Polynomially convex hulls and analyticity

J. Wermer

Introduction

We denote by z, w the coordinates in C? and we write n for the projection
which sends (z, w)—~z. Let Y be a compact subset of C? with #n(¥) contained in
the unit circle. We denote by Y the polynomially convex hull of ¥. For Jin C
we put

71D = {(z, weT|n(z, w) = A}

We assume that n~ (1)@ for some A with [l|<l. Then n~1(1)=P for each 2
in the open unit disk.

Under various conditions Y\ Y has been shown to possess analytic structure.
In particular we have ([4], [5]):

Theorem. If =~'(l} is finite or countably infinite for each A in |Aj<1, then
Y\Y contains an analytic variety of dimension 1.

The object of this note is to show that no such conclusion holds in general.

Theorem 1. There exists a compact subset Y of C* with m(Y)E {|z{=1} such
that m(Y)={lz|=1} and Y\Y contains no analytic variety of positive dimension.

Our construction proceeds by modifying the idea which was used by Brian
Cole in [1] (see also [3], Theorem 20.1) to prove the infinite-dimensional analogue
of Theorem 1.

In the famous example of a hull without analytic structure given by Stolzen-
berg in [2] the set whose hull is taken and the hull have the same coordinate projec-

tions. In our example the projection =(Y) is a proper subset of the projection
n(¥).

Note. By a change of variable we may replace the unit circle and unit disk
by the circle |z|=1/2 and the disk |z|=1/2, and we shall prove Theorem 1 for
this case. The convenience that results is that for |a, |b|=1/2, la—b|=1.
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Notations. Let a,, a,y, ... denote the points in the disk |z|<1/2 both of whose
coordinates are rational numbers. Fix an n-tuple of positive constants ¢;, ¢,, ..., ¢,.
For each j we denote by B, the algebraic function

Bi(z) =(z—ap(z—ay)...(z—a;_1) V(z—ay)
and by g, the algebraic function
8.(2) = 2%_1¢;B;(2).

We denote by > (cy, ..., ¢,) the subset of the Riemann surface of g, which lies in
|z|=1/2. In other words,

2, e ={zwlizd =12, w=w;, j=12,..,2",
where w;, j=1,...,2" are the values of g, at z.

Lemma 1. There exists a sequence c;, j=1,2, ... of positive constants with
¢, =1/10 and ¢, ,=(1/10)¢c,, n=1, 2, ... and there exists a sequence {5;|j=1,2, ...}
of positive constants, and there exists a sequence of polynomials {P,} in z and w
such that

§)) {P,=0, |z| = 1/2} = D (¢, oy Ca)y =12, ...
2 {1Pusil = i1, 12l =12} S {IP) <&, |21 =1/2}, n=12,..

3) If lal=1/2 and |P,(a, w)|=e,, then there exists w, with P,(a,w,)=0 and
w—w,|<l/n, n=1,2, ...

Proof. For j=1, we take c¢;=1/10, & =1/4, P,(z, wy=w?—(1/100)(z—a,).
Then (1) and (3) hold. Suppose now that c;, ¢;, P; have been chosen for j=1,2,...,n
in such a way that (1), (2), (3) are satisfied. We shall choose ¢, 1, €,415 Pys1-

Denote by w;(z), j=1,2,...,2" the roots of P,(z, -)=0. To each constant
¢=0 we assign a polynomial P, by putting

Po(zw) = [[7, [(w=w; (D))= 3(B,s1(2))]-

Then P_(z, -)=0 has the roots w;(z)+tcB,,,(2),j=1, ..., 2", and so {P (z, w)=0}n
{lz|=1/2}=3(c1, ¢35 ..., €4, ). Also,

Pc = P721+62Q1+-"+(C2)2”Q2”’
where the Q; are polynomials in z and w, not depending on c.

Claim: for sufficiently small positive c,

) {IPd <}tz =12y < P) < e}l = 172)
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Denote by 4,, the bidisk: |z|=1/2, |w/=M. For M sufficiently large, 4,
contains

82
{ipg<%hagzr =123
for all ¢, O=c=1.
Suppose the Claim is false. Then for arbitrarily small ¢ 3{, in 4,, with
8&

EPC(CC)|<5" and |P,({)|=e,. Since 4,, is compact, {, has an accumulation point

Y

[

{* in 4. Then |P2({*)]== and |P,({*)|=e,. This is impossible, and hence

™|

the Claim is true.
Fix ¢ such that (4) holds and such that ¢<(1/10)¢,. Then choose ¢,., such

82
2
exists w, .y with P,(z, w,,,)=0 and |w—w, |<l/(n+1). Putting ¢, ,=c, then,
putting P,,,=2P_, and choosing ¢, ., as above, we have that (1}, (2}, (3) hold for
Jj=1,2,...,n+1. This completes the proof of Lemma 1 by induction.

that &,,,<= and such that [P (z, w)l<e¢,., and [z|=1/2 implies that there

Deftnition. With P,, ¢,, n=1,2, ... chosen as in Lemma 1, we put

X= 0 [1P) = shnla = 172))

It follows at once from this definition that X is a compact polynomially con-
vex subset of the bidisk {|z|=1/2, |w|=1}. For each n we put

Z,={P,=0}{lzl = 1/2} = 3 (¢1, ...s €n)
where ¢;, ¢y, ... is the sequence obtained in Lemma !.

Lemma 2. A point (z, w) belongs to X if and only if z|=1/2 and there exists
a sequence (z,w,) with (z,w,)€> and w,»w as n— oo,

Proof. Consider (z, w) with |z]=1/2 and assume there exists such a sequence
(z, w,). Fix n,. Because of (2), if k=>n,, then

{lPk1 = slu Izi = 1/2} g {IPnol = Bng}'

Since Py(z, w)=0 for each k, (z,w)€e{|P,|=e¢,} for each k=>n,. Hence
(z, w)€ {[Pno\gano}. This holds for all #n,, and so (z, w)€X.

Conversely, assume (z, w)¢X. Fix n. Then |P,(z, w)|=¢,. Hence by (3)
there exists w, with (z, w,) in >, and |w—w,|<1/n. Hence {(z, w,)} is a sequence
as required. Lemma 2 is proved.
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We now go on to show that X contains no analytic disk. Suppose first that
D is an analytic disk contained in X with z non-constant on D. Assuming this, we
shall arrive at a contradiction.

z is one-one on some subdisk of D and so it is no loss of generality to suppose
that D is given by an equation: w=f(z), where fis a single-valued analytic func-
tion defined in some plane region contained in |z|<1/2. In that region we choose
a rectangle defined by inequalities: S;=Rez=S,, ,=Imz=¢,, with S;, S,, 11, f;,
irrational numbers. We denote the boundary of this rectangle by y. Then y is a
simple closed curve such that none of the points ¢; lies on y. We note the following:
(5) fis a continuous function defined on y and (z, f(2))€X for z€y.

We denote by z, the midpoint of the left-hand edge of y and we denote by y, the
punctured curve y\{z,}. Foreachj B;(z)=(z—a))(z—ay)...(z—a;_)V(z—a;) has
two single-valued continuous branches defined on y,. If g; lies outside y, then each
branch extends continuously to y, while for a; inside y each branch has a jump-
discontinuity at z;. We choose one of these branches, arbitrarily, and denote it §;.
Then [B;) is single-valued.

Let n be the smallest index such that a, lies inside y. The algebraic function
21 ¢;B; has on y, the 2" branches

J
2i=1¢;0;B;

where each g; is a constant=1 or =—1. We denote by & the collection of these
2" functions on y,.

Assertion 1: Fix z in y;. There exists k in &, where k depends on z, such that
(6) 1f(2)—k(2)] < (1/4)|B.(2)]c,.
In view of (5) and Lemma 2, we can find wy such that (z, wy) lies on Xy and

f(z) =wy+R(2), where [R(2)| = (1/10)|8,(2)Ic,-
Thus

(D=2, 6,0/(DB,(D+R(@) = k(D+ 3., ¢00,(DB, () +R(2)
where each ¢,(z)==1 or —1 and
k= 20_ic.0(2)B.e8
Then |f(z)—k(@)|=>"_, . ¢,|8,(z)|+R(z). Note that for all j,
1Bi+1(D = z—ay)...(z—aplV]z—a;.]
=|(z—ay...(z—a))|
=|z—ay)...|z—a;_4|VIz—a;| = |8;(2)|

C,
S0 Z)ren e B = Sy l@ 2 1B,G [t ] = Tig, e,
We thus get (6), as asserted.
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Assertion 2. Let g, s be two distinct functions in & Fix z in y,. Then
@) lg(2)—h(2)| = (3/2)|B,(2lc,-
g = Z: 1 JQJBJ’ h = Z} =1 JQJﬁJ

where g;, o] are constants=1 or —1. Forsome j, ¢;+¢}. Let j, be the first such
J. Then

g(2)—=h(z) = £2¢;,B;,(2)+ 2, +1¢5(e;— ) B;(2).

18(2)—h(2)| = 26, B1o(D ~2 301 €185 ()
= 2¢;,1B;,(2)| —21B,,(2)] [zjz,.oﬂ ¢;]

So

>2[B10(Z)| [c_lo , =jo+1 J] = 9 lﬁ]o(z)lcjo

= (3/2)(B.(2)lc,,
proving (7).

Fix z, in y,. By Assertion | there is some %, in & with

® [f(z) —ko(20)l = (1/A)|B,(20)] ¢,
Assertion 3. Let ky satisfy (8). Then for all z in y;:
® 1f(2) = ko(2)] < (1/3)1B,(2] c,-

{z|(9) bolds at z} is an open subset € of y, containing z,. If 0>y,, then there
is a boundary point p of @ on y,. Then

(10) 1/ (P)—ko(P) = (1/3)|B.(P)I cy-
By Assertion 1, there is some &, in & such that
(11 /(D)= ki (D) = (1/D) B, (D) c,-

Thus |ky(p)—k,(p)|=(7/12)1B.(p)|c,. Also ky#k,, in view of (10) and (11). This
contradicts (7). Thus 0=y, and so Assertion 3 is true.

For each continuous function u defined on y, which has a jump at z, let us
write L*(#) and L~ (u) for the two limits of u(z) as z-z, along y;. Then by (9)

[L*(S)=L* (k)l = (1/3)[Bu (2Dl cy,
IL=(f) =L~ (kol = (1/3)|Ba(z1)l c,s
(LA =Lt (k) (L™ (/)= L™ (ky))| = 2/3)|By(2D)] ¢,

Since f is continuous on 7y, this gives that the jump of k, at z; is in modulus
=(2/3)|B.(z1)|c,. But k, is in &, so its jump at z, has modulus 2c,|B,(z;)|. This is
a contradiction.

and

and so
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The assumption that there is an analytic disk contained in X with z non-con-
stant on it must therefore be rejected. The assumption that X contains an analytic
disk on which z is constant must also be rejected, for the following reason:

Assertion 4. Fix zo with |z)|=1/2. Put F, ={z=z,}nX. Each connected com-
ponent of F, is a single point. Assume first that zo7a; forallj. Fixan 1nteger N.
Consider the 2V points

w; = v=1ch\(’j)Bv(Zo)a i=L2 .., 2N, Q\('j) ==l1,

where for each v B, (z,) denotes one of the two values of B, at z,, chosen arbitrarily.
Then w;, j=1, ..., 2V are the w-coordinates of the points on 2w lying over z,.
By calculations like those in the proof of Assertion 2, we find that

(12) IWj“Wkl = (3/2)|By(29)l ey -

By hypothesis, By(zy)#0.

Consider the closed disks with centers w,, j=1,2,..., 2¥  and radius
(1/2)|By{(zy)| cy. Because of (12) these disks are disjoint.

Fix (z,, ) in F, . We claim that b belongs to the union of these 2V disks.
By Lemma 2 there exists M=N and there exists (z,, w) in >, such that

[b—w’| < (1/9)cy|By(zo)l.
Then
W, = ‘],V-I:lcv QVBV(ZO)
with o,=+1.
Hence for some j, 1=j=2",

w = wj+ Z':I:N+1 Cy Qva(ZO)'

So W —wil = 3y 6Bz = —CN]BN(ZO)l

Hence |b—w;[=(2/9)cy|By(zo)]. Thus b belongs to the disk with center w;
and radius (1/2)cy|By(z,)| and so to the union of the 2V disks, as claimed. Since
b was arbitrary with (z,, b) in F, ., it follows that each connected component K
of F, is contained in a disk of radius (1/2)cy|By(z,)| and hence has diameter
=cy. This holds for arbitrary N. Hence K is a single point. This proves our Asser-
tion, in this case. If zy=a;, then By(z,)=0 for N>j and so F, is a finite set,
hence totally disconnected.

We can thus conclude that X contains no analytic disk.

Lemma 3. Put Y=Xn{|z|=1/2). Then X=Y.

Proof. Since X is polynomially convex, YCX.
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Fix now (z,, w,) in X. We shall show that (z,, w,) isin Y. Let Q be a poly-
nomial in z and w. By Lemma 2 we can find a sequence {(z,, wy)} converging to
(Zo, wp) Wwith (zy, wy) in Zy. Xy is a finite Riemann surface whose boundary lies
on {|z|=1/2}. Hence [Q(z,, wy)|=|Q(zy, wy)|, where (zjy,wy) is a point of
Zyn{lz|=1/2}. Let (z/, w) be an accumulation point of the sequence {(zy, wy)}-
Arguing as in the proof of Lemma 2, we see that (2, w’) is in X. Also |z/[=1/2.
Then denoting by {n;} a sequence of integers such that (z, ,w,) converges to
(z’, w"), we have L

10(z0, wo)l = lim |0 (zy, wa)| = lim |0(z,,, w) )| =10 (2", w)l.

Since (z/,w’) is in ¥, |Q(zy, wo)|=max, |Q|. Thus (z,, wy) is in ¥, as claimed.
Thus XC7Y, and so X=7Y.
The set Y thus has the properties asserted in Theorem 1.
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