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1. Introduction

According to the well-known classification introduced by Mahler [5] in 1932, the
transcendental numbers are divided into three disjoint classes, termed the S-numbers,
T-numbers and U-numbers, depending upon which of three possible conditions of
approximation the numbers satisfy. A full account of this classification is given in
Schneider [11] (Kap. 3) and we refer there for the details. An important feature of
the classification is that algebraically dependent numbers belong to the same class.
Further subdivisions of the classes have been given, the S-numbers having been clas-
sified according to “type” (see [11], p. 67), and the U-numbers according to their
“degree” (see [3]). The existence of U-numbers of each degree was proved by
LeVeque [3], but it is not known whether there are any T-numbers, or even S-numbers
of type exceeding 1.

It is the main purpose of the present paper to investigate how Mahler’s classi-
fication for real transcendental numbers is related to the more direct classification in
which the numbers are divided into two sets according as the regular continued frac-
tion has bounded or unbounded partial quotients. We show that, in fact, there is
little correlation; both sets of real numbers, those with bounded partial quotients and
those with unbounded partial quotients, contain U-numbers, and also either 7-num-
bers or S-numbers of arbitrarily high type. It follows, incidentally, that at least one
of the two sets, the T-numbers or the S-numbers of type exceeding 1, is not empty.

In order to obtain the results referred to above we first prove a general theorem
concerning the approximation of transcendental numbers by numbers in a fixed al-
gebraic number field. This extends a theorem of LeVeque [4] (Ch. 4) which itself

is a generalisation of Roth’s Theorem [9]. ILet K be an algebraic number field and
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98 A. BAKER

define the field height of any algebraic number o in K as the maximum of the ab-
solute values of the relatively prime integer coefficients in the field equation satisfied
by «. Then LeVeque’s Theorem implies that if & is a real or complex number, and
%>2, and oy, d,, ... are distinct numbers in K with field heights at most H(x,),
H(a,), ... such that, for each j,

| &—ay| < (H (o)) 1)

then & is transcendental. 1) We prove that if we impose the further condition that

lim sup l%_ﬂﬁf_“_)< oo

s log H(ay) @)

then & is not a U-number. More precisely we prove

TaEoREM 1. Suppose that & is a real or complex number and »>2. Let «,
oy, ... be a sequence of distinct numbers in an algebraic number field K with field heights
at most H(a,), H(a,), ... such that (1) and (2) hold. Then there is a positive constant u

such that
|2y + g E+ ...+, &> X0 (3)

for all positive integers n and all sets of integers x,, 2, ..., x,, not all zero, where
X = max (2,|%], |z} - |2al), (4)
and p, is given by log log u, = un®. (5)

The measure of transcendence given by (3) clearly implies that & is not a U-
number, for u, is independent of X. We note that without condition (2) £ could be
a U-number, the Liouville numbers providing examples with K as the rational field.
That conditions (1) and (2), with K as the rational field, imply that £ is transcenden-
tal was proved by Schneider [10] in 1936, before the work of Roth, and later
LeVeque [3], using different methods, showed also that £ could not be a U-number
of small degree. .

The set of real numbers with unbounded partial quotients certainly contains U-
numbers, for the Liouville numbers are in the set. Theorem 1 shows that the set
also contains either 7-numbers or S-numbers of arbitrarily high type, as we prove in

the following

() To obtain this formulation, note that by a lemma of Siegel [Math. Zeitschrift, 10 (1921), p.
176, Hilfssatz III] the absolute height is less than a constant multiple, depending only on K, of the
field height.
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CorOLLARY. Suppose that N is a positive integer and let
E=3 27" (6)
n=1

Then & has unbounded partial quotients and s either a T-number or an S-number of
type at least N.

In order to show that the corresponding results hold for the set of real numbers
with bounded partial quotients we use a method due to Maillet, some further de-

velopments of which have been given in a recent paper (see [1]). We prove

TEEOREM 2. Consider a quasi-periodic continued fraction

[ p y ]
f = ao: a’l) Tees ang-l’ anp eeey ano—l—k,r-l: a/n,: iy Bnytky—15 oo

where the notation implies that ni=ny1+Ai_1ki_1, and the Vs indicate the number of
times a block of partial quotients is repeated.(t) Suppose that a; <A, ;<K for all 1,

and let C be given by
log C=4 A%, (7)

Let L= hm sup }.i/z-i—l, l= hm inf 21/11_1.

If L=oo and 1>1 then & is a U-number of degree 2. If L< oo and ¢>1 is a con-
stant such that 1>C ¢ then & is either a T-number or an S-number of type at least ¢.

The proof of the first statement is direct and in the proof of the second we use
Theorem 1. Theorem 2 may be regarded as a refinement of Theorem 3 of [1], in
the sense that it serves to classify certain continued fractions previously known only
to be transcendental. One ‘poimt- that emerges is that the quasi-periodic continued
fractions considered in Theorem 2 for which > (' cannot include U-numbers of degree
greater than 2, that is there is a gap in the type of transcendental number given
by them.

In the proof of Theorem 1 we use essentially the methods of Roth as generalised
by LeVeque. In the usual applications it is assumed that £ is algebraic and the
main object is then to construct a polynomial with a zero of high index at one given
point but which is not zero at another suitably chosen point. Here we suppose in-

stead that & allows better approximations than is indicated by (3) and this enables

(1) It is understood that two blocks which correspond to consecutive ¢ are not identical.
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us to construct two polynomials, one of which has the first of the two usual pro-
perties and the sum of which has the second. On using condition (2) we then ob-
tain the required contradiction.

Finally we mention two immediate applications of Theorem 1. In 1937, Mahler
[6] proved an interesting theorem to the effect that certain infinite decimals, for

example
0-123456789101112 ...,

in which the positive integers, represented on the decimal scale, are written as a se-
quence in the natural order, are transcendental but not Liouville numbers. It is clear
from the proof of these results that the hypotheses of Theorem 1 are satisfied, with
K as the rational field, for many of the infinite decimals considered by Mahler, in-
cluding the example mentioned above, and hence these are indeed not U-numbers.
Secondly, since algebraically dependent numbers belong to the same class, it follows
that if £ satisfies the hypotheses of Theorem 1 and 7 is any U-number then all
polynomials in &, 5 with algebraic coefficients, not all zero, are transcendental. Thus

we have a method for the construction of tré,nscendenta,l numbers.

I am indebted to Professor Davenport for valuable suggestions in connection
with the present work.
2. Lemmas

We now give seven lemmas preliminary to the proof of Theorem 1. We use the

following notation. If

Ty Tm
A(xl,...,x,,,)= Z Z afh‘,,_,-,,,xi‘...x',;," (8)
4 =0  im=—0
is a polynomial in m variables then we denote by Aj,....,7, (%, ..., ¥n) the polynomial
given by
1 8f1+-..+jm
. . . —— A(2yy ... T),
Gl im! O] 0 (@ n)
where §,,...,jn, are non-negative integers. We note that if A(x,...,z,) has integer
coefficients then so also has Aj,....1, (2, ..., Tm)-

Lemma 1. Suppose that & is a real or complex number, n is a positive inleger and

Ugy Uys +.., Uy (=) are inlegers in absolute value at most X, where X is an integer. Let

n=ug+u, &+ ... tu, & 9)
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Then for each positive integer 1 there are integers a’; (:1=0,1,...,1, §=0,1,...,n—1), in

absolute value at most (2 X)', such that

n-1

3> aly e (10)

7

1
(wé)= ;0

i

Proof. Clearly the lemma is true for =1, 2,...,n—1 with o=’ if i=0, j=1

and O otherwise. Let k be an integer > n—1 and assume that the lemma is true
for I=%k. Define aﬁf‘} to be the integers given by the lemma for i=0,1,...,%, j=
0,1,...,2—1 and to be 0 for all other integral values of 7,j. From (10), with I=kF,
we obtain

[uy

n-—

k :
@e =33 waffq &,

i i

Substituting, from (9), for the highest power £* of £ on the right hand side of this
equation it follows that

u&)k+l _z jz (k+l) f

where the a{/?(:=0,1,...,k+1, j=0,1,...,n—1) are integers given by
wal) 1 —wal)_y if §+0 (11)

and by aﬁ"’l ne1—Upgain 4 if §=0. (12)

Since, by hypothesis, the a{® are in absolute value at most (2 X)* it follows, on es-

timating (11) and (12), that the a{’;"" are in absolute value at most (2 X)**'. Hence,

by induction, the lemma is proved.

LevMa 2. Let m, N, 7y, ...,%m, 4y, --., ¢m be positive integers and let & be a posi-
tive number such that
m>@2N+1), 6<27%", r,>1087Y, (13)

log g, >2m(2m+1)67" (14)
and, for each §=2,3,...,m

ry/ri-1<8, r;log g;>r, log g,. (15)
Suppose that A (2, ..., 2,) is a polynomial, not identically zero, with inleger coefficients
in absolute value at most qi"* and of degree at most v; in x;,. If L,,...,Ln are m ele-

ments in an algebraic number field K of degree N with field heights qy, ..., ¢n, then there
are m mon-negative integers J,, ...,J,, such that

(oo C) 40 and S T <10msm, (16)

i-1 7



102 A. BAKER

Proof. We use Theorems 4-10, 4-11 and 4-12 on pp. 136-142 of LeVeque [4].
Note that Lemma 2 would follow directly from Theorem 4-12, without the first in-
equality in (13), if the ¢, represented the absolute heights of the {, and not the field
heights.

Since, from (13) and (14),

0<d<m?2™ l<{m2" (2N +1)31
and log ¢, >6N(2N+1)67", (17)

it follows that all the hypotheses of Theorem 4-12 are satisfied if we replace the N
of the theorem by 2N, with N given as above, and we reinterpret the g; of the
theorem as the field heights of the £, We now prove that, with these changes in
the hypotheses, the conclusion of the theorem continues to hold for polynomials with
rational integer coefficients. This conclusion is equivalent to that of Lemma 2.
First we consider Theorem 4-10. This may be stated as follows. Let A(x) be
a polynomial, not identically zero, of degree r, with algebraic integer coefficients in
an algebraic number field of degree N,, for which all the conjugates are in absolute
value at most B. Let { be an algebraic number of absolute height @. Suppose that
f is a non negative number such that 78 is an integer and (x—&)? divides A(x).
Then
O<{3N,(N,+1)+N,r " log B} (log @ . (18)

Suppose that ¢ is contained in an algebraic number field of degree N and that the
field height of ¢ is ¢. We prove that if A(x) has rational integer coefficients and

log g>2N log (N+1) (19)

then (18) holds with N;=2N and Q@=gq.

Let F be the field polynomial of { multiplied by a suitable constant so that it
has relatively prime integer coefficients, and E be the defining polynomial of { mul-
tiplied by a suitable constant similarly. Then F is some power, at most N, of E,
and the highest power of { in E is at most N. Hence the integer coefficients in F
are the sum of at most (N+ 1) terms, each a product of at most N coefficients

from E. It follows that
g<{(N+1)@Q}" (20)

From (19) and (20) we obtain
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log g< 2N log Q. (21)
Since A(x) has rational integer coefficients it follows from (18) with N, =1 that

0<(6+r"log B)(log @)
Now using (21) we obtain

6<(12N+2Nr*log B) (log q)*

and hence (18) holds with N,=2N, @=q as required. We note that from (13)
and (15)
log ;>log ¢, forj=1,2,...m

so it follows from (17) that (19) holds with ¢=g¢;.

Thus the conclusion of Theorem 4-10 continues to hold for polynomials with
rational integer coefficients and with (=¢; if we replace N; by 2N and @ by g;.
It is then clear from the proofs of Theorems 4-11 and 4-12 that the conclusions of

these also continue to hold under similar modifications and hence Lemma 2 is proved.

Lemma 3. Suppose r, ...,r, are positive integers and ¢ >0. Then the number of
sets of infegers §,, ..., 9, satisfying
0<j; <1y vey, 0<G, <y, (22)
h Im 3
+..+—=<}i(m—o) (23)
7‘1 T'm
is af most 2mio  (r;+1) ... (rp+1).

Proof. See LeVeque [4], Theorem 4-13, pp. 142-144.

Lemma 4. Suppose the hypotheses of Lemma 1 hold. Let m, r,, ..., 1, be positive
integers such that r;_y>1r; for §=2,3,...,m, and let c=6nm*. Then there is a poly-
nomial W(z,, ..., x,), not identically zero, the sum of two polynomials Uy, ..., xn) and

Vixy, ..., xy), all of degree at most r; in z; for j=1, 2, ..., m, with the following properties.

(i) W(zy, ..., zn) has integer coefficients in absolute value at most (8 X)™".

(il) For each set of non-negative integers §,, ..., Jm
| Ui i (&, oo, E) | < {32 X (1 -+ &)}, (24)
<]
and Uiirim (& ., =0 if S <3 (m—o). (25)

=17y



104 A. BAKER

(iii) Bach w™ Vi,.....in (&, ..., E) has the form

mry n—1

2 2 hin'#, (26)

i=1 j=0
3mry

where the fi; are integers in absolute value at most (8 X)

Proof. We consider all polynomials A(z,,...,z,) of the form (8) with integer

coefficients satisfying
0< Qi,,...,im < B:

where B is an integer >1. The number of such polynomials is (B+1)" where
r=(r,+1)...(r,+1). (27)

For any such polynomial A(x;, ..., 2y,), €ach 4i,...5. (&, ..., §) has the form
2 by oo im) &,
=0

where the b,(j,, ..., jn) are integers. Since the coefficients in each derived polynomial

Ay iy (X4, ..., ) have absolute value at most

(’1) ("") B<2nt+m B< 9 B
j Im ’

and the total number of terms is at most r, it follows that the b, (j,, ..., ) have ab-

solute value at most
r2" B=(r,+1)... (r,+1) 2™ B<4™ B.

We now use Lemma 1. From (10) we obtain

w Aj i (&, ., E) = Zo By (s oees Jm) W™ (w E)

mr, I n-1
= %o izzo fgo bl (jl; seey fm) umr‘_la’g?f 7]‘ 5’
mry n—1
=2 3 cusliv i)' 8, (28)
. . s ) . .
where Cioj Gps eoesfm) = l; w7 ) by (s oees m)-

Since, from Lemma 1, the a{’; are integers in absolute value at most (2 X)! and |« |< X,

it follows that the ¢;;(jy, ..., jm) are integers in absolute value at most
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(mry+1) X™ (2 Xy 4™ B< (4 X)2™ B.

Hence, from Lemma 3, the total number of possible sets of integers c,; (j, ---jm)s
where =0, 1,...,2—1 and 7, ...,J, are integers for which (22) and {(23) hold, is at

most
8= {2 (4 X)Zmn B+ 1}2 nm'}a“lr’

where r is given by (27).
Now let B=(8 X)™. Then, using 2nm?e¢ '=1, we obtain

(B+1) > (8 X)¥™ Bb> {4 (4 X)2™ B} > 8.

Thus there are more polynomials A(z,,...,z,) than there are possible sets of integers
Co.j (§15 ++» Jm)» Where j=0,1,...,n—1 and j,,...,5, are integers for which (22) and
(23) hold, and hence there are two different polynomials AV (z,, ..., z,) and A® (x,,...,2,)

with the same set of values. Let
Wy, ..., 2n) = AP (2, ..., ) — 4P (2, ..., Tp)-

Then W(xy,...,%,) is not identically zero, it has integer coefficients in absolute value
at most B, and, from (28), for each set of integers j,,...,4, for which (22) and (23)
hold, u™ Wij,,....in (&, ..., &) has the form (26), where the f;; are integers in absolute
value at most
2 (4 X" B< (8 X)™.
We define w, ..., to be 0 if §,,...,J, are integers such that (22) and (23) hold
and 1 otherwise. Put

Ty

U@y oo 2m) =3 ooe 3 et Wit (1 = &) ... (= ),

4=0 im=0

where, for brevity, we write Wi,...,1,, for Wi,.., 1, (&, ...,&). Then clearly

Ui,,....fm (E’ sevy 5) =Wy, i im Wj;,...,/m (29)
and this is 0 if j,...,j, satisfy (23), that is (25) holds. Since the coefficients in
each derived polynomial Wi, ...,1, (%, ..., %,} are in absolute value at most 27" (8 X)™"

and the total number of terms is at most r, it follows that
| Wi st < 4™ (8 X)™ (1 + | £])™

for all sets of non negative integer j,,...,7, Hence (24) follows from (29).
Finally we define
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Vizg, ..o, g) = W(xy, ooy ) — Uy, -0\ Z)-
Then clearly Vierim (&5 ooty )= Wiy oripg

if 4y, ...,Jm are integers such that (22) and (23) hold, and O otherwise. It follows, in
both cases, that 4™ Vj,....,in (&, ..., £) has the form (26) and hence Lemma 4 is proved.

Lemma 5. Suppose the hypotheses of Lemma 1 hold. Let m, N, ry,...,%m, ¢y, .+, Im
be positive integers and & be a positive number such that (13), (14) and (15) hold. Let
L1 ooy Cm be m elements in an algebraic number field K of degree N with field heights
Q1> ++es Gm- Suppose that

log ¢, >md ™" log (8 X) (30)
and let o=6nmt, o=10m6"". (31)

Then there are two polynomials P(z,, ...,zn) and Q(zy, ..., %), with sum R(xy, ..., Zm),
all of degree at most v, in x; for j=1,2,...,m, having the following properties.

i) B(xy, ..., xn) has integer coefficients in absolute value at most (16 X)™,
(ii) B(Cy, ..., Lm) ts mot zero.

(ili} For each set of non megative integers j,, ..., fm

| Pro.ooim (&, -, )| < {64 X (1 + | &)™, (32)
and Piyiim (&5 -, §) =0 of % i‘t<%(m*0)“9- (33)
i=17§

(iv) Each u™ Qj,....1, (&, ..., &) has the form (26) where the fi; are integers in ab-

solute value at most (16 X)*>™n,

Proof. The hypotheses of Lemma 4 hold and we suppose that U(xy, ..., ),
V(xy ..., s) and W(z,, ...,x,) are the polynomials given by the lemma. From (30)

we obtain
> X

so that the polynomial W(z,, ..., z,) satisfies the hypotheses of Lemma 2 in place of

Axy, ..., ). It follows that there are m non-negative integers J,,...,J, such that
m Ji

Wieiitn(&py ooy Em) 0 and > o Se (34)

i=1 74

Let Py, ..., 2n), @y, ...rTn), By, ..., %)

be taken as Uspooes 10 @y ooy Zm)s Voo, 10 (@gs ooy Tm)y Wi, 1 (T, - o5 Tm)
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respectively. Then the coefficients in R(z,,...,%,) are in absolute value at most

r Tm mry mry
(Ji) (Jm) (8 X)™ < (16 X)

so that (i) holds. Clearly (ii) is equivalent to the first part of (34), and (33) of (iii)
follows from (25) and the second part of (34). Since for each set of non-negative
integers i, ..., Jm
T4 ;
Pty (45 ooy ) = ( 14._71) (J'". 7"') Usytin s It (Tgs oo oy &)
I Im
and this is identically zero unless J;+j;<r; for all ¢, it follows from (24) that (32)
of (iii) holds. Similarly from (iii) of Lemma 4, each 4™ @j,....,1, (&, ..., £) has the form

(26) where the f;; are integers in absolute value at most 2™ (8 X)*™* and this proves
Lemma 5.

Lemma 6. Suppose that K s an algebraic number field of degree N and that
is an algebraic number in K with field height H((). Let the field conjugates of  be
IP=0,LP, .., LY and let the coefficient of x¥ in the field equation of [, with relatively
prime integer coefficients, be h. Then

hizl—[l(1+]C(i’|)<6NH(C). (35)

Further, if §,,...,5, are s distinct integers between 1 and N inclusive then

. o h C(f‘) . C(is)
ts an algebraic integer.

Proof. See LeVeque [4], Theorem 4-2, pp. 124-125 and Theorem 2-21, pp.
63-65.

LrMma 7. Suppose that the hypotheses of Theorem 1 hold. For each positive in-
teger 4, let F(a;) be the exact field height of «;. Then there is an increasing sequence of
positive infegers n,, My, ... such that

F (“ng) < F(“m+1), (36)
€ — otms| < (F(etms)) ™", (37)
for all i, and lim sup lig-—sz {38)

iso  log Flom)
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Proof. We first prove that
min {log H(e;), log H(x.1)} < max {log F(ay), log F(x;1)} (39)

for all sufficiently large j. Let N be the degree of the algebraic number field K and,
for each 7, let o’ =y, af®, ..., "™ be the field conjugates of a;. Let h; be the coef-
ficient of 2" in the field equation of «; with relatively prime integer coefficients.
We put

Z=h; hjy1 Norm (o — 11), (40)
L d
where Norm {0 — &511) = ‘Hl(oé" —afs). (41)

Since the «, are distinct, it follows from (40) that E is not zero. From (41), E is
the sum of products of conjugates of & and oy.1, all multiplied by %; k1. It follows
from Lemma 6 that E is a rational integer and hence we obtain

We now calculate an upper bound for [E|. Since

[x]

[=1. (42)

lof” — o < |af®| + [ o2 < X +[ ) @ + g2 )

and, from (35) of Lemma 6,

N

ki IT (1+]of”]) <6 F(ay),

i=1

it follows from (40) and (41) that

N
[E|=]o—ogs1] By h/+11132 (04" — of21)

< |y~ atj1] 6% F(oy) Fay+1)
<oy~ oy41| 62 (max {F(a), Floy+1)})™ (43)
From (1) we obtain
I“j“0‘i+1|<|5—0€1|+|§“0€1+1l
< (H(oy))™*+ (H(og+1)) ™™
<2 (min {H(e), H(ey+)}) 7",

so that from (42) and (43) it follows that

(min {H (o), H (af+1)})"; 2.6 (wax {F(e), Floy1)})* (44)



MAHLER'S CLASSIFICATION OF TRANSCENDENTAL NUMBERS 109
There are only a finite number of elements of K with bounded field height and hence
max {F(a;), F(ayi1)} —>o as j-—>o0.

Thus from (44), on taking logarithms and noting that x> 2, it follows that (39) holds
for all sufficiently large j.

We may suppose that H(oy) < H(otj+1) (45)

for all §, for otherwise we have only to replace the sequence «, (j=1,2,...) by a
subsequence aj, (=1, 2,...), where j,=1 and, for each integer i>1, ji,1 is defined
inductively as the least integer >4; for which

H(“ji) < H(OCjHl).
Then log H(w,,,) /log H(ey,) < log H(ay,,,)/log H(o,,,-1)

so that (2) holds for the subsequence ay;(¢=1,2,...) and clearly (1) also holds for
this subsequence.

Next we define inductively a sequence A of positive integers k,, k,, ... such that

| &~ ot | < (F (o)) ™ (46)

for all ¢, and lim sup log F (i)

4
isoo-  log F(ou) 7

Let k=1 and let ¢ be a positive integer. We supppose that k; has been defined
and we take kiy1 as k+1 or k;+2 according as F(uu+1) is or is not greater than
F(ox;+2). Then by definition,

max {log F(oxi_1+1), log F(ot_1+2)} =log F(aw). (48)
From (2) there is a constant ¢>1 such that
log H(etj41) < ¢ log H(w) (49)
for all . Hence, from (45) and the definition of k,,
min {log H(oti—1+1), log H(otes—1+2)} = log H(otk-1+1) > ¢ log H(ou)- (50)
From (39), (48) and (50) we obtain

log F(ou;) > ¢~ log H (o) (51)
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for all sufficiently large ¢. Since F(o;)< H(a,) for all §, it follows from (45), (49) and
(51) that

log F(okiis) e log H(okir1) - log H(owki+2)

log F (o) log H(ai;) log H(otx;+1)°

Hence (47) follows from (2) and clearly (46) is a direct deduction from (1).

Finally we define a subsequence n;,%,,... of A in a similar manner to that in
which we defined the sequence j,,74,, ... above, that is we take n,=1 and, for each
integer i1, we take mi,; as the least integer in A greater than n; for which F(ax,)
is less than F(otn:y:). Then (36), (37) and (38) hold, and Lemma 7 is proved.

3. Proof of Theorem 1

We begin by defining explicitly a positive constant g and proceed to prove that
it has the property stated in the theorem. We suppose that H(e;) is the exact field
height of «,;, for each positive integer j, and that H(«,), H(a,), ... is an increasing
sequence. In virtue of Lemma 7 we may make this supposition without loss of

generality. From (2), there is a constant ¢>3 such that
H(oy1) < {H()}* (52)
for all j. Let N be the degree of the algebraic number field K and let
A=min (1,%—2). (63)
We put
v=(2021"")%+ (2N +1)% log {3(1+]|&|)} + log H(a,) +log log ¢ (54)

and then define y=2y.
Suppose that x does not have the property stated in Theorem 1. Then there

is a positive integer n, and there are integers v, vy, ..., ¥;, v,+0, such that
lvg+v, & + ..+ 0, | < Y, (55)
where Y =max (2, |v,], |o1]; s [9a])
and u, is given by (5). Let », be given by
log log v, =vn?. (56)
We show that there are integers ug, u, ..., %,, %,+0, such that

uygtu E+ . u, &< X7, (57)
0T Uy
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where X=max (%], |u,], ..., | ua|) > (58)

If Y>¢*"™ then, since v,< u,, we have only to take u;=v; for =0, 1, ...,n. Suppose

therefore that Y <e*™. Let
w=[e""]+1

and take w;=wv; for i=0,1,...,2. Then clearly (58) holds and from (55) we obtain
gt u &4 o T, £ <w T < 7™ 27t (59)
HOWeVeI‘, X< w Y< 26101'7;2 < elOwL“q'»l

and hence, from (5) and (56), it follows that

log vy, log vy

D Hn— 9 < e“i”n < e_"n(2"n+1)"’n_1< % e—Svn’(2v"+1)—v,,< %e—.’wn’ X n,

Thus (57) follows from (59). With the integers wy, u,, ..., %, (=u) defined as above,
let 5 be given by (9) of Lemma 1. Then from (57)

[n]< X (60)

We now define the numbers m, 8, 6, g, 5, .oesPms Qs o-er s Cpp -oos {m With. the
object of applying Lemma 5. TFirst let m be the integer given by

m=[(20n A7 )*+ (2N +1)%, (61)
and define & by log 67" =m2™ log 10. (62)

Then clearly m, § satisfy the first and second inequalities in (13). Let o,p be given
by (31) of Lemma 5. From (62) it follows that p=1. We now prove, as in {2], that

2m (1L +49)

<21, (63)

The fraction on the left-hand side increases when m decreases and thus it suffices to
prove (63) when m is replaced by (20 1™")2. The inequality is then equivalent to

3200 5+240 A +4 A2n2
400—1201—2 2252

< A

Since A<1 and n>1, the denominator is at least 400 - 120 —2 =278 and the numer-

ator is at most 32008 +240 1 +4 4 <3200(2*°* ")+ 244 1 <2452, Hence (63) holds
as required.
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Now define P =[10(2¢)" 16 ™ +1 (64)
and let 6=4cm?*é%r,. (65)
We prove that 0 <v,. (66)
From (64) and (65) § < 25 cmmt "D

and, since m >400, it follows that
log 6<m log c+ (m+5)+2 log m+ (m+2) log 6 <m log c-+2m (L+log 67%).  (67)
From (62) we obtain log 6 t<im™te™!
and hence, from (67),
log f<mlog c+e™ < (1+1log c)e™ ' <e™ log c.
Thus, from (54) and (61), it follows that

log log 0 <m+ log log c<»n?= log log v,

and hence (66) is satisfied.

Next we select a subsequence a,, ay,, ... of the «;, where 1 =4, <j,< ..., such that

log H(a,) >267" log H(ay,_,) > log H(wj,-1) (68)

for ©=2,3,.... Then, from (68) and (52),
{H(o, )17 > {H(w,-)} > He), (69)
and Hay,_,)<{H(e,)}°. (70)
We choose k such that Hioy, )< (8X)™ " < H(az). (1)

This is possible since H(a,), H(a,), ... is an increasing sequence and, from (58) and (54),
(8 X)™ 7" > X >¢ > 9™ = H(a,).

For i=1, 2,...,m, take b=y (72)

and put q. = H({)- (73)

Then, from (71), log g, =log H(at) >m 5" log (8 X)
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so that (30) of Lemma 5 holds. Further, from (58), (54) and (61) it follows that
log ¢, >mdé log X>5vn’mdé ' >2m(2m+1)87,

and hence (14) of Lemma 2 holds. From (69), (72) and (73) we obtain, for each

i=2,3,...,m
log g;/log gj_1<2¢67%, (74)

and, from (70), log ¢,/log q;_1>2687". (75)
Finally we define integers r,,...,rn such that

r, log ¢,/log ¢;<r;<1+r, log ¢,/log g;, (76)

for j=2,3,..., m. Then clearly the second part of (15) holds. From (76), (74) and
(64) we obtain for each §j=2,3,...,m

;21 log g;/log g;>11 (266717970 >10(2¢)" 76 " (77)
For j=m this gives the third inequality in (13). For each j=2, 3, ..., m, (77) gives
r, log q,/log ¢;> 1067 >1 (78)

and hence, from (76), it follows that

r; log ¢;/(rj-1 log g;-1) <1+ log ¢;/(r, log ¢;) < 2.
Then, using (75), we obtain 207y r; 1< 2

so that the first inequality in (15) is satisfied.

Hence we have verified all the hypotheses of Lemma 5. Let P(z,, ..., %x), @y, ..., Zn)
and R(z,,...,z,) be the polynomials given by the lemma. For each i=1, 2,...,m, let
(P =z, ¢, ..., ™ be the field conjugates of {; and h; be the coefficient of 2" in the
field equation of {; with relatively prime integer coefficients. Then

W =ht... k= Norm R((y, ..., &m)
is the sum of products of powers of the ({” with integer coefficients, and in each

such product a factor {° occurs to the power at most r,. Hence, from Lemma 6,

Y is a rational integer and, from (ii) of Lemma 5, it is non zero. It follows that
I¥|>1. (79)

We now calculate an upper bound for |'¥'|. First we consider
8 — 642945 Acta mathematica. 111. Imprimé le 20 mars 1964
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N
D =ht... h:;;'ngR({i”, s ED).

From (i) of Lemma 5, the coefficients in R(zy, ..., %,) are in absolute value at most

(16 X)™ and hence, using (35) of Lemma 6, we obtain
m N N
|| <A ... kx| 16 )"V T 1‘[2(1+l¢5”|)"‘
t=1 j=
m N
< a6 )™ IT TH{1 ] (1+ 20Dy
=1 j=
< (16 X)m1'1N6mTl Nqil:l . q;,:,-
From (76) and the first inequality in (78)
q;,< q;1(1+6/10).
Hence, from (14) and (30), noting that m >4 N, it follows that
I(I)|< (96 X)mr‘Nq{m‘ (1+z$/10)< 12mr,Nqinr,(1+6) < q{nr,(1+26). (80)
Secondly we deduce an upper bound for |Q({y, ..., ln)|- From (1),
[E-&|<1 for 1=1,2,...,m. (81)

Now using (iv) of Lemma 5 and (60), we obtain for each set of non-negative integers

J1s s Im

<X {2(16 X)® (1 +| &)™

Hence, from (81), on expanding @ (z,,...,%,) about the point (&,...,&) by Taylor’s
Theorem, we obtain

7;

[TGRSATED N T R Y e R

T,

< El: ri” | Qs 1 (&, .., 8]
=0 im=0

<X {206 X QA +]|EN}" |u| " 2"
<X {(32X)* (1 +| &)}

From (58) and (54), log X>5v>45log {3 (1+(&])}
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so that X>3%(1+|&). (82)
Hence from (65) and (66) we obtain

@y ooy Em) | < X7t XA < X0F4MT: o X 20, (83)

Thirdly we find an upper bound for |[P({,...,{s)|- From (33) of Lemma 5,
Py, ..., Ln) 1s the sum of at most 2™ terms, each of the form

Pj’l,...,i,,, (5; ey 5) (Clﬁf)h (Cm—i:)j"‘»

where j;,...,jn are integers such that

0y <ry,ves, 05,1y, (84)
m ?- .
and Sz (m—0)—o. (85)
i=1 7
From (1), [E=C)<gi™ for i=1,2,...,m

and hence, using (32) of Lemma 5, we obtain

VP(Cyy oo Ea) | < 277 {64 X (14| ED}™™ i ... g,

where J,,...,J, are integers which satisfy (84) and (85) above in place of 4, ..., jm-
From (76),

¢i'=qpt for §=1,2,...,m
and thus it follows that

| P(Cysonns L) | < {128 X (14| &)} gr¥ B m-0-0),

Now p=1 and hence from (53) and (63) we obtain

g =00 grmndeed)
From (82), {128 X 1 +|&)}rn < X2mn
and hence, from (30), it follows that

[Py, o lm) | < XETT gy AH4D o 3 g7 mndli20), (86)

We now combine the estimates (80), (83) and (86). From Lemma 5,

R(Cy s Cn) = P(Lys oo, L) T Qs -, Cm)

and hence, from (83) and (86),
8* — 642945
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IR(CP vees Cm) ] <X ¥4+ 3 ql—mn(l«x-za).
Then, using (80), it follows that

]‘FI=](I)] IR(CI, cees C,,,)]<q{'"1(1+26) X*“—l—-%,
From (69) and (71),
q1=H(at;k)< {H(ajk_l)}2cz§‘1< (8 X)20m¢5_2,
so that, from (65),
|W| < (8 X)toct+20 X101 g

Since 4 <272™< %, and, from (82), X >2.8°, we obtain finally
[¥|<@X)0X #0414 =X )+ < (PP +i<].

However, this contradicts (79), and the contradiction proves the theorem.

4. Proof of Corollary
The result follows by an immediate application of Theorem 1 with K as the
rational field. We define integers

j )
p.=2(N+2)f S Q- (N+2)" q,=2‘”+2’]
7 3
n=1

for j=1,2,...,and put a;=p;/q;, Then the field height of «;, which, in this case, is
the same as the absolute height, is given by

H(oyy) =max (p;, ¢;) = ¢;= 2(N+2)1.

Clearly (2) holds and since, for all j,

0
l&—p)/q;|= a2 2-(HYT  gm(HDITIHL  go D) (87)
it follows that (1) is satisfied with =N +3>2. Hence, from Theorem 1, £ is neither
algebraic nor a U-number.
As is well known, (87) implies that the partial quotients in the regular continued

fraction of £ are unbounded. Further, since (87) can be written in the form
lg) ¢ —p;| <H P,

where H= max (p;, q;,), it follows, by definition, that & cannot be an S-number of

type <N. This proves the corollary.
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5. Proof of Theorem 2

We assume that 0<&<1 as we may without loss of generality. Let p,/q, be

the nth convergent to & For each i=1, 2,... we define

Ao
n= [al)’ Gy vees Bng-1, Bpgs one s Angtkg—1s 203 ani, ceny an‘+kr.1]

where the block of partial quotients indicated by the bar is repeated infinitely many
times. Then (see [1], Lemmas 1 and 2) #; is a quadratic irrational of absolute height
less than 2qﬁi+ki_1 and, since the first n;,; partial quotients of 7, are the same as

those of &,
|§—ml< gl 1 (88)

We note that all the #; are distinct. Next, let
U=1(1+5Y, V=3}(4+42+4)}). (89)

Then (see [1], Lemma 3)
U"1<q,<V" forall n. (90)

Suppose that the defining equation of #; with relatively prime integer coefficients is
P.x*+Q,x+R,=0. (91)
From (90) and (91), the absolute height of #; is given by
maX(IPil:|QiI’IRiI)<Xi’ (92)
where X, =2 prmstki-D, (93)
Let the root of (91) conjugate to »; be n”. Either |7{”|<1 or, from (91) and (92),
[P (P = Quyl® + B[ <2 X, ],
so that, in both cases, [n"]<2X,. (94)
We now deduce an upper bound for |P; &+ @, &+ R;|. From (88) and (90),
|E—n,| < U213, (95)

From (94) and our assumption that 0<£<1,

|[E—7P|<14+2X,<4X, (96)
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Hence from (92), (93), (95) and (96) it follows that
| P&+ @&+ R|=|P||&—m| |E- P | <4 XFUP T2 = X0, (97)
where y,=a,/0; and o, g, are given by
01=2n;,1 log U—4(n;+k;) log V+4log (V/2U), (98)
0i=2(n;+k—1) log V+log 2. (99)

Similarly we obtain from (95)
[€—ni|<Xiv (100)
We now distinguish two cases as in the statement of the theorem.
(i) First we suppose that L=oco and I>1. Then there is a positive integer j

and a positive number { such that

A/ >1+¢ forall 127,
It follows that, if i>9,

ni+1=l,k,+1i_1kg_1+...+l,k,+n,<K(li+li_1+...+}.,)+n,
<KA{(1+(A+) 4+ .+ 1+ S +m< KA+ A+n<e d,

where ¢, is a positive constant independent of ¢. Clearly ;3 >4, for all :>1, and

hence, since L= oo, it follows that
1irin SUp Mmip1/m; = co. (101)
From (98) and (99) we see that o/m; (¢=1,2,...) is bounded and that there is a

positive constant ¢, such that
oi/n > ¢y ni+1/ni

for all sufficiently large ¢. Hence, using (101), we obtain
lir? 8up ;= 0. (102)

Then, by definition, (97) and (102) imply that & is a U-number of degree 2 and the
first part of Theorem 2 is proved.

(ii) Secondly we suppose that L< oo and ¢>1 is a constant such that 1>0C'¢,

where C is given by (7). Since I>2, there is an integer j such that

A/ >2 forall i>j.
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We suppose that ¢ is sufficiently large. Then, as in (i), it follows that
Ai<nin<2Ki+n;<3KA,.
Hence, using I >C ¢, we obtain
mv/m>24/(BK 4io) >} C4/K,
and, since L < oo, there is a positive constant ¢, such that
Nis1/mi<3 K difdi1 < ¢y (103)
It follows from (98) and (99) that
01/ > (My31/m) log U—4log V>(3Cdlog U—4 K log V)/K,
0i/n;<3log V
and hence > (C¢log U)/(9K log V)—4.
Noting that log U>9/20 and log V< 4, we obtain

»i>C0¢/(204 K)—4 (104)
for all sufficiently large <.

For each ¢ there are at most 4, K different possible values for a;, k;,, Hence
there are at most A¥ different sets of integers

Ay Antls oo Onrie-1-

Let F be the algebraic number field generated by all the quadratic irrationals

[ani, an‘+1’ cony an‘+k'.vl]-
Then F has degree at most
N=2A45%,

and all the 7; are elements of . As in the proof of Lemma 2, the field height of
7y, with respect to F, is at most

Hn)={(N+1) X;}". (105)
From (100) and (105) we obtain

|&~mi| < (Hgs)) ¥+ (106)
for all sufficiently large i. Since A>2, K>1, we deduce from (7) and (104) that
pi+4>et A5 /(20 AK)> N .2* A¥/(20 AK)>5 N,

and hence, noting that N >4,
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Y/ (N+1)>(BN-§)/(N+1)>3

for all sufficiently large 7. It follows from (106) that (1) is satisfied for all sufficiently
large 4§, with o;=7; and %»=3. From (93) and (105) we obtain

log H(?]1+1) _ Cy +2 (’ni+1 + ’Ci+1) log | 4

log H(n;) 2 (mi+k)log V

where ¢, is a constant independent of 7. From (103) it follows that (2) holds with
o;=17; Thus, for all sufficiently large j, the hypotheses of Theorem 1 are satisfied
and hence £ is neither algebraic nor a U-number.

Finally, from (7) and (104) we obtain

pi>¢e! AT/(20 AK)-$>4$—§>2¢

for all sufficiently large ¢, and, in virtue of (97), & cannot be an S-number of type
<¢. This completes the proof of Theorem 2.
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