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1. Introduction

Enumeration problems which can be solved by applying Pélya’s Theorem [9] or Burn-
side’s Lemma [1] always require a formula for N(4), the number of orbits of group 4, or
a formula for its cycle index Z(4). For example, Pélya [9] expressed the cycle index of the
wreath product A[B] of A around B in terms of the cycle indices Z(A4) and Z(B). This
result played a key role in the enumeration of k-colored graphs [13] and nonseparable
graphs [14].

The exponentiation group [B]* of two permutation groups 4 and B was defined by
Harary in [3]. It is abstractly isomorphic to the wreath product of 4 around B. But while
A[B] has as its object set the cartesian product X x ¥ of the object sets of 4 and B, [B]*
acts on YX, the functions from X into Y. Formulas for Z([S,]*) and Z([S,]°*) were found
by Harary [2] and Slepian [16] respectively. Harrison and High [6] have constructed an
algorithm for finding Z([B]*) and have used their results to enumerate Post functions.
In this paper we verify an explicit general formula for Z([B]*) in terms of Z(4) and Z(B)
for any A and B. The result is easily obtained by substituting certain operators for the
variables of Z(A4) and then letting them act on Z(B). Several applications will then be
sketched, including the enumeration of boolean functions, bicolored graphs, and Post

functions.
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The matrix group [4; B) introduced in [8] is another useful representation of the
wreath product. It can be viewed as acting on classes of matrices with 4 permuting the
rows among themselves while the row entires are permuted independently by elements of
B. Our formula for the number N[4; B] of orbits of this group generalizes Redfield’s
Enumeration Theorem [12] and enables us to enumerate a variety of interesting combina-
torial structures. These include multigraphs or multidigraphs with a specified number of
points and lines, and superpositions of interchangeable copies of a given graph or digraph.

For definitions and results not given here we refer to the books [4, 5].

2. Permutation groups

Let A be a permutation group with object set X ={1, 2, ..., m}. The order of 4 is
denoted by | 4| and the degree of A is m. For any permutation « in 4, we denote by j(«)
the number of cycles of length & in the disjoint cycle decomposition of «. The cycle type
Z(x) is the monomial in the variables a,, a,, ..., a,, defined by Z(ax)=]]7-1 a**. The cycle
index Z(A) is

1
I—ﬂz%Z(a).

It is often convenient to use the expression

Z(4)=

Z(AY=Z(A; a,, ay, ..., a,)
to display the variables used.

Let B be another permutation group of order | B| and degree » with object set ¥ =
{1,2, ..., n}. The wreath product of 4 around B, denoted A[B], is a permutation group with
object set X x Y. For each permutation « in 4 and each function 7 from X into B there is
a permutation in A[B] denoted («, ) such that for every element (z, y) of X x ¥

(“1 t) (x: .'/) = (m, T(x)y)

It is easily checked that this is a collection of permutations closed under composition and
hence forms a group.

For each integer k>1, let
Z(B) =Z(B; b,, by, ..., byy).

Thus Z,(B) is the polynomial obtained from Z(B) by multiplying each subscript by
k. Pélya [9, p. 180] used his enumeration theorem to establish the following formula for
Z(A[B)).

TaeorEM 1 (Pélya). The cycle index Z(A[B)) is obtained by replacing each variable
ay, of Z(A) by the polynomial Z,(B); symbolically
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Z(A[B)) = Z(4; Z\(B), Zy(B), ..., Zn(B)).

Our formulas for the cycle index of the exponentiation group and the number of or-
bits of the matrix group are considerably more complicated than that of Theorem 1 but
are similar in that they involve the replacement of each variable a, in Z(4) by a suitable
transformation of Z(B) which depends on .

A generalization of the wreath product is possible when A4 is intransitive. Suppose
X = ¢, X, and each X is a union of transitivity sets of 4. Let B, ..., B, be permutation
groups with disjoint object sets Y, ..., ¥, respectively. The generalized wreath product,
denoted A[B,, ..., B;], acts on Ui.; X;x Y,. For each « in 4 and each sequence 1y, ..., 7;
with each 7, in B¢ there is an element denoted (x; 7y, 73, ..., T;) in A[ By, ..., B,] defined as
follows. For any (x, y) in X; x Y,

(d,' Tys over Tt) (CE, ?/) = (m; Ti(x)y)

To express the cycle index of this group we require the cycle index of A4 in the ge-
neralized form introduced by Pélya [9, p. 174]. For each « in 4 let

t
Z,...u(@) = [T [T o™
=1 s
where §(¢, 8) is the number of cycles of length s induced by « in X,. Then let

1
Zx,,...x(A)= m ZAZX,.....X:(OC)-

Ag asgerted in [14, p. 336]
Z(A[B,, ..., B]) =Zx,... x(4)[a,;~ Z,(B)]

where the arrow indicates substitution.

When t=1, X =X, and B= B,, this formula gives the same result as Theorem 1.

3. The exponentiation group

The permutation groups 4 and B have object sets X ={1, 2, ..., m}and Y ={1, 2, ..., n}
respectively. Since the wreath product acts on X x Y, it can be viewed as permuting the
subsets of X x ¥ which correspond to functions from X into Y. This representation of the
wreath product is called the exponentiation of A and B and is denoted by [B]*. Thus each
element (e, 7) of the wreath product A[B] permutes the functions f in ¥* according to the
rule
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(@, ) )2 = (@) (o))

for each z in X,

To state the theorem which expresses Z([B]4] in terms of Z(A4) and Z(B) we require
the next few definitions. Let R=Q[b,, b,, ...] be the ring of polynomials in the commut-
ing variables b, by, ... over the ring Q of rational numbers.

Now we recall the cartesian product operation x on R introduced by Harary [2]. For
two monomials in R we define

Birbl .. bim x bbb = [] T1 by M
s=1 t=1
where [s, t] and (s, t) denote the l.c.m. and g.c.d. respectively. It is clear that this operation
is associative for monomials. Then x is the unique Q-bilinear operation on R which satis-
fies (1). We leave it in to the reader to check that x is associative.
Given any set 8, we define scalar multiplication over Q, addition and multiplication for

the elements of R® as follows. For every f and g in RS, 2in Q and P in S:

(Af)P = A(fP) 2)
(f+9)P ={P+gP (3)
(fg)P = fP xgP. (4)

With these operations RS becomes a commutative ring over Q, to be denoted by
S(+, x).
For each positive integer » let I, be the unique Q-linear element of R(+, x) which

satisfies
(11 %) - 1 )
k=1 v=1
where ;=1 S v (S kj)re (6)
L w|v'u P T

the inside sum to be taken over all divisors & of w/(r, w). From the Q-linearity of I, we have
1
I(Z(B)) =77 2 I.(Z(B)).
| B| jes

THEEOREM 2. The cycle index Z([B]*) is the image of Z(B) under the function obtained
by substituting the operator I, for the variables a, in Z(A); symbolically

Z([BY) =Z(4; I, ..., 1,)Z(B).
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Before launching the proof of Theorem 2 we illustrate its use by finding the cycle in-
dex of a well known exponentiation group. Let 4 =8, and B=S,, the symmetric groups of
degree three and two respectively. We seek the cycle index of [S,]%, which is the group of
the cube. First we substitute the operator I, for each variable a, in Z(S,):

Z(Sa’ I1,12:Is)= (I¥+31112+213)- (7

1
3!
The terms of (7) act on Z(8S,) as follows:

I3(Z(89)) = 1, (Z(8,)) x I (Z(8y)) x I, (Z(S5))

8
L I,(Z(8,)) = I, (Z(8,)) X I.{Z(8,)). ®)

It follows from the definitions (5) and (6) that

Il (Z(S2)) = Z(Sz) = %‘ (b% + bz)
and
Iz (Z(Sz)) = ’% (Iz (b?) + Iz (bz))

= %‘ (b%bz + b4)
and
Ia(Z(S2)) = %‘(Is (b?) + Is (bz))

=3 (b%bg + bzbs)-

From (8) and the definition of the cartesian product x for polynomials, we find

1
B (B(Sy) = 55 (B +ThY)
LI, (B(3) = 55 (6453 + b+ 280,

Having determined the images of Z(S,) under I3, I, I, and I, we have by linearity
its image under Z(S,; I, I1,, I5):

1
3128

Z([8,]%) = (b8 + 6b1bE + 8b302 + 1353 + 8b,bg -+ 1253). (9)

This result agrees pleasantly with the formula for the cycle index of the group of the cube
worked out by Pdlya [10].

The hardest part of these calculations occurs in the evaluation of I ([ ¢, b%*) by for-
mulas (5) and (6). But it is helpful to note that if (r, v) =1, then ¢, =7, and if p is prime, then

. ={jp if pfr
PG —dle i plr.
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Furthermore, with the aid of these observations, it can be seen that

I, (kﬁlb:ck) = ( 1 b{:) Bs et oppanssa-ne |y

2k
and

L [GEFNTE] s
Is( I1 blick) = (H b") (bs bgmzm*«z1.—1:)/6b(9(11+31.> -9 ).

k=1 srk ©

4. Proof of Theorem 2
Let 4 and B be permutation groups with object sets X ={1, ..., m} and Y ={1, ..., n}

respectively.
For the first part of the proof assume « in A4 is the cycle (12 ... m), fix  in B and
consider any 7 in B* such that

T(m)r(m—1) ... 7(2) (1) = B. (10)

We wish to determine the number of functions in ¥ ¥ left fixed by (a, 7)?, where (a, 7) is
viewed as a number of [B]*. Equivalently, we want the number of functional subsets of
X x Y left fixed by («, 7)° where (a, 7) is considered as a member of A[B]. The latter view-
point is the one taken in the sequel. For any y in ¥ we have

(o, 7) (1, y) = (a1, T(1)y) = (2, 7(1)y)
(o, )L, ) = (3, T(2)r()y)

(@ (L, y) = (1, 7(m) ... 7)) = (1, By)
(o 2™(L, 9) = (1, f)

(@ 7™ (1, ) = (1, 9)

where k is the least number such that f*y =y. That is, k is the length of the cycle to which
y belongs in the disjoint cycle decomposition of g.

Thus (1, ») falls in a cycle of length mk in the cycle decomposition of («, ). Call this
cycle C. The cycle into which (1, %) falls in the cycle decomposition of («, 7)° is found by
taking every v’'th member of C, starting with (1, ). Call this cycle C,. The situation is
illustrated in Figure 1 for the case m =10, k=3, and v=12.

Let s be the length of C,. The v’th power of any cyele of length mk consists of (v, mk)
cycles of length mk/(v, mk). Hence s =mk/(v, mk). Now a necessary condition for a function
f containing (1, ) to be fixed by («, 7)® is that f also contain all the other pairs in C,. In
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(Ly)

oY)

(1,0 o, 8y

(o]
(3, 7(2) 7(1) By}

(@] o

Figure 1. Diagram of C and C,with k=3, m =10, v=12.

particular, C, must not contain any pair of the form (1, y’) with y'+y. This means that
for 1 <p<s, vp must not be a multiple of m. Therefore s <m/(m, v). But sv is a multiple of
m and hence we also have s =m/(m, v). But m/(m, v) =mk(mk, v) just if &|(v/(v, m)).
Conversely, it is easily seen that if y is in a cycle of length % in the cycle decomposition
of B and k|(v/(v, m)), then (1,y) is in a cycle C, of length m/(m, v) induced by (e, 7)’.
Moreover C, is functional when viewed as a set of pairs, since there is nothing special about

1 in the preceding analysis. The domain of C, contains j for 1 <j<m just if

j+mg=1+rv

for some integers ¢, r. This implies that =1 modulo (m, v), a condition satisfied by exactly
m/(m, v) integers between 1 and m. Since m/(m, v) is the length of C, and C, is functional,

the domain of €, must contain all of these numbers. That is, the domain of C, is exactly
{i]1<i<m and 7=1 modulo (m, v)}.

The pairs in O, are determined by (1, y) and («, 1)?, and if f(1)=y and («, T)’f=f they
must all appear in f. This determines f on the domain of C,. All that is needed to deter-
mine any f left fixed by («, 7)?, then, are the values f(1), f(2), ..., f({mm, v)) since there is
nothing special about 1 in the above analysis.

Recall that the cycle type Z(8) of 8 is b{bf ... bi». For any integer ¢ between 1 and
(m, v) the number of choices available for f(i) where (x, T)’f=f is > x; kj,; the asterisk
9 — 732906 Acta mathematica 131, Imprimé le 22 Octobre 1973
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represents the restriction of the summation index k to divisors of v/(m, v). Since the (m, v)

chowes for f(1), ..., f((m, v)) are independent, there are a total of
n . (m,v)
(Z k?k)
k=1

Now let i, be the number of eycles of length w in the cycle decomposition of (e, T)

functions left fixed by (a, 7).

viewed now as acting on YZ. Then
wzwwiw — (Z# kjk)(”'"')-

An explicit formula for i, is obtained by an application of mébius inversion, giving
the formula (6) for the definition of I,,. Consequently the cycle type Z(«, 7) of (o, 7) act-
ing on Y* is just I,(Z(B)). There are | B|™ ! functions v in B* which satisfy (10) since
T(m), ..., T(2) may be chosen from B arbitrarily, and then z(1) is uniquely determined.
Summing over all 7 satisfying (10) we have

1 1
B[ §Z<a, 7)= B[ | B|™'I,,(Z(B)) = mlm(z(ﬂ))-

Summing over all § in B, which allows 7 to run through all of B%, and applying the
linearity of I,, we find

IBI"' Z Z(, v)=1,,(Z(B)). (11)

Now consider the case when « is a product of disjoint cycles «, and o, of lengths m,
and m, respectively. We can view (e, 7) for T in B¥ as the product of (o, 7,) and (e, 7a)
where 7, and 7, are the restrictions of 7 to the elements permuted by «, and «,. If f, and f,
are the restrictions to «, and o, of a function f in Y%, then we have f=f, Uf; and (a, 7)f =
(0t3, T,) f1 U (aty, T5) fo, the unions being disjoint. Thus if £, is in a cycle C; of length p induced
by (o4, 7,) and f, is in a cycle C, of length ¢ induced by («,, 7,), then fis in a cycle of length
[», q] induced by («, 7). The total pg of functions obtained by pairing one from C; with one
from C, must be divided into (p, g) cycles of length [, q]. This corresponds to taking a
factor b, from Z(oy, 7,) and b, from Z(a,, 7,) and finding b, xb,=b{%: % in Z(e, 7). These
factors may be chosen independently, and so using the associativity of the cartesian pro-

duct operation x we find that

Z(et, T) = Z(0ty, Tq) X Z(0tg, T).

Applying (11) to the cycles o, and o, we have for i=1, 2
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1
(B[ Z‘ Zoy ) = 1,,(Z(B))
where the sum is over all 7, from the set of elements permuted by «, into B. Consequently

1
g2 4 7) = I, (Z(B)) x 1,,,(Z(B)) = 1p,1,,,(Z(B)),
IBI reBX
the second step in view of the fact that I, and I, belong to the ring R(+, x) for all
algebraic purposes.
This line of reasoning works as well when « is any product of disjoint cycles and so

in general
oS Ha 1) = IR IE . I(Z(B)) (12)
| B|" &5
where Z(«) =] [5-1 ai*. The proof is concluded by summing (12) over all « in 4, and divid-
ing by |4].
The generalized wreath product A[B,, ..., B,] acting on U}_; X, x ¥, induces a group
[By; ..., B;}* which acts on ¥ x...x Y. This induced group is a generalized exponentia-
tion group whose cycle index we shall now express.
For any ¢-tuple (P, ..., P;) in Rf, any ¢ =1 to ¢ and any positive integer s, let

Ii.s(Pl’ ey Pt) = Is(Pi)

On viewing the operators I; ; as belonging to the ring Rf(+, x ), the cycle index formula
is given by
Z([By,..., B)*) = Zx,,...x(4) [a,s > 1] (Z(By), ..., Z(By)). (13)

The proof of (13) requires only straightforward modification of the proof of Theorem 2.

5. Applications of Theorem 2

We shall now outline a few of the results which require the cycle index of an expo-
nentiation group.

A boolean function of n variables can be regarded as a mapping from the set of all
n-sequences of zeros and ones into {0, 1}. Hence it corresponds to a subset of the points
of the n-cube Q,. Pélya [10] regarded two such subsets as equivalent if an automorphism
of @, takes one to the other. Denoting the group of the n-cube by I'(Q,), he used his enu-
meration theorem to obtain the following result: the number N(n, r) of boolean functions
of n variables which have exactly r nonzero values is the coefficient of z" in Z(I'(Q,), 1 + ).

As observed in 2], I'(@,) and [8,]°* are identical and hence Theorem 2 can be used

to complete this enumeration problem.
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On substituting 1+ in Z([8,}%*), given by formula (9), we have
1+ 2+ 322 + 323+ 62* + 32° +32® + 27 +2°.

Then, for example, there are 6 boolean functions with 4 nonzero values. The 6 cubes which
correspond to these functions are shown in Figure 2 where dark points represent the non-

zero values.

Figure 2. The 6 cubes with 4 points of each value.

Pélya calculated Z(I'(Q,)) for » <4 and Slepian [16] found a general method for cal-
culating this cycle index and applied it for =5 and 6. ‘

A Post function of n variables can be defined as a mapping from the set of all n-sequen-
ces of the numbers 0, 1, 2, ..., m—1 into the set {0,1, .., m~1}. When m =2, these are
just boolean functions and their total number, when equivalence is determined by the
group [S,1% of the n-cube, is Z([S,]%, 2). When m variables are present, the number of
Post functions is Z([S,,]°", m) as mentioned in [6]. Harrison and High used their method
for deriving the cycle index of the exponentiation group to calculate some of the values
of Z([8,I*", m). They also found the number of Post functions under different equivalences
determined when S,, is replaced by the cyclic or dihedral groups of degree m.

The exponentiation group was also used by Harary [2] to count bicolored graphs: the
number of bicolored graphs with r lines and = points of each color is the coefficient of »”
in Z([S,I%, 1 +x).

An explicit formula for Z([S,]**) was found in {2] but our general formula also applies.

For example, Theorem 2 can be used to find that
28] = 7i2 (B + 125353+ 8 b2+ 9 b, b+ 185, b + 245, by).

Then the polynomial which counts bicolored graphs with 3 points of each color is
1+ + 222 + 423 + 52* 4 53° + 4a® 4 227 + 2% 4 2°,

The coefficient of «3 is illustrated in Figure 3.
We conclude by mentioning some results from [7] concerned with determining the

cycle index of the group of a graph.
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o—-e i : { Z ®
o—e Oo—=0 @) ® ®
Figure 3. The 4 bicolored graphs with 3 lines and 3 points of each color.

Sabidussi [15] introduced a binary operation x on graphs and showed that with re-
spect to x every nontrivial connected graph has a unique factorization into prime graphs.
From his results it also follows that if @ is a connected prime graph then the group of the
cartesian product of n copies of G is precisely the exponentiation group [['(G)]** where
I'(@) is the group of G. Thus Theorem 2 can be used to calculate Z(I'(G x ... x ()) when
Z(I'(@)) is known. This in turn provides a basis for applying Polya’s counting theorem to
problems involving @ x ... x @, for instance to find the number of ways to color the points

of this graph with a given number of colors.

6. The matrix group

As before the permutation groups 4 and B have object sets X = {1, ..., m} and ¥ =
{1, ..., n} respectively, so that the wreath product A[B] acts on X x ¥. A partition of
X x Y is called functional if each subset of X x ¥ in the partition is a function from X to
Y. We have viewed the wreath product as acting on functions from X to ¥ and next shall
regard it as permuting the (n!)"~' functional partitions of X x ¥. Thus any element (e, 7)
of A[B] sends the functional partition F = {f,, f,, ..., f,} to the set of functions which are
the images of the f, under («, 7) viewed as a member of [ B]4. It is obvious that this new
set of functions is again a functional partition of X x ¥, and we denote this new repre-
sentation of the wreath product by [4; B].

This representation was called the matriz group in [8] because each functional parti-
tion F corresponds in a natural fashion to an equivalence class of m x n matrices. For this
purpose two m x n matrices are equivalent if they have the same set of columns. Then if
F={f,, ..., f,}, a correspondent to F is the matrix M for which the 1, § entry is f;(¢). Thus
the images of the jth function determine the entries in the jth column of M.

The action of [4; B] on the (n!)" ! functional partitions is equivalent to its action on
these (n!)"~! classes of matrices. Specifically, (, 7) can be regarded as sending the class
of matrices to which M belongs to the class to which M’ belongs, where M’ has as its ¢, §
entry v(a~17)f,(e”"¢). Thus v(k) permutes each entry in the kth row of M and then the
rows are permuted by o to get M’. This interpretation of the object set of [4; B] will be
useful to us later.

Each functional partition F={f,, ..., f,} has associated with it a permutation group
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whose object set is F. Suppose («, 7) in the exponentiation group [B]* fixes F setwise.
Then the restriction of («, 7) to F is regarded as an automorphism of F and the totality
of different restrictions make up the group of F. We denote the cycle index of this group
by Z(F).

We now illustrate some of these concepts with 4 =8, and B={(1)(2)(3)(4), (13)(24)}.
We shall soon see that the matrix group [S,; B] has 7 orbits. Each of the seven 2 x 4 mat-
rices in Table 1 corresponds to a functional partition, one from each of these orbits. Next

to each matrix is the cycle index of the corresponding functional partition.

Table 1. Cycle indices of 7 functional partitions

L1y e
C259 e
BE1Y e
(3 735 oetrae
209

(i i z ‘;) 164 + 2526, + BD)
(1 2 3 4) 5.

1 4 2 3

The next theorem provides a formula for the sum of the cycle indices of the groups
of any set of distinct representatives of the orbits of [4; B). This formula depends only
on Z(A) and Z(B). To state the result we require a few preliminary definitions.

The operation 9§ introduced by Redfield {12] is defined for monomials in R as follows:

(b bg..b7) 25 (B0 ... b) = [T (kb5 (14)

if 4, =j for all k and is zero otherwise.(1) Then ¢S is the unique Q-bilinear operation on R
which satisfies (14). Clearly § is associative.

(1) The figure 1§ used by Redfield is the astronomical symbol for the “‘descending node of the
moon or & planet’ (cf. Webster’s unabridged dictionary).
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For any set § let S(+, ) be the ring with elements from R¥, and operations defined
as for S(+, x ) except to replace x by ¥ in equation (4).

For each positive integer , let J, be the unique Q-linear operation in R(+, ?§) which
satisfies the two following equations.

J, (b)) =1k Z(8;;dy, dy,s ..., d)) (15)
J,( I1 b;;) = [1J,(™). (16)
k=1 k=1

Here for each i between 1 and j we let

i bylk it ir and (rfi,k)=1
" |0 otherwise.

Since J, is linear we have

1
JAZ(B) =51 2 J.(Z(B)).
| B| ges

THEOREM 3. Let F,, be a functional partition in the k’th orbit of the matrix group [4; B]
for k=1,2, ..., N[A; B). The sum of the cycle indices of the F is the image of Z(B) under
the function obtained by substituting the operators J, for the variables a, in Z(A); symbolically

SEF) =LAy, ..., T ) Z(B).

To illustrate the theorem we again take 4 =S, and B ={(1)(2)(3)(4), (13)(24)} so that
Z(A; 3, dg) =3+ To),
and Z(B) =} (b} +52).
We seek 33 +,) (Z(B) = }{JHZ(B) + T (Z(B)}- (17)
Since J, is by definition the identity operator
J2(Z(B)) = J,(Z(B)) 6 J,(Z(B))=Z(B) S Z(B).

By the definition of 5.

Z(B) 2 Z(B)—= }(b% S bt + b3 0 b3) = } (4! bt + 2% 263) = 6 b% + 255, (18)

At this point it is helpful to observe that for any prime p, formula (15) for J,(b}) can
be written:
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0, if plt but pfj

J,(bl) = (iy'!Ic""“”"bi,’;f)/((i/p)!p”"), if plk and plj
Uiim
2 (1R bibl (G sp) st p®) i pfk.

5=0
The linearity of J, and the previous formula imply
J2(Z(B)) =} (J,(b3) + I (b3) = } (b1 + 6 b7b, + BbF) + 2b,). (19)
Substituting (18) and (19) in the right side of (17) yields
3(J3+ ) (Z(B) =1 {6b1 + 25+ 3 (b1 + 613, + 303+ 20,)}. (20)

The reader can verify that the right side of (20) is indeed the cycle index sum for the
7 functional partitions listed in Table 1.

If only N[8,; B] is desired, it can be found by summing the coefficients of the right
side of (20). This follows from the fact that the coefficient sum of any cycle index is 1.

CoROLLARY. The number of orbits N[A; B) of the matrix group [A; B] is the coefficient
sum of Z(A; Jy, ..., J)Z(B).

7. Proof of Theorem 3

For each functional partition F of X x Y let T, be the subgroup of [4; B] consisting
of all elements which leave F fixed. For each (a, 7) in [4; B] let

O(a, 7) = {F|(a, 7) €T}
If FEO(a, ) let

Z((a, 7); F)= ] ey,

where 1, is the number of cycles of functions in F of length » induced by («, 7), viewed
as being in [B]4. Thus
1
Z(F)=r~ 2 Z((@7); F).
ITFI (2, D)ETF
Let R be a set of distinct representatives for the equivalence classes induced by [4; B]
on all the functional partitions of X x Y. By an extension of Burnside’s lemma due to one
of the authors [14, equation (2) on p. 329]
1
2 Z(F) 2 Z((1); F). 21

FeR - IAl |B|m (x, 1)€AX BX FeO(a. 1)

Direct evaluation of the sum on the right will be the basic task of this proof.
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The use of this extension of Burnside’s lemma is not justified unless
Z((y, o) Mo, T)(p, 0); (¥, 0)"1F) = Z((«, 7); F)

for all («, 7) in Tz and (y, 6) in [4; B]. To see this, view («, 7) and (y, ¢) as being in [B}*
and note that (f,f; ... f,) is a cycle of («, T) in F just if ((y, 6)7Y,; ... (¥, 6)7;) is a cycle of
(y, o)y Yo, T}y, 0) in (y, 0)71F.
First suppose that a=(12 ...m), fix any 7€ B¥ and let f=7(m)r(m—1)...7(2)7(1).
As shall be seen,
2 Z((e7); F)

FeO(a,7)
depends only on m and Z(g).
Take any y in ¥ and let k& be the length of the eycle in 8 to which y belongs. We are
going to make use of the following two observations from the proof of Theorem 2.
We have seen that (1, y) is taken through a cycle C of length mk by («, 7). As before
let C, be the cyele in which (1, y) is permuted by («, 7)°. Then

(i) C, is functional if and only if k| (v/(m, v)),
and
(ii) when k| (v/(m, v)) the domain of C, is

{3]1<s<m and s=1 (modulo (m,v))}.

Suppose F is some functional partition of X x ¥ left fixed by («, 7). Let f be the ele-
ment of F such that f(1) =y. Let v>>1 be minimal so that («, 7)’f=f. Let 1= (m, v). By fact
(i) we can write » =7tk for some 7. Now (m, ik) =1 since (m, rik) =1. Clearly C,; is contained
in Cy. But k| (ik/(m, ik)) and, so by fact (ii) €,y and Oy have the same domain. Thus they
are equal. Thus («, T)* (1, y) is in C,;, hence is in f since (a, 7)"%f=f. But also (&, 7)*(1, y)
is in (e, 7)*f. Since f and («, 7)*f are members of a partition, they must be equal. So
the minimality of v requires r=1.

To summarize our findings: if («, ) maps fEF into a cycle of length v then v=—ik
where i|m and (k, m/i)=1. Now it follows that k is the length of the cycle which f induces
on any element of the range of f. For if i'k" =ik, i'|m and (&', m/i') =1 then it is easy to
see that ¢=¢"and k=%'. For each k>1 let

Dy ={y|1<y<n and yisin a cycle of length k in f}.

What we have seen is that if (f, ... f,) is a cycle of functions induced on F by (e, 7) then the
ranges of f,, ..., f, all lie in a single set D,, and v =ik where i|m and (k, m/i)=1.

Now consider the problem of how many functional partitions F are left fixed by («, 7)
and have a particular cyele type induced by («, 7). Pick y € D, and a function f containing
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(1, y). Then f must lie in a cycle of length ik for some 1 as above in order for f to be in a
functional partition fixed by («, 7). So fix such an %, and consider how many ways there
are to form such a cycle of functions. Since f is fixed by («, 7)* (viewed as a member of
[B]%), f must contain all of the pairs («, 7)"*(1, ) (viewing («, 7)™ as a member of A[B])
for r=1, 2, ... . By fact (ii) this means that f is determined for those arguments s =1 mo-
dulo ¢. Moreover f cannot contain any pair («, )*(1, y) if ¢kfw. For then as before if f is
to be contained in some partition left fixed by (, 7) we would have (o, 7)*f=f. This contra-
dicts our assumption that f is to be permuted in a cycle of length ik by («, ), which implies
that (a, 7)’f=f just if ik|v. Now (e, 7)*(1, y) for w=0, 1, 2, ... runs through all the pairs
(s, 9') for 1<s<m and y' in the same cycle of § as y. Thus, the different equivalence clas-
ses modulo ¢ of {1, ..., m} must be sent into distinct cycles of 8, each of length k. Thus we
must choose f(1), ..., f(3) to be in distinct cycles of D,. Then by our facts (i) and (ii) f is
completely determined, and is permuted in a eycle of length ¢k which is a functional parti-
tion of X x D, where D is the union of the cycles of D, which contain f(1), ..., /(). Fixing
D, there are exactly k'i! ways to choose such an f. For there are ¢ cycles to choose f(1)
from and k elements in each, 1 —1 cycles left to choose f(2) from and % elements in
each, ete.

In all there are (k's!)/(ki) ways to obtain a cycle of length ki induced on a functional
partition of X x D by (a, 7), since it makes no difference which of the ki members of the
cycle is considered to be the first one.

Suppose now that D, contains exactly j cycles. There will be a functional partition of
X x D, fixed by («, T) with cycle type [ ], b% just if

() ;=0 unless i|m and (k, m[i)=1,

and
(b) 24ig,=j.
In that case we claim that there are exactly
7! i\ %
ol (5 22

ways to choose a functional partition. The left factor is the number of ways to arrange the
j cycles into disjoint groups, g, groups of size % for each 7. Now each group of size ¢+ must
be the range of a cycle of functions of length ik induced by («, ), the choice of function
cycle being independent for each group. So the right factor gives the total number of ways
to complete the functional partition.

The term in j!%'Z(S,) corresponding to the sequence gy, g,, ... where X, ig,=j is just
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k4!
ﬁ—q,' 35 I:I b?'
i
Observe that (22) times II, b% is obtained by substituting by/k for b, in this term.
Refering to the definition (15) of J,,, we have shown that if ¥ =D, then
> (1) F)=j1KZ(8;;dy, dys ... , dy) = T (b)) (23)
FeOla, 1)
It was seen earlier that if F €0(«, 7) then F is the union of functional partitions of X x D,
k=1, 2, ..., n, each left fixed by («, 7). Since the choices for these partitions are independent
for different k, we can apply (23) repeatedly, obtaining
2 Z((0,7); F) =Ty (01) I (B8) ... T (1) = T, (B bF ... B) (24)
FeO(x, )
if Z(B)=blbL ... b/ This is under the original hypothesis that « is a single cycle of length
m and
p=zm)r(m-1) ...7(1). (25)
Now, as seen in the proof of Theorem 2 there are just |B|™' functions 7 in BX which
satisfy (25). Summing (24) over this set of functions gives
1 1 1

P . - m-1 —_—
(B2 rei o 2@ D3 ) = 15w | BI" Tn(Z(B) = 15 Tn Z(B)). (26)

Summing (24) over all 7 € BX corresponds to summing (26) over all 8€ B, which gives

B 2, 200 ) )= T Z(B) 27)
since J,, is Q-linear.

The assumption that « is a single cycle is now dropped. Instead, let « be any element
of A and suppose that X is the disjoint union of X,, X, where each is a union of cycles of
. Then o(X,;)=X, and «(X,)=X,. Let oy =a|y, and ay=0t|y,. Similarly for any f in ¥*
or 7 in B%, we can split these into disjoint parts f, and f, or 7, and 7,, by considering the
restrictions to X; and X,. Functional partitions of X x ¥ correspond in a natural way to
triples (¥, F,, ) where F, is a functional partition of X, x Y, F, is a functional partition

of X,x Y, and ¢ is a 1 -1 map from F, onto F,. With the triple {(F,, F,, ¢)> corresponds
the partition

{fU‘P(f)VEFl}'

This correspndence is easily seen to be 1-—1 and onto. A necessary and sufficient set of
conditions for (Fy, Fy, ¢ to correspond to a partition in O(a, 7) is:
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1. F,€0(ey, 79)

2. Fy€0(aty, T) :

3. If (f, ... fi) is a cycle induced on F by (ay, 7,) then (¢(f,) ... ¢(f;)) is a cycle induced
on F, by («,, 7,)-

Condition 3 implies
4. Z((ay, 7y); Fy) =Z((ap, To); Fy).

Given F,, F, satisfying 1,2, and 4 where the common cycle type is [ [/, 5%, there

are exactly

[ i,
-1
ways to choose a 1 —1 correspondence @ satisfying 3. To see this note that for each ¢ there
are j;! ways to match up the ¢ cycles of length 7 in F, with the j, cycles of length i in F,.
For any two particular cycles of length 1 there are just ¢ different ways to match them up.
Refering to the definition of 9§ (14) we have shown that

Z((2, 71); F1) BZ((z, Tp); Fy) =§Z((“’ 1); F) (28)

for any F, and F, satisfying 1 and 2, the sum on the right to be taken over all F€0(e, 1)
corresponding to (F,, F,, > for some p. Summing (28) over all 7, in B*, all F, in O(ey, 7,),
all 7, in B* and all F, in O(a,, 7,) gives

(2 2 Zemm) F)VB( 2 > L) Fo)) = 2 2 Z((e,7); F), (29)
71€BX; Fe0(a;, 1) 736 BX; FoeO(as, 75) 7eBX 7¢0(a,7)

in light of the Q-linearity of 5.

Now we claim that in general

1
TR 2 Z((a,v); F)=Z(as s, ..., I ) Z(B), (30)
IBI 7eBX FeO(a, 1)
and proceed by induction on the number of cycles of «. If « is a single cycle this reduces to
(27). If « has more than one cycle then X is the disjoint union of sets X;, X, which are
unions of cycles of «, and have cardinalities m,, m, respectively with m,, m,>1. Then with

o, &y a8 before note that each has fewer cycles than «, and in fact
Z(a) = Z(o) Z(cxs).

Also | B|™ | B|™ =| B|™. By the induction hypothesis we assume (30) for «,, «, in place of
. With these relations and (29) we obtain
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1 -
W reBX Feoz(;z 'r)Z((a, T); F)
= (Z(og; Jy, oes JW)Z(B)) B (Z(0tg; Iy -y I ) Z(B))
=Z(a; Jq, oos S ) Z(B)).

Here it is important to recall that J, ..., J,, are members of R(+, 1§) for algebraic purposes.
Thus (30) is proved by induction. )

Finally, the theorem follows from (21) and the result of summing (30) over all €4
and dividing by |4|. This concludes the proof of Theorem 3.

At the end of section 2 a generalized wreath product A[B,, ..., B,] acting on Uf_; X x
Y, was introduced. This induces a generalization of the matrix group which is denoted
[4; B, ..., B;]. The object set of [4; B, ..., B,] is the set of partitions F of Uj-, X;x Y,
into subsets 8 which have the property that for each x€X, there is exactly one y€Y,
such that (z, ) is in S. For any such partition F we denote by Z(F) the cycle index of the
subgroup of [4; By, ..., B;] which leaves F fixed, with F itself as the object set. If F,
ranges over some selection of distinct representatives of the orbits of [4; By, ..., B;] then
an expression for X, Z(F,) can be found which is a generalization of Theorem 3. For each
1<i¢<t,all s>1, and any Py, ..., P, in R let

Ji.s(Pl’ ey Pt) = Js(Pi)

The operators J, ; are to be viewed as members of the ring Rf(+,?5). Then
%Z(Fk) =Zx,...x(A)[a, s> J; J(Z(By), ..., Z(By)). (31)

In case =1 and B, =B this gives the same result as Theorem 3. In case 4 is the identity
group E, and X,={i} for 1<i<¢ this gives Redfield’s Decomposition Theorem [12,
p- 445]. Tt should be noted that the object set of [A4; By, ..., B;] is empty if any of the
object sets Y, of B, have different cardinalities. It follows from the definition of § that
in this case (31) gives the value 0 for X, Z(F,).

8. Applications of Theorem 3

The superposition of a set of graphs G, ..., G,, all on the same set of » points is the
union of their sets of lines, multiplicity included. Furthermore, in this union the lines of
@, are assumed to have color ¢, different from color ¢; for j=+1. All eight superpositions of
two paths P, of order 4 are shown in Figure 4.
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Figure 4. All eight superpositions of two paths of order 4.

Read [11] and Redfield [12] were able to calculate the total number of superpositions
of @,, ..., @, as a function of the cycle indices of the groups I'(G;) of these m graphs. In
fact Redfield showed that this number is the coefficient sum of

ZT@GNY - BVZI(Gn)). (32)

Now suppose all the graphs G,, ..., G,, are isomorphic to G with point set ¥ ={1, ..., m}
and let K, be the identity group on X ={1, ..., m}. Then it can be seen that each functional
partition of X x Y corresponds to a superposition of m copies of G, and furthermore the
number of superpositions is the number of orbits of the matrix group [E,; I'(G)). From

Theorem 3 it quickly follows that this number is the coefficient sum of
Z(LG)Y - VZT(G))

which agrees with Redfield’s result (32). For example, if @ is the path of order 4, its cycle -
index is (b7 +b3) and hence the number of superpositions of 2 copies of @ is the coefficient
sum of §(b}-+b3) %S 3(b} +b2) which is 8 (compare Figure 4).

When dealing with superpositions of m copies of a given graph G, however, we can ask
for the number obtained when specified copies are allowed to be permuted among them-
selves. Thus if we allow the 2 paths of order 4 to be interchangeable, then the last 2 graphs
in Figure 4 are to be identified. This simply amounts to using the matrix group [S,; I'(P,)]
instead of [E,; ['(P,)]. In general we have the following result.

The number of superpositions of m interchangeable copies of the graph & is
N[8,; T'(3]. Redfield used his enumeration theorem to calculate superpositions of cycles of
order n, whose group is the dihedral group D,. We have used Theorem 3 to compute
the corresponding number of superpositions of interchangeable copies of cycles. The results
are summarized in Table 2.

We can also apply Theorem 3 to enumerate multigraphs with a given number m of
lines and » points. Let G be the graph of order n with exactly one line. Then the cycle index
of its group Z(I'(®@)) is Z(8S,)Z(S,_,). Each superposition of m interchangeable copies of G
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Table 2. The number of superpositions of cycles of order n<6

n N{Ey; D,] N[8y D;) N[Egz D,] NSy Dyl
3 1 1 1 1

4 2 5

5 4 4 24 9

6 12 10 . 391 89

7 39 28 9 549 1705

8 208 130 401 691 67774

constitutes a multigraph of order » with m lines. Hence the total number is N[S,,; I(&)],

and the only cycle indices involved are those of the symmetric groups S,, S,_, and S,,.

[11.
[21.
[3).
[4].
[51.
[6].

(7.

(8.

(9]

[10].
[11].

[12].
[13].
[14].

[15].
[16].
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