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Formulae for the distance in
some quasi-Banach spaces

David E. Edmunds and Georgi E. Karadzhov

Abstract. Let (4o, A1) be a compatible pair of quasi-Banach spaces and let A be a corre-
sponding space of real interpolation type such that AgN.Aj is not dense in A. Upper and lower
estimates are obtained for the distance of any element f of A from AgMNA;. These lead to formu-
lae for the distance in a large number of concrete situations, such as when AgNA; =L and A is
either weak-L?, a ‘grand’ Lebesgue space or an Orlicz space of exponential type.

1. Introduction

Let A= (Ap, A1) be a compatible pair of quasi-Banach spaces; that is, both Ag
and A; are continuously embedded in some quasi-Banach space . 4. For 0<6<1 and
0<p<oo let Ag, (=(Ag, A1)s,) be the real interpolation space defined by means
of the Peetre K-functional. It is well known that if p<co, then ApNA; is dense in
ffe,p, while in general, AgNA; is not dense in 141’9’00‘ The problem of quantifying
this lack of density thus arises: in other words, given any f G/TQ)OO, ig it possible to
obtain usable upper and lower estimates for inf || f—g|| A, .0 Where the infimum is
taken over all g€ AgNA;?

Among those who have studied the estimation of the distance of the elements
of a function space from a subspace of that space are Garnett and Jones [6],
who gave upper and lower estimates for the distance of elements of BMO(R")
to L*(R™). More recently, Carozza and Shordone [4] did the same for other spaces
close to L°°(€1) (€2 being an open subset of R™), notably weak-L9((?), certain ‘grand’
Lebesgue spaces and Orlicz spaces with exponential Young functions.

In this paper we give a positive answer to the question raised above, even
in settings counsiderably more general than those described. The abstract results
obtained give rise to formulae for the distance in a wide variety of concrete sit-
uations. To explain this, let Ay and A; be as above, let feAy+A4; and let
t—K(t, f)=K(t, f; Ag, A1) be Peetre’s K-functional. Let w: (0,00)—R be posi-
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tive and continuous, with w(t) min{1,¢}—0 as t—0 and as t—o0; and suppose
that w is equivalent to a non-increasing function, while ¢+—tw(t) is equivalent to a
non-decreasing function on (0, c0). Corresponding to the classical real interpolation
spaces defined by means of the function t—t—¢ (0<f<1), we define A,, o to be the
space of all f€Ayg+ Ay for which the quasi-norm
Iflz, .= sup w(t)K(L[)
: 0<t<oo

—

is finite. Endowed with this quasi-norm, A,  is a quasi-Banach space. Given any
fEAw, 00, its distance from AgNA;, measured in A'wm, is

dist;  (f, AoNA1):=mf{[|f—gllz _:9€AoNAs}.

)OO w, 00

We give upper and lower estimates for this distance. For example, when Ag and A;
are Banach spaces with A; C Ag, the norm of the embedding being 1, and w(t):t‘a,
0<6<1, we show that

limsupt ?K(t, f) < dist; (f, A1) <2limsup KL, f).
t—0 9,00 t—0

Corresponding results are given for the case AgCA;, and also for the general situ-
ation when (Ag, A1) is simply a compatible pair of quasi-Banach spaces.

With the exception of Remark 2.4, our abstract theorems, such as those just
mentioned, give only equivalence formulae for the distance. However, they provide
important guides for the establishment of the precise formulae for the distance in
the numerous concrete situations which are considered. A special case of the results
established here is that the distance of an element f of weak-L4(€) from L (1),
when 2 has finite measure and 0<g< o0, is precisely

lim sup t1/9 £ (¢).
t—0
Here f* is the familiar non-increasing rearrangement of f (see [2], Chapter 2). This
particular result, with the restriction ¢>1, was given in [4]. Sequential versions
of our theorems enable us to handle similar questions related to ideals of compact
operators, although we shall not do this here.

Cases of particular importance arise when the interpolation space ffwm can be
characterised as an extrapolation space. We mention here two special examples of
what we prove. First, suppose that Q has finite measure and that a>0. Then for
all f in the Zygmund space X :=L*(log L)_,(€?), which is actually an Orlicz space
of exponential type,

dist x (f, L=(Q)) = Iimjhlp ooy = Hrtrlj(l)lp llogt|™*f*(t).
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A similar result is contained in [4]. Second, if 0<g<oo and L?(9) is the ‘grand’
Lebesgue space introduced by Iwaniec and Sbordone [7], then

dist o o) (f, L () =lim sup 2 fll pa-o ),
o—

a result proved, when 1<g<oc, in [4].

2. The distance in interpolation spaces

First we recall some definitions. Let A= (Ao, A1) be a compatible pair of quasi-
Banach spaces, so that Ag and A; are continuously embedded in some quasi-Banach
space Y 4. Let /Tg,p (0<f<1, 0<p<oo) denote the real interpolation scale of Lions
and Peetre, defined by the K-method.

If we replace t~? in this definition by a more general positive and continu-
ous weight w(t), we can define the corresponding real interpolation spaces f_l'w,p
associated with the K-method in the familiar way using the quasi-norms

5., = ([ woxe s 0p 5‘%})/

with the natural interpretation when p=oo. Here

-

K(t.fi A= nt (Ufollag+tlfilla), £€A0+Ar

We shall suppose that the weight w has the following properties:

(2.1) min{l,t}w(t) — 0 as t—0 and as t — oo,
2.2) w is equivalent to a non-increasing function on (0, co),
(2.3) t—tw(t) is equivalent to a non-decreasing function on (0, co).

Denote by dist i, Oo( fiAoNAy) the distance of f in /Twpo to the intersection
AgNAy: ’

(2.4) diStgw (f, AgNAy)

SO0 ’ ge

inf If=alz, .-

Note that in this definition we can replace the space AgNA; by any dense subset.
Let

(2.5) di(f) :=1irilj(§1p w(t)K(t, f),
(2.6) do(f) :=limsupw(t)K (¢, f)

i—o0
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and

(2.7) d(f) :=max{di(f),d2(f)},

where K(t, f):=K(t, f; Ao, A1):=K(t, f; A).
We recall that a p-norm on a linear space X is a map |-||: X =R, which
satisfies the norm axioms with the triangle inequality replaced by the condition

etyll? <fz[P+jyl?, z.yeX.

Given any quasi-norm | - ||; on X, there is an equivalent p-norm on X (see, for
example, [5]): the particular value of p is given by the relation C =921/7=1 where C
is the best constant in the quasi-triangle inequality

[z +ylls <C(

ol +Hlyl).

Of course, p=1 when X is a Banach space. Henceforth the value of p will be that
determined in the way just explained. A quasi-Banach space equipped with the
corresponding p-norm will be called a p-Banach space.

We begin with the p-Banach case, that is, when both Ag and A; are p-Banach
spaces. Then f—K(t, f; ff) is a p-norm for all t>0. It turns out that if we measure
the distance to the intersection A; O/Ywm, then the functional dy (f) suffices.

Note the particular case when A;CAg, the p-norm of the embedding be-
ing 1. Then K(¢, f)=|f|lo for t>1 (we use the abbreviations | f||;=If|l4, for
j=0,1). Hence, if w satisfies (2.2), then the p-norm of f in A, ., is equivalent to
SUpgcs<1 W(E)K (L, f). Thus the values of w on the interval (1, co) are not important
and we can take w(t)=0 for t>1 and define

Ifllz, = sup w(t)K(L, f).
’ o<t<1

Analogously, if AgC A, with the p-norm of the embedding being 1, then K (¢, f)=
t||f]l1 for 0<t<1, and so now we define the p-norm in A, « by

iz, . :jglfw(ﬂK(t, ).

Theorem 2.1. (The p-Banach case) Let w have the properties (2.1), (2.2)
and (2.3). Then for all feﬁw,oo,

(2.8) di(f) <disty (f, AiNAy,ee) <max{buy, (1+¢,) /P (f),
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where

, w(t)
2. b =1 ot R -~ )= —,
(2.9) wi=lim sup g (1), galt) w(a)
and

. tw(t)
2.10 w i 1 halt), halt):= .
(2.10) v = lim, sup. ) = o)

Proof. Since for any g€ A1 we have
KP(t, f) S KP(t, )+ KP(t, f-g) <tPllg|y + KP(t, f—9),
the left inequality of (2.8) follows. To complete the proof, we take any e>0 and for
any a>0 choose f, €A so that

|‘f“fa“0+a||fal|1 < (1+E)K(O‘?f)

Let
I{a):= sup w(t)K(t, f).
0<t<c
Since
If=fall g, . :maX{Oiltlg w(t)K(t,fffa),aig w(t)K(tfffa)}
and
K(t7 f_fa) S ||f_fa||0 S (1+E)K(a7 f)a
we have

sup w(t)K(t, f—fo) <(1+e)(a) sup ga(t).

a<i<oo a<i<oo

On the other hand,
sup [w(t)K(t, f—fo)]F <IP(e)+ sup [w(t)K(t, fo)l”
0<t<a 0<t<e

and

sup WK (t, fa) < sup tw(®)lfalr < (14e)(a) sup ha(b).
O0<t<a 0<t<a O<t<a

Hence Y
sup w()K (L, f—fa) < T(a) (1+(1+)? sup B2 (1) .

0<t<ex O<t<ax
Thus f—faeffw’oo. In particular, fQE/Tw’OO and therefore distg (f, A1 ﬂ/_fw’oo)
is bounded from above by
1/p
IHa) max{(1+8) sup  gao(t), <1+(1+5)p sup h’;(t)) }
a<t<oo 0<t<ar
Now take the limit as &«—0 and then as ¢—0. [
Analogously, if we measure the distance to the intersection Ag ﬂffwm, then the
functional da(f) suffices.



150 David E. Edmunds and Georgi E. Karadzhov

Theorem 2.2. (The p-Banach case) Let w have the properties (2.1), (2.2)
and (2.3). Then for all f€Ay o,

(2.11) do(f) <dist g (f, AoN Ay o) <max{boy, (1+c5,) /Phda(f),
where

(2.12) boyw == ﬂli}n;o Oiltllg)ﬁ hg(t)

and

(2.13) Cow = lim sup gg(t).

B0 y>p

Theorem 2.3. (The quasi-Banach case) Let w have properties (2.1), (2.2)
and (2.3). Then for all f€ Ay o,

(2.14) éd( P<disty,(f, AorAy) <cd(f),

where cy 18 the best constant in the guasi-triangle inequality
K(t?g_h)SCA[K(tag)—’_K(tah)L gah€A0+A1,

ci=cgmax{cy, l4+max{ciy, cou}}, Cyp:= lim sup hy(t)

and

(2.15) hos (1) ;:w(t)<w1 t

W—Fm) Jor 0<a<t<pg, a<l<pg.

Proof. Let f€ Ay 0. Since for any g€ AgNA; with (AoMA;)-norm | g|| we have

Kt £) Smin{1L gl + K (1, S —g),

the left inequality of (2.14) follows. To prove the remainder we take any >0 and
choose a representation f=fo(s)+ f1(s) (fo(s)€ Ay, f1(s)€ A1) such that

Ifo(s)llo+slif1(s)ll < (L+2)K(s, f)
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for all s>0. Here ||A]|;:=||h||4, for j=0,1. For all integers v put f;,=f;(2") and
gv="Fo,—fo,,—1; then for any M > My and N> Ny, say,

M
9= Z Gy = fopr—fo,-n-1=fi,-n-1—fi,m € AoN Ay,
v=—N

and
f—9=fo-na1+fim-

Let o:=2"N"1 3:=2M and let

o, B):= max{ sup w(t)K(t, f),supw(t)K(t,f)}.

0<t<a t>8
Then
K(t.f=9) < fo-xallo+lfualh < (1e) (K )+ 5K (6.
and so
wt)K(t, f—g) < (1 +e) (e, Bha,p(t).
Hence
(2.16) sup w(t)K (L, f—g) <(1+e)I(a,3) sup hapa(t).

a<t<p a<t<p
On the other hand, for t> 0 or t<a we have

(217) (K, fg) < T 5) Hu(®)K (1 0).

Now we estimate ||g||. We have

llgllo <Ilfo,arllo+lfo,~n—-1llo < (1+e)[K (B, f)+K (e, f)]

and

K(f) Kl

ol <o arlh+l -1 < 1) (S50 2
Hence if t> 3 we obtain

w(t) K (t,9) <w(t)|gllo < (Hg)l(o"ﬁ)h“’ﬁ(m%’
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and for t<« we have

tw(t)
aw(a)’

w(t)K(t, g) <tw(t)lglh < (A+e)I (e Bha,s(a)

This and estimates (2.16) and (2.17) show that czlle—gng m[(l%—a)](a,ﬂ)}‘l is
bounded above by ’

max{ sup haﬁ(t),leraX{ sup ha(t)ha”g(a),igggg(t)haﬁ(ﬁ)}},

a<t<pg 0<t<a
where g, and h,, are defined by (2.9) and (2.10). The right inequality of (2.14) now

follows and the proof is complete. [J

Remark 2.4. The weights w(t)=1 and w(t)=1/t do not satisfy condition
(2.1). However, we can prove directly that

(2.18) dist 4, (f, AgN A1) =limsup K (¢, f; Ao, A1)
t—0

and

(2.19) dist 4, (f, AoN A1) =limsup EMAO—’A—OA
t—o0 t

Proof. If fcAg then

]f(t,fSAmAl):f inf (|f=fillo+tl full)-

1EAQNA;L
Hence
s > i —
K(f7f7AO,A1)_f1€g:(l)ff:‘rA1 ”J[ fl”Oa
which proves half of (2.18). On the other hand,
K(t, f; Ao, AL <|If = fillo+tlfall,  fr€ AoNAy,

and so
limsup K (t, f; Ao, A1) <[If = fillo,  f1 € AgNA,

t—0

which completes the proof of (2.18). The proof of (2.19) is similar. [

As illustrations of these results, consider the pair (L1(R), L°°(R)), where R is
an arbitrary o-finite measure space. Then using Remark 2.4 and the fact that

K(t, f; L' (R), L™(R)) = / F*(s) ds
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(see [11], p. 133), we have the following formula for the distance of f&L*(R) to
the intersection L*(R)NL>®(R):

(2.20) dist 00 () (f, L' (R)NL®(R)) = limsup — /f 77 (00).

t—o00

In a similar way we see that
1 n
(2.21) distloo(f,ll):limsup—Zf*(k)zf*(oo).
n—oo T —1

In particular, since I! is dense in the subspace ¢y CI1°°, it follows that
diStloo (f, Co) = f* (OO)

Now let A be a quasi-Banach space which is intermediate for (Ag, Ay); that is,
AgNA; CACAy+A;. Denote by A° the closure of AgNA; in A. Using Theorem 2.3
we can characterise the space (A, ~)° as follows:

Theorem 2.5. Let w satisfy (2.1), (2.2) and (2.3). Then

—

(2.22) (Aw,0)® ={f € Ay oo 1 d(f) =0}

3. Examples of concrete spaces

Here we consider some particular spaces in which a direct approach gives precise
formulae for the distance (cf. [4]).

Let b be a positive continuous function on the interval [1,00). We say that b
is slowly varying on [1,00) (in the sense of Karamata) if for all £>0, the function
t—1°D(t) is equivalent to a non-decreasing function and t+—¢7¢b(t) is equivalent to
a non-increasing function. By symmetry, we say that a positive continuous function
b on the interval (0, 1] is slowly varying on (0, 1] if the function t—b(1/1) is slowly
varying on [1,00). Finally, a positive continuous function on (0,00) is said to be
slowly varying on (0, c0) if it is slowly varying on both (0, 1] and [1, c0).

Let (€, 1) be a o-finite measure space and let b be slowly varying on (0, 00).
Then if 0<g<oo and 0<r<oo, the Lorentz-Karamata space L7 (Q) (see [10]) is
defined to be the set of all functions f on §2 for which the quasi-norm

() 1/
1) lzzro=( [ 1emoror )
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is finite. When r=occ this is to be interpreted as
[ fllLae=(q)= sup t1/9b(t) £*(¢).
0<t<pu(2)
If g=r we simply write L] (€2) instead of L?"(£2), and if no ambiguity is possible we
write L{" for L' ().

We also need an equivalent definition in terms of the corresponding p-norm,
where 0<p<1 and p<q,p<r. Since the distance depends on the particular quasi-
norm or p-norm being employed, we use a different notation, Lg:(rp)(Q), for the
Lorentz—Karamata space when equipped with the p-norm

w(2) t 1/p g 1/r
172,00 := (/O [t”"‘”Pb(w(/o f*(S)”d5> };) |

When p=1 this simply means that f**(¢):=¢"! fot f*(o)do is being used instead
of f*(t).

Note two particular cases. If b=1, then we obtain the Lorentz spaces L%" and
L?Z’S, while the Lorentz—Zygmund space L%"(log L)* (see [1]) results from the choice
b(t)=(1+logt|)*.

Now suppose that w(t):=t/9=1/Pb(t) and w(t?) satisfy (2.1), where p is de-
termined as explained above for LZ:E’;)(Q). Since the space LZ:FZ)(Q) is just the
interpolation space (LP(£2), L%(£2))wtr),00, We can apply Theorem 2.1 in the case
of a finite measure space and conclude that

(3.2) distzge o) (f, L7 () = dy 5y (f),
where
t 1/p
(3.3) dy,(p)(f) :=limsup /a1 (t) (/ fr(s)? ds) .
t—0 1)
Here we use the fact (see [11], p. 135) that
t? 1/p
K(t, f)=~ < fr(s)? ds) .
0
Moreover,
(3.4) dist pg.o= () (f, L=(Q)) = dr (f),
where
(3.5) dy (f) :=limsup tY/9b(¢) f*(t).
=0

When the measure space is merely o-finite, we can apply Theorem 2.3 to give
(3.6) distrg.o= o (f, LP(Q)NL®(Q)) ~ limsup t/7b(2) £* () +lim sup #/9b() £*(1).
t—0 t—o0

We shall now prove that in (3.2) we have equality. Moreover, o-finiteness of
the measure space is enough when we estimate the distance to LOO(Q)OLZ’E’;)(Q).
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Theorem 3.1. Suppose that b is slowly varying on (0,00). Let ¢€(0,00] and
let pe(0,1], p<gq, be chosen appropriately for L}°°(2) as explained above. Assume

further that t'/9b(t)—0 as t—0. Then for all feX =Ly (),

(3.7) distx (f, L=()NX) =dy () (f)-

Proof. The estimate of d; (,)(f) from above is similar to that given in the proof
of Theorem 2.1, using the fact that the functional

k.= [ Nt as) l/p

Kp(t7 f) SKp(t7 g)+Kp(t7 fﬁg)

is a p-norm. Namely,

for any ge L>°(€2) with quasi-norm ||g||, and hence
w?(OK?(t, f) < tw? @)l|gllP+11 £ - gll%,

where w(t):=t"/9"1/Pp(t). Thus d1,py(f)<llf—gllx and the required estimate fol-
lows.

It remains to estimate dy ;) (f) from below. We follow the proof of Theorem 2.1,
but now we have a better choice for the approximating functions fi. Thus for fe X
we take any large k and define

(3.8) I(ky= sup w()K(,f),
0<t<py (k)

where pg, pp(N)=p{zeQ:|f(x){>A}, is the distribution function of f. Note that
(since feLP(Q)+L>(Q))

(3.9) pe(k)—0 ask—o0.

We define fi by
fl@), |f(@)] <k,

0, otherwise.

fk(x)—{

Hence f— fi,=/f on the set 1, ={z€Q:|f(z)|>k}, and we obtain the formulae

(3.10) (F=fi)"(8) = f7(s), if s <ps(k),
(3.11) (F=Fo) (s)=0,  if 52 pus(k).
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In particular, ;
K(t7f)> iftﬁﬂf(k)»

K(t, f—fp) =
(& 1= { K(uyg(k), f), if t>pgp(k).
For shortness, put J(t, k)=w(t)K (¢, f — fz). Then

1f=fullx =max{ sup  J(t.k), sup J(t.k)},

0<t<<puy (k) t>p (k)

and so, using the monotonicity of w, {3.8) and the estimates above,

If~fellx <max{ sup w®K(F), sup wlps (kDK (s (k). f) } <I(R).
0<t<py(k) t>pp (k)

Application of (3.9) now gives the desired estimate

distx (f, L (Q)NX) < dl,(p) (f). O

We observe that a similar result is established in [4] for the Banach case ¢>1,
with 6=1.

It turns out that we can also prove equality in formula {3.4) if, in addition,
t~¥b(t) is non-increasing for some N>1. To cover this case, we notice that the
quasi-norm, although not a p-norm any more, has a special property that will
suffice, namely that

(3.12) o7 @) < f=gllpg=+v(E)lgllLes,

where v(t):=t'/9b(t) and it is assumed that t~Vb(t) is non-increasing for some N >1.

Theorem 3.2. Let b be slowly varying on (0,00) and suppose that v(t):=
t9p(t) =0 as t—0; assume additionally that for some N>1, t=Nb(t) is non-
increasing. Then for all fe L™,

(3.13) distpa.o (f, LML) =lim sup v(t) f*(2).

t—=0
Proof. For any small £>0 and g€ L*>° we have
v(t)f7() <v(t)(f—g)" (L-e)t)+u(t)g* (1),
from which, using the monotonicity property of b, we obtain

V() f* (1) < (1—e) NV ((1—e)t)(f —9)" (L—e)t) +o(t)g™ (et)
(=)™ f gl g +o(B)]lg] r=-

IA
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Taking the limit as t—0, we see that

dy(f) < (1—e)™N V9| f =gl o=,

which gives the estimate (3.13) from below. The reverse estimate is proved using
the same approach as in the proof of Theorem 3.1. We let feL{™, and observe
that feLP+L>, where p<q, so that ps(k)—0 as k—oo. Again we choose the
approximating functions fj to be
fl), 1f(@)| <k,
Julx) = {

0, otherwise.

Using (3.10) and (3.11) we have

1f=fullog= < sap  v(@)f7 ().
0<t=<py (k)

Hence
dist oo (f,L¥OLP®) < sup  o(H)f* (1),
0<t<ps (k)

and it remains to take the limit as k—o0o0. O

4. The distance in extrapolation spaces

First we recall some definitions from [8] and [9]. Let {A,}, 0<o<e<1, be
a scale of compatible quasi-Banach spaces. This means that there exist quasi-
Banach spaces A4 and Y4 such that AsCA,CX,4 for all 0€(0,¢), the quasi-
norms of the embeddings being uniformly bounded. Let M:[0,e]—=R be positive
and continuous. Then the A-extrapolation space Ag?:) (M(0)A,) consists of all
elements f€( ), .. Ao such that l

Hf”AgiRA{@jAg)' up Ai(U)HfHAa

S
O<o<e

is finite.
Suppose that {w, }, 0<o<e, is a family of positive continuous functions on the
interval (0, c0) such that

(4.1) sup sup min{l,t}w,(f)<oco and  inf w,(1)>0.
U<o<e 0<t<oo O0<o<e
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Then the interpolation space /Twmoo is well defined and AgNA; CEMG,OOCAO +Aq,
uniformly with respect to 0€(0,g). Hence we can define the extrapolation space
Aéﬁ>(M(a)gw0,m). It is clear that

- -

AL (M (0) A, 00) = A oo

where
(4.2) w(t)= sup M(o)w,(t).
O<o<e
Suppose, moreover, that
(4.3) limsup M (o) sup min{l,¢}w,(t)=0.
g—0 0<t<<oo

From the definition of w(t) there follows the existence of some o(¢) such that
(4.4) M(o(t))wee =w(t), 0<t<oo.

‘We shall require that

(4.5) o(t)—=0 ast-—0and as t - o0.

We also introduce the function
(4.6) D(f):=lim sgp M(a)HfH/Twam.
o—>

Theorem 4.1. Suppose the weight w, satisfies (4.1), (4.3) and (4.5). If w,
defined by (4.2), satisfies (2.1), (2.2) and (2.3), then

(4.7) diSthw,oo(f’ AoNAp) =~ D(f).

Proof. Since for any g€ AgNA; with quasi-norm ||g|| we have
cK(t, f) <min{1, t}|lg|[+K(¢, f—9),

the estimate of the distance from below in (4.7) follows from (4.3). To prove the
reverse estimate we notice that

cw(t)K(t, f) < M(o(t)wew O E (L, f) < M(o@)fll 5

We (40 ’
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Hence taking the limit as ¢—0 or t—00 and using (4.5) together with Theorem 2.3,
we derive cd(f)<D(f), as desired. O

In some particular cases we can give a direct proof of this result in a sharper
form, with precise formulae.

We start with what we shall call the generalised grand Lebesgue-Karamata
spaces. We define these to be the spaces

LY (Q) = A (M(0) L7 (),
with quasi-norm
Hf”Lg)(Q) = Oiuli M(U)Hf||L‘1"”(Q)7
o<&

where M is a positive continuous function on (0,¢), 0<g<oo, L™() is the classical
Lebesgue space on a finite measure space (€, p), with pu(€2)=1 for simplicity, and

(4.8) b(t) =be(t):= sup M(o)t°.

O<o<e

The function b is increasing. To ensure that b is slowly varying on (0, 1), we require
a little more of the weight M. We say that M is tempered in the sense of [8] if

(4.9) M(o)~M(i0), 0<o<e.

When M has this property, b is slowly varying on (0,1). Indeed, b.(t)~b,/2(t),
0<i<1, for

be(t)~ sup M(L0)t"= sup M(o)t** < sup M(o)t7 =bgya(t) <be(t).
0<o<e 0<o<e/2 0<o<e/2

Let a>0 be arbitrary and choose an integer k so that 2 *c<a. Then

% ()R e o(t):i= sup M(o)t? %,
0<o<e/2

and this function is decreasing.

When g=00, we have Lgo(Q)::A(()?;)(M(U)Ll/gvoo(ﬂ)), with quasi-norm

£ llzge () = sup M(o)|[fllpi/o0) ™ sup b(E)f*(t).
O<o<e 0<t<1

Now we define

(110)  Dy(f)=limsup M(@)|flao(@),  Dool ) =limsup M(@)|F 1320
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The formula for Do (f) can be simplified if, in addition, we assume that M (o)<
c(a)M(ao) for all ax1, where limsup,,_,; c(a)<1. Then

(4.11) Do (f) :limjgp M) fll 1o (q)-

Indeed, we have only to prove the estimate from below for D (f). For 0<a<1 we
write

?

1 a px(pya/o
t i
/ f* (t)a/a dt < sup i()__
0 o<t<t  l—a

whence
M(a /)| f ]| pore () < cl@) (A=) *M(a)[| £l 170 (52)-
Letting first ¢ —0 and then a—1 we obtain the desired estimate.

Theorem 4.2. Let the weight M be tempered and suppose that M(c)—0 as
o—0; let b be defined by (4.8). Then for all fELZ)(Q),

(4.12) distLg>(Q)(f, L>®(Q)=D,(f), 0<g<oo,
and
(4.13) dist g () (f, L™()) = Do (f)-

Proof. Let 0<g<oo; the case g=00 is analogous. Since the spaces LI™7(Q2)
(0<o<e<q) are min{l, g—c}-normed, we have the estimate of D,(f) from above.
Now we consider approximating functions f; defined as in the proof of Theorem 3.2.
For any 6€(0,e) we have fcL97°(Q) and distye (o) (f, Agf)(M(a)Lq*”(Q))) is
bounded above by

1/{q—9)

wisef sup M@ flur-eqa, w0 M) ([ iprtan)
0<o<d d<o<e [f(z)| >k

The required estimate follows by letting first k— o0 and then §—0. [

Example 1. (The grand Lebesgue spaces, cf. [7]) By definition, these are the
spaces
LY(Q) == AT (0190977 (Q)).

Thus from Theorem 4.2 we have
(4.14) dist q) () (f, L7(2)) =1lim sgp Ul/q”f”LQ*U(Q).
o=

Note that in the Banach case ¢>1, this formula is proved in [4].
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Ezample 2. (The Zygmund space of exponential type, X :=L>*(log L)._,(Q),
a>0) This is the space Ly°(Q2) with b(¢)=(1+logt|)~*. Then (4.13) and Theo-
rem 3.2 give

(4.15) distx (f, L7°()) =limsup 0| f|| 1/ () =limsup [log ¢| = f*(¢).
o—0 t—0

In fact, a similar result can be proved in the general case, characterising Lg) Q)
as an interpolation space:

(4.16) LP(Q) = (L (), L(2))aw oo

where w(t)=t"1b(t), 0<p<g<oo and b is defined by (4.8), M being tempered. To
do this, we first observe that in the definition of the spaces Lg)(ﬂ) we can replace
L9=7(2) by the Lorentz space L9~?¢(§2), in view of the monotonicity of this scale
and the fact that M is tempered. Thus

(4.17) AT (M (0) L7~ () = AT (M (o) L1~29(12)).
We need the formula
1 1-6

6
(4.18) (1_9)1/q(LP(Q),L4(Q))9,q:Lqe"I(Q), W , +5,0<90<9<1,
7]

in the sense of equivalent quasi-norms, the equivalence constants being independent
of #. To see this we write

L) = (@), L% D)oge ="

)

and use the Holmstedt formula [3]
K6 £507(@), L@ =00 [ ke, ) 5
Kl f)i= K (u 3 LP(9), ().
Then straightforward calculation shows that
£ Loy, Lac))eq = M=0)a] U f ll(r ()2 ()06 4-

Thus (4.18) follows. Now we can continue the formula (4.17) as follows:

AL (M () L5 79(92)) = AL (M(0)oVULP(Q), LU arg)s = — L
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and according to ][9], Theorem 12, this is the same as
AGE (M(@)(LP(2), L)1 00) = (LP(2), L) oo

where w(t)=t"1b(t).
Application of Theorem 2.1 now gives

(4.19) distLg) @ (f, L (Q)) =limsup w(t) K (¢, f; LP (), LI(Q)),

t—0

if b(t)—0 as t—0 and b is equivalent to a non-decreasing function.
To simplify this formula, we use the Holmstedt formula (3]

1/q

Kt @@~ | " ds)l/pﬂ( )

where 1/a=1/p—1/q. Since b is slowly varying on (0, 1), we see that

1 1/q
£ llczr(@),Le(92)) 0. 00 = SUD b@)( f*(S)qd5> -

0<t<1 te
Indeed,
t* 1/p
wo( [ 5oras) " <e s 1/m0)0)
0 0<t<1
2t* 1/q
<ec¢ sup b(t)( Fr(s)? ds) .
0<t<1 e
Analogously,

1 1/q
limsup w(t) K (¢, f; LP(Q2), LI(Y)) ~ lim sup b(¢) (/ta fr(s)? ds) .

t—0 t—0

These formulae suggest the following result. Let the quasi-norm on LZ)(Q) be
defined by

1 1/q
(420) ||f||Lg)(Q) = OS<1;51£)1 b(t) <‘/t‘ f(s)? ds) .

Then we have the following result.
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Theorem 4.3. Let b be defined by (4.8) and suppose that M is tempered. If
b(t)—0 as t—0, and also for some N>1, t~Vb(t) is non-increasing, then for all

JeLP (@)
1 1/q
(4.21) distLq)(Q)(f,Loo(Q)):limsupb(t)</ f*(s)qu) , 0<g<oo.
b t—0 t

Proof. First we claim that the distance is bounded from below by the expression

d(f):=limsup I(t, f),

t—0

where
rte.n=o0o | e i) "

Since the expression in (4.20) is not a p-norm, we argue as in the proof of The-
orem 3.2. Consider the case ¢>1. (The proof when 0<g<1 is similar.) For any
small >0 and g€ L*°(£2) we have

1/q

1 1/q 1
ey <u ([ (f=ara-amras) oo [ o))
t t
Hence, using the monotonicity property of b, we obtain

I(t, f) < (=)™ N f =gl +b(t)llgllLe(e)-

LY@

Taking the limit as t—0, we see that

d(f)<(1—e) N9 f—g]|

L)’

which establishes our claim. For the reverse inequality we use the same approx-
imating functions fr as in the proof of Theorem 3.1. From (3.10) and (3.11) we
have

1 1/q
ISl < _sue b0 [ oras)

<t<pglk

and so

1 1/q
distLZ)(m(f,Loo(Q))g sup(k)b(t)</t f*(s)qu) .

0<t<py

All that remains is to take the limit as k—oo. O

As a consequence we obtain the following result.
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Corollary 4.4. Let 0<qg<oo and define the quasi-norm on LY(Q) by

1 1/q
(1.22) e = sup (1=tog ([ psyras)

Then for all f€LY(Q),

1 1/q
(4.23) dist o) () (f L®(Q)) =limsup(1-logt) /2 </ 1 (s)? ds) .
t—0 t

10.

Further developments of these ideas are clearly possible.
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