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Introduction 

The purpose of this paper  is to present a clear exposition of certain theorems 

of Riemarm, notably Theorem 8 below, which he obtained from his s tudy of the 0 

function as a means of solving the Jacobi inversion problem. A perusal of Riemann's  

collected works, [4], shows tha t  this was a topic of great interest to him. For this 

paper, one may  consult [4], pp. 133-142, 212-224, 487-504, and the Supplement, pp. 

1-59. Many mathematicians, in the half century after Riemann, tried to elucidate 

and justify his results. In  this connection we may  mention Christoffel, Noether, Weber, 

Rost, and Poincard. Citations of the older literature may  be found in the books, 

[2], [3], and [6]. 

Despite all these efforts, it is difficult for me to say whether or not complete 

proofs have been given to everything tha t  has been claimed. In  this paper, we hope 

to give correct proofs of some of these interesting results, along with some new the- 

orems. Our method is essentially tha t  of Riemann and his followers, although the 

language may  be slightly more modern. The key to our method is consideration of 

the role of the base point, i.e., lower limit of the integrals of first kind, and its in- 

fluence on the vector K of Riemann constants. The roles of the base point and K 

seem to have been overlooked by  all, probably because of the s tatement  of Riemann, 

[4], p. 133 and p. 213, that ,  under a suitable normalization, the vector K vanishes. 

Finally, having available the concept of an abstract  Riemann surface gives one a 

distinct advantage over being tied down to a particular branched covering of the sphere. 

In  the first section, we prove the basic theorem concerning the zeros of certain 

"multiplicative functions". On the whole, in this section, we t ry  to conform with the 

(1) Supported by N.S.F. G 18929. The author wishes to express his thanks to Professor H. E. 
Rauch for his valuable advice and encouragement in the preparation of this paper. 
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notation of Conforto's book, [1], whose chapter on theta  functions was very helpful. 

In  the second section, we study the identical vanishing of the 0 function and prove 

Theorem 8, the main theorem of Riemann. The third section contains a number  of 

miscellaneous applications, and we conclude with a discussion of the hypereUiptic case, 

motivated by Riemann's  remarks in the Supplement of [4], pp. 35-39. 

We assume known most of the standard function theory on Riemann surfaces; 

the Ricmann-Roch theorem, Abel's theorem, the Weierstrass gap theorem, the pro- 

perties of Weierstrass points, and the structure of hyperelliptic surfaces. We write 

divisors multiplicatively and use the Riemann-Roeh theorem as follows: For any  di- 

visor $, the dimension of the complex vector space of meromorphie functions on the 

surface which are multiples of t -1, r(t-1), is given by  d e g r e e ( t ) + i ( t ) +  1 - g .  Here, 

degree(t) is the sum of the exponents of ~, i(~) the dimension of the space of abelian 

differentials which are multiples of ~, and g the genus of the surface. In  particular, 

we use a consequence of the Riemann-Roch theorem, tha t  given any  point P on the 

surface S of genus g, one may  choose a basis for the g dimensional space of differ- 

entials of the first kind ~1 . . . . .  ~ ,  such tha t  ~ has at  P a zero of order n~ - 1 ,  

where n 1 . . . . .  ng are g gaps at  P. For details one may  consult the book by  Springer, 

[5; Chapter 10]. 

C o denotes the space of g complex variables. A point u E C o is considered a 

column vector, i.e. a g by  1 matrix.  I f  A is a matrix,  ~ denotes the transpose of A. 

While preparing this paper, I was informed by  Prof. D. C. Spencer tha t  Theorem 8 

below, Riemann's  theorem on the vanishing of the 0 function, was proved by  A. Mayer 

in his Princeton thesis. Upon completion of this paper,  I sent a copy to Prof, D. 

Mumford who communicated to me tha t  he had found a proof of the abstract  algebro- 

geometric formulation of Riemann's  theorem, which is valid for arbi t rary characteristic, 

not only characteristic zero. 

Section I. 

Let  S be a compact Riemann surface of genus g/> 2 and aj, bj, 1 <~ ~<~g, the 2g 

cycles of a canonical dissection of S. These cycles are 2g closed curves on S which 

begin and end a t  a common point and have the following intersection numbers: 

aj•215 as• 

the Kronecker delta. When S is cut along these cycles, one obtains a simply con- 

nected region S o with oriented boundary ~S0, traversed in the positive direction as 

a l b l a [  1 b~ 1 ... ao bga~lb~ 1. The homology classes of these 2g cycles generate the first 
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homology group of S. Corresponding to these 2g cycles, there is uniquely determined 

a basis, ~1, .-.,~g, of the complex g dimensional space of abelian differentials of the 

first kind on S, by the normalization, S~,q~j=6sk~i, (i= ~ 1). Setting tjk= Sb, q;j, one 

obtains the g• period matrix ~ = (zdI, T), where I is the g• identity matrix and 

T = (tjg) is a non-singular symmetric matrix with negative definite real part. I t  can 

be shown that  the 2g columns of the period matrix are independent over the reals 

and generate a discrete abelian subgroup A of C a. The Jacobian variety, J(S), is the 

quotient group Cg/A, a compact abelian group. If  u 1, u 2 are two points in C g, then 

we write ul~-u 2 if they are congruent modulo A. Thus, u 1 -  u ~ if and only if u 1 -  u 2 

is a linear combination with integer coefficients of the columns of the period matrix, 

i.e., u 1 - u  ~= ~m ,  where m is a 2gx 1 vector of integers. 

The significance of J(S) is that  there is a map S--> J(S), defined as follows. Fix 

any point B 0 G S as base point and for each point P E S choose a path from B 0 to P. 

Set F uj(P)= ~0j, 1 </~<g, 
o 

where the integral is taken along the chosen path and denote by u(P)E C g the vector 

(ul(P) . . . .  ,ug(P)). For another choice of path one may obtain a different vector 

u(P), but it is clear that  all values of u(P) are congruent modulo A, hence determine 

in a well-defined manner an element of J(S). This gives then a map of S into J(S). 

For convenience we shall denote this map simply by P--> u(P), where it is understood 

that u(P) is any representative in C g of the point of J(S) into which P is mapped. 
~t 

Of course, the map S--->J(S) depends in a vital way upon the choice of the point 

B 0 and this will be discussed later. T h e  map u may be extended to map the group 

of divisors of S into J(S) by defining for any divisor $ = p~l . . ,  p~k, 

k 

u(~) = ~ nju(Pj). 
t = 1  

The degree of ~ is the sum of the exponents; 

k 

deg (~)= ~ n j .  
1=1 

One says that  two divisors are equivalent, $1 "~ ~2, if the quotient ~-1 $~1 is the divisor 

of a function. Abel's theorem states that  

~1 N ~2 if and only if deg ($1)=deg (C2) and u(~l)-=u(~2). 
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Since there is no function on S with only one pole, u(P)~u(Q) i f  P # Q  are two 
u 

points of S, so that  S.--->J(S) is a one-one imbedding of S in J(S). I t  is also non- 

singular, for the differential of the mapping at P E S is simply du = (d% (P) . . . . .  dug (P)), 

which has maximal rank, i.e. one; for, duj (P) is-- in a suitable local parameter--only 

qj (P), and it is a well-known consequence of the Riemann-Roch theorem that  not 

all differentials of the first kind vanish at  P. 

Let ek be the kth column of the 2g by 2g identity matrix; then ~ ek is the kth 

column of the period matrix. We wish to consider functions l(u), holomorphic in all 

of C g, with the following periodicity property: 

/(u + a eL) = exp [2.iek (Au + y)]/(u), (1) 

where 1 ~< k ~< 2g, A, y are matrices of complex numbers, of respective size g by 29 and 

2g by 1. The equality ](u+~e~,+~eh)=[(u+~eh+~ek) ,  implies (cf. [1], p. 57) the 

relation 
~A-X~=~v,  (2) 

where N is a 2 9 by 2 9 skew symmetric matrix of integers. N is called the charac- 

teristic matrix of t. 

Such functions are not well defined on 3(S) but  are "multiplicative functions" 

there. Nevertheless, since the multipliers are exponentials which can never vanish, it 

is clear that  if u 1 = u 2, then [(u 1) = 0 if and only if [(u ~) = O. Hence, one may say in 

a meaningful way that  a point of J(S) is, or is not, a zero of f. By means of the 

map u:S  ~ J(S), f(u(P)) is a multiplicative holomorphie function on S. In  particular, 

choosing a definite value for u(Bo), which is, of course, always ~ 0, ](u(P)) is a single 

valued holomorphic function in the simply connected region S o with well-defined 

values on aS 0. When continued over ~S0, a new single valued branch of [(u(P)) on 

S 0 is obtained, which has the same zeros as the first branch. Whenever we write l(u(P)), 

we assume some such single valued branch chosen, but which particular one is irrele- 

vant  to our present purpose. 

I t  is possible that  [(u(P))-~O on S. Here we use " ~ 0 "  to mean that  the func- 

tion is identically zero for all P, not  to be confused with " ~ "  meaning congruence 

modulo period vectors. In  any given context only one meaning will be possible. Now, 

if ](u(P))~0, then, by  the compactness of S, it has only a finite number of zeros 

on S. We may assume that  these do not lie on ~S0, for the canonical cycles may 

be deformed slightly into homologous ones, without affecting any of the canonical 
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properties or the period matrix.  

her, N(/), of zeros of / on S. 
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Let  us determine by  the residue theorem the num- 

~(/ )  = ~ i  ~.-]-" (3) 

Let  /~ denote the value taken by  / a t  a point of ~S o lying on ak or b~, while 

/ -  denotes the value taken a t  the identified point on a~ 1 or b; ~ respectively. We also 

write u +, u -  with the same meaning. Then 

2~i ~,+ k = l  k 

We observe tha t  if P is a point on ak, 

f 
u ;  (P) = u + ( P ) +  J~k~ s = u~ (P) + tjk, (4) 

while for P on b~, 
f a  

u~ (P) = u; (P) + j a = u; (P) + rei~jk. (5) 

Thus by  (1) above, we have tha t  on ak, 

/ -  =/(u + + ~ eg+k) = exp [2 rd~g+k (Au + ~)]/+, (6) 

and d/- = exp [2 ~i~g+k (Au + ~)] (d/+ -~/+ 2rei~g+kAdu). (7) 

Hence, 2x~i k = l  ~ ~ ] +  " : 2 ~ /  k = l  k k = l  

A similar calculation, except tha t  now it is more convenient to express /+ in 

terms of / - ,  shows tha t  

2~i  k=l ~ k=l 

Since a 1 by 1 matr ix  i s  symmetric,  ~kA~e~+k=~g+k~Ae~. Thus, we have 

g g 

k = l  k = l  

(N1 -h~2)  then we have simply I f  we write the skew symmetric N as N2 N3 

N(/) = trace N 2. (9) 
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Assuming again that  /(u(P))~0 on 8, let P1 . . . . .  P~(r) be the zeros of ! on S. 

These are not necessarily distinct but  each is repeated according to its multiplicity. 

Again, by the residue theorem, we have, for a fixed index h, 1 ~< h ~<9, tha t  

N 1 ( d/ 
Y ~ ( P J ) = - -  Jo ~ -/, 00) 

. i=l 2gi  so 

which is, in our previous notation, 

1 + | | u h  ~ - - u h  �9 

2~ik=~ k abk\ / 

Using (3) to (6), we obtain, 

. = - -  
thk ~ d! + . ~ ~ u+~g+kYAdu. UT- - thkeo+kAFtek-- h 

2 Y~i j ak ! j a~ 
(11) 

By assumption, !+ is different from zero along ak and a single-valued branch of, 

log !+ is defined in a neighborhood of ak. If Q~, Q~ are the (identified) initial and 

final points of a~, respectively, then 

fo~ d!+ ~ -  = log !+ (u(Qki)) - log !+ (u(Q'~)). 

But  !+ (u(Q~)) = !+ (u(Q~) + ~ ek) = exp [2 :~i ek (Au(Q~) + y)] !+ (u(Q~)); so that  

fa d~!+ +- = 2 ui ~k (A u(Q~) + y) + 2 ~i vk, (12) 

where vk is an integer, independent of h. 

In  a similar way we find that  

1 fbk ( U ~ - - - -  d]+ -d[-~ 1 ~ d ] -  2zeig~]kdu)- (u +~ --~ri~hk)all- 

03) 

Denote the initial and final end points of bh as Q~, Q~, respectively. The same 

argument which led to (12) gives, 

d]- (14) 

where gh is an integer. 
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Summing (11) and (13) over k from 1 to g and adding, taking into account (12) 

and (14), we have, 

'~(f) f a 
uh(e j )  = - ~ t .~(ek(hu(Qg)+~.)+,~+~a+~Xnek) - ~ u+~.+kXduh 

. i= l  k = l  k = l  k 

+ (15) 

(n)  
This formula is not very useful in its full generality. Let  us take A =  O , - ~ i  I , 

where O, I are, respectively, the g by g zero and identity matrix, and n is a posi- 

tive integer. Let  G, H E  C g be arbitrary; take 

n 
~j=Gj, for l~<j~<g, and ~j= - ~ i ~ i t z - H s ,  for g+l~<]~<2g. 

(o o') Then N = n  and N ( / ) = n g .  (15) now reduces to 

N(f) Tt g 
5 u.(Pj)= - ~ t.~(G~+~ + n ) + _  ~: ~ u~du~-n-(u.(~)+�89 

j = l  k- : l  :7~'~ k = l  , )a~ 

Define Ka = - -  :Tg-i k = l  k 

and let (n), v, ~u, K, G, H, be g-rowed column vectors whose kth entry is n, v~,juk, Kk, 

Gk, Hk, respectively. Thus the divisor ~(/)=/)1 ... Pg(I)satisfies 

u(((/)) = T ( - (n) - a - v) - n K  - xei H + =i # .  (16) 

But  - T ( n ) - T ~ + = i # = O ,  and (16) can be written as 

u(( ( / ) )  =- - T G  - n K  - =i H.  (16') 

K is called the vector of Riemann constants. I t  is independent of G and H but 

depends, along with u, on the base point B 0. This dependence will be clarified later. 

We summarize our results in the following theorem. 

T ~ O R ~ M  1. Let  /(u) be an  entire /unct ion in  C ~ sat is /ying,  /or l~k~<2g,  

/ (u  + ~ek) = exp [2 ~ i ~  (/~u + ~)]/(u); 

/(u) is a mult iplicative /unct ion on J (S ) .  B y  means o/ the m a p  u :  S--> J (S ) ,  / ( u (P) )  
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is a multiplicative /unction on S. Either /(u(P)) is identically zero on S or it has a 

divisor o/ iV(/) zeros, ~ = Px " "  P N ( f ) .  ~(/)= trace 1V~ where 

( ~ I n  the case that A =  O , - z  I = 

trary points in C g, the characteristic matrix 

where H s -  
n 

- -- 2~i t ,  - Hj  and G, H are arbi- 

N =  (nO -- n~) and N ( / ) = n g .  

~ (/) satis/ies the congruence u( $(/) ) + n K  = - ~ ( H )  = - TG - ~ti H.  

Functions having the particular form given above are called nth order theta  

functions, with characteristics G, H. Details concerning their construction and the 

number  of linearly independent ones, over the complex field, may  be found in [1], 

pp. 91-104. The first order theta  function with characteristics G, H is uniquely de- 

termined up to a constant multiple. I t  is 

where 

= exp ( ~ T G  + 2 ~ u  + 2zti ~ H )  0 (u + TG + zdH),  

0(u,:0 ( ou+o o) 

m running over all g rowed column vectors with integer entries. A crucial property 

of O(u) is tha t  it is even; O ( u ) = O ( - u ) ,  as is apparent  from its definition. In  fact, 

it is even in each variable separately. 

Section II 

In  this section we investigate closely only a particular first order 0 function; 

namely, let e E C g be some given point and consider the function O ( u - e ) .  This is 

the first order 0 with G=O, H = -  (~ti) - le .  In  this case, Theorem 1 tells us tha t  

either 0 ( u ( P ) -  e) is identically zero on S, or it has a divisor of g zeros $, such tha t  

e = u($) + K. Before proceeding we introduce some convenient notation. Let  S ~, n ~> 1, 

denote the cartesian product of S with itself n times and D ~ the symmetric product, 

i.e., the quotient space of S = under the symmetric group of permutations. Briefly, S ~ 
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consists of ordered n-tuples and D ~ of non-ordered n-tuples. D ~ is simply the set of 

integral divisors of degree n. A neighborhood of ~=P1 . . .P~ E Dn shall mean the set 

of all divisors QI...Q~, where Qj belongs to some parametric disk on S about Ps- 

Recall tha t  u : D ~---> J(S). Denote by  W ~ ~ J(S) the image of D ~ : u(D ~) = W ~. We 

agree to set W ~ =0 EJ(S) and D o= the unit divisor, 1-Ie~s p0. Since J(S)  is an abelian 

group, sets of the form X +  Y are defined. That  is, if X,  Y c J ( S ) ,  X +  Y denotes 

the set of elements of the form x §  x E X ,  yEY,  and - X  the set of elements of 

the form - x ,  x E X .  In  particular, X + y  is the set of elements of the form x + y ,  

x E X .  

THEOREm 2. O(Wg- I+K)=O;  i.e., 0 ( u ) = 0  i/ u E W g - I + K .  

Proo/. I t  is well known tha t  there exists a divisor ~ E D g consisting of distinct 

points on S such tha t  i (~)=0,  and tha t  if ~' belongs to a sufficiently small neigh- 

borhood of ~ it also has distinct points and i (~ ' )=0.  Let  ~ = P I  ... Pa be such and 

set e=-u($)+K.  Now, if O(u(P) -e )=O,  then for l~<]~<g, 

0 = 0 (u(Pj) - e) = 0 (u(P~... l~j... Pg) + K), 

where Pj denotes deletion of the point Pj. In  the last step we used the evenness of 

O(u). I f  O ( u ( P ) - e ) S O ,  then by  Theorem 1 it has a divisor of g zeros w such tha t  

e = u(w)+ K. By the construction of e we have then u(~)= u(oJ), which inp]ies ~ = o~ 

(by our assumption tha t  i (~ )=0  and the Riemann-Roch and Abel theorems). Thus, 

again, we obtain 0 (u (P1 . . . /~ . . .  Pg) + K) = 0. By our remarks a t  the s tar t  of the proof 

it is now clear tha t  O(u(Q 1 ... Qg-1)§  vanishes identically on a full neighborhood 

D g-l, hence is identically zero on D g-l, which completes the proof. 

COROLLARY: O(Wr+ K)=O,  l <~r<~g-1 and 0 ( K ) = 0 .  Thus, the vector o/ Rie- 

mann constants is always a zero o/ O(u). 

Proo/. Although Dr~:D t for t > r  it is clear tha t  WrcW~;  for, if ~ED ~, u(~)E W ~, 

then Bt o -~ ED t and u(Bto-r~)~u(~), so u (~ )EW t. This gives the first s tatement.  To 

see tha t  O(K)= 0, we need only observe tha t  O~u(Bro)E W r, for every integer r. 

THEOREM 3. Let ~, ~oED a and eEC a. 

(a) I] O(u(P)-  e )~  0 and has divisor o/ zeros ~, then i(~)= O. 

(b) I / e  =- u(o)) + K and O(u(P) - e) ~ O, then o~ is the divisor o/zeros. 

(c) I / e  =- u(eo) § K and i(o~) > O, then O(u(P) - e) =- O. 
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Proo/. (a) Le t  Q E S  be such t h a t  O(u(Q)-e)~=O. I f  i ( $ ) > 0 ,  there is a $ ' E D  g 

s u c h  tha t  Q appears in ~' and  u(~') - u(~). Then by  Theorem 1, e =- u(~') + K and, 

by  Theorem 2, O(u(Q)-  e )=  0, which contradicts  our choice of Q. 

(b) For,  if $ is the divisor of zeros, e - :  u (~)+  K = u(r K. But ,  by  (a), i ($ )=  0, 

so t h a t  ~ = w .  

(c) Immedia te  f rom (a) and (b). 

We now wish to analyze the dependence of the map  u and the R iemann  con- 

s tants  K on the base point  B o. For  clarification, if B0, B 1 . . . . .  B)  . . . .  is a set of points  

on S, we shall denote b y  u ~  1 . . . .  ,u  j , . . . ,  and  K ~  1 . . . . .  K j . . . . .  the u and K ob- 

ta ined with respect to base point  B o ,B 1 . . . . .  Bj  . . . . .  Of course, everything we have 

done up to this point  has been t rue for any  choice of B0, hence we have no t  wri t ten 

u ~  ~ unti l  now. Also note t h a t  the sets W T, r>~ 1, depend on the base point  B0, 

and when necessary we m a y  write W~o, W~,, . . . ,  W~j . . . . .  Our first result is 

T H E 0 ~ M  4. (a) u l ( P ) : - u ~ 1 7 6  /or all P E S .  

(b) Kl  =- K~ +u~  (B~-l). 

Proo/. (a) is trivial, for ~ , - - - ~ 0 - ~ ' , .  

(b) Since O(u) is no t  identically zero in C g, there is an e EC ~ such t h a t  0 (e )40 .  

Then O ( u l ( p ) - e ) ~ O ,  for P = B  1 is not  a zero. Let  ~ be the  divisor of zeros; 

e ~ u l ( ~ )  + K  1. B y  (a), we see tha t  O ( u ~ 1 7 6  has the  same divisor of zeros 

~; hence u ~ (B1) + e = u ~ (~) + K ~ Comparing these two congruences for e gives (b). 

Actual ly  (b) m a y  be seen directly f rom the definition of K.  An  interesting con- 

sequence of this theorem is t h a t  K 1 - - K  ~ if and only if u~176  That  

is, B o and B 1 a r e  Weierstrass points  on S such tha t  there is a funct ion with a pole 

of order g - 1  at  B 0 and  a zero of order g - 1  a t  B 1. This is, in 'fact,  the case for 

any  two Weierstrass points  on a hypereUiptic surface of odd genus, bu t  I do not  

know when else this occurs. 

We now investigate the dependence of the identical vanishing of O ( u ( P ) - e )  on 

the base point. As we have already remarked,  if 0 (e )40 ,  then O ( u ( P ) - e ) ~  0 for 

every base point;  for P =  base point,  is not  a zero. Thus, assume tha t  0(e)= 0, B o, B 1 

are two arb i t rary  base points,  and O ( u J ( P ) - e ) ~ O  for ~'=0, 1. Let  ~0, ~1 be the re- 

spective zero divisors. Clearly, B 0, B1, respectively, are zeros so tha t  ~o = Bo e~ ~1 = B1 o)1, 

where o)0, o ) I E D  g-1. By our  previous results we have:  

e -~ u ~ (~o) + K~ ~- u~ (~o) § K~ 
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and  e ~2 u 1 ($i) + K1 = u~ (~ - u~ (B~ -I)  + K0 + u0 (a~ -1) -- u~ ((91) + K~ 

Thus, u ~ (COo) -= u ~ (ool) , u ~ ($o) --- u~ (Bo ~ and, by  Theorem 3, we infer t h a t  ~-o = Bo ~ 

hence COo=CO r Since o o E D  ~-1, there is a differential ~o with divisor eOoy , where 

y E D  g-1. y is uniquely determined, for by  Theorem 3, i(Bocoo)=0, which implies 

i(COo)=l. Now, let B 2 be a point  of y and suppose O(u2(P)-e)~O. Then it has 

divisor of zeros ~2 which, by  our  above a rgument  (with B~ in place of B1) , mus t  

be ~ =B~ co 0 and, by  Theorem 3, i(B2 COo)= 0. Bu t  ~v is, by  construction,  a multiple 

of B2w 0, so t h a t  i(Bz~%)=l,  a contradiction.  Thus, for each point  B 2 of V, 

O(u ~ (P) - e) -O.  

We now show t h a t - - w i t h  the  same conditions on e, B 0 and  B l - - t h e r e  are a t  

most  g - 1  distinct points B E Y  such tha t  O(uS(P)-e)=O (where u z means u with 

base point  B). For,  by  hypothesis,  O(u~ e)4:0 for any  point  P0 ES not  appearing 

in B 0 w 0. Since u~ we have tha t  O(u~176 so that ,  as a func- 

t ion of B E S, with P0 fixed, O(u ~ (Pc) - u~ (B) - e) ~ O. This has then a divisor of zeros 

/3 satisfying u~176176 Now, if B 3 is no t  one of the g points of /3, we 

have O(u ~ (P0) - u~ (B3) - e) 4: 0, i.e., O(u 3 (Pc) - e) 4= 0 and  so O(u 3(P) - e) ~ O, as a func- 

t ion of P .  Thus, if /3 contains fewer than  g distinct points, our assertion is proved. 

Otherwise, let /5 = Q1 . . . . .  Qg consist of g distinct points, such tha t  for each ~, 1 ~< ] < g, 

O(u Qj (P) - e) =- O. Let  /)1 E S, P I  4: P0, be a second point  not  in B 0 ~o o. Carrying th rough  

as before, we obtain  a congruence u~176 ~ where 8 is the divisor of 

zeros of O(u~176 and O(uS(P)-e) ,O,  for every point  B3 not  in J. 

I f  our  assumption on /3 was correct, then, necessarily, /3 = ~, which implies u~ 

u~ which is absurd. Hence, /34:~, and  our  assertion is true. We summarize the  

above results as 

T~I~OR]~M 5. Let eEC ~ satis/y O(e)=O. Either 

(a) O(u~ /or every choice o/ base point BoES , or 

( b )  O(uQ~(P)-e)=--O /or at most g - 1  distinct points Q1 . . . .  ,Qg-1. 

In  case (b), there is uniquely determined a divisor o o E D  g-l, i(O~o)= 1, such that i/ 

B E Y  is not one o[ the points Q1 . . . . .  Qg-1, then O(u~(P)-e)~O, and has divisoro/zeros 

=Bco o. There is a uniquely determined di//erential q) o[ divisor eOo~ and the points o/ 

are included in the points Q1 . . . . .  Qg-1. 

Recalling t h a t  the 0 funct ion is even, and by  (a) of Theorem 4, we observe 

easily t ha t  the following four s ta tements  are equivalent:  
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(1) O(u~ for every base point BoeS. 
(2) O(u~176 (as a function of P and Q) for every BoeS. 
(3) O(u~176 for a particular BoeS. 
(4) O(u~247 for every BoeS. 

Suppose that  (1) above holds. Differentiating O(u~ (P)-  e) =- O with respect to a 

local parameter at B o and setting P = B o gives, 

80 
~ ( - e ) ~ j ( B 0 ) = 0  (~,-~du~). 

Since by hypothesis this holds for every point B ofi S, we see tha t  the differential 

j=l ~uj ( -e)~j  

is identically zero. The linear independence of the ~j implies then 

80 
Ou--~j(-e)=O for l < i < g .  

On the other hand, suppose that  for a given BoriS, O(u~ B y  Theorem 5, 

we may assume B o different from the g - 1  points in w 0. Then O(u~ e)~-0 has 

divisor of zeros Boc % and a simple zero at B0: Thus, the derivative of O(u~ 
- -wi th  respect to a local parameter at  B0--does not vanish at B 0. In  other words, 

80 
j=l ~uj ( -  e)~j(B~ 

Thus we have proved 

THEORElVi 6. Let eeC g satis/y 0(e)=0. Then O(u~ /or every base point 

B oeS i] and only i] 
80 
eu~ (-e)=O /~r l < i < g .  

The four equivalent statements given above and Theorem 6 show that  

80 ~0 
- ~ j ( - e ) = 0  for l<~j~<g if and only if ~ u j ( e ) = 0  for l ~ < j 4 g .  

This fact, however, follows directly from the evenness of the 0 function. 

Theorem 6 is a special case of the more general theorem of Riemann presented 

below. To prove the general theorem we shall follow the exposition o f  Krazer, es- 

sentially, filling in certain gaps where necessary. 
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So far, we have shown t h a t  if O(u~  for a base point  BoES,  then  there 

is a divisor of zeros ~ E D  g such tha t  e ~ u ~  ~ Thus, for points  of the form 

d = e - K ~ E C g we have solved the Jaeobi  inversion problem, i.e., found a divisor ~ E D g 

such tha t  u~ That  this can be done for any  point  dEC g i.e. u~  Dg---~J(S) 

is o n t o - - c a n  be proved quite easily wi thout  the 0 funct ion apparatus .  ([5], p. 284). 

As we shall see though,  the essential feature of Riemann ' s  solution via the 0 function, 

is t ha t  one can describe precisely the pre-image in D g of a point  e E C a by  means of 

the behavior  of the 0 funct ion at  e. 

Let  us first observe the following. O(Wg+K):~O, i.e. 0 does no t  vanish identi- 

cally on the set W g + K c J ( S ) .  (Note t h a t  we have suppressed ment ion  of the base 

point  B 0 E S in the notat ion;  for, until  fur ther  notice, we shall assume B o fixed and 

it will no t  be varied.) Indeed,  if $ = P 1 . . . P g E D  g consists of g distinct points  then 

i{~) = 0  is equivalent  to the s ta tement  det  (~  (P j ) )40 .  This determinant  is the Ja -  

cobian of the map u: D g--> J(S), whose non-vanishing a t  ~ implies t ha t  u is a local 

homeomorphism.  Thus,  W g contains an  open set of J(S) and  since O(u) is no t  iden- 

tically zero on J(S), it cannot  vanish on W ~. Similarly, O(u) does no t  vanish iden- 

tically on W g + e, for a n y  e E C g. 

Suppose now tha t  O(e)=O. Then there is an  integer s such tha t  O(W r -  W r - e ) = 0 ,  

for O~r<~s, while O ( W 3 - W S - e ) 4 0 .  B y  our  previous remarks  l ~ s ~ g - 1 .  Thus,  

by  definition, there are co0, o o E D  s such tha t  O(u(o)o)-u((xo))40. We m a y  assume 

t h a t  ~og, o0 consist of 2s distinct points for, by  continuity,  if Q appears  twice, we 

m a y  move one occurrence to a neighboring Q', still keeping the value of 0 away  f rom 

zero. Let  co0 ~ P0 e~ ~~ EDS-1; then O(u(P) + u(eoo) - u(oo) - e) ~ O, and has a divisor of 

zeros ~-0 E Dg. But ,  P = a  point  of o 0 is a zero, for then u(P)+u(eo) -U(Oo)-e  is in 

W S - l - W S - l - e ,  where 0 vanishes. Thus, ~o=Oo/~o, /~oED a-~, and we have the con- 

gruence -u(eoo)+U(Oo)+e=-U(Ooflo)+K , or e-=-u(eOoflo)+K, where ~00floED a-1. This 

proves the following extension of Theorem 2. 

T~EORE~a 7. W~-I § K is the complete set o/ zeros o/ 0 on J(S). 

Again, by  a cont inui ty  argument ,  if toED s-1 is sufficiently near COo, O(u(P)+ 

u(co) - u(0"o) - e) ~ 0, and for a suitable fl E D ~-s, e ~ u(co/~) + K. To see the significance 

of this we must  pause for two lemmas. 

L E P t a  I. Let X be a topological space, F a /ield, /i . . . .  /N /unctions on X to F. 

~ 1  ~ /~, 2~ E F, ~ not all zero, vanishes Assume that no non.trivial linear combination/= N 

on an open set o/ X .  Then, given any N non-empty open sets V 1 . . . . .  VN o/ X ,  there 

are points x~E V~ such that the determinant o/ (/~ (x~)) is not zero. 

4 - -  642945 Acta  mathematica.  I I I .  I m p r i m 4  le 12 m a r s  1964. 
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This is a simple exercise in linear algebra and the proof m a y  be omitted. I n  

particular we have the following corollary: I f  X is a set, and ]1 . . . . .  ]~ are functions 

on X to F which are linearly independent, then there are points xl . . . . .  xN E X such 

tha t  det (/~(x~))#O. This follows from the lemma by  topologizing X indiseretely, only 

the empty  set and X are open, and taking all Vr = X. 

L ~ M ~ A  2. Let tooED m, too=~'oc% ~oED ~, ~oED 'n-', O<~s<<.m. Suppose there is 

a neighborhood V o] ~o such that /or any ~EV there is a a E D  m-" with u(eoo)-u($a). 
Then i(mo) >t g + s - m. 

Proo/. Delete • from V and select a smaller open set V ' c  V - $ 0  such tha t  

E V' consists of distinct points which do not appear in %. Also, we m a y  take V' 

to be of the form V 1 •  • Vs, where each Vj is a disk on S. By hypothesis, for any 

~ V ' ,  there is a a such tha t  u(~a)=-u(too). By Abel's theorem, there is then a func- 

tion [ on S, with divisor ( f )= ~a/to 0. By  our choice of V', ] has a t  least s zeros a t  

$, which are not cancelled by  any of the points of to 0. Now r(to$1) = m + i(too)+ 1 - g ,  

and the space of functions which are multiples of too 1 has a basis of N +  1 linearly 

independent functions [~ . . . . .  [N+I, where N = m + i ( t o o ) - g .  By Lemma 1, if s>~N+l ,  

we may  select points PsEVj, I ~ < ~ < N + I  such tha t  det (/~(Pj))=~0. This means that  

no (non-trivial) linear combination, /, of the func t ions / i  . . . . .  fN+I vanishes a t  the points 

/)1 . . . . .  P~+I. But  P1 . . . . .  P~+I may  be completed to a divisor ~EV' and, as constructed 

above, there is a non-constant function vanishing a t  P1- . .  P~. This contradiction 

proves tha t  s < N +  1, from which i (wo)>~g+s-m.  

By reversing the reasoning, one obtains a converse of the following form. I f  

i ( too)>~g+s-m , then for any  ~ED ~ there is a a E D  m-s such tha t  u(too)=-u($a ). Let  

us call s the number  of free points of too, where s is the greatest  integer such tha t  

for ~ED s there is a a ED m-s with u(too)==-u($a). By the lemma, and the converse 

just stated, we have the following. 

COROLLARY: i(too) = g + S -- m, where too E D m and s is the number o] /tee points o] too. 

In  particular, if m = g - n ,  0~<n~<g-1 ,  then i ( too)=n+s.  

Reverting to the discussion preceding the lemmas, we have e~u(toof lo)+K and 

for to sufficiently near too, there is a fl such tha t  e=u(tof l )+K,  u(to0fl0)~=u(tofl). Thus, 

applying Lemma 2, with s of the Lemma as s - 1  and m as 9 - 1 ,  we have i(toofl0)>~ 

g + ( s - 1 ) - ( g - 1 ) = s .  

We have shown then tha t  O ( W r - W r - e ) = O ,  for O < r < . s - 1 ,  implies tha t  

e-~u($)+K,  where ~ED g-1 and i($)>~s. Conversely, this latter s ta tement  implies 
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O(W r -  Wr-e)=O,  for O<~r<~s-1.  For,  we are given i ( ~ ) > ~ g + ( s - 1 ) - ( g - 1 ) ,  so t h a t  

has a t  least ( s -  1) free points, x E  W ~ - 1 -  W ~ - l - e  is of the  form x = u ( P  1 ... Ps-~) - 

u (Q1. . .Q~_~)-e ,  and  we m a y  write e=- -u (P1 . . .Ps_18)+K,  with OED ~-~. This gives 

x - - u ( Q 1 . . , Q ~ _ x a ) - K ,  and, by  Theorem 2, 0 (x )=0 .  Thus, O ( W ' - I - W ~ - I - e ) = O ,  

and, since W ~ W  s-l, for 0 ~ < r ~ < s - 1 ,  our  assertion is proved.  

We now prove tha t  O(W ~ -  W ~ - e ) = 0 ,  for 0 ~ < r < s ,  implies t ha t  all partial  deri- 

vatives of 0 of order r vanish at  - e  (hence also a t  e, for O(u) being even implies 

0(W r - W ~ + e) = 0, for 0 ~< r < s). I n  fact,  more is true. Namely,  if 0( W ~-1 - W s-1 - e) = 0 

then 

( r ) : ~ u j , . . . ~ u s ( W a - l - r - w ~ - ~ - ~ - e ) = O  for O < ~ r < s - 1  and 1~<]1 . . . .  ,]r<~g. 

I f  r = 0  we have the 0 funct ion itself. Since - e E W  s - l - r -  W S - l - r - e ,  we have t h a t  

all part ial  derivatives of 0 of order up to  and  including s - 1  vanish a t  - e .  Now 

the s ta tement  (r) above is t rue for r =  0, by  hypothesis.  Assume it has been proved  

for all r~<n, 0 ~ < n < s - 1 ;  we shall prove it for n + l .  We have 

( u ( P 1  . . .  P s - l - n )  - u ( Q 1  . . .  Q s - l - n )  - e) = 0 ,  

for a ny  points  P1 "" P , -1-n ,  Q1 ".. Q,-I-,~ on S. Fix  par t icular  choices for all of these 

points  except  P1, which we let va ry  in a small neighborhood of Q1- We have then  

a funct ion of P1 which is identically zero, so tha t  differentiating with respect to a 

local parameter  a t  Q1 and  sett ing P1 = Q1, we still have zero. B y  the chain rule for  

differentiation. 

g ~-+10 
t ~-1 ~Ut, . . .  eOUt, DUi (u(P2 "'" . P s - l - n )  - u ( O  2 . . .  Q , - 1 - n )  - e) duj  ( O l )  = O. 

This differential is a linear combinat ion of the linearly independent  duj=qJj, w i th  

coefficients independent  of Q1, which vanishes a t  every  point  of S, as Q1 was arbi- 

t rary .  Thus, each coefficient is zero which proves (r) for n +  1, completing the  in- 

ductive proof. 

We come now to  the crucial point;  namely  to  show tha t  if O ( W ~ - W r - e ) = O ,  

for 0 < r ~< s - 1, bu t  0(W s -  W ~ -  e) # 0, then  a t  least one part ial  derivative of 0 of 

order s does no t  vanish a t  - e .  As we have already observed, O ( W ~ - W ~ - e ) # O  

implies there are divisors of 28 distinct points, w0, a o E D s such tha t  0(u(eo0) - u(a0) :- e) # 0. 

B y  continuity,  for ~ q D ~ sufficiently near a 0, O(u(wo) - u(z) - e) :4: O. Also, O(u(v) - 
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u(oo)-  e) canno t  van i sh  for al l  T nea r  a0, for, otherwise,  th is  func t ion  of s va r iab les  

would  vanish  on a n  open set, and  so would  be  iden t ica l ly  zero, con t rad ic t ing  the  

ex i s t ence  of oJ o. Thus,  there  is a T0 6 D s such t h a t  O(U(To)- U(Oo)- e):4=0, O(u(~Oo)- 
u(T0) -- e) ~: 0, a n d  again,  b y  cont inu i ty ,  T 0 m a y  be assumed to have  d i s t inc t  points ,  

a l l  d i f ferent  f rom those  in w o a n d  0 0. 

Le t  dq deno te  t he  normal i zed  abe l i an  d i f fe ren t ia l  of t h i r d  k i n d  on S,  w i th  zero 

pe r iods  on a ~ , . . . , a  o, and  wi th  res idue  + 1 a t  the  po in t s  of ~o a n d  - 1  a t  t he  po in t s  

.of 0 0 . Thus,  ff o 0 = Q  t . . .  Q~, T0=R1 ... R~, d ~ = ~ = t  d~?o~.Rj, where  d~oj.a ~ is the  

a b e l i a n  di f ferent ia l  of t h i r d  k i n d  on S wi th  zero per iods  on a~ . . . .  ,a~ a n d  res idue + 1 

.at Rj and  - 1 a t  Q~. Reca l l  t h a t  the  R i e m a n n  per iod  re la t ions  for such dif ferent ia ls  a re  

fb d~oi. ~ = 2 (uk (Rj) - uk (Q~)) (1 ~< k ~< g, 1 ~< j -<. s), (17) 
k 

nvhere uk(R,)--uk(Q,)=~q~k is t a k e n  over  a p a t h  f rom Qj to  Rj ly ing  comple te ly  in 

t h e  s imply  connec ted  region S o . W e  are  assuming here,  as is c lear ly  permiss ib le ,  t h a t  

t h e  po in ts  of 0 o, T0 lie on S o. Consider now the  following func t ion  of s po in t s  on S, 

O(u(P l""Ps ) -u (a~  ( ~=~f;i ) ](P1 ..... P~)=O(u(p1 p~)_u(.ro)_e).E, where  E =  exp  J d~) . 

] is no t  a lways  zero over  zero, for a t  P a . . - P s  = too i t  has  a f in i te  value.  Consider  

for  the  m o m e n t  / ) 2 - . - P ~  fixed,  a n d  examine  ] as  a funct ion  of />1. F o r  P~ . . .  P ,  

f i x e d  a t  values  such t h a t  n u m e r a t o r  a n d  denomina to r  do no t  van i sh  iden t i ca l ly  in  

P1, ] is a single va lued  meromorph ic  func t ion  of P1 on  al l  S. This  follows d i rec t ly  

f rom the  per iod  proper t ies  of 0 a n d  the  re la t ions  (17). W e  claim now t h a t  th i s  func- 

t ion  of P1 is a cons tant .  Indeed ,  leaving aside the  q u a n t i t y  E for the  p r e s e n t , / ( P j )  

h a s  zeros due  to  the  zeros of 0 in  the  numera to r ,  which are  g in  number .  B y  our  

ihypothesis  t h a t  O(W r -  W r - e ) = 0 ,  for 0 < ~ r < s ,  s of these  zeros are  a t  a0. Thus ,  t he  

�9 d ivisor  of zeros for  t he  n u m e r a t o r  is o0~ , ~,ED g-8, a n d  there  is a congruence,  

- u(P~ ... Ps) + U(Oo) + e ~ u ( ~  o Z) + K ,  or  e ~ u(P ,  .. .  P~ ~) + K .  

B y  Theorem 3, the  divisor  of zeros (roy has i ( o 0 y ) = 0 .  I n  the  same way,  the  d ivisor  

o f  zeros for t he  d e n o m i n a t o r  is ToS, 5ED~-~; we aga in  have  a congruence 

e -~ u(P~ ... Ps 5) + K, and  i(~o 5) = 0. 

~rhus, u(y)  - -  u((~). I f  ~ =~ 5, then,  b y  the  R i e m a n n - R o c h  and  Abel  theorems,  i(~) >~ s + 1. 

" the  R i e m a n n - R o c h  theo rem also shows t h a t  adding  a po in t  to  a divisor  decreases 



R I E M A N N  SURFACES AND T H E  T H E T A  F U N C T I O N  53 

the index i by  at  mos t  one. Thus, i(ao7 ) >~ 1, which contradicts  the fact  t h a t  i(o0~ ) = 0. 

Thus, ~ = ~ ,  and the only zeros and poles of /(P1) due to the  quot ient  of O's, are 

the zeros at  00 and the poles at  z0. Consider now E, which, as a funct ion of P1, 
PI contributes the term exp (~~ This is finite, and no t  zero, for P1 no t  one of the  

points in 00 , T0. As P I  varies in a neighborhood of a point  Q of o 0 with local 

(]Bod~) is, up to a finite non-zero factor, parameter  z, z(Q)= O, exp P 

e x p / / ' { | P ' = z l -  l dz}\ = e x p  ( -  log z l +  log z0). 
\ J  P0=zo Z / 

Here % =  z(Po) is arbi t rary,  as long as z0=~0. Let t ing z I -->0, we see t h a t  E(P1), as 

P1--> Q of 0 o, has a simple pole. This cancels with the zero a t  Q in o o f rom the  0 

in the numerator .  On the other  hand, using a similar nota t ion at  a point  R of T o, 

we see that ,  as P1--->R, E(P1) behaves like exp (SZz~=elz-ldz) as zi-->0. Tha t  is, 

E(P1) at  P1 = R has a simple zero, which cancels the pole due to  the  zero of the 

denominator  at  P1 = R. Thus, all zeros and  poles cancel, and  /(1)1) must  be a con- 

s tant  C. 

The constant  C depends on P2 -.. P,.  But ,  / is symmetr ic  in P1 .-- P, ,  its value 

is no t  dependent  on the order of the points P1 ... P~. This implies t h a t  if [ is con- 

s tan t  in Pz, then it is a constant  in all s variables. 

We have then the  following equation: 

CO(u(P 1 ... P~) - u(v0) - e) = O(u(P 1 ... Ps) - U(Oo) - e) E. (18) 

Differentiate (18) with respect to  (a local parameter  z at) P1 and  set P1 = R r  This 

yields 

C Z  ao 
]~=1 ~Ui (u(Pz "" Ps) - u(R2 ... Rs) - e) dur (Rj) 

L ~0 
= .t~=1 ~U 1 (u(R1Pz' ."  Ps) - U(ao) - e) du~ (R1) E (R1) 

+ O(u(R 1P~ . . .  P~) - u(ao) - e) d E  (R1), (19) 

where 
o ~ J B, / 

As we have a l ready remarked,  E(R1) has a simple zero, so tha t  the first term on the 

r ight  is zero. dE(R1) is a finite non-zero quant i ty ,  essentially of the form 

exp ( ~ = 2  S~okd~). 
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Thus, if we now differentiate (19) with respect to P2, and set P2=R2,  we have 

g ~2 0 
C ~ (u(P 3 ...  P~) - u (R  8 ... R~) - e) duy, (R1) duj, (R2) 

11,1~=1 ~UYx ~U)2 

= j~-I ~ (u(R, R~ Pa "" P~) - u(ao) - e) guy (R2) (dE(R1)) (R2) 

+ O(u(R1 R2 Pa . . .  P~) - U(~o) - e) d (dE(R1) (R2). 

Again, the first term on the right vanishes, for it is essentially exp (SR'd~y) which 

has a simple zero a t  R~, while the second term is a non-zero quantity,  essentially of 

the form exp ( ~ = 3  S~d~y). Continuing in this fashion, we finally obtain, after dif- 

ferentiating s times, 

C ~ asO 
.i . . . . . .  i ,=1 ~UJ, . . .  ~Uj, 

( - e) duy 1 (R1). . .  duy, (Rs) = 0 (u(R1. . .  Rs) - U(ao) - e) F,  (20) 

where F is a finite non-zero quant i ty  due to the factor E. But  our construction 

assured from the outset tha t  O(u(vo)- u((7o)- e)~=0. Thus, not all coefficients on the 

left of (20) vanish, so tha t  some partial  of 0 of order s does not vanish a t  - e .  We 

collect our results in the following main theorem. 

THEOREM 8. Let e E C  g. I /  0(e)40,  then e ~ u ( ~ ) + K  /or a unique ~ E D  g, and 

i(~)=O. I /  O(e)=O, let s, l ~<s~<g-1 ,  be the least integer such that O ( W s - W S - e ) : # O .  

Then there is a ~ED g-l, i (~ )=s ,  such that e - u ( ~ ) +  K .  All  partial derivatives o/ 0 o/ 

order less than s vanish at e while at least one partial derivative o/ order s does not 

vanish at e. The integer s is the same /or both e and - e .  

Observe tha t  there is no mention a t  all here of the base point B 0. This is to 

be expected, for the order of vanishing of 0 a t  a point in C g is independent of the 

choice of B 0. Indeed, by  (a) of Theorem 4, a set of the form W r -  W r is uniquely 

determined in J(S) ,  independently of the point B 0, even though W r is not. Thus it 

is only in considering unsymmetrie expressions of the form O ( u ( P ) - e ) ,  i.e., O ( W l - e ) ,  

tha t  the base point B o plays a role. 

One other point needs clarification. When it is stated tha t  e~- -u($)+K for some 

~ED a-1 with i ( ~ ) : s ,  then this implies that  if also e - - u ( w ) + K  for w E D  g-l, then 

i(~o) =s .  For completeness this is stated as a lemma. 

LEMMA 3. Le ~, o~ED n, and suppose u (~)=u(w) .  Then i(~)=i(o)). 
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Proo/. The hypothesis  implies, by  Abel 's theorem, t h a t  there is a funct ion /~ 

with divisor ~//(9. Ex tend  to a basis /1,/~I... ,/N of the space of functions which are 

multiples of oJ. B y  the R i e m a n n - R o c h  theorem, N =  n § i((9) + 1 - g. The functions 

h I = 1, h~ =/2//1 . . . . .  h~ =/N//1, are linearly independent  multiples of ~, so tha t  N ~< n § 

i(~) + 1 - g .  Thus, i(w)~< i(~), and interchanging ~ and  eo gives the result: 

Section IlI 

The integer s of Theorem 8 actual ly  has � 8 9  as an  upper  bound.  For,  if 

e ~ u ( ~ ) + K ,  ~GD a-1 and i($)=s, choose the s - 1  free points of ~ at  Bo, the base 

point  of u. We m a y  assume tha t  B o is no t  a Weierstrass point,  as Theorem 8 is 

independent  of the  base point.  Thus, e ~ u(~o  -1 09) + K, where (9 ~ D g-~. Now, i(B~ -1) = 

g - (s - 1), the number  of gaps greater  than  s - 1 at  B0, and certainly then, i(~0 -1 (9) 

g - ( s - l ) .  But  i (B]- l (9)=i($)=s ,  so tha t  s < ~ g - ( s - 1 ) ,  or s~< �89  Combining 

this fact  with Theorom 8 yields the following: 

THEOR]~M 9. Let T be a g• matrix o~ complex numbers, symmetric, with 

negative de/inite real part, and O(u) the associated 0 /unction /or T. Then i/ 0 has 

order > 1 (g + 1) at some point e E C a, i.e., 0 and all partial derivatives o/ order <~ 1 (g + 1) 

vanish at e, then T is not (the second hall o / ) a  normalized period matrix o/ a Riemann 

sur/ace o/ genus g. 

We re turn  now to the considerations of the first pa r t  of Section I I  to  consider 

once again the role of the base point  B 0. Therefore, we write u ~ K ~ etc., as before. 

Assume O(u~ Let  s be the least integer such tha t  O ( W S + l - W ~ - e ) 4 0 ;  

here, of course, s depends on B 0. Then, there are 00, v o E D ~, which we m a y  assume 

to consist of distinct points, such t h a t  O(u ~ (P) + u ~ (00) - u ~ (v0) - e) ~ 0. This has a divisor 

of g zeros, s of which are at  the points of T 0, so t h a t  $=vofl  o,floED a-~, and 

e - u  ~ (a0flo) § K~ The same holds for q sufficiently near a0. For  every  such a there 

is a fl such t h a t  e - u ~ 2 4 7  ~ Thus, aofl o has at  least s free points, and  by  

L e m m a  2 then, i(aoflo)~s. This shows t h a t  O(u~ implies a congruence 

e =- u ~ (~) + K ~ $ E D g, and i (~) ~> s >~ 1. We can now complete Theorem 3 to cover all 

eases b y  adding the following: if e ~- u ~ (~) + K ~ $ e D a and  i($) = 0, then O(u ~ (P) - e) ~ O. 

Also, i t  is now clear t h a t  in the second case of Theorem 5 the g - 1  points, a t  most,  

for which O(uJ(P)- e )~0 ,  are precisely the points of ~. 

The above results enable us to  obtain  a characterization of the Weierstrass points  

on S in terms of the 0 funct ion and  the  Riemann  constants.  
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THe.OR~.M 10. Let B o E S  be arbitrary, u ~ K ~ the map u and Riemann constants 

K with base point B o. Then, B o is a Weierstrass point  i / a n d  only i /O(u  ~ ( P ) -  K ~ - 0 .  

Proo[. K ~ = u ~ (Bg) + K ~ By our preceding remarks, O(u ~ (P) - K ~ - 0 if and only 

if i(Bg)>/1, which is the condition for a Weierstrass point. Note, tha t  if B 0 is a 

Weierstrass point, we needn' t  have O(u 1 ( P ) -  K ~ - 0  for every base point B r This, 

in fact, by  Theorem 6 (or Theorem 8), occurs if and only if 

~0 
~uj 
- - ( K  ~  for l~<j~<g. 

By Theorem 8, this is if and only if K~ ~  K ~ for ~ED a-1 and i(~)/> 2. But  

K ~ 1 7 6 1 7 6  and i(B~-1)~>2 if and only if there are two gaps greater than 

g -  l, which is not true for every Weierstrass point. For example, on a "general" 

surface with g(g~-1)  Weierstrass points, a t  which the gaps are 1,2 . . . . .  g - l ,  g +  1, 

we have i(B~ -1) = 1. 

Let  us now prove the following classical result. 

THEORe.M 11. For a n y  BoES ,  i /  A E D  2a-u, then u~ - - 2 K  ~ i/ and only i/  

A ks the divisor o/ zeros o[ a di[/erential on S. 

Proo/. Let ~ E D  a-1 be arbi trary and set e = u ~  ~ Then, by  Theorem 7, 

0 (e )=0  and 0 ( - e ) = 0 ( e ) = 0 .  Thus, for s o m e  ~'ED g-i, -e~--u~ ~ Adding, we 

have - 2 K ~ 1 7 6  where ~ $ ' E D  2a-2. Since ~ '  has g - 1  free points, we have 

i ( ~ ' )  = g +  ( g -  1) - ( 2 g -  2) = 1, and $~' is the divisor of a differential. I f  u ~ (A)-- - 2 K  ~ 

then u~176  ') and the theorem follows from Lemma 3, i ( ~ ' ) = i ( A ) .  

The 0 function enables one, in certain cases, to obtain explicitly the linear com- 

bination of the normalized differentials ~01 . . . . .  ~a, which vanishes at  given points. For 

example, let ~ED a-1 satisfy i ($)= 1; there is then a uniquely determined ~' ED a-1 for 

which i($$') = 1. Set e -  u ~ ($) + K ~ which, by  Theorem 4, determines e E C a (modulo 

~ ,  of course) independently of B 0. Consider 

ao 
~0= L -  (-e)~s. 

I=I ~U) 

By Theorem 8, since i(~)= 1, s for e is 1, and v 2 is not  the zero differential. Le t  B 1 

be a point in ~, e - u  I ( ~ ) + K  1 - u  I (B  I ~ ) + K  1. I f  i (B  1~)=1,  then, by  Theorem 3, 

O ( u l ( P ) - e ) - O .  Differentiating and setting P = B  1 gives 
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y,(BO = ~ 80 
j=l  ~U/  ( -e)duj(B1)=O' 

so tha t  v 2 vanishes a t  B I. I f  i(B 1 ~)= O, then O(u 1 ( P ) -  e) has its g zeros at  B a ~. As 

B 1 is in ~, i t  is a double zero, and again by  differentiating we have ~(B1)= 0. Since 

u ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  ~ and, by  the same argument,  

~ 0 
j=l (e) j 

vanishes a t  $'. But, by  the evenness of 0, 

eo (e) = v,' Ouj Ou~ ( -  e), and = - ~ .  

Thus, yJ vanishes a t  the points of ~$'. Also, if B is not in ~$', then yJ(B):t:0. For, 

e =- u B (B$) + K B, i(B$) = 0, and O(u B (P) - e) has a simple zero only a t  B, hence ~(B) ~: 0. 

Note tha t  we have not proved tha t  ~ has $$' as its divisor of zeros; but  only tha t  

y~ has a zero a t  each of the distinct points of ~ ' .  However, we have proved the 

following particular case: 

THEOREM 12. Let A E D  ~g-u be the divisor o/ a differential y~. Assume that A 

contains a divisor ~ o/ g -  1 distinct points, satis/ying i(~)= 1. Then, up to a constant 

multiple, 
80 

where e=u~ + K ~ /or any base point B ~ 

A point e E C o which has the proper ty  2e ~ 0 may  be called a half period. Any 

half period is necessarily of the form e=Tde'/2 + Tel2 where s, e' are integral vectors 

in C ~ Modulo ~ ,  there are 22a distinct haft periods, obtained by letting the entries 

in e and e' be 0 or 1 in all possible ways. Riemann calls a half period even if g e ' ~  0 

(mod 2), odd if ge '= 1 (rood 2). An easy calculation shows tha t  there are 2g-1(2 ~  1) 

odd and 2~176 even half periods, (see [4], p. 8 of the Supplement). The mo- 

t ivation for this even-odd terminology is the following. Recall the definition of 

0 ]  G]  (u )g i ven  a t  the end of Section I; for the halfperiode=xde' / '2+ Tel2 consider 

| e (2  | (u ) .  Then this function is an even or odd function of u according the function 0 [ s / 2 J  

](0) and 0( ie'/e + Te/21 a s  i e ' ~ 0  or 1 (mod 2); see [1], p. 103-4. Since 0 [e//2J 
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fer b y  a non zero, exponential ,  factor,  the  order of the  0 funct ion a t  a half  period 

is the same as the  order  of the  corresponding 0 wi th  characteris t ics  a t  the  origin. 

We  recall t h a t  an  odd funct ion a lways vanishes a t  the  origin and  t h a t  a par t ia l  de- 

r iva t ive  of an  even (odd) funct ion is odd (even). I n  part icular ,  an  odd funct ion mus t  

have  odd order  a t  the  origin; if all par t ia l  der iva t ives  of order  < s  vanish  a t  the  

origin, while some par t ia l  der iva t ive  of order  s does not ,  t hen  s is odd. An even 

funct ion has even order  a t  the  origin. 

Le t  e r . . . . .  e CN), N = 2 g - l ( 2  g -  1), be an  enumera t ion  of the  odd half  periods.  B y  

our  above  remarks ,  the  0 funct ion vanishes a t  each e r B y  Theorem 8, eZ)~ u(~ r + K,  

where ~(J) E D g-l ,  i(~ r = s s > / l ,  and  sj is odd. I n  part icular ,  0 - -  2e Cj) ~ u(~ ~i) ~(J)) + 2K,  

and,  b y  Theorem 11, there  is a differential  ~r wi th  divisor (~r Such differentials 

- - o r  ac tua l ly  square roots  of t h e m - - R i e m a n n ,  [4] p. 488, called abel ian functions.  

On the  o ther  hand,  O(u) need no t  vanish  a t  an even half period. I f  this occurs, 

i t  means  t h a t  the  surface S has  some special p roper ty .  For  example ,  R i e m a n n  ([4], 

p. 54 of the  Supplement)  s ta tes  t h a t  for g = 3, S is hyperel l ipt ic  if and  only if 0 

vanishes a t  some even half period. To see this, let us suppose first  g a rb i t r a ry  and  

e an  even half per iod such t h a t  0 (e )=0 .  B y  Theorem 8, 

e-u(~)+ K, i ( ~ ) = s ~ > l ,  ~ED a-1. 

As s mus t  be even, s >~2. Since 0 ~ u ( ~  2) + 2K, there  is a differential  ~0 wi th  divisor 

~2 ED2a-2 and since i(~)i> 2, there  is a second differential  ~0, wi th  divisor ~w, ~o E D a-l, 
~=co.  ~1/~o is a funct ion wi th  divisor ~/oo; b y  Abel ' s  theorem,  u(~)-u(o~) .  Hence,  

e~u(oo) +K, which implies t h a t  there  is a differential  ~ wi th  divisor eo 2. Clearly, the 

differentials ~0, ~o, ~ are l inearly independent ,  while the  quadra t ic  differentials ~2 and  

~0~ bo th  have  the  same divisor of zeros ~2 co 2. Thus,  ~0 ~= ~t(~0~), for  some cons tan t  ;t. 

We see t h a t  0 vanishing a t  an  even half  per iod leads to a l inear re lat ion be tween  

quadrat ic  differentials which are products  of (abel ian)different ia ls .  Suppose now g = 3 

and  0 (e )=0 ,  e an  even half period. Then  a relat ion of the  form ~o2=2(~0~), where 

~o, ~, ~ are l inearly independent ,  b y  a wel l -known result  called ~ o e t h e r ' s  theorem,  

implies S is hyperell iptic.  However ,  we do not  have  to  appeal  to Noe ther ' s  theorem.  

S imply  observe t h a t  /=~0/~o is a funct ion with  divisor ~/o); as ~o has only two points  

when g =  3, / is a funct ion with  two poles on S, and  S is hyperell iptic.  The con- 

verse, t h a t  S hyperel l ipt ie  and  g = 3  imply  0 ( e ) = 0  for  an  even half period, will 

follow below f rom our general  discussion of hyperel l ipt ic  surfaces. 

Le t  S be  hyperel l ipt ic  and  B o ~ S  a Weiers t rass  point .  Since 2 g - 1  is a gap a t  

Bo, there  is a differential  on S hav ing  all its zeros a t  Bo, i.e., having  divisor B~ ~-e. 
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By Theorem 11, • 1 7 6 1 7 6 1 7 6  and so K ~ is a half period. By our remarks 

after Theorem 4, we see that  if g is odd, the 2g + 2 Weierstrass points on S give rise 

to only one half period K ~ while if g is even, there are 2g + 2 distinct half period 

vectors K ~ Is K ~ even or odd half period? This is answered by 

THEOREM 13. Let S hyperelliptic with genus g = 4 k + m ,  /c~>0, 0~m~<3.  Let K ~ 

be the vector o/ Riemann constants with respect to a Weierstrass point B o E S. Then K ~ 

is a hal/period, even i/  m=O or m = 3 ,  and odd i/ m = l  or m = 2 .  W h e n m = l  or2,  

the 0 /unction has order 2k § 1 at K ~ while when m =0 it has order 2k and when m =  3 

it has order 2 k §  at K ~ 

Proo]. K~176176  and, by Theorem 8, the order of 0 at  K ~ is i(B~-l). 

But i(B~ -1) is the number of gaps greater than g - 1  at B0, which is the number of 

odd numbers in the sequence g, g + 1 . . . . .  2g - 1. When m = 0, g = 4k, the gaps are g + 1, 

g + 3  . . . . .  2 g - l ,  and i (B~l)=�89 which is even. Since O(u) has even order at  

K ~ K ~ is an even half period. Similar considerations for the cases m = 1, 2 or 3 give 

the rest of the theorem. 

In  the hyperelliptic case we may catalogue all even and odd half periods which 

zeros of O(u) in the following way. Let A 1 . . . . .  A2g+2 be the 2g+ 2 Weierstrass points 

on the hyperelliptie surface S. Consider all divisors of degree g - 1  of the form: 

~.<s) = A~ n A], ... Aj~_,_~ n' (21) 

where 0 ~ < 2 n ~ g - 1 ,  l~<]k~<2g+2, l ~ < k ~ < g - l - 2 n ,  and jk4im if /c~:m. We have 

already seen that  any half period e, such that  0(e)= 0, gives a divisor ~ of degree 

g - 1 with e-= u($) + K, and ~2 is the divisor ~ of a differential. Let us call such a 

a half period divisor. We now prove the following 

THV.OR~M 14. 

(a) Every hal/period divisor ~ is equivalent to a divisor ~n.(j) o/ the /orm (21). 

(b) i(~.(j)) = n + 1. 

(e) / /  ~n.j):4:~n..r then these divisors are also not equivalent. 

Proo/. (a) I t  is well known that  on any hyperelliptic S there is a unique in- 

volution (automorphism of order 2) which leaves the 2g + 2 Weierstrass points fixed. 

Also, if P is the image of the point P, not a Weierstrass point, under this involu- 

tion, then the order of any differential at  P equals the order of that  differential at  

P,  and PP, . ,A~.  Since $2 is the divisor of a differential, for every appearance of P, 
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no t  a Weierstrass point,  in ~, P appears  also; replacing each P P  in ~ b y  A~I gives 

an  equivalent  divisor. Finally,  if a Weierstrass point  Aj appears in ~ with some 

multiplicity,  using the fact  t ha t  2 Aj "~AI, we obtain  a divisor equivalent  to  ~ of the 

form ~n.(j). 

(b) Since a differential cannot  have a simple zero a t  a Weierstrass point ,  we 

have t h a t  

i($~.(s)) = i(A~ ~ A~, . . .  A~,_,_,,) = i(A21~ 

for 2 2 i(A~g-2-2n) Aj ~ A t .  Bu t  is the number  of gaps a t  A 1 greater  t han  2 g - 2 - 2 n ,  

which is n + 1. 

(c) Suppose ~n. ( j )~ . . ( i . ) .  B y  L e m m a  3 and (b) above, we mus t  have n = n ' .  

I f  these divisors are no t  equal, then there is a function,  not  a constant ,  having poles 

at  mos t  at  A j, ... Aj~_,_, n. I n  other  words, 

Bu t  by  the R iemann-Roch  theorem 

r = g - 1 - 2n  + i (A~  .. .  A~_~_,~) + 1 - g. 

Again, since a differential cannot  have a simple zero a t  a Weierstrass point,  we have that~ 

i (Aj~ . . .  As,_,_,~) = i (A~,  . . .  A~ ,  . . . . .  ) = i ( A ~  ~ - ~ - ~ )  = 2 ~ +  1, 

which gives r =  1, a contradiction.  Thus  ~n.(j) = ~,~..(s'), which completes the proof of 

the theorem. 

On the other  hand,  it is clear t h a t  each ~ ~n.(j) is the divisor of a differential. 

Sett ing 
en.(j) -- u(r + K 

defines a half period, which is a zero of 0. B y  (a) and  (c) of the theorem above, 

all half periods which are zeros of 0 are obtained precisely in this way.  B y  Theorem 8 

and (b) above, 0 has order n + l  a t  e~.(s), so t h a t  e~.(j) is an  even half period if h i s  

odd and an  odd half  period if n is even. Also, for a given n, 0 ~ 2n ~< g - 1 ,  there are 

g -  1 -  2 h i  half periods a t  which 0 has order n + 1. We summarize this as 

T H e O R e M  15. Every  hal/ period which is a zero o~ 0 is o[ the [orm 

en. (j> -- u($n. (;)) + K.  
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0 has order n + l  at en.r and en.(j) is even i /  n is odd and odd i /  n is even. The 

number o/ even hall periods at which 0 vanishes is 

 2g+2 ) 
0~<2k§189 \g--  1 - 2 ( 2 k +  1) " 

Since 0 vanishes a t  every  odd half period, we have t ha t  

2g+  2 
2"-1(2" - 1) = 0<~<~(,_1) ( g _  1 _ 4]c) �9 

Finally, we see that ,  as claimed above, if S is hyperell iptic and g = 3 ,  then  0 

vanishes a t  precisely one even half period. For  by  the above theorem, i t  vanishes a t  

(80)=1  even half period. In  fact,  by  Theorem 13, it  is the even half period of Rie- 

mann  constants,  K ~ taken  with base point  a t  a Weierstrass point.  
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