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1. Introduction 

According to the well-known classification introduced by  Mahler [5] in 1932, the 

transcendental numbers are divided into three disjoint classes, termed the S-numbers, 

T-numbers and U-numbers, depending upon which of three possible conditions of 

approximation the numbers satisfy. A full account of this classification is given in 

Schneider [11] (Kap. 3) and we refer there for the details. An important  feature of 

the classification is that  algebraically dependent numbers belong to the same class. 

Further subdivisions of the classes have been given, the S-numbers having been clas- 

sified according to " type"  (see [11], p. 67), and the U-numbers according to their 

"degree" (see [3]). The existence of U-numbers of each degree was proved by  

LeVeque [3], but  it  is not known whether there are any T-numbers, or even S-numbers 

of type exceeding 1. 

I t  is the main purpose of the present paper to investigate how Mahler's classi- 

fication for real transcendental numbers is related to the more direct classification in 

which the numbers are divided into two sets according as the regular continued frac- 

tion has bounded or unbounded partial quotients. We show that,  in fact, there is 

little correlation; both sets of real numbers, those with bounded partial quotients and 

those with unbounded partial quotients, contain U-numbers, and also either T-num- 

bers or S-numbers of arbitrarily high type. I t  follows, incidentally, tha t  at least one 

of the two sets, the T-numbers or the S-numbers of type exceeding 1, is not empty. 

In order to obtain the results referred to above we first prove a general theorem 

concerning the approximation of transcendental numbers by numbers in a fixed al- 

gebraic number field. This extends a theorem of LeVeque [4] (Ch. 4) which itself 

is a generalisation of Roth's Theorem [9]. Let  K be an algebraic number field and 
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define the field height of any  algebraic number  x in K as the maximum of the ab- 

solute values of the relatively prime integer coefficients in the field equation satisfied 

by  x. Then LeVeque's Theorem implies tha t  if ~ is a real or complex number,  and 

u > 2 ,  and ~1,~2 . . . .  are distinct numbers in K with field heights a t  most  H(~I), 
H ( ~ )  . . . .  such that ,  for each j, 

] ~ - - a , l <  (H (~s)) -~ (1) 

then ~ is transcendental. (1) We prove tha t  if we impose the further condition tha t  

lim sup log//(0r 
s- .~ log H(gj) < oo (2) 

then ~ is not a U-number. More precisely we prove 

THEORE~ 1. Suppose that ~ is a real or complex number and u > 2 .  Let o~1, 

o~ 2 . . . .  be a sequence o/ distinct numbers in an algebraic number/ ie ld  K with field heights 

at most H(:q), H ( ~ )  . . . .  such that (1) and (2) hold. Then there is a positive constant # 

such that 
]~o+ x~ ~ + ... + z,, ~"1 > x  -'~" (3) 

/or all positive integers n and all sets o/ integers xo, x 1 . . . . .  xn, not all zero, where 

x =  max  (2,1x~ Ixll  . . . . .  fxnl), (4) 

and fin is given by log log/~, =/zn ~. (5) 

The measure of transcendence given by  (3) clearly implies tha t  ~ is not  a U- 

number, for /~  is independent of X. We note tha t  without condition (2) ~ could be 

a U-number, the Liouville numbers providing examples with K as the rational field. 

Tha t  conditions (1) and (2), with K as the rational field, imply tha t  ~ is transcenden- 

tal was proved by  Schneider [10] in 1936, before the work of Roth,  and later 

LeVeque [3], using different methods, showed also tha t  ~ could not be a U-number 

of small degree. 

The set of real numbers with unbounded partial quotients certainly contains U- 

numbers, for the Liouville numbers are in the set. Theorem 1 shows tha t  the set 

also contains either T-numbers or S-numbers of arbitrari ly high type, as we prove in 

the following 

(1) To obtain this formulation, note that by a lemma of Siegel [Math. Zeitschri]t, 10 (1921), p. 
176, Hilfssatz III] the absolute height is less than a constant multiple, depending only on K, of the 
field height. 
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COROLLARY. Suppose that N is a positive integer and let 

= ~ 2 -(N+2)". (6) 
n = l  

Then ~ has unbounded partial quotients and is either a T-number or an S.number o/ 

type at least N .  

In  order to show that  the corresponding results hold for the set of real numbers 

with bounded partial quotients we use a method due to Maillet, some further de- 

velopments of which have been given in a recent paper (see [1]). We prove 

THEOREM 2. Consider a quasi-periodic continued /faction 

~--  ~,0 > '~"--' " ),x ~ ] 

~ ~ ao, al, �9 �9 ano-l~ an,, �9 �9 ano+ko-l~ an1, �9 �9 anx+kl-l~ �9 �9 �9 ] 

where the notation implies that n i = n i - a §  2i-1 k~-l, and the 2's indicate the number o/ 

t imes a block o] partial  quotients is repeated.(1) Suppose that ai<<.A, ki<~K /or all i, 

and let C be given by 
log C = 4 A  K. (7) 

Let  L = lim sup 2~/~-1,  l = lim in/~1/2t-1. 

I /  JL= co and l > l then ~ is a U-number o/ degree 2. I /  L < ~ and ~ > 1  is a con- 

stant such that 1 > C r then ~ is either a T-number or an S-number o/ type at least r  

The proof of the first statement is direct and in the proof of the second we use 

Theorem 1. Theorem 2 may be regarded as a refinement of Theorem 3 of [1], in 

the sense that  it serves to classify certain continued fractions previously known only 

to be transcendental. O n e ' p ~ r r t : t h a t  emerges is that  the quasi-periodic continued 

fractions considered in Theorem 2 for which l > C cannot include U-numbers of degree 

greater than 2, that  is there is a gap in the type of transcendental number given 

by them. 

In  the proof of Theorem 1 we use essentially the methods of Roth as generalised 

by LeVeque. In  the usual applications it is assumed that  ~ is algebraic and the 

main object is then to construct a polynomial with a zero of high index at one given 

point but which is not zero at another suitably chosen point. Here we suppose in- 

stead that  ~ allows better approximations than is indicated by (3) and this enables 

(1) It is understood that two blocks which correspond to consecutive i are not identical. 
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us to construct two polynomials, one of which has the first of the two usual pro- 

perties and the sum of which has the second. On using condition (2) we then ob- 

tain the required contradiction. 

Finally we mention two immediate applications of Theorem 1. In  1937, Mahler 

[6] proved an interesting theorem to the effect tha t  certain infinite decimals, for 

example 
0 . 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  . . . .  

in which the positive integers, represented on the decimal scale, are writ ten as a se- 

quence in the natural  order, are transcendental but  not Liouville numbers. I t  is clear 

from the proof of these results tha t  the hypotheses of Theorem 1 are satisfied, with 

K as the rational field, for many  of the infinite decimals considered by  Mahler, in- 

cluding the example mentioned above, and hence these are indeed not U-numbers. 

Secondly, since algebraically dependent numbers belong to the same class, it follows 

tha t  if ~ satisfies the hypotheses of Theorem 1 and ~ is any U-number then all 

polynomials in ~, ~ with algebraic coefficients, not all zero, are t ranscendental  Thus 

we have a method for the construction of transcendental numbers. 

I am indebted to Professor Davenport  for valuable suggestions in connection 

with the present work. 

2. L e m m a s  

We now give seven lemmas preliminary to the proof of Theorem 1. We use the 

following notation. I f  
T~ i'm 

tl tm 
A ( x  I . . . . .  Xm)= ~ . . .  ~ a~ ...... i,,,xl . . .  Xm (8) 

i l  = 0 i m  = 0 

is a polynomial in m variables then we denote by  A j  ...... J~ (x 1, . . . ,  x m ) t h e  polynomial 

given by 
1 ~ +... +ira 

]1! ... h~! a~"  . . .~zL" A(x l  . . . . .  ~), 

where ]1, . . . , jm  a re  non-negative integers. We note tha t  if A ( x  1 . . . . .  Zm) has integer 

coefficients then so also has Aj ...... Jm @1 . . . . .  xm). 

L ~ M M A  1. S u p p o s e  that  ~ i s  a real or comp le z  number ,  n is  a pos i t i ve  integer a n d  

u o, u 1 . . . . .  un ( = u )  are integers  i n  absolute va lue  at  mos t  X ,  where X is  a n  integer.  L e t  

= u 0 +  u 1 ~ +  . . .  + un ~n. (9)  
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Then /or each positive integer I there are integers a~Z,~ (i = 0, 1 . . . . .  l, j = 0, 1 . . . . .  n - 1), in 

absolute value at most (2 X) ~, such that 

! n - 1  

Proo/. Clearly the  l emma  is t rue  for l = 1, 2 . . . . .  n - 1  wi th  a~l.~--u ~ if i = 0, j = 1 

and  0 otherwise. L e t  k be an integer  >/ n - 1  and  assume t h a t  the  l e m m a  is t rue  

for 1 = k. Define a~] to be the  integers given b y  the  l e m m a  for  i = 0, 1 . . . . .  k, i =  

0, 1 . . . . .  n - 1  and  to  be 0 for all o ther  integral  values  of i , j .  F r o m  (10), wi th  l = k ,  

we obta in  
/c n - I  (u ~)~+1= ~ y _(~) ~ ~j+l 

U a i ,  j 
~=0 i = 0  

Subst i tut ing,  f rom (9), for the  highest  power  ~, of ~ on the  r ight  hand  side of this 

equat ion  it  follows t h a t  
k + l  n - 1  

t*i. 1 t /  ~ ,  
f=O 1= 

where the  _(k+x) ~ ; _ a  -. . ,  ~ ,s  ~ - , ,  1, k + l ,  j = 0 , 1  . . . . .  n - l )  are integers given b y  

_(k) if i4=0 (11) 

and  b y  a~k21. ~ -(~) if j = 0. (12) n - 1  - -  ~0 (*t, n - 1  

Since, b y  hypothesis ,  the  -(~) ~ , j  are in absolute  va lue  a t  mos t  (2 X) ~ i t  follows, on es- 

t ima t ing  (11) and  (12), t h a t  the  _(k+l) ~,.j are in absolute  value a t  mos t  (2 X) ~+1. Hence,  

b y  induction,  the  l e m m a  is proved.  

L E M ~ A  2. Let m, N, r I . . . . .  r , , ,ql  . . . . .  qm be positive integers and let r be a posi.  

tire number such that 
m > ( 2 N + l )  2, ~ < 2  -zm, rm>10(5  -1, (13) 

log q 1 > 2  m ( 2 m +  1)~ -1 (14) 
and, /or each j = 2, 3 . . . . .  m, 

rJr j_l<(~,  rj log q j ~ r  1 log q r  (15) 

Suppose that A (x 1 . . . . .  x,,) is a polynomial, not identically zero, with integer coefficients 

in absolute value at most q~' and o/ degree at most rj in xj. I /  ~bl . . . .  , ~,n are m ele- 

ments in an algebraic number /ield K o/ degree N wi th / i e ld  heights ql . . . . .  qm, then there 

are m non-negative integers J1 . . . . .  Jra such that 

A I  ...... J~(~l . . . . .  ~ ) 4 : 0  and ~ J_t < 1 0 ~ ( t )  ~. (16) 
i = l  r i  
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Proo]. We use Theorems 4-10, 4-11 and 4-12 on pp. 136-142 of LeVeque [4]. 

Note that  Lemma 2 would follow directly from Theorem 4-12, without the first in- 

equality in (13), if the qt represented the absolute heights of the ~ and not the field 

heights. 

Since, from (13) and (14), 

0 <  ~<  (m~ 2m)-1 < {m2 m ( 2 N +  1)2} -1 

and log ql > 6 N  ( 2 N +  1) (~-1, (17) 

it follows that  all the hypotheses of Theorem 4-12 are satisfied if we replace the N 

of the theorem by 2 N, with N given as above, and we reinterpret the q~ of the 

theorem as the field heights of the ~. We now prove that,  with these changes in 

the hypotheses, the conclusion of the theorem continues to hold for polynomials with 

rational integer coefficients. This conclusion is equivalent to tha t  of Lemma 2. 

First we consider Theorem 4-10. This may be stated as follows. Let  A(x) be 

a polynomial, not identically zero, of degree r, with algebraic integer coefficients in 

an algebraic number field of degree N I, for which all the conjugates are in absolute 

value at  most B. Let  ~ be an algebraic number of absolute height Q. Suppose that  

0 is a non negative number such that  r 0 is an integer and (x-$)r0 divides A(x). 

Then 
0 ~< {3N 1 (N 1 + 1) + Nlr -1 log B} (log Q)-a. (18) 

Suppose that  ~ is contained in an algebraic number field of degree N and that  the 

field height of ~ is q. We prove that  if A(x) has rational integer coefficients and 

log q > 2 N log (N + 1) (19) 

then (18) holds with N I = 2 N  and Q=q. 
Let  F be the field polynomial of ~ multiplied by a suitable constant so that  it  

has relatively prime integer coefficients, and E be the defining polynomial of ~ mul- 

tiplied by a suitable constant similarly. Then F is some power, at  most N, of E, 

and the highest power of ~ in E is at most N. Hence the integer coefficients in F 

are the sum of a t  most ( N +  1) ~ terms, each a product  of a t  most N coefficients 

from E. I t  follows that  
q ~< {(N+ 1) Q}N. (20) 

From (19) and (20) we obtain 
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log q < 2 N  log Q. (21) 

Since A(x )  has rational integer coefficients it  follows from (18) with N i =  1 that  

0 ~< (6 + r - i  log B) (log Q)-I. 
Now using (21) we obtain 

0 ~< (12 N + 2 N r -~ log B) (log q)-I 

and hence (18) holds with N ~ = 2 N ,  Q = q  as required. We note that  from (13) 

and (15) 
log qj>~log ql for ~= 1, 2 . . . . .  m 

so it  follows from (17) that  (19) holds with q=qj .  

Thus the conclusion of Theorem 4-10 continues to hold for polynomials with 

rational integer coefficients and with ~ = ~j if we replace N 1 by 2 N and Q by qj. 

I t  is then clear from the proofs of Theorems 4-11 and 4-12 that  the conclusions of 

these also continue to hold under similar modifications and hence Lemma 2 is proved. 

LEMMA 3. Suppose r i . . . . .  r,, are positive integers and q > 0 .  Then the number o/ 

sets o[ integers ?i . . . . .  ]m satis/ying 

0 < ] l < r  I . . . . .  O<jm<rm,  (22) 

is at most 

4.1 + . . .  + ?.~ < �89 ( m -  (~) (23) 
~'1 r m  

2 m �89 (r -1 (r 1 + 1) . . .  (rm + 1 ). 

Proo[. See LcVeque [4], Theorem 4-13, pp. 142-144. 

LEMMA 4. Suppose the hypotheses o[ Lemma 1 hold. Let  m, r 1 . . . . .  rm be positive 

integers such that rj-1 > rj /or j =  2,  3 . . . . .  m, and let a = 6 nm �89 Then there is a poly- 

nomial W(x  1 . . . . .  Xm), not identically zero, the sum o/ two polynomials U(x I . . . . .  Xm) and 

V(x i . . . . .  x,,), all o/ degree at most r s in  xj ]or ~ = 1, 2 . . . . .  m, with the/ol lowing properties. 

(i) W ( x  1 . . . . .  Xm) has integer coe//icients in  absolute value at most (8 X) ~r'. 

(if) For each set o/ non-negative integers i l  . . . . .  ]m, 

I ~ ,  ...... s~ (~ . . . . .  ~ )1< {32 x (1 + It I)} mr', (24) 

m ~ 

and U~ ...... 1 , ~ ( ~ , . . . , ~ ) = 0  i /  z . x ; ~ < � 8 9  (25) 
i l l  r |  
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(iii) Each u mr' VJ ...... j ,  (~ . . . . .  ~) has the /orm 

mrl n - 1  
~ ' '  (26) 

i = l  1=0 

where the /~.j are integers in  absolute value at most (8 X) star•. 

Proo/.  We consider all polynomials  A ( x  1 . . . . .  xm) of the  fo rm ( 8 ) w i t h  integer  

coefficients sat isfying 
O ~ a t  ...... tm~<B,  

where B is an  integer  > 1 .  The  n u m b e r  of such polynomials  is ( B +  1) ~ where 

~* = ( r  I -}- 1) . . .  (rm + 1). (27) 

For  any  such polynomial  A(Xl, ...,xm), each Aj ...... j , ( ~  . . . . .  ~) has  the  form 

m r  I 

bz (j~ . . . . .  ~m) ~ l ,  
I=0 

where the bz ( J l '  " ' "  jm) are integers. Since the  coefficients in each der ived polynomial  

Aj ...... Jm (xi . . . . .  xm) have  absolute  value a t  mos t  

Ji  jm 

and the  to ta l  n u m b e r  of t e rms  is a t  mos t  r, i t  follows t h a t  the  bt(j l ,  . . . ,  jm) h a v e  ab- 

solute value a t  mos t  

r 2 m r ' B =  ( r t +  1) ...  (rm+ l) 2 m r ' B ~ 4 m r ' B .  

We now use L e m m a  1. F r o m  (1O) we obta in  

m r 1 

u = '  A j  ...... J~ (~ . . . . .  ~) = ,~0 bL ( ~ 1  . . . . .  ]m)  u m r x - l  ( U ~ )  l 

mr~ l n - I  

= t=o ~ ~?o= t?o= b, (~1 . . . . .  jm) umr~-l a~Z,)J 7' ~J 
mr t n - 1  

=,~o y c,.,(h . . . . .  j,,) ~' r 
= J = O  

(2s) 

tort 

where c,,j (Jl . . . . .  j,,) = ~. umr'-Z ai'.)j b, (Jl . . . . .  Jm). 
l = |  

Since, f rom /-,emma 1, the  alZ~ are integers in absolute  value a t  mos t  (2 X) z and  [ u [ ~< X, 

it  follows t h a t  the  cf.; (?'1 . . . . .  jm) are integers in absolute  value a t  mos t  
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(mr  x + 1) X mr' (2 X) at' 4 at' B ~< (4 X) amr' B. 

Hence,  f rom L e m m a  3, the  tota l  number  of possible sets of integers co.s (]z, ...,ira), 

where ] =  0, 1 . . . . .  n - 1  and ], . . . . .  ]a  are integers for which (22) and  (23) hold, is a t  

most  
S = { 2  ( 4 x ) 2 m r ' B +  1}2~m�89 

where r is given by  (27). 

Now let B =  ( 8 X )  mr*. Then, using 2 n m � 8 9  - t =  ~, we obta in  

(B + 1) t > (8 X) tarIt B i t  i> {4 (4 X )  2z~' B }  j t  > S.  

Thus there are more  polynomials A ( x  I . . . . .  Xm) t han  there are possible sets of integers 

Co.s (]z . . . . .  ]z), where ] = 0, 1 . . . . .  n -  1 and ]1 . . . . .  ]m are integers for  which (22) and 

(23) hold, and hence there are two (z) different polynomials A (x 1 . . . . .  x~) and A (~) (x x . . . . .  Xm) 

with the same set of values. Le t  

W (x z . . . . .  Xm) = A (') (x 1 . . . . .  gem) -- A (2) (x z . . . . .  x~). 

Then W(x  t . . . . .  xm) is no t  identically zero, i t  has integer coefficients in absolute value 

at  mos t  B,  and, f rom (28), for each set of integers ]z . . . . .  ]~ for which (22) and (23) 

hold, u mr1 WJ ...... J, (~ . . . . .  ~) has the form (26), where the /~,j are integers in absolute 

value at  mos t  
2 (4 X) 2m" B < (8 X) 3~'. 

We define wj ...... j~ to be 0 if ~1 . . . . .  ]m are integers such t h a t  (22) and (23) hold 

and 1 otherwise. P u t  

r I r m  

U ( X l  . . . . .  xm) = ~. . . .  Z w~ .. . . . .  ,~, W ,  ...... , .  ( x l -  ~ ) " . . .  ( x ~ -  ~)% 
'z~O ~m=O 

where, for brevity,  we write W, ...... ,~ for W~ ...... ~, (~ . . . . .  ~). Then clearly 

Uj ...... j~ (~  . . . . .  ~ ) = w j  ...... j .  Wj ...... j .  (29) 

and this is 0 if ]1 . . . . .  ]~ satisfy (23), t h a t  is (25) holds. Since the coefficients in 

each derived polynomial  Wj ...... J~ (xt . . . . .  Xm) are in absolute value a t  mos t  2 ~r' (8 X) ~r' 

and the tota l  number  of terms is at  mos t  r, it  follows t h a t  

I w ,  ...... '-I<~mr' (8X)~t,  (1+1~1) ~t' 

for  all sets of non negative integer ]z . . . . .  ira. Hence (24) follows f rom (29). 

Final ly we define 
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Then  clearly 
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V ( z  I . . . . .  z m )  -~- W ( X l ,  . . .  , Xm) - -  U ( x  I . . . . .  Xm). 

if ?'1 . . . . .  ja  are integers such tha t  (22) and (23) hold, and 0 otherwise. I t  follows, in 

bo th  cases, t ha t  u ~r' Vs ...... j~ (~ . . . . .  ~) has the form (26) and hence Lemma 4 is proved.  

LEMMA 5. Suppose  the hypotheses o /JLemma 1 h o l d . . L e t  m,  N ,  r 1 . . . . .  rm, ql . . . . .  q~ 

be posit ive integers and ~ be a posit ive number  such that (13), (14) and (15) hold. Let  

~1 . . . . .  ~,~ be m elements in  an  algebraic number  /ield K o~ degree N wi th  /ield heights 

ql . . . . .  q,~. Suppose  that 
log ql > mO-1 log (8 X) (30) 

and let (~= 6 n m  ~, ~ = 10m(~ (})~. (31) 

Then  there are two polynomials  P ( x  1 . . . . .  xm) and Q(x x . . . . .  Xm), wi th s u m  R ( x  I . . . . .  xra), 

all of degree at most rj in  x s /or j = 1, 2 . . . . .  m,  having the following properties. 

(i) R ( x  1 . . . .  , x,,) has integer coe//icients in  absolute value at most (16 X) at'. 

(ii) R($1 . . . . .  ~m) is not zero. 

(iii) For  each set o/ non  negative integers Jl . . . . .  jm 

I Pr ...... ,m (~ . . . . .  ~) ]< {64X (1 + I (32) 

4 
and Pi  ...... J,, (s . . . . .  ~) = 0 i /  ~. ,A < �89 (m - (y) - ~. (33) 

i=1 rt 

(iv) Each  u mr' Qi ...... t,~ (~ . . . . .  ~) has the /orm (26) where the /i,j are integers in  ab- 

solute value at nmst  (16X)  am~'. 

Le t  

be taken  as 

Proo/.  The hypotheses  of Lemma  4 hold and we suppose tha t  U(x I . . . . .  xm), 

V(x  I . . . . .  xm) and W(x  1 . . . .  , xm) are the polynomials given by  the lemma. F rom (30) 

we obtain 
q~rl > (8 x )  mr, 

so tha t  the polynomial  W ( x  1 . . . . .  Xm) satisfies the hypotheses  of Lemma  2 in place of 

A ( x  1 . . . . .  Xm). I t  follows tha t  there  are m non-negat ive integers Ja . . . . .  Jm such tha t  

Ws ...... Jm (~1 . . . . .  Sm) # 0 and ~ J j  ~< ~. (34) 
t = l  r t  

P ( x  1 . . . . .  xm), Q(xl . . . . .  xm), R(x 1 . . . .  , x~) 

U~, ..... J.. (Xl  . . . . .  Xm), V J, ..... j .  ( x  1 . . . . .  x~),  W J  ...... I .  (x~ . . . . .  Xm) 
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respectively.  Then  the coefficients in R(x I . . . . .  x~) are in absolute  value a t  mos t  

( rl). ( rm) (8X)mr'<.(16x)~r' 
J1 "" Jm 

so t h a t  (i) holds. Clearly (ii) is equivalent  to the  first  p a r t  of (34), and  (33) of (iii) 

follows f rom (25) and  the  second p a r t  of (34). Since for  each set  of non-negat ive  

integers Jl . . . . .  Jm 

PJ ...... j~(x a . . . . .  x ~ ) = \  Jl / " "  

and  this is identically zero unless J~ + j~ ~ rt for all i, i t  follows f rom (24) t h a t  (32) 

of (iii) holds. Similarly f rom (iii) of L e m m a  4, each u ~1 Qi ...... j ,  (~ . . . . .  ~) has  the  fo rm 

(26) where the  ]~,j are integers in absolute  value a t  mos t  2 m~' (8 X) ~m~* and this p roves  

L e m m a  5. 

L~M~A 6. Suppose that K is an algebraic number /ield o/ degree N and that 

i8 an algebraic number in K with /ield height H(~). Let the /ield conjugates o/ ~ be 

~(1)= $, ~(2) . . . . .  ~(N) and let the coe//icient o/ x N in the /ield equation o/~, with relatively 

prime integer coe//icients, be h. Then 

N 

h FI (1 + ] r ]) < 6~ H(~). (35) 
i=l  

Further, i/ Jl . . . . .  j8 are s distinct integers between 1 and N inclusive then 

h ~r ~Js> 
is an algebraic integer. 

Proo/. See LeVeque [4], Theorem 4-2,  pp. 124-125 and Theorem 2-21, pp.  

63-65. 

L~MMA 7. Suppose that the hypotheses o/ Theorem 1 hold. For each positive in- 

teger j, let F(o~j) be the exact ]ield height o/ o~. Then there is an increasing sequence o] 

positive integers nl, n~ . . . .  such that 

F (~n,) < FC~z,~+I), (36) 

I ~ -  ~'~ I < (F(~,~))-", (37) 

log F(~,~+I) 
/or all i, and l im sup - -  < c~. ~38) 

~-~ oo log F(~,~) 
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Proo[. We first prove that  

rain {log H(~j), log H(~j+~)} < max {log F(~), log $'(~s+x)} (39) 

for all sufficiently large }. Let N be the degree of the algebraic number field K and, 

for each }, let a~ ~)= ~j, ~ )  . . . . .  ~m be the field conjugates of ~j. Let hj be the coef- 

ficient of x N in the field equation of ~j with relatively prime integer coefficients. 

We put  
E = h s hi+ 1 N o r m  (o~j - -  Gf]+l), (40) 

N 
where Norm (~s -- gI+i) = 1-I (al ') -- ~01)- (41) 

Since the ~r are distinct, it  follows from (40) that  ~. is not zero. From (41), ~ is 

the sum of products of conjugates of a~ and ~j+~, all multiplied by hj hs+l. I t  follows 

from Lemma 6 that  ~. is a rational integer and hence we obtain 

1. (42) 

We now calculate an upper bound for [~ [. Since 

") 

and, from (35) of Lemma 6, 

N 

h, 1-I (i + 1 ~ "  l) < 6~ ~(~,), 
i= l  

i t  follows from (40) and (41) that  

From (1) we obtain 

< [ ~,, - ~,'+, [ 6 ~  F(~,,) F(~.,+,) 

§  ,+11 
< (H(~j)) -~ + (H(~+I))  -~ 

~< 2 (rain {H(~), H(~j+I)}) -~, 

so that  from (42) and (43) it  follows that  

(min {H(~j), H(~j+~)})~ < 2.6 ~v (max {F(~j), F(~j§ 2. 

(43) 

(44) 
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There are only a finite number of elements of K with bounded field height and hence 

max (E(~j), _F(~j+I) ) -+ co as ~ -+ co. 

Thus from (44), on taking logarithms and noting that  ~ > 2, it follows that  (39) holds 

for all sufficiently large ?'. 

We may suppose that  H(~s)<H(~j+I) (45) 

for all ~, for otherwise we have only to replace the sequence ~j (j = 1, 2 . . . .  ) by a 

subsequenee o~j~(i=l, 2 . . . .  ), where j l = l  and, for each integer i~>1, j~+l is defined 

inductively as the least integer >?'~ for which 

H(o~s~) < g(o~j,+l). 

Then log H(aj~+l)/log H(aj~)~< log H(~j,+I ) / l og  H(~s~+l-1) 

so that  (2) holds for the subsequenee o~j~(i= 1,2 . . . .  ) and clearly (1) also holds for 

this subsequence. 

Next  we define inductively a sequence A of positive integers kl, k, . . . .  such that  

[ ~ -  ~k,[ < (F(~k,)) -~ (46) 

1. log F(ak,+l) (47) for all i, and nm sup ~ o ~ - - -  < oo. 

Let  /c~ = 1 and let i be a positive integer. We supppose that  k~ has been defined 

and we take k~+l as /c~+ 1 or k~+2 according as F(~k~+l) is or is not greater than 

-~(~ki+2). Then by definition, 

max {log F(~k~_~+l), log P(~,-1+2))= log F ( ~ ) .  (48) 

From (2) there is a constant c >  1 such that  

log H(xj+l) < c log H(~)  (49) 

for all ]. Hence, from (45) and the definition of k~, 

rain {log H(~_~+~), log H(~kH+~)) = log H(~_x+l)  > c -~ log H(~,) .  (50) 

From (39), (48) and (50) we obtain 

log F ( ~ ) >  c -~ log H(~a) (51) 
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for  all sufficiently large i. Since F(as)~< H(~j) for  all j, i t  follows from (45), (49) and 

(51) tha t  
log F(~ck,+l) log H(~k~+~) log H(~k~+2) 

log F(~k~) < C log H(o~k,) < c~ log H(~ck,+l)" 

Hence (47) follows from (2) and clearly (46) is a direct  deduct ion from (1). 

:Finally we define a subsequence nx, n2 . . . .  of A in a similar manner  to tha t  in 

which we defined the sequence Jl, ~'~ . . . .  above,  t ha t  is we take n 1 = 1 and, for  each 

integer i ~> 1, we take nt+l as the least integer in A greater  than  ni for  which F(o~n~) 

is less than  F(zcn~+l). Then  (36), (37) and (38) hold, and Lemma  7 is proved.  

3. P r o o f  o f  T h eorem 1 

We begin by  defining explicit ly a positive constant  g and proceed to prove tha t  

i t  has the p roper ty  s ta ted in the theorem. We suppose tha t  H ( @  is the exact  field 

height of ~j, for  each positive integer j, and t ha t  H(~,), H ( ~ )  . . . .  is an increasing 

sequence. In  vir tue of Lemma  7 we may  make  this supposit ion wi thout  loss of 

generality.  F rom (2), there  is a constant  c >  3 such tha t  

H(g/+l) < {H(~/)} c (52) 

for all j. Le t  N be the  degree of the algebraic number  field K and let  

). = min (1, ~ - 2). (53) 
We pu t  

v = (20).-,)2 + (2 N -}- 1) 2 log {3(1 A- ]~ [)} A- log H(atl) + log log c (54) 

and then  define /x = 2v. 

Suppose t ha t  /~ does no t  have the p roper ty  s ta ted in Theorem 1. Then  there  

is a positive integer  n, and there  are integers Vo, v, . . . . .  vn, v,~#-O, such t ha t  

IVo+ vl~ + ... +v ,~" l<  r-~", (55) 

where Y = m a x  (2, I%1, Iv, I ,- . . ,  [vn[) 

and /~n is given by  (5). Le t  vn be given by  

log log v, = vn 2. (56) 

We show tha t  there  are integers Uo, us, . . . ,un,  u n # 0 ,  such tha t  

] u 0 + u l  ~ +  ... + u n ~ " l < X  -v', (57) 
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w h e r e  X = m a x  (I u0 ], I~ttl ] . . . . .  I un ]) ) eS"n'" (58) 

I f  Y > e  5~n~ then, since v ~ < ~ ,  we have only  to  take  u~=v~ for i = 0 ,  1 . . . .  ,n .  Suppose 

therefore t h a t  Y ~ e 5~' .  Let  
w = [e 5"~'] + 1 

and take  u ~ = w v ~  for i = 0 ,  1 . . . . .  n. Then  clearly (58) holds and from (55) we obta in  

. . .  < w  < 2 (59) 

However,  X ~< w Y < 2 e 1~ < e ~~ 

and hence, f rom (5) and (56), it follows t h a t  

2-~n = 2-,n ~~ < e  - ~ y ~l~ ~ e--vn(2vn+l)--va -1 ( 1 e-5~n~ (2~n+l)-~n ( 21 e -5~'n" X - ~ ' a  

Thus (57) follows f rom (59), W i t h  the integers %, u 1 . . . . .  un ( = u )  defined as above, 

let ~ be given by  (9) of L e m m a  1. Then f rom (57) 

Iv I < x-', . .  (60) 

We now define the numbers  m ,  (~, a ,  ~, r 1 . . . .  ,r,~, q l  . . . . .  q~, ~1, " . . ,  ~m w i t h  the 

object  of applying Lemma 5. First  let m be the integer given by  

m = [(20 n ~-~)~ + (2/V + 1)~], (61) 

and define 5 by  log ($-X=m2m log 10. (62) 

Then clearly m, ~ satisfy the first and second inequalities in (13). Le t  a, ~ be given 

b y  (31) of L e m m a  5. F rom (62) i t  follows t h a t  ~ =  1. We now prove, as in [2], t h a t  

2 m ( 1 + 4 ~ )  
m -  a - ~  < 2 + ~t. (63) 

The fract ion on the lef t -hand side increases when m decreases and thus  it suffices to  

prove (63) when m is replaced by  (20 n~t-1) ~. The inequali ty is then  equivalent  to  

3200 ~ + 240 ~t + 4 22 n-~ 

400 - 120 2 - 2 ~ n -a 

Since 2~< 1 and n>~ 1, the denominator  is at  least 4 0 0 -  1 2 0 - 2  = 278 and  the numer-  

a to r  is a t  mos t  3 2 0 0 ~ + 2 4 0 2 + 4 ~ < 3 2 0 0 ( 2 - 4 ~ 1 7 6  Hence (63) holds 

as required. 
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Now define 

and let 

We prove that  

From (64) and (65) 

A.  B A K E R  

q = [10 (2 c) ~-1 ~-m] + 1 

0 = 4 c m  ~ ~-2 q. 

O < ~ n .  

O < 2 m+5 C m m 2 ~-(m+2) 

(64) 

(65) 

(66) 

For i = 1, 2,  . . . ,  m ,  take ~, = ~&+,_~ (72) 

and put  q ~ = H ( ( ~ ) .  (73) 

Then, from (71), log q l= log  H(~j~) >m ~  -1 log (8 X) 

and, since m >400, it  follows that  

log O < m  log c+  ( m + 5 ) + 2  log m +  (m+2)  log ~ - l < m  log c + 2 m ( 1  +log ~-1). (67) 

From (62) we obtain log ~-1< 41 m-i era-1 

and hence, from (67), 

log 0 < m log c + e m-1 < (1 + log c) e m-1 < e m log c. 

Thus, from (54) and (61), it follows that  

log log 0 < m + log log c < v n 2 = log log v= 

and hence (66) is satisfied. 

Next  we select a subsequence cq,, zr162 . . . . .  of the ~s, where 1 =2"1<]2< ..., such that  

log H(~,) > 2 (~-1 log H(~6_~) ~> log H(~/,-i) (68) 

for i = 2 ,  3 , . . . .  Then, from (68) and (52), 

{H(~6_1)} 2c~-1 ~> {H(zch_I)} c > H(~&), (69) 

and H(~&_I ) < {H(oe&)} �89 (70) 

We choose k such that  H(~i~_, ) ~< (8 X) m~-I < H(~ik). (71) 

This is possible since H(~q), H(~2), ... is an increasing sequence and, from (58) and (54), 

( 8  X )  m~-I > X > e v > e l~ H(~') = H ( a i ) .  
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so t h a t  (30) of L e m m a  5 holds. Fur ther ,  f rom (58), (54) and  (61) i t  follows t h a t  

log ql>m(3 -1 log X > 5 ~ n 2 m ( i - l > 2 m ( 2 m +  1)(~ -1, 

and hence (14) of L e m m a  2 holds. F r o m  (69), (72) and  (73) we obtain,  for each 

j = 2 , 3  . . . . .  m 
log q j l o g  qJ-1 < 2 c6 -1, (74) 

and,  f rom (70), log q j l o g  qJ-1 > 2 6 - 1  (75) 

Final ly  we define integers r~ . . . . .  rm such t h a t  

r 1 log ql / Iog qs < rj < 1 § r 1 log ql / log qj, (76) 

for ~ = 2, 3 . . . . .  m. Then  clearly the  second p a r t  of (15) holds. F r o m  (76), (74) and  

(64) we ob ta in  for each ~= 2, 3 , . . . ,  m 

rj>~r 1 log qi / log q j>r l  (2c($-1) -(j-l) > 10 (2c)m-1~ -m+j-i. (77) 

For  ~ = m this gives the  th i rd  inequal i ty  in (13). Fo r  each ~ = 2, 3 . . . . .  m, (77) gives 

r,  log q J l o g  qj > 10 0 -1 > 1 (78) 

and  hence, f rom (76), i t  follows t h a t  

rj log qJ(ri-1 log qj-1) < 1 + log qJ(r  I log q~) < 2. 

Then,  using (75), we obta in  2 ~-1 rJr~_l < 2 

so t h a t  the  first  inequal i ty  in (15) is satisfied. 

Hence  we have  verified all the  hypotheses  of L e m m a  5. Le t  P(x  1 . . . . .  xm), Q(x I . . . . .  Xm) 

and R(x I . . . . .  Xm) be the  polynomials  given b y  the  l emma.  For  each i = 1, 2 . . . . .  m, let  

~1) = ~,  $~2) . . . .  , $~) be  the  field conjugates  of ~i and  h~ be the coefficient of x N in the  

field equat ion  of ~ wi th  re la t ively pr ime integer  coefficients. Then  

= hE' ... h~ ~ N o r m  1~(~ i . . . . .  ~ )  

is the  sum of products  of powers  of the  ~J) wi th  integer  coefficients, and in each 

such p roduc t  a fac tor  ~J) occurs to the  power  a t  mos t  r~. Hence,  f rom L e m m a  6, 

~F is a ra t ional  integer  and,  f rom (ii) of L e m m a  5, i t  is non zero. I t  follows t h a t  

>/1 (79) 

W e  now calculate an upper  bound  for I~F]. F i rs t  we consider 

8--642945 Acta  mathematica, l l l .  Imprim6 le 20 mars 1964 
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N 

r = h l , . . ,  h~n" FI R(r .. . ,  r 
t = 2  

From (i) of Lemma 5, the coefficients in R ( x  1 . . . . .  Xm) are in absolute value at  most 

(16X) mr' and hence, using (35} of Lemma 6, we obtain 

I(I)l<lhI'...h~'l (16X)'"~-" ~ ~ (1 +l~-~J)l)~' 
~=1 ]=2  

< (16 x ) ' ~ ' "  l~I ~ {Ih, l(x + I : i ' ) l )? ' 
1 : 1  1=1  

< ( 1 6 x )  '~' N 6m~' " C  .-. q;7- 

From (76) and the first inequality in (78) 

q~t < q~x (1 +~/10) 

Hence, from (14) and (30), noting tha t  m > 4 N ,  it follows that  

[qb I < (96 X) roT' N q,~r, (l+~n0) < 12ran ,Vq,~r,(l+,~) < q[nr,(l+2~). (8o) 

Secondly we deduce an upper bound for [Q(~I  . . . . .  ~'m)[" From (1), 

I~-r for i = 1 , 2  . . . . .  m. (81) 

Now using (iv) of Lemma 5 and (60), we obtain for each set of non-negative integers 

fi . . . . .  jm 
mr,  n - I  n - 1  

i = 1  J=O 

< X -~" {2 (16 X) 3 (I + I } [)}mn. 

Hence, from (81), on expanding Q ( x  1 . . . . .  Xm) about the point (} . . . . .  }) by Taylor's 

Theorem, we obtain 

r I rm 

I q(r . . . . .  r < 2 ... E I O, ...... ,,, (~ . . . . .  ~) ( r  ~)" ... ( r  ~)'-I 
/x=O tm=O 

r,  r m 

< E ... E IO, ...... ,,,(e . . . . .  ~)} 

< x -f- {2 (16 x )  ~ (1 + I ~ I)F" [~ I-"r' 2~,, 

< x-,- { (32 x? (i + Ir "~. 

From (58) and (54), log X > 5 ~ > 4 5  log {3 (1 +[r 
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so t ha t  X > 345 (1 + I ~ I)" (82) 

Hence from (65) and (66) we obtain 

I Q((i ..... (~)I< X -y. X4~I< X-~ X -t~ (83) 

Thirdly we find an upper bound for [P((i ..... (m)[. From (33) of Lemma 5, 

P((i .... ,(m) is the sum of at most 2 mrl terms, each of the form 

PJ ...... Jm (~ . . . . .  }) (~i - } / '  "'" (~m -- }/% 

where ]l . . . . .  ]m are integers such tha t  

0 < ] l K r  1 . . . . .  O <~m Kr m ,  (84) 

and ~ j-~/> �89 (m - a) - ~. (85) 
|=1  r i  

From (1), I ~ - ~ t l < q ;  ~ for i = 1 , 2  . . . . .  m 

and hence, using (32) of Lemma  5, we obtain 

I P ( ~ ,  . . . ,  ; ~ ) l <  2 m'' {64 X (1 + l }  I)} mr' q;, ,s , . . ,  q~,,s,,, 

where J i  . . . . .  Jm are integers which satisfy (84) and (85) above in place of il  . . . . .  ira- 

F rom (76), 
q;~/>q~' for ~ = 1 , 2  . . . .  ,m  

and thus  it  follows tha t  

Now ~ = 1 and hence from (53) and (63) we obtain 

q~,~n{�89 < qlmrl(l+4O). 

From (82), { 1 2 8 X  (1 + [ @ l ) } ~ ' < X  2~r~ 

and hence, f rom (30), it  follows t ha t  

~-mT~(l+~) (86) [P(~i . . . .  ,~m) l<X2m*~q{m~'(l+*~) < �89 

We now combine the estimates (80), (83) and (86). F rom Lemma  5, 

R ( ( i ,  .... (m) = P ( ( i  . . . . .  $~) + Q((i, -.., (~) 

and hence, f rom (83) and (86), 

8* -- 642945 
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]R(L . . . . .  ~m)]< X-i 0+ �89 q;,~r.l +2~). 

Then, using (80), it follows that 

]~F]=}r  IR($1 . . . . .  tin) } < qF"(*+*o) X - ~  ~ + �89 

F r o m  (69) and  (71), 

ql = H(aj . )  < {H(~jk_,) }2 co-~ ~ (8 X) 2 cm~-2, 

so tha t ,  f rom (65), 

[~1 < (8X) +~ X-~~ �89 

Since (~ < 2 -2m< �89 and,  f rom (82), X > 2 . 8 5 ,  we obta in  finally 

I ~ l <  (8x)t~176189 (8~ X-~)~~ �89 < (�89189 �89 < 1. 

However ,  this contradicts  (79), and  the  contradic t ion proves  the  theorem.  

4. Proof of Corollary 

The  result  follows b y  an immedia te  appl icat ion of Theorem 1 with K as the 

ra t ional  field. We define integers 

] = 2(N+2) j P)=2(N+2)t ~ 2-(N+2)n, qt 
n = l  

for  ) '=  1, 2 . . . .  , and  pu t  ~j=pJqj. Then the field height  of ~j, which, in this case, is 

the  same as the  absolute height,  is g iven by  

H(~j) = m a x  (pj, qj) = qj = 2 (N+e)J. 

Clearly (2) holds and  since, for all ~, 

I}-PJ/q~{= ~ 2-<N+2)" < 2-<N+2)J+'+l<q ~-(N+~) (87) 
n = j + l  

i t  follows t h a t  (1) is satisfied wi th  u =2V+ ~ > 2. Hence,  f rom Theorem 1, } is ne i ther  

algebraic  nor  a U-number .  

As is well known,  (87) implies t h a t  the par t ia l  quot ients  in the regular  cont inued 

f rac t ion  of ~ are unbounded.  Fur ther ,  since (87) can be wr i t ten  in the form 

} q) ~ __p)] < .[_[-(N+ �89 

where  H =  m a x  (pj, qj,), i t  follows, by  definition, t h a t  ~ cannot  be an S -number  of 

t y p e  ~< N. This proves  the  corollary. 
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5. Proof  o f  T h e o r e m  2 

We assume that  0<  ~< 1 as we may without loss of generality. 

the nth  convergent to ~. For each i = 1, 2 . . . .  we define 

Let Pn/q~ be 

<--- 2o - - - - - ~  ] 

~ = ao, a l ,  � 9  a n o - 1 ,  ano,  . . .  , a n o + k o : l ,  �9 . .  , a n  i ,  � 9  , a n ~ + k t - 1  

where the block of partial quotients indicated by the bar is repeated infinitely many 

times. Then (see [1], Lemmas 1 and 2) ~ is a quadratic irrational of absolute height 

less than 2q2n~+k_l and, since the first nl+l partial quotients of ~i are the same as 

those of ~, 
l< (88) 

We note that  all the ~ are distinct. 

U=�89  (1+5�89 

Then (see [1], Lemma 3) 

Next, let 

V = �89 (A + (A 2 + 4)�89 (89) 

U n-I ~< qn ~< V ~ for all n. (90) 

Suppose that  the defining equation of ~ with relatively prime integer coefficients is 

P~ x 2 + Q~ x + Rt = 0. (91) 

From (90) and (91), the absolute height of ~ is given by 

max (IP~[, ]Q,], [R,I)<X~, (92) 

where X, = 2 v2(nl+kl-1). (93) 

Let the root of (91) conjugate to ~ be ~1). Either I~1)1~<1 or, from (91)and (92), 

so that,  in both cases, [~11) I < 2 X~. (94) 

We now deduce an upper bound for [P~ ~2+ Qi ~ + R~ [. From (88) and (90), 

[ ~ - y , [  < U -~(''+w~). (95) 

From (94) and our assumption that  0 < ~ < 1 ,  

[~-V~)[ < l + 2 X , < 4 X , .  (96) 
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Hence  f rom (92), (93), (95) and  (96) it  follows t h a t  

[ P ~ 2 + Q , ~ + R ~ [ = [ P ~ [  [ ~ - ~ , [  [ ~ - ~ l i l ) [ < 4 i ~ Y - 2 ( ' h + l - 2 ) = X i  -~,, (97) 

where ~v~ = a~/Q~ and q~, ~ are given b y  

(~ = 2 n~ +1 log U -  4 (n~ + kO log V + 4 1 o g  (11/2 U), (98) 

~ = 2 (n~ + k~ - 1) log V + log 2. (99) 

Similar ly we ob ta in  f rom (95) 

I I < (100) 

We now distinguish two eases as in the  s t a t emen t  of the theorem.  

(i) F i rs t  we suppose t h a t  L = ~ and  l > 1. Then  there  is a posi t ive integer  j 

and  a posi t ive n u m b e r  ~ such t h a t  

21+1/2~ > 1 + r for all i ~> ]. 
I t  follows tha t ,  if i ~>], 

n~+l= t~ k~ + 2~_l k~_l + ... + 2~ kj + nj <~ K(2f + 2~-x + ... + 2~) + nj 

< K 2 ~  {1 + (1 + r  ... + (1 + r + nj < K(1 + r 25 + nj < cl 2~, 

where c~ is a posi t ive cons tan t  independent  of i. Clearly n~+l >2~ for all i >  1, and  

hence, since L = ~ ,  i t  follows t h a t  

t im sup n~+l/n~ = c~. (101) 
| . - > ~  

F r o m  (98) and  (99) we see t h a t  9~/nt ( i=1 ,  2 . . . .  ) is bounded  and  t h a t  there  is a 

posit ive cons tant  c~ such t h a t  
(~/n~ > c~ n~+ i/n~ 

for  all sufficiently large i. Hence,  using (101), we obta in  

t im sup y ) , -  ~ .  (102) 

Then,  b y  definition, (97) and  (102) imply  t h a t  ~ is a U-number  of degree 2 and  the  

first  par~ of Theorem 2 is proved.  

(ii) Secondly we suppose t h a t  L <  co and  ~ > 1 is a cons tant  such t h a t  I > C ~, 

where C is g iven b y  (7). Since l > 2, there  is an  integer  ~ such t h a t  

2~+~/2~ > 2 for  all i ~> ~. 
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We suppose tha t  i is sufficiently large. Then, as in (i), it follows tha t  

2, < n~ + l < 2 K 2, + nj < 3 K 2,. 

Hence, using l > C r we obtain 

n,+,/n,  > 2,/(3 g 24-,) > 1 C e l K ,  

and, since L <  ~ ,  there is a positive constant c 3 such tha t  

n,+:/ni < 3 K 2,/2,_: < c 3. (103) 

I t  follows from (98) and (99) tha t  

(~,/n, > (n~+,/n,) log V - 4 log V > (�89 C r log V - 4 g log V ) / K ,  

e~/n~ < 3 log V 

and hence V, > (C r log U)/(9 K log V) - -~. 

Noting tha t  log U > 9/20 and log V < A, we obtain 

~, > C r  A K) - ~ (104) 

for all sufficiently large i. 

:For each i there are at  most  A, K different possible values for a,, k,. Hence 

there are a t  most A K different sets of integers 

a n  i, an~+l  , . . . .  a n i + k i - 1 .  

Let F be the algebraic number  field generated by  all the quadratic irrationals 

[an c an~+l . . . . .  an,+ ]r 
Then F has degree at  most 

and all the 7, are elements of F.  

~,, with respect to F,  is at  most  

N =  2A K, 

As in the proof of Lemma 2, the field height of 

H(V, )  = {(N + 1) X,} ~. (105) 
From (100) and (105) we obtain 

I ~ -- ~ I < (H(~')) -'~'/(N+I) (106) 

for all sufficiently large i. Since A>~2, K~>I, we deduce from (7) and (I04) that 

~, + ~ > e4AK/(2O AK) > N.24 AK/(20 AK) >5 N, 

and hence, noting that _h7~>4, 
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~0~/(lv + 1) > (5 N -  ~) / (N+ 1) >3  

for all sufficiently large i. I t  follows from (106) that  (1) is satisfied for all sufficiently 

large j, wi th ~ j = ~ j  and  u = 3 .  F rom (93) and (105) we obtain  

log H0]t+l ) _ c 4 + 2 (n~+l + ki+l) log V 

log H ( ~ )  c 4 + 2 (n~ + k~) log V ' 

where c 4 is a constant  independent  of i. F rom 003)  it follows tha t  (2) holds with 

~j=~j .  Thus, for all sufficiently large ], the hypotheses of Theorem 1 are satisfied 

and hence ~ is nei ther  algebraic nor  a U-number.  

Finally, f rom (7) and (104) we obtain  

yJ, > r e 'AK/(2O A K )  - ~  > 4 r  ~ > 2 r 

for all sufficiently large i, and, in vir tue of (97), ~ cannot  be an  S-number  of type  

~. This completes the  proof of Theorem 2. 
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