity of (11.28) implies that,
for a€U’, t€ H, the diagram

T, ,-L)a“_“(’@i‘i‘)_, TdW; Dy,

A A

#

Jk(F; Y)Q(a') _1&_‘_' k(F; Y)i+g(a)

15— 762908 Acta mathematica 136, Imprimé le 8 Juin 1976
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commutes; from (11.13) and (11.26), it follows that
Y (R1ov) = B 13,07 (11.30)

for all t€H. Replacing X and Y by neighborhoods of # and g(x) respectively if necessary,
because of (11.29) and (11.30), Lemma 11.2 gives us the vector bundle F’ on R™, the dif-
ferential equation R,<Ji(F’; R™) and the isomorphism y: F— F|y satisfying the desired
conditions. Since R;, is a differential equation with constant coefficients, by the theorem
of Ehrenpreis-Malgrange we have H/(R},) =0 for >0 and hence, by Lemma 11.2, H/(R})=0
for §>0. From Theorem 11.1, we deduce that H'(R,)=0 for j>0 and HY{R,),=0 for all
a€X.

LeMma 11.3. Assume that X is connected and let x€X. Let R, <J (T) be a formally
transitive and formally integrable Lie equation. Let Ny, N, <J(T) be formally integrable
differential equations such that

[ﬁk+2’ N1 < Piess [‘i:,k+2: Hies]< Wisr.
Then N+Ny and Ny, + N1 are vector bundles. Moreover if [Nii1, 20 Nier, 2] =0, then
Vs> Nia] =0. (11.31)

Proof. Let @ be an R, ,-connection defined on an open subset of X. Clearly, the sub-
bundles Ny, N of Ju(T) are stable by the covariant derivative in J,.,(7) deter-
mined by w and the sub-bundles N, N of J,(T') are stable by the covariant derivative in
Ji(T) determined by ., . Jacobi’s identity

(€, (01> 7]) = L€, 71, 2] + [, [, o],
for € Resg 11 € Mieysr 72 € Hierr, implies that the bracket Ny, ® Ni.1~J4(T) is compatible

in the sense of §3 of [9] with the covariant derivatives determined by w in N, ;®N}
and by 7, 0 in Ji(T). Propositions 5.1, 3.3 and 3.2 of [9] imply that N, +N%.; and
N, + N} are vector bundles and that the set of points a €X such that [N, ; ., V eit1.a]=0
is both open and closed. Since X is connected, if this set is non-empty, (11.31) holds.

TrEoREM 11.3. Let L be a transitive Lie algebra and I a closed abelian ideal of L. If
HYL, I)=0, then HYL, I)=0.

Proof. By Corollary 6.1 of [9] and Theorem 10.1 of [10], there exist a formally transitive
and formally integrable analytic Lie equation R} <J,(T) on a connected analytic mani-
fold X, a point x€X, a formally integrable Lie equation R,< Rf such that [Ri.1, Rl< Ry
and (R, ., By,,) and (L, I) are isomorphic as pairs of topological Lie algebras. Then by
Lemmas 1.5 and 11.3, R, is an abelian Lie equation and, by Lemma 10.3, (ii) of [10],
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7y Ry, is a vector bundle. Therefore the hypotheses of Theorem 11.1 hold for R, (with
N, =0); thus by Theorem 11.1, (v), if HY(R,), =0, then HY(R,),=0.

LEMMA 11.4. Let L be a transitive Lie algebra. Let L° be a fundamental subalgebra of L
and let A be an abelian subalgebra of L and B a subspace of L satisfying
L=IL4+A+B,
[4, B]=0.
Then I8N A =0 and A is a closed finite-dimensional subalgebra. If B=0, then
L=L@®A.
Proof. For k>0, set LF=DE L% then [L9, LF]<L* for all k>0 and N0 LF=0. If
EeLXn A4, with k>0, then
[L, &] =[L°+ A4+ B, &] =[L°, £]< L¥,
and so & EL**1; therefore £ =0. Since the codimension of L® in L is finite, 4 must be finite-

dimensional.

THEOREM 11.4. Let L be a transitive Lie algebra, L° o fundamental subalgebra of L and
A, B closed subalgebras of L. Assume that A is abelian and that

L=I%+A+B, [4, B]=0.

Let I be a closed ideal of L satisfying [ B, I1=0. Then there exist formally transitive and form-
ally integrable analytic Lie equations By, R\, = J(T), formally integrable analytic Lie equations
8y, B.< Ri, N, R, on a connected analytic manifold X, a point x € X, isomorphisms of tram-

sittve Lie algebras
w:L—>Ry, y:A+B->Ry,,

such that, for all 10,

P(L%) = R, (11.32)

Y(I) =Ny s (11.33)
VY(4)=8x,. y(B)=By,. (11.34)

RiC R, (11.35)

[Restn Meedd© Merss [Risa Niia] < Vi (11.36)

[ﬁ;c+l+1, St < Sivts [ﬁ;c+l+l; By 1< Bess, (11.37)
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(Sks1> Skeal =0, [Spyar Beal =0, (11.38)
[Bics1> Nigyal =0, (11.39)

and
7o(Su+ By) =Jo(T), Re = R%+8y+ By, (11.40)

Furthermore, 7y Ny, 70,8y, Ny + By, Nyyy+ Byyy and mo(Ny+ By) are vector bundles and, if I

18 an abelian ideal, N, is an abelian Lie equation.

Proof. We begin by following the first part of the proof of Theorem 13.2 of [10]. We
see that 4 + B is a transitive Lie algebra and that L'0=L%N (4 + B) is a fundamental sub-
algebra of 4 + B. Clearly A and B are closed ideals of A + B. Let us consider the filtrations
induced by L® and L'® on L, I and A+ B, A, B respectively in the sense of § 10 of [10]
and the corresponding graded Lie algebras. By Lemma 10.1 of [10], there exists an integer
k>1 such that

H™(gr L) = H™(gr I) =0,
H™(gr (A + B)) = H™(gr 4) = H™(gr B) =0,

for all m >k and j=1, 2. Let X be an analytic manifold whose dimension is equal to the
dimension of L/L® and let x€X. By Theorem III of [13], there exists a monomorphism
i: L>J (T), of transitive Lie algebras such that i(L°) =i(L) N Jo(T'), and #(L) is a transi-
tive subalgebra of J(7'),; then (4 + B) is also a transitive subalgebra of J(T'), and
1(L'%) =4(4 + B) N JH(T),. We apply Corollary 6.1 of [9] to the subalgebras 5(L) and i(4 + B)
of J(T), and replace X by a simply connected neighborhood of x if necessary to obtain
the existence of formally transitive and formally integrable analytic Lie equations
R,cJ(T), R.cJ(T) and ¢, ¢' €Q(x, x) such that R, R, and my ¢ =71;,0¢ = I ()
and
#:9(L) = Rz, §'+i(4+B) = B

Then

Tes1 3(L) = Beyy.or eya 9(A+ B) = Riyq o

Set y=¢-7¢ and ¢’ =4¢'-7. Then (11.32) holds. Since 4, B are closed ideals of 4+ B, by
Theorem 10.1 of [10], there exist formally integrable analytic Lie equations N,< R,
8,, B,< R, satisfying (11.33), (11.34), (11.36) and (11.37). Then S+ By = R;, and so (11.40)
holds. From Lemma 11.3 and the relations [4, A]1=0 and [4, B]=0, we deduce (11.38);

moreover (11.39) holds since

[Bk+1.zx Nk+1.z] =mi[B, I]=0



ON THE NON-LINEAR COHOMOLOGY OF LIE EQUATIONS. II 223

and [Rr2 Meys]< Myy by (11.36). Lemma 11.3 and (11.37) tell us that N+ B, and
N1+ By, are vector bundles. Lemma 10.3, (ii) of [10] says that =, N,, 7,8, and
7to(N+ By,) are vector bundles. If I is abelian, by Lemma 11.3 it follows that Ny is an
abelian Lie equation.

From Theorems 11.4, 11.1 and 11.2, we obtain:

TurorEM 11.5. Let L be a transitive Lie algebra and I a closed abelian ideal of L. If
there exist a fundamental subalgebra L° of L, closed subalgebras A, B of L such that 4 is

abelian and
L=I°+A+B, [4,B]=0, [B, I]=0,

then H(L, I)=0 for j>0 and HY(L, I)=0.

12. Prolongations of Lie equations

Let Ry, <=J,(Ty; ¥) be a formally transitive and formally integrable Lie equation
and let k>k,. Assume that Y is connected and let P;,<=@,(Y) be a finite form of Rj. Let
€Y and consider X =Pj(y,) as a bundle over ¥ by means of the target projection
0: X—Y; it is a principal bundle with structure group G=9-(y,). We may assume that X

is connected. The Lie algebra g of G is identified with V,,, where xy=1Iy ;(#,); the natural

identification (5.23) gives us an anti-isomorphism of Lie algebras R;’,—g.
A section ¢ of P} over an open set U of ¥ induces a mapping 7(¢): Xy~ X sending a

into ¢(g(a))-a; if ¢ is a section of ﬁ','c, this mapping is an immersion. If ¢ € Xy, g€G, then
(v($)a)g = () (ag). (12.1)
The mapping v induces for all € X an isomorphism
7, R, o> Tq;
if £ is a section of f{}'ﬁ over Y, then the vector field z(£) on X defined by
7(§)(a) = 7.((0(@),  a€X,

is G-invariant and in fact every G-invariant vector field on X is of this form. The map 7
induces a monomorphism of Lie algebras

Tt Rty T 0 (12.2)
Denote by

¢o: T - R

the morphism of vector bundles over g sending £€ T, with ¢ € X, into the unique element
7 of R} ,q satisfying 7,(n)=&. The induced mapping ¢: T—p 1R}, is an isomorphism of
vector bundles; the morphism (3.1) of vector bundles
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@: J(T; @) > J,(Bi; Y) (12.3)
over o therefore induces an isomorphism
p: ST ¢) > @Bl ¥)

of vector bundles over X. The diagram

T
o 4
Ry 7o N/

is commutative; hence J,<J, and J(T; ¢)<J,(T; ). Moreover [T, T,]=T,, and for all
a€X the image of (12.2) belongs to J,, ,, and

@: gtp.a —’ﬁ’l;-e(a)
is an isomorphism of Lie algebras. Therefore
iT; @) JUT; @)1= J1a(T5 )
Since R} is a Lie equation, the bracket (1.33) gives by restriction a bracket
JiE Y) %y R ¥Y) >, 1B T) (12.4)

and hence also a structure of Lie algebra on J(£}; Y), for all b€ Y. From the above re-

marks, we see that

@l&, ] = [¢&, on), (12.5)

for all &, n€J(T; ¢), where the right-hand side is defined in terms of the bracket (12.4).
Thus for ¢ € X, the mappings (12.3) determine an isomorphism of Lie algebras

@ Joo(T; ‘P)a ﬁJm(R’I’C; Y)Q(a)'

For a€ X, the mapping G— X sending g into a+g induces a canonical isomorphism

3>V,
and a monomorphism of Lie algebras
eg->D(X, 7)
which satisfies by (12.1)
[2(8), et)] =0 (12.6)

for all £€T(Y, R}), n€g. Let C;<Jy(V) be the formally integrable differential equation
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generated by the sections {,(¢(9))}neq of J4(V). Since ¢ is a monomorphism, C, is a Lie
equation; clearly, 7y: C;—~Jo(V) and 7;: C,—C, are isomorphisms and Sol (C,), ~ «(g) for
all ¢ € X. From (12.6), it follows that
T 9), Cry]1 =0 (12.7)
for all 1>0.
Let N,< R, be a formally integrable Lie equation and let W be the sub-bundle of

T whose fiber at a € X is equal to 7,(N7. ow)- Then @ induces a morphism of vector bundles
¢: W—>N5

over o such that g: W01}, and 7,: M}, 0> W,., are isomorphisms, with a€X. Thus
W,., is a Lie subalgebra of J, , and we see that W is an integrable sub-bundle of 7'.
Moreover, (12.3) restricts to give us a morphism of vector bundles

p: J(W; 9) =T (N Y) (12.8)
over p whose corresponding mapping

g J(W; ) > W (N T)

is an isomorphism.

For 1>0, let N;=J,(NV};Y) be the image under the map A; Je (Ty ¥)—
J(J(Ty; Y); Y) of the I-th prolongation N7, of N;. By Lemma 1.2, N},; =(N7).,; and so
N is formally integrable. According to the commutativity of (1.37), we have

[N, Nl NV, (12.9)
for all 1>1, with respect to the bracket (1.33) or (12.4); moreover, the mappings
Ay Nowi—=J (N5 Y) induce, for all b€ ¥, a monomorphism of Lie algebras N, », > J o(N%; Y),
whose image is the Lie subalgebra Ny, , of J (Ny; Y), or of J (s Y),. Let N, J (W;¢)
be the inverse image of N; under the mappings (12.3) or (12.8), so that N,=J(W; ) and

(p(Nl.a) = N;.Q(a): for 1 > 05

and
Q(Nl,a) = N/l,,e(a), forl = k,

for all a€X. By Proposition 5, (i) of [6], N, is formally integrable and N, =(&,),,, for
all 1>1. Since m;: Ny.1— N7, is surjective, so is the mapping 7y N,—Jo(W). From (12.9)
and (12.5), we deduce that

(N, Niple N,

for all 11 and hence from Proposition 4.4 of [19] that N, is a Lie equation. Furthermore
for alla€X,
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’
@: NOO. a™> o0,0(a)>

t
0: N, o> 0, 0(a)
are isomorphisms of Lie algebras and

7,00

0 NY. Ny, o Notwy 0

is an exact sequence, where N3, , is the kernel of 7ty Ny o= Jo(W),.
In particular, if we apply these constructions to Rj instead of N7, we see that the in-
verse image R, of R =1,(R}.;) under (12.3) is a formally transitive and formally integrable

Lie equation, that N, < R,, that
¢ Beo.o ™ Roo. oar (12.10)
0 Boo.o ™ Boo. gty (12.11)
are isomorphisms of Lie algebras, and that R, , is the kernel of gom: Ro.a=> R, o0 for

alla€X. If a€X and L" = Ry, yay, L' = R ), then DY, L' is the kernel of 7 L' > R, o0y

and so g: RS .—~D% L"is an isomorphism. Moreover
R,NC,=0, (12.12)

for all I>1. Indeed, let ¢ €X and u€(R,N C,),; then there is an element % of g such that
u=7,(un))(a). Let S;<=C, be the formally integrable differential equation generated by
the section j,(¢(n)) of C;. From (12.7) and Lemma 1.5, we deduce that

[ﬁnl, S]<$§.

Since R;=J,(T) is a formally transitive Lie equation, we therefore see from (7.1) and
Lemma 11.3 that R,N S, is a vector bundle. As 8, is the line bundle generated by j,(¢(%))
and (B;N8,;),=8,., we conclude that B;N8,;=8, over X and that j,(«(#)) is a section of
R, over X. Hence «(n) is a solution of R; over X and s0 j,(i(#)) (@) belongs to (B, N U

Because ¢() is a section of V, we have
@oo(tim) (@) = 0;

since (12.11) is an isomorphism, we see that j,(:()) (@) =0 and therefore that 7 =0. Hence
# =0 and (12.12) holds.
From (12.12), it follows that N,+C,<J (T} is a differential equation for all I>1.

Clearly, we have
Ny +C S (N +0) 11 (12.13)

for all 1=1. For =1, let b, 8'Jy(T)*@J(T) denote the kernel of m;_;: N;—~J,_1(T). By
(12.12), h;,4 is equal to the kernel of the surjective mapm,_: Ny y +Cp N, +C,, for all
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[>1. Since h; is 1-acyclic, for 122 the kernel of the surjective map 7z, (N¥,+0)),,~N,+C,

is also equal to A,,,. From (12.13), we conclude that
N+ Cry =W +C)

for all 12>2. Using (12.7) and Proposition 4.4 of [19], we see that N§ =N, -+, is a formally

integrable Lie equation such that
Nfo=N,5+Cp, forl=0,
NG =N, +0Cy,

where
N NC, —0.
Let B, 8.< R, be formally integrable Lie equations and let B, S, < R, be the form-
ally integrable Lie equations which are respectively the inverse images of By =2,(B} 1)

and of §;=2,(S%+1) under the map (12.3). I Bf,o= B, 5+ C,,, for I>0, the following rela-

tions are equivalent:

[Ns1, Brr1] < S, (12.14)
[ Nhiiit, Brris1]<S%y, foralli=0, (12.15)
[Ni,1, Bl S, forall1>1, (12.16)
N1, Biale S, foralllz=1, (12.17)
(N1, Bfl< 8, for all 1>1. (12.18)

Indeed, (12.14) and (12.15) are equivalent by Lemma 1.4 and the equivalence of (12.15)
and (12.16) follows from the commutativity of (1.36); by (12.5), we see that (12.16) and
(12.17) are equivalent. Finally, (12.7) implies that (12.18) is a consequence of (12.17).

Therefore, according to Lemma 1.5, we have
[Resr, Wl N, (12.19)
if and only if
(R WIS N, foralll>1. (12.20)
If either (12.19) or (12.20) holds, then by (12.7)
[R7i1, Nyp]J=N,, foralllzl,
and hence by Lemma 1.5

[ﬁl#-l—l: nl]c nl, for a:l]. l =1.

Let us summarize some of the above results in
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THEOREM 12.1. Assume that Y is connected. Let Ry, < J,(Ty; Y) be a formally tran-
sitive and formally integrable Lie equation and let k>k,. Then there exist a connected dif-
ferentiable manifold X, a surjective submersion g: X~ Y, a formally integrable Lie equation
C.=Jd(V), and for each formally integrable Lie equation N, < R a formally integrable
o-projectable Lie equation N < J,(T'; o) such that:

(i) 7y N, is an integrable sub-bundle W of T and N,<=J,(W; 0);
(ii) N, is a prolongation of N, and the sequence

7,0 ”
0 N, N o 22 N oo 0

is exact, where N, , is the kernel of mwy: Ny o—>Jo(T),, for a€X;
(iit) the Lie equation R, < J(T; p) corresponding to R}, is formally transitive and N, < R;;
if a€X and L" = Ry, oy, L' = Reg y(a), then

0: (Roo, as B, o) > (L", D}~ L")
is an isomorphism. of pairs of topological Lie algebras;
(iv) mg: Cy—=J (V) ts bijective and for [>0
[Ryy, Ciy]1=0, R,,NCp, =0,
[Ry C]l=0, R,NC,=0;

(v) N3 =N,+C, is a formally integrable Lie equation and Rf =R,+C, is a formally
transitive and formally integrable Lie equation in J,(T'; o) with

R =R, +Cy;
(vi) if By, Si< R are formally integrable Lie equations satisfying
[N, Birr] < S,
then the corresponding Lie equations B,, S;< R, satisfy
[N, Bial<e S,

for all 121, where B =B, +C,;
(vid) §f [Risa, M= i, then [Rir, Wl < Wy for all 1> 1.
The following result is an immediate consequence of Theorem 6.1 of [12]:

THEOREM 12.2. Let L be a transitive Lie algebra and I a closed ideal of L. Then there
15 a nested sequence

I=1I>I>I,5.21,=0 (12.21)
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of closed ideals of L such that, for each. j, where 0<j<k—1, either 1;/1;., is abelian or there
are no closed ideals of L properly contained between I, and I, .

We say that a sequence (12.21) satisfying the conditions described in Theorem 12.2
is a Jordan-Holder sequence for (L, I) and that it is of length k. We define I(L, I) to be
the minimum of the lengths of Jordan-Hélder sequences for (L, I).

Let L be a transitive Lie algebra and L a fundamental subalgebra of L. Following
[10], we say that a closed ideal I of L is defined by a foliation in (L, L°) if the only ideal
I’ of L satisfying

Icl'cI+I0

is I itself. If L* denotes the fundamental subalgebra D% L® of L, then, according to Proposi-
tion 10.1 of [10], for any closed ideal I of L there is an integer m >0 such that I is defined
by a foliation in (L, L™).

THEOREM 12.3. Let L be a transitive Lie algebra, L® a fundamental subalgebra of L

and A, B closed subalgebras of L. Assume that A is abelian and that
L=I°+A4+B,
[4, B] =0.

Let 1, .J be closed ideals of L; suppose that [ B, I1=0. Then there exist a transitive Lie algebra
L?, a fundamental subalgebra L*® of L*, closed subalgebras A*, B* of L*, a closed ideal J* of
L* and, if L"=L*|J*, monomorphisms i: L-L*, j: L|J—~L" of transitive Lie algebras such
that:

(i) #(L) is a closed ideal of L™ and

L* = i(L)+L*°, (12.22)
L* =L*°+ 4% + B*, (12.23)
W J) =iL)ynJ*, , (12.24)
(A%, A*1=0, [4* B*]=0, (12.25)
[(B%,iI)] =0 (12.26)
and such that the diagram
L U r*
(12.27)
LlJ —LL"

whose vertical arrows are the natural projections, is commutative;
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(i) J* is defined by a foliation in (L*, L*°), the image L" of L*° in L" is a fundamental
subalgebra of L", the images A", B” of A*, B* in L" are closed subalgebras of L" and j(L[J)
1s a closed ideal of L", and

L' = §(LJJ)+L", (12.28)

L' =L+ A"+ B, (12.29)
[4", A"] =0, [A", B']=0, (12.30)
[B", §(I}J)] = 0; (12.31)

(iti) ¢f I’ is a closed ideal of L, then i(1') is a closed ideal of L™ and
W, «(I')y) =UL, I'), (12.32)
and we have an isomorphism of graded Lie algebras
HY(L, I') = H*L”, «(I"),
and an tsomorphism of cohomology
Ay, 1'y—~ AYL”, i(I'));
(iv) ¢f I' is a closed ideal of L containing J, then j(I'|J) is a closed ideal of L" and
WL, (' )y = UL, I'T), (12.33)
and we have an isomorphism of graded Lie algebras
H*L|J, I'|J) -~ HXL", j(I'|J))
and an isomorphism of cohomology
ayriJ, I'lJy—~ BYL", §(I'|])).
Proof. Let Y be a simply connected analytic manifold, ¥ € ¥ and let By, <J, (Ty; Y)bea
formally transitive and formally integrable analytic Lie equation, N%,, My, Sk, Bi < R,

formally integrable analytic Lie equations and y: L— Ry, , an isomorphism of transitive

Lie algebras such that
YL =Ry YD) =Neoys 9 =My [Rier, Wl Wy, [Riir, Me]< MG,

[Sk14 15 Sk1+1] =0, [Sk1+15 Bk1+1] =0, [Bk1+1: Nk1+1] =0
and
Ry = R2+ S+ By. (12.34)

All these objects other than M7}, satisfying these conditions are given to us by Theorem
11.4, while the existence of M7, follows from Theorem 10.1 of [10]. Let k>, be an integer
such that J is defined by a foliation in (L, L*), where L* = D% L? the kernel of 75 Reo, ;= B 4
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is equal to y(Z¥). We now apply Theorem 12.1 to R}, <J,, (Ty; Y) and obtain a connected
differentiable manifold X, a surjective submersion g: X - Y, formally integrable Lie equa-
tions

B cdy(Ts0), Ci=Jo(V),

N,cR,, M,<R,
S;<R,, B,<R,
R =R,+C,, Bf=B,+0C,

such that R,, RS are formally transitive, 7, C;—+J(V) is an isomorphism,

R% =R +C,, (12.35)
[Bes Col =0, (12.36)
[(Rf.s, WIS My, [REa, WIS, (12.37)
[8,8,]=0, [8, B]=0, (12.38)
[BYi1, Niyal =0, (12.39)
for all1>1, and
0(81,6) =Stow»  0(Bi.a) = Bl e (12.40)
forallizk and a€X and
ytog: (Re. s Roo,2) > (L, LF) (12.41)
is an isomorphism of pairs of topological Lie algebras and
0: Noo,2 > Neo. v
0: M, o> Mz y

are isomorphisms of Lie algebras for all x€p~(y). Fix x€X with p(x) =y; set
L* =R%, ., L*= Ro’é(.):c, A% =8y, B* =B, .,

and let ¢: L—L”* be the composition

-1

- .r. % .R,. RE ..
Thus #(ZL) is a closed ideal of L* by (12.36) and
#(IF) = L* ni(L),

W) =Ny, WJ)=M,,.
Since R, is formally transitive, we have (12.22). From (12.34) and (12.40), it follows that

7Sy +759 By +75,Cy = Jo(T)
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and hence that (12.23) holds. From (12.38) and (12.39), we deduce (12.25) and (12.26)
respectively. If W denotes the integrable sub-bundle 7, M, of 7', then, since M; < J (W),

we have

Me,2S Boo, s N oo W)

By Proposition 5.4 of [9), Rf =n, R is a Lie equation and Rf,,<(RT),;. Now (12.37)
implies that

[RY, Jo(W)]< Jo( 1),
and hence by Lemma 10.5 of [10] that
(R, J (W) T (W), forall =0,
and that R, ,NJ (W), and
J* =L" NJ (W),
are closed ideals of R, , and L” respectively. Clearly
By o NI (W), =M, .+ RS, o

Since o is defined by a foliation in (L, L*) and (12.41) is an isomorphism, M, , is defined

by a foliation in (R, ,, BY, ) and so

Moo,z = Roo,:thoo(W)m

and (12.24) holds. Thus j is a monomorphism of transitive Lie algebras and diagram (12.27)

commutes, completing the proof of (i). Since
Jo( W)y =700 M o, 709 S* < T (W),

we have myJ* =Jo(W), and, by Proposition 10.3, (iii) of [10], the closed ideal J* of L” is
defined by a foliation in (L*, L*°). By Proposition 10.2 of [10], L" is a fundamental sub-
algebra of L” and the relations (12.28)-(12.31) follow from (12.22), (12.23), (12.25) and
(12.26), and so (ii) holds. Since (L) is a closed subalgebra of L* and (12.36) holds, if I’
is a closed ideal of L, then ¢(I’) is a closed ideal of L* and the image of #(I') in L” is there-
fore a closed ideal of L". Conversely, a closed ideal of L” contained in ¢(L) is necessarily
a closed ideal of (L) and its image in L", which is a closed ideal of L” contained in j(L/J),
is also a closed ideal of §(L}J). The equalities (12.32) and (12.33) follow directly from the
last remarks. As (12.22) and (12.28) hold, the isomorphisms of (i) and (iv) are given to us
by Theorem 13.2 of [10] and Theorem 10.5, completing the proof of the theorem.
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13. The integrability problem

We now summarize some implications of the preceding sections of this paper relating
to the integrability problem (vanishing of the non-linear cohomology), and we begin by

listing the following three conjectures:

ConxJECTURE L. Let L be a transitive Lie algebra and I a non-abelian minimal closed
ideal of L. Then H'(L, I) =0 for >0 and HYL, I)=0.

CoxNJECTURE II. Let L be a transitive Lie algebra and I o closed ideal of L. Let
I=]>I>.2I,=0

be a Jordan-Holder sequence for (L, I). If for each j for which I,/1,,; is abelian, where
0<j<k-—1, we have
HI(L/IH-I’ Ii/IH-l) =0,
then
HYL,I)=0 and HYL,I)=0.

CoxNyecTURE III. Let L be a transitive Lie algebra and I a closed ideal of L. If there
exist a fundamental subalgebra LO of L, closed subalgebras A, B of L such that A is abelian
and

L=L"+A+B,

[4, B]=0, [B,I]=0,

then HY(L, I) =0 for j>0 and H\Y(L, I)=0.
We have:

TreorEM 13.1. Conjecture 1 implies Conjecture 11.

TuarorEM 13.2. Conjecture 1 implies Conjecture 111.

Moreover, we shall sketch a method, based on the work of Guillemin [12], for proving
Conjecture I. Before doing this or proving Theorems 13.1 and 13.2, we list some conse-
quences of Conjecture III.

(a) Let L be a transitive Lie algebra. If there exist a fundamental subalgebra L° of L and
an abelian subalgebra A of L such that

L=L'®A,

then H(L)=0, BY(L)=0 and H(L, I)=0, AY(L, I)=0 for every closed ideal I of L and all
3>0.
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(b) Assume that X is connected. Let R, J(T) be a formally transitive and formally
tntegrable Lie equation and N, < R, a formally integrable Lie equation such that

[ﬁk+1’ Nl .

Let x€X; if there is a fundamental subalgebra L° of R, . and an abelian subalgebra A of
R, . such that
Ry ., =L'@®A4,

then R, N, are integrable differential equations and
H/(N,) =0, HR,)=0, HYN\),=0, HY(Ry),=0,

for i>0and all a€ X. If N, , is abelian, then N, is an abelian Lie equation and the structure
of N, is given by Theorem 11.1.

Assertion (a) is obtained from Conjecture IIT by setting B=0. The assertions of (b)
concerning cohomology follow from (a) and Theorem 10.4, (ii). By Lemma 10.3, (ii) of
[10], 7y N, is a vector bundle; therefore, if N, is abelian, the hypotheses of Theorem 11.1
hold for N,.

From (a), we infer in particular that the integrability problem is solved for all Lie
pseudogroups acting on R” which contain the translations, a fortiori for all flat pseudo-
groups. Even if one were interested in proving only this result, one would be forced, by
the necessity of performing prolongations, to introduce the subalgebra B, as is seen from
§ 12. In fact, as has been noted in the Introduction, under prolongation the subalgebra B,
even if it is assumed initially to be zero, reappears and contains a subalgebra correspond-
ing to transformations along the fibers of a principal bundle. Moreover, under prolongation
the transitive Lie algebra L corresponds to a closed ideal of a transitive Lie algebra and
hence, in studying the cohomology of transitive Lie algebras, one is forced to consider the

cohomology of closed ideals of transitive Lie algebras.

Proof of Theorem 13.1. Considering the natural epimorphisms ¢, L/I, ., —~L/1, and the

exact sequences of ideals of LI, and LjI,

G ) U /] S TN 1) gu—

for 0<j<k—1, by repeated applications of Theorem 13.1, (iii) of [10], we see that
HYL, I)=0 it H(L/I,,,, 1,/1,,,)=0 for 0<j<k—1, and of Theorem 10.4, (iii) that
H\L, I)=0 if AYL|I,,,, 1,/1,,,)=0 for 0<j<k-1. Since I,/I,,, is either a non-abelian
minimal closed ideal or an abelian closed ideal of L/1,,,, we have HY(L/I,,,, 1,/1,,,) =0 and
A\L/I,,,, I,/I,,,)=0 according to Conjecture I or our hypothesis and Theorem 11.3.
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Proof of Theorem 13.2. We prove III by induction on iL, I). If (L, I)=0, then I=0
and the result is trivially true. Let k>>1; assume that Conjecture ITI holds for all closed
ideals I of transitive Lie algebras L satisfying the conditions of Conjecture III with
UL, I)<k. Suppose that I is a closed ideal of a transitive Lie algebra L with I(L, I})=Fk
satisfying the conditions of Conjecture III. Consider a Jordan-Holder sequence (12.21)
for (L, I) of length k. Set J =1I,_,; then H/(L, J)=0 for j>0 and AYL, J)=0 by Theorem
11.5 or Conjecture I according to whether J is an abelian ideal or a non-abelian minimal
closed ideal of L. Clearly we have I(L/J, I/J)=k—1. Considering the exact sequence of
ideals of L and LJJ

0->J—>I-1IlJ—~0,

by Theorem 13.1, (iii) of [10], we see that H(L, I)=0 if and only if HYL/J, I/J)=0 for
§>0, and by Theorem 10.4, (iii) that AL, I) =0 if AY(L/J, I|J)=0. We now consider the
objects obtained by applying Theorem 12.3 to L, I9, A, B, I, J; by Theorem 12.3, (iv), we
have isomorphisms

HXL|T, 1(J) -~ HL", j(I}])),

AYLT, I)J) ~ B4L", §(1]7))
for 0 and

UL, §I )y =UL})J, I}|T) =k 1.

By Theorem 12.3, (ii), the transitive Lie algebra L” and its closed ideal j(I/J) satisfy the
conditions of Conjecture III, so that

B, (D) =0, AYL, j(I]d)) =0,
for § >0, by our induction hypothesis. Therefore
HYLIJ, I|J)=0, BYL/J, I]J)=0
which implies that the conjecture holds for the closed ideal I of L.

Outline of a proof of Conjecture I. We begin by recalling briefly required algebraic
facts, most of which are contained in Guillemin’s paper [12]. The main result to be used
is Guillemin’s structure theorem; it essentially reduces the structure of non-abelian mini-
mal closed ideals of (real) transitive Lie algebras to the determination of simple, non-
abelian transitive Lie algebras (over the real numbers) and all of these are known.

Let E, F be linearly compact topological vector spaces over R, whose topological duals
we denote by E*, F*. We define £& F to be the linearly compact topological vector space
which is the topological dual of the algebraic tensor prdduct E*® F* endowed with the
discrete topology. We then have a natural mapping

E®QF-~EQF.

16 — 762908 Acta mathematica 136. Imprimé le 8 Juin 1976
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Let L be a transitive Lie algebra and I a non-abelian minimal closed ideal of L. Then,
according to Proposition 7.1 of [12], I possesses a unique maximal closed ideal J of I.
Thus R=1/J is a simple transitive Lie algebra, i.e., it possesses no non-trivial ideals (see
[12], Proposition 4.3).

We have decomposed our outline into six statements which we now list. Each of these
statements requires a proof; after each statement, we indicate briefly a basis on which a
proof of it depends.

(1) The Lie algebra Der (R) of continuous derivations of R is a transitive Lie algebra
and R can be identified with a closed ideal of finite codimension of Der (R). Moreover,
Der (R) possesses a fundamental subalgebra Der? (R) such that R°=Rn Der® (R) is a

fundamental subalgebra of R and
Der (R) = B + Der? (R).

We remark that, in the case of a finite-dimensional, simple Lie algebra R, we have
Der (R)=R.

A proof of (1) depends on the classification of infinite, simple transitive Lie algebras.

(2) The commutator ring K, of R (i.e., the algebra of linear mappings E— R which
commute with all the mappings ad & R— R with £€ R) is equal to R or C. Furthermore,
Der (R) is a Kz-algebra and R is a K-subalgebra of Der (R).

By Proposition 4.4 of [12], K is a field which is a finite algebraic extension of R;
hence K is contained in the complex numbers C. A proof that K is equal to R or C depends
on the classification of infinite, simple transitive Lie algebras. For simplicity, we shall
henceforth assume that Kp=R.

Before stating (3), we recall some results which are known (and therefore require no
proofs). Let N be the normalizer of J in L. By Proposition 6.2 of [12], NV is open in L and
is therefore of finite codimension in L. Let U =(L/N)* and let F be the ring of formal power
series on the vector space U. If FO is the unique maximal ideal of F, the powers F* of F°
are the elements of a fundamental system of neighborhoods of 0 for the Krull topology
on F. The ring F endowed with this topology is a linearly compact, topological vector space.

Let Der (F) be the Lie algebra of continuous derivations of F and let Der! (F) be
the subalgebra of Der (F) consisting of all elements u of Der (¥) satisfying w(F°)< F'.
Then {Der! (F)} is a fundamental system of neighborhoods of 0 for a topology on Der (F)
and, endowed with this topology, Der (F) is a transitive Lie algebra and Der® (F) is a
fundamental subalgebra of Der (F). Let Y be a differentiable manifold whose dimension
is equal to that of U and let y€ ¥; then (Der (F), Der? (F)) and (Jo(T'y; Y),» Ju(Ty; Y),)

are isomorphic pairs of topological Lie algebras.
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Since R and Der (R) are Lie algebras and F is an associative algebra, the tensor pro-
ducts R® F and Der (R)® F are Lie algebras. There are unique structures of topological
Lie algebras on R® F and Der (R) & F such that the mappings

R®QF -+ R&F, Der (R)QF ~ Der (R)Q F
are homomorphisms of Lie algebras.

(3) The Lie algebra Der (R F) of continuous derivations of R® F is a transitive Lie
algebra; Der (F) can be identified with a closed subalgebra of Der (R @ F) and Der (R)® F
with a closed ideal of Der (R® F). Moreover

Der (R & F) = (Der (R) & F)@ Der (F) (13.1)
and
Der® (R® F) = (Der® (R) & F + Der (R) ® FO)Y@ Der? (F) (13.2)
is a fundamental subalgebra of Der (R & F). Furthermore, R® F can be identified with a
closed ideal of Der (R & F).

The decomposition (13.1) is analogous to Proposition 5.3 of [12] for the Lie algebra

of all derivations of R® F; an argument similar to the proof of this proposition given in

[12] is necessary.
(4) Let L" be a closed subalgebra of Der (R® F) and M be the image of L” under
the projection of Der (R® F) onto Der (F) given by (13.1). If RO F<L" and M is a
transitive Lie algebra and if
Der (F) =M + Der® (F),
then L” is a transitive Lie algebra and
Der (R® F) = L" + Der® (R® F). (13.3)
A proof of (4) depends on (1) and (3).
(5) There is a continuous homomorphism of Lie algebras
¢: L~ Der (RGQF)
such that ¢(I) =R & F and (structure theorem)
6 I>R&F (13.4)
is an jsomorphism and such that the composition of ¢ and the projection of Der (R & F)
onto Der (F) given'by (13.1) is a mapping A: L—Der (F) which takes N into Der? (F),
and the mapping
LN — Der (F)/Der® (F) (13.5)

induced by 4 is an isomorphism.
A proof of (5) depends on arguments similar to those given in § 7 of [12].
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(6) We have
H/(Der (RO F), R&F)=0 forj>0 and HYDer (RQF), R&OF)=0. (13.6)

Since the simple, infinite transitive Lie algebras are classified, by an explicit construc-
tion of formally integrable analytic Lie equations R, N,<J,.(T) on an analytic manifold
X such that N,< R, and R, is formally transitive, [ﬁkﬂ, N )< N, and such that the pairs
of topological Lie algebras (R ,, N ;) and (Der (R® F), R & F) are isomorphic for all
z€X, a proof of (13.6) follows from Frobenius’ or Darboux’s theorem with parameters.

Finally, in order to deduce Conjecture I in the case K, =R, we see from (13.5) that
L" =¢(L) satisfies the conditions of (4) and hence is a transitive Lie algebra satisfying
(13.3). Therefore, by Theorem 13.2 of [10] and Theorem 10.5, we obtain isomorphisms

H*L', R® F) > H*(Der (R® F), RQ F),
AYL’, R& F)—> A\(Der (RQ F), RQ F).
From(13.4), Corollary 13.1, (ii) of [10], and Theorem 10.4, (iv), we obtain isomorphisms
HYL, I)>H%L", R® F),
ByL, 1y~ A L', R& F).
From (13.6) and the above isomorphisms, we obtain Conjecture I when K,=R. As for

the case K,=C, the proof of the statement corresponding to (6) requires the Newlander-

Nirenberg theorem.
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