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§ 1. Introduction

This paper deals with the space I of all multipliers of the Cauchy type integrals
in the unit disc D={z€C: |z|<1} in the complex plane C. To be more precise
let M(T) be the Banach space of all finite Borel measures on T with the usual varia-
tion norm and let K be the Cauchy transform of a measure p in M(T):

get  du(r)
Ku(2) —th—_;, lz| = 1.
The space of the Cauchy type integrals is the Banach space K ) {f: JueM(D),
f=S8u} with a natural norm
1flix & inf {al: £ = S, ueM(T)}.

It is easy now to define the space of multipliers mentioned above in a correct way.
Let M be the class of holomorphic functions ¢ in D satisfying

def

lolm = sup {loflx: 1flx =1} <+
It is clear that 9 is the Banach algebra with the norm | :||,, and it is easy to
check that
Il <= sup {ip(2)]: 2€D} = |-

Therefore the identity map imbeds MM continuously in the algebra H™ of all uni-
formly bounded holomorphic functions in D.

The study of the space M was started in the papers of V. P. Havin [1], [2] and
was continued in [3] and [4]. It turned out that the elements of I have a surprising
collection of properties. For example, radial limits lim,.;_, ¢ (#{) of any multiplier
¢ exist everywhere on T and partial sums of the Taylor series of ¢ are bounded
uniformly in D ([3], [4]).
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The purpose of this paper is to describe inner functions in 3 (see the Theorem 1
below). We prove that the Blaschke products with the sequence of zeros satisfying
the Frostman condition are the only possible inner functions in 9. This description
leads in a natural way to the description of all families of rational fractions

1— [an(z
( 1—a,z
span in 9 (Theorem 2). At last, an application to the pointwise convergence of
Fourier series of bounded functions of the first Baire class on T is given.

The space M is interesting not only because of its importance for the study of
Cauchy type integrals. It is also the chief ingredient of the description of Toeplitz
operators bounded on the disc algebra C,. Let us remind some definitions. Let
P, be the orthogonal projection of Z2(T) onto H? and let P_=I-P_, I being
the identity operator. For ¢ in L*(T), the Toeplitz operator with symbol ¢ is the
operator T, on H? defined by T, 2=P, @& and the Hankel operator with the same
symbol is defined by the formula H, A=P_¢h, h¢H%. Clearly

oh = H,h+T,h, heH>.

] , la,]<1, which form a symmetric basis in the closure of their linear
=1

Lemma 1.1. Let ¢cH™. Then the operator T, is bounded on C 4 (or equivalently
on H”) iff ocMM. Moreover

el = 1T

See [4] for the proof of the lemma. This proof follows from the formula for the
natural duality between the spaces C, and K. We shall write this duality in an anti-
linear way

(M E dim [ fCOREdmE), feK, heC,.

Here m denotes the usual normalized Lebesgue measure on T. The .description of
Toeplitz operators T,, bounded on C, (or H”) is now a simple corollary of Lemma
1.1. Indeed, let i, <= {?: @M, ¢(0)=0} and let

W+ Ca = {o€ L=(T): P_oeThy, P, 9EC,),

Mo+ H= 2L (g L=(T): P_ocTR,, P, pc H=).

Then T, is bounded on C, (or H®) iff @M+ C, (p€My+H™). It is curious
that both spaces M,+C, and My+H>= are algebras. To see this it is obviously
sufficient to prove that @feM,+H= for any @I, and fEH™. It follows from
Lemma 1.1 that P,@f€H” and the formula P,.(P_of)g=P.gH,f=
P, (gpf—gT,/)=P . pgf—gT, fcH”, gcH>, implies the inclusion P_@fcIn,.

With the norm
defl

lol = 1P~ @lm+IP. @l

the space M,+H™ becomes a Banach space closed under the pointwise multiplica-
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tion of functions on T. Therefore there is an equivalent norm on Wi,+H®> such
that M,+H> is a Banach algebra with this norm. It certainly is not a uniform
subalgebra of L*(T).

Definition. Let a=(a,),=1 be a sequence (finite or infinite) of points of the
unit disc D satisfying the Blaschke condition

Zinz1(=la,?) <+ oo, (B)
and let B® denote the corresponding Blaschke product

def pree  |Qnl  @p—2Z

Bi(z) =

=1l g, 1-a,z’
A sequence a is named the Frostman sequence (briefly a€(F)) if
w 1—la,

su _
e e S

Theorem 1. Let I be an inner function. Then I¢M iff I is a Blaschke product
B and ac(F).

<+ oo, (F)

Remark. The sufficiency of the condition a€(F) for the inclusion B*cIR had
been proved for the first time in [3] and was later proved independently in [5]. The
second fact we shall use below is that the inclusion B¢t implies ac(F) if B®
is an interpolating Blaschke product [4]. For the sake of completeness of the exposi-
tion we shall give simple proofs for both of them.

Theorem 1 may be compared with the theorem describing inner functions
in the multiplier space of Cauchy type integrals with uniformly bounded densities
on T. It was proved independently and by different tools in [6] and [7]. For p, 1=
p=-e, the Banach space L?(T) of all functions on T summable with the power p
is imbedded in M(T) in a natural way: f—fdm. Let M (KL?) be the space of all
multipliers of the space SL?. The following formulae hold

M(KLYH) = M(KM(T)) =F 9,
M(KL>) = M(KC(D)) & M=,
MALY)=H>, | <p=<oo,

Theorem (see [6], [7]). Let I be an inner function and let I€M™. Then I is a
finite Blaschke product.

Theorem 1 is also connected with the well-known Frostman theorem.

Frostman theorem (see [8], p. 54—55). Let {¢T. The following assertions are
equivalent:
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1. the Blaschke product B* and all its subproducts have radial limits at { and
moduli of all these limits are equal to one;
1—|a,)?
2. >, = + oo,
2r el =

To formulate our second theorem we recall some definitions of the uncondi-
tional bases theory. Let o(A) denote the set of all permutations of a set A.

Definition. An unconditional basis (e;);c 4 in a Banach space X is said to be
symmetric if and ouly if there is a positive constant C such that

sup HZ:&A%AQHX =C- ”ZAEA OCACAHX
og€a(Ad)

Jor every complex function A—a,; with a finite support in A. The coefficient space
I(A) of an unconditional basis (e,),¢ 4 is defined to be the space of all families (@;),¢ 4
of complex numbers satisfying

def

el ray = HZAEA%%H X<t oo,

The definitions of the Stolz domain and of the separated sequence used in the
statement of the theorem may be found in § 3 of the paper.
-2
1-7z
symmetric basis in the closure of their linear span in W if and only if one of two follow-
ing possibilities occurs.

1. There is a separated Frostman sequence a=(a,),=, such that A={a,: n=1}.

2. The set A can be covered by a finite number of Stolz domains and A= {,: n=1}
Sfor a separated sequence a. The coefficient space I(A) coincides with cy(A) if the
first of the mentioned possibilities takes place and I{AY=I11(A) if the second one is
occured.

Theorem 2. A family ( ] cACD of the rational fractions forms a
icd

2

1—la L. .
| "I) forms an unconditional basis
azl

Let us remark that the family [ —
—a,z
in its linear span in H” iff a=(a,),=; is separated Frostman sequence. In this case
the coefficient space is ¢, (see § 5).
The methods of this article are applicable to the construction of some examples
if discontinuous functions on the unit circle T with a good behavior of their Fourier
series.

Theorem 3. Let E be a closed nowhere dense subset of the circle T. Then there
is a Blaschke product B with the following list of properties.

1. The infinite product the function B is defined by convergence at every point
of the closed disc.
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2. The set of the discontinuity points of B is precisely the set E.

3. The Fourier series of B converges everywhere on T and B(n)=0 (—1—],
B(n) being the n-th Fourier coefficient of B. n

The work is presented in six sections. In § 2 the necessary information about
the space M is collected. In § 3 relations of the Frostman condition with the inter-
polation theory in H* are analyzed and, at last, in §§ 4—6 the proofs of our theo-
rems are given.

Acknowledgement. We are grateful to N. K. Nikol’skii for the valuable dis-
cussions and to V. P. Havin for reading the manuscript.

§ 2. The multipliers of the Cauchy type integrals

In this section we describe some auxiliary results about the space M needed in
what follows. Details may be found in [3], [4].

2.1. Let 6, be a unit mass at the point { of T. The convex hull of the set
{6, (€T} is a weak-star dense subset of the unit ball in M(T). This, together with
the obvious identity ({—z)"1=86,(z), implies that

ol = sup {2 get).

2.2, It follows from Lemma 1.1 that |z"|g,=]7}.]. Therefore it is easy to
check that
slogn = |27 = 1 +logn, nef2,3,..}.

2.3. The formula for the norm |¢|,, mentioned above entails the inequality

- fO-fQ)
11 = Wl s0p [ [ LOLE ey

for every fin C,. Let us assume the function f to be differentiable in the closed
disc. The integral in the right-hand side of the inequality can be divided into two
parts corresponding to non-overlapping arcs I'y={¢t¢T: |arg r—arg {|<n/n} and
I's=T\TIy, n being a positive integer. Simple estimates show that the following
inequality is valid

1w = -1l Gog 1) o 1)
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Lemma 2.4. Let a€T, let a€D, and let y(z)g———d ocl

denote-a conformal
az
automorphism of the disc. Then the following inequalities hold

47 llollwm = looylm = 4+ @lm-
Proof. Itis sufficient to test the left-hand inequality only. Formula 2.1 shows that

ok = sup{| [, 22 R de]: 1 = 1, 1l = 1, 5@ = 0],

and the change of variables z—>y(z) implies

(Z) <P07(Z) ’ T (v () i (v (0)
[ii=z 1O &z = [ {57 D (G E) - G O)} =

It may be assumed without loss of generality that a=1. Then

Y@ f __
1—ny(2) (11+Z1 ]—l—z lja—z
l+an

and therefore ||(1—1y(2))*+y'(2)||¢=2. To finish the proof it remains to remark
that |hoy—hoy(0). . =2]A|.. @

2.5. The division theorem. Let ¢ belong to M and I be an inner function divid-
ing ¢ (i.e. @ -I7'¢H™). Then ¢-.I'¢M and moreover

({70 e PN (] P8
Here is a simple proof of this theorem due to P. Nikolov [7]:
o+ I Yo = T4l = sup {P, @Ih|.: h¢H=, |h]. =1}
=sup {|P; Phllw: [hlle =1} =@l ®

§ 3. The Frostman condition and the interpolation in H™

We begin with some definitions of the interpolation theory. The sequence
(a,),=1 of pairwise distinct points in D is said to be an interpolating sequence for
H* iff for every bounded sequence (x,),=; there is a function f in H* satisfying

x, =fa,), ne{l,2, ..} )]

It is well known that (1) can be reformulated in purely geometric terms. To do this
Tet a be a sequence of points in D and let

.ua = 271%1(1 - Ianlz)éun'
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Let D({, r) denote the disc {z€C: |z—{|<r}. A non-negative measure p in D is
called a Carleson measure if

() = sup {r1- w(D(C, M) LET, r >0} <+ oo,

The pseudo-euclidean distance g(a, b) between points a and b of D is defined
by the formula
a—b
1—ab

e(a, b) =

The sequence a=(a,),=; is named separated if
S(@) = inf o(ay, a,) = 0.
We denote by B? the Blaschke product with the zero set {a;: k#=n}.

Carleson interpolation theorem. The following conditions on a are equivalent:

1) a is an interpolating sequence;

2) 5(a)=inf, |B2(a)|>0;

3) a is separated and p, is a Carleson measure. If a is the interpolating sequence
then d(a)=exp {—Const. y(u,)-s ~2(a)} and there is a solution f of (1) in H* such that

[ flle = Const. (1+8(a)*-1log é ~(a)).

See, for example, [9] and [10] for the proof. The references on the original
publication may be found there also.
A sequence a satisfying

sup Card {n: ¢(a,,{) <&} <+ )
{eD

for some positive ¢ is a disjoint union of a finite family of separated ones. This fact
is of course well-known. Nevertheless we are going to prove it because of its impor-
tance for the proof of Theorem 1 and because we have failed to find a reference.

Lemma 3.1. Let X be a metric space endowed with a metric d, let

D(x, e:)d—i—f {yeX: d(x, y)<c} and let E be a subset of X satisfying

n = sup Card (E N D(x, §)) <+ oo.
x¢E
Then there is a finite partition (Eyi_q1 of E such that
inf {d(x,y): x,y€E, x #y}=2""-¢

Sor every k, ke{l,2, ..., n}.
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Proof. Let (D(x, £/2)),.. 4, be a maximal family of pairwise disjoint balls such
that 4, E and
Card (E n D(x, ¢/2)) = n.
The existence of the family is a simple corollary of Zorn’s lemma.
It follows from the triangle inequality that

GnD(x,e2) =0 3)

for G=J, 4, D, ¢/2) and for every x in ENG. This implies the inequality
d(x, y)=g/2 for every x in ENG and for every y in G E. Another consequence
of (3) is that

Card ((En G) n D(x, ¢/2)) = n—1

for x in ENG. Indeed, the opposite inequality contradicts the -assumption of the
maximality of the family (D(x, &/2)), 4, if it holds for some x in EN\G.

We see now that our construction can be proceeded by induction. We get after
the n step induction procedure the family A4,, 4,, ..., 4, of subsets in E satisfying
the following conditions:

@ EcU) U Dl e-279;

k=1 x4,
(b) Card(EnD(x,e-27%)) =n—k for every x in 4,;
(c) the distance between different balls of the family

g {D(x, £-27%): x€4,, ke{l, ..., n}}

is more than 27 "s. Let now E, be a subset of E which has at most one point in com-
mon with every ball of the family §. The set E, is then a subset of EN\E; with
the same property. The induction completes the construction of the partition (E);_;-

Corollary 3.2. Suppose a sequence a satisfies (2) with some positive constant &.
Then a is the disjoint union of a finite number of separated sequences.

Proof. We may assume without loss of generality that a,>a, if n=m. To
finish the proof it is sufficient to apply Lemma 3.1. to the metric space D with the

. . 1 )
non-euclidean metric d(z, w)=log—lﬂg—z—w—; and to the set E={q,: n=1,2,...}.
—o(z,w

Corollary 3.3. Let p, be a Carleson measure. Then the sequence a is a finite union
of the interpolating sequences.

The proof follows immediately from the corollary. See [11] for other proof.

Lemma 3.4. Let a be a Frostman sequence in D. Then p, is a Carleson measure.
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The proof hinges on a simple inequality:

1_—|an|2

= .7,
" op(a) )

H(DE ) =T+ Do =1

Let O<a=<mn/2 and let {€T. Let us recall that the Stolz domain Q,({) in D is the
interior of the convex hull of { and the circle {z€C: |z|=sina}.

Lemma 3.5. Let a be a Frostman sequence in D. Then
Card {n: 2,£9,(0)} = (1—sinx) " taz(a)
Jor every Stolz domain 2, ({).
Proof. It follows from the identity

[z]2 = 14+[z—¢|*—2|z—| cos B

that
1—|z]?
|z—{[?

= 2cos 8 —|z—{|.

The length of the chord of T passing through the points { and z obviously equals
to 2 cos 8 and the radius of the circular part of 9Q2,({) equals to sin . Therefore
2c080—|z—{l=1—sino. @

Lemma 3.6. Let a=(a,),~, be a sequence in C, o {z: Im z>0} satisfying
c() = sup Card {a,£Q,()} <+ . )
1ER
Then p, is a Carleson measure.

Remark. A similar lemma holds for the case of the unit disc.

Proof. Let J, denote the interval (Req,—Im g,-tgo, Rea,+Ima,-tga) (see
Fig. 1):

e S—B d/(x)

Fig. 1
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The condition (4) implies that
Card {n: x€J,} = c().

Let now 1, denote the indicator function of the set J, and let 7 be a point in R. Then

1
Ha (D (t’ 7’)) = m ° Zch(t—r/cosa, t+rfcos®) ka

r

1 t+r/cosa
- 2tgoc~/t‘—r/cosa2k llkdt_ 2t c(a).sina )

To finish with the Frostman condition let us remark that oz(a) coincides with the
norm of the embedding operator of the space K into L'(u,).
We shall need also the following lemma concerning conditions (C) and (R).

Lemma 3.7. Let a — be a sequence in a Stolz domain Q,(0). Then the conditions
(C) and (R) are equivalent. Moreover the constant d(a) depends on « and s(a) only.

See [9] for the proof.

§ 4. The proof of Theorem 1

4.1, We shall prove at first that B*¢WM=a€(F) assuming g is interpolating
sequence. The proof is based on the following lemma.

Lemma 4.1. Let a=(a,),=, be a sequence in D, let (x,),=1 be a sequence sat-
isfying 2.1 |1%/(1=la,)< 4, and let ¢ be a function in W™ such that

_ 1_|an|2
¢(2) = anlxn.ma lz] < 1.

Then the following inequalities hold

1 @l = 1@l SUP Smn [l - ] - inl_
et [1—a,{|

2°, supZ’ |%,] - la,l - i _!_aél,, = Const. (§(a) *log s~ (a)+1) - [@llm-

The lemma has been proved in [4]. We shall give its short proof for the sake
of completeness of exposition, but let us stop for a moment to explain why this
lemma implies the assertion stated at the beginning of the paragraph. If a is an inter-
polating sequence the Blaschke product B“ is the sum of the simple fractions:

1 1 1—|a,?

B( )—YO)—_Z" 1 B(_a,,) m'm %)
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The required statement follows now from 2° with x,=(B,(a,) - la,])™, n€{1,2, ...}.
Conversely, if op(a)<+ o then it follows from 1° and (5) that

1B = 1+0(a) ™ - 0p(a).

The sufficiency part of Theorem 1 follows from this inequality and from Lemma 3.4
and Corollary 3.3.

Let us remark at last that the family ((1—|a,[?)-(1—a,z)%),=, forms an uncon-
ditional basis in its closed span in 9 and an unconditional basis in the weak-star
closure of this span (we mean weak-star topology of M) if « is an interpolating se-
quence. These facts are easy corollaries of Lemma4.1. In this connection the follow-

—|A
-z

ing formula is useful:

=(1+14))?, A€D. The coeflicient space of every
m
weak-star unconditional basis formed by the rational fractions

((1 - ‘an‘z) (1 —" anz)_l)ngl

in their weak-star closed linear span in 9 is isometric to the Banach space of all
complex sequences satisfying

P P e L1 ©)
LeT = 1—a,(]

The analogous coefficient space for the unconditional basis is the closure of the
family of all finite sequences x=(x,),~; in that norm.

The proof of Lemma 4.1. It is easy to verify that

H(l—).Z)‘lf_' 1— AE f(l)
for every 4 in D and for every f in H*. If follows from this formula that

1—la,|?
The proof of 1° is now finished by the following inequalities

H('ﬁf(C)=Znan°)_€nf(an)'Z (7)

[0l = 1Tl = 9=t D 1Hp e = [@]+50p 3 I3l Ll § I;é}

1fll =1

To prove 2° we use (7) and Carleson interpolation theorem:

sup 3, o]+t = sup sup | ,a,%6,0 Tt
sop 2 laal bl g = sup swp —ant

= || Hy] - Const. (6(a) *log 6(a) 1 +1)
= Const. (3(a) 1og () " +1) (9w +lgln). @
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4.2, The second step of the proof is to prove that the sequence g is the union
of a finite number of separated ones if B°cIR.

Lemma 4.2. Let 0<g<107%, let n>27 be an integer and let B be a finite Blaschke
product with n zeros (counted with their multiplicities) in the disc {z€C: |z|<eg},
and non vanishing outside this disc. Then

%log n = llnglogn+|B|a.
Proof. 1t follows from 2.2.and 2.3 that
slogn = |B() 2"y = | B(1) 2"~ Bl + || Blm

1
= " lneB(1)z"*—B'|+||B(1)z" — Bl - log ne+|| Bl g

Let a4y, ..., a, be the full list of the zeros of the Blaschke product B. Then for every
z in T we have

’

n-B()-z""'——-B=nz"1B(1)—z1B. 3 _ 1———Ia Ia;Ilz
-1 n -1 1“'“1:'2
=nz Y{B()z"—-B}+z"'B\n—2_, Tl
Therefore
a
InB(1) 2"~ Bl = n|B() 2"~ Bll.+ 3}, QL—W

= | B() 27— Bt 1

To estimate the norm ||B(1)z"—B| . observe that B=b;-...+b,, b, being the
Blaschke factor corresponding to the point o, k€{l,...,n}. Then the triangle
inequality gives

IB(1) 2"~ Blloo = Z¢_y 1261 (1) — by -

It is easy to check that

o |a=l a—z 6¢
|26, (D—bil = 1—ﬁkz 1—a;,z (1—ep2"’

A

The last two inequalities together imply that

6ne
(1—ep"

1B(1)z"— Bl =
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Hence
2e
—¢

1B()z"~Bllw = —+[B(1) "~ Bl. log (¢’ n)

2¢ 6ne
e N — 2 -
=1 + a=ep log(e?*n) = llnelogn,
where €(0,107% and n>27. e
Lemma 4.3. Let B be a Blaschke product in W. Then every disc in D with pseudo-
euclidean radius exp (—100-|B|y,) contains not more than exp (100-|B|y,) zeros
of B (counted with their multiplicities).

zZ—a

—dz
o and with the pseudo-euclidean radius ¢, and let y be a conformal automorphism
of D mapping 4 onto the disc {z€C: |z|<e}. Then it follows by Lemma 2.4.
that Boy~1¢M and

Proof. Let A={Z€CZ

<e} be the disc with the non-euclidean center

[Boy ™o = 4-[Blg-

It is clear that the number N of the zeros of Boy™' in {z€C: |z|<¢} is equal to
one the Blaschke product B has in 4. Let now e=exp (—100|B|ly). The inequality
1=|B|.=| Bl shows that e<10~°% Suppose now that N> 1/e.

Let B* be a Blaschke product corresponding to n zeros of Boy~! in the disc
D(0, &), n being the integer equal to [1/99¢].

We have by the division theorem (see 2.5) that

1B*|g = | Boy g = 4+ || Bllgn-
Lemma 4.1 can be applied to the Blaschke product B* now. It follows that

+logn = linelogn+|B*|q = 5 logn+4-|Bly
and therefore

1] wiBig, 1 720 Bllgy, ~1001 Bllgy
[W]_":e * To0e ¢ > 87 ’

The last inequality contradicts our choice of the number &.
Lemma 4.3. together with Corollary 3.2. show that the zero sequence of every
Blaschke product in 9 is a finite union of separated sequences.

4.3. We are prepared now for the proof of the implication B*¢M=ac(F).
If B°cM then it follows from 4.2. that the sequence a is a finite union of separated
ones. Therefore we may assume without loss of generality (by the division theorem)
that 4 is a separated sequence.
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Let Q. ,4({) be a Stolz domain in D and let B* be the Blaschke product with
the zero set {a,: a,£Q,,(0)}. It follows from Lemma 3.7. that the sequence of the
zeros of B forms an interpolating sequence and therefore 4.1 showes that

or(a*) = Const. (1+5(a*)1log 61(a*)) - | B gn.

a* being the zero sequence of B*, We apply Lemma 3.5 now and see that

Card {n: a,£2,,(0} = (1 —1/¥2) - op(a*) <+ oo.

Then Lemma 3.6 implies that p, is a Carleson measure and the second application
of 4.1 gives us the desired inclusion a€(F). Moreover it is easy to sec that there
is an increasing function @, defined on the half-line R, =%{x¢R: x=0} sat-
isfying
or(a) = (| B g)- ®)
4.4. All we have now to prove is that no singular inner function belongs to IR.
Suppose that this were not the case. Then we could find a nontrivial singular inner
function

16) = exp{- [ 2 du(0)

in the space M. By the Frostman theorem (see [8], p. 58) it is possible to find a se-
I—o,

quence (o,),=o tending to zero such that every function II,= is a Blaschke

_[x'n
product. We may assume that |a,|-[|/|l;<27! for every n in {1,2, ...} and the
simple computations with the Taylor series show that

=1l = 11—, Jln < 4~ o - [ {35

To simplify the notation let op(B)=%"0,(a) for B=B° Then it follows from
(8) that
supop(Il,) <+ and lim|I—I,|.. = 0. ®

Let B denote the set of all Blaschke product. It is convenient to include in B, the
function 1 equal to | identically, assuming that 1 is the Blaschke product with the
empty zero set.

Lemma 4.4. The set %cd=6f {BEB: op(B)=c} is the weak-star closed subset
of H™ for every ¢, ¢=0.

Remark 1. The lemma together with (9) implies that the assumption T¢I leads
to the contradiction.

Remark 2. Caratheodory has proved [12] that B is a dense subset of the unit
ball of H* in the weak-star topology.
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The proof of Lemma4.4. Let (B,),=, be a sequence in B, and let lim, B,=
B.S.F in the weak-star topology of H*. Here B denotes a Blaschke product, §
denotes the singular function with the singular measure y5 and F denotes an outer
function. It is convenient to consider two measures v, and y, determined by the
zero sequence (@), of B,:

def def
Vo = Diza ‘5a£’ Yo = 21@1 ¢! —!alﬂ)éa;'

Let (v, 7) be the same pair of measures for the Blaschke product B. It follows from
the maximum principle for the subharmonic functions that

_ @ _ o,
Jodm= s [y =€ =+

and, in particular, that B- F-S#0. Let y* be a limit point for (y,),=, in the weak-
star topology of the space of all bounded measures in the closed disc {|z]=1}.
We observe at first that

v =y+y,+log|F|dm (10)

This fact was proved in [13], but for the reader’s convenience we shall give here
1 Z

its simple proof. Let G (¢, z) denote the Green function log 7 <z for the disc D.
—z

1|z

The Poisson kernel P,({)= —_—, (€T, zeD is equal to the normal derivative

1 —¢|
of G and therefore for every { in T and for every z.in D we have
G2 _

This equality and the equality y*=(%)—lim, y, imply that
G(i Z)

lim f G, 2)dv,(§) = lim f dy. (9

- [ G(élle)d +f PO

for every point z in D satisfying y {z}=0. Itis clear that log |B,(2)| 1= [, G(¢&, 2)dv,
and that
lim log |B,(2)| 7! = log |B(2)| ' +log |S(2)| 7 +log | F(z)] 7.

Therefore we get the identity
[, 66 v+ [ P.O{d.(O+log | Fl dm(©)}

j‘ G(éa Z)

i O+ PO
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holding for every non-zero point z for B in D. The application of the Laplace
operator to the both sides of the above identity shows that y*[D=y and then (10)
follows from the uniqueness of the Poisson integral.

Now the weak convergence of the sequence (y,) to y* implies that

L4l
flel}r) f{[Clél} 1—2z| ) =C

di
and therefore oy(B)=C. It is clear that f TTl—m—(ZEllz + oo for every { in T. This
—z
shows, obviously, that y;+log |F|dm=0. Therefore S=F=1 and the set B, is

weak-star closed.

§ 5. The proof of Theorem 2

The proof depends on two geometric lemmas.

Lemma 5.1. [9] Let a=(a,),=1 be a sequence of points of DN\{0} and let
(e)n=1 be a sequence of points of the interval (0, 1) such that the following condi-
tions hold:

D Zuei(-lahet <+ b D

ITanl_’ 8,,)mD(la&"l—, s,,,) =0 for n=m.

Then og(a)<+ o and a is separated.

Lemma 5.2. Let A be a subset of D. Then the set A can be covered by a finite
number of Stolz domains if and only if op(a)=+c for every infinite sequence a
of points of A.

Proof. The necessity of the condition op(@)=++ < is obvious. To prove ths
sufficiency let us assume that it is impossible to cover the set A by a finite number
of Stolz domains. The two cases are possible: the set. T (1 Clos A is infinite and
Card (T n Clos A)< + <. If the first of these possibilities takes place then there
is a sequence (£,),=; in TN Clos A and a point £, in T such that

IE=Epial = 16—l ne{l,2, ...
Given such a point ¢,, we may find a point 4, in A satisfying

l/ln—énl §2—n'l£0—énl9 nE{lsza }'

If to put now a,=1,, ¢,=6,—¢&,]-167%, n€{l,2,...} then Lemma 5.1 shows that
op(A)<+oo.
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We turn to the case Card (T nClos A)<-+oo. Then there exists a point
€T N Clos A with the property (D(&,, &) nA) N (D\R,(£)) =0 for every positive
¢ and for every number « in (0, #/2). This implies the existence of the sequence
(As=1 in A satisfying

T—fdal = 27" 00— Aal,  1€o—Apeal =270+ 18— A4, ne{l, 2, ...}
The second reference on Lemma 5.1 (with ¢g,=4"1.]¢,—A,|) finishes the proof.
1—14] 1

et (——-——— —-———] be a family of rational fractions in the unit sphere
1+M| 1—‘12 AcA

of the space M and suppose it forms an unconditional basis in its closed linear span
in M. Then the set A4 is separated. The proof of this assertion is the main task of
the following lemma.

Lemma 5.3. Let E be a Banach space of holomorphic functions in D and suppose
the following conditions are fulfilled:

1° z'¢E, nc{0,1,..} and Tm|z"|¥"=1;
2° the evaluation functionals f—f()) are bounded on E for every A in D;
=),
1 —j,Z
If the family (a;+(1—22)"Y;¢4 (aldif ((1—1z)"Y 5% A€ACD) of rational frac-
tions is separated in E, that is

inf {}

infﬂ1 Zf’ A, €A, A¢§}>0

3° 9 sup <+ oo,

2D, Ifl g=1

7 N
1-1z 1-¢ézllg

2 A, E€A, l¢£}>0
then

Proof. We may assume without loss of generality that polynomials are dense

in E. The separation condition of the family (1 0‘11
— Az
of the family (&,);. 4 of functionals on E with the properties:

) implies the existence
A€4

1,E=1
dzet: * ool —ﬁ— ={ ’
12 sup |1 =+ @[1_52} 0% =i itk

The holomorphic function K¢ RO 2((1—12)71) is obviously equal to zero at

the point & (¢€ 4, £51). Accordingly, we have by the condition 3°

1-¢z
89, Z_éé =80, losedl =y =yl <+
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It remains only to remark that

] = 52 190201 = gl 0T = @il =771, @

We have now all what is needed for the proof of Theorem 2. The suffi-
ciency is evident in view of Lemma 4.1. If now the family («; «(1—12)7%),¢ 4 forms
a symmetric basis in its closed linear span in 9 then it forms an unconditional
basis as well. It follows from the Lemma 5.3 that the set A is separated. The coeffi-
cient space I(A) is the closure of the set of all finite sequences x, x€/*(A) in the
norm

sup supZ EE _Wz < oo

oo ¢ icd (7 ll — é }‘l .
If it is possible to cover the set A by the finite number of Stolz domains then the
case 2 takes place and therefore I(A)=I'(A). If it is not the case then by Lemma 5.2
there is an infinite subset A_ of A satisfying the Frostman condition. This implies
the equality I(A_)=c,(A_). The desired assertion I(A)=c,(A) follows now from
the symmetry condition.

We have compared in the introduction Theorem 2 with one unpublished result
of S. A. Vinogradov (see however [4]). Now we shall give a sketch of its proof.

Theorem 5.4. The family ((1—|a,|®)(1—a,z)™V),=, forms an unconditional basis
in its linear closed span in BR™ iff a is a separated Frostman sequence.

Proof. The sufficiency of the condition of the theorem may be proved with
the help of techniques we have used for the proof of Lemma4.l1. If now
(A —la,»(1-8,2)7),=, is an unconditional basis then the standard duality argu-
ments show that g is an interpolating sequence. The coefficient space of the basis
is described by (6). It is dear that the function B*—B*(0)~' is bounded and (5)
shows that its coefficients in our basis are bounded from below. It follows now from
(6) that a is a Frostman sequence.

§ 6. The proof of Theorem 3
Let (4,),=, denote the sequence of the complementary arcs of the closed no-
where dense subset E of the circle T numbered so that their lengths decrease. Let
e A,
£, be the center of the arc 4, and let a,= (1— n;n ) . BE{1,2,...}. We shall

prove that the Blaschke product B® satisfies all conditions of the theorem. It fol-
lows from Lemma 5.1 that or(a)< + < and therefore B*c M. On the other hand
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it is clear that

l—|apsal  mdyyy 1 _ 1

l1—la,] ~— md4, 2~ 2

. 1
and therefore B“(n)zO(—], n—+ oo (sec [14]). We see that the partial sums
n

of the Fourier series of B* are bounded uniformly on the circle T. The condition
op{ad)<+ o implies obviously the convergence of the Blaschke product at every
point of the closed unit disc. The limit lim,.,_, B*(r{) exists at every point { of
the circle T (we use the inclusion B?€ M) and is equal to B*({) as the proof of the
Frostman theorem shows (see [8], p. 54—55). The Tauberian theorem of Littlewood
([15], p- 137) yields the formula

Jim 3o B*(k)¢ = BQ©)

. 1 . . .
forevery {in T [we recall that B*(n)=0 [—]] . Clearly B? is analytic at the points
n
of TN\ E and because every point of E is a limit point of the sequence a it is
clear also that E is the set of all discontinuity points for B°T.
Corollary 5.1. Let E be a set of the first category on T. Then there is a function
fin H> such that
1
1°. feMm, fm)=0 [—) , the partial sums of the Fourier series of f are uniformly
n

bounded on T,
2°. the Fourier series of f converges everywhere on T;
3°. every point of E is the point of discontinuity for f.

Proof. Let (F,),. be a sequence of nowhere dense closed subset of the circle
T satisfying
FonF,=0, k#n; EC|JF,.

n=1

Theorem 3 does the rest now. Indeed, let B, be the Blaschke product for the set
F, constructed in the Theorem 3. Then

e 1
fE Sz B IBil

satisfies 1°—3°.
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