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Formulae for the distance in 
some quasi-Banach spaces 

David E. E dm unds  and Georgi E. Karadzhov  

Abstract .  Let (A0, As) be a compatible pair of quasi-Banach spaces and let A be a corre- 
sponding space of real interpolation type such that AoNA1 is not dense in A. Upper and lower 
estimates are obtained for the distance of any element f of A from A0 NA1. These lead to formu- 
lae for the distance in a large number of concrete situations, such as when AoNA1--L ~176 and A is 
either weak-Lq, a 'grand' Lebesgue space or an Orlicz space of exponential type. 

1. I n t r o d u c t i o n  

Let 2~-(A0,  A1) be a compat ible  pair  of quasi -Banach spaces; tha t  is, bo th  A0 
and A1 are cont inuously embedded in some quasi-Banach space EA. For 0 < 0 < 1 and 

0<p_<oc let 270,p (=(A0,  A1)o,p) be the  real interpolat ion space defined by means 
of the Peetre  K-funct ional .  I t  is well known tha t  if p < o c ,  then AoNA1 is dense in 

270,p, while in general, AoNA1 is not  dense in -~0,~. The  problem of quant ifying 

this lack of density thus arises: in other  words, given any fc.]t*o,o~, is it possible to 
obtain  usable upper  and lower est imates for inf Ilf-gllxo,~, where the infimum is 

taken over all gEAoNAI? 
A m o n g  those who have studied the  es t imat ion of the distance of the  elements 

of a funct ion space from a subspace of tha t  space are Garne t t  and Jones [6], 
who gave upper  and lower est imates for the distance of elements of B M O ( R  '~) 

to  L~176 More recently, Carozza  and Sbordone [4] did the same for other  spaces 

close to L ~176 (ft) (ft being an open subset of  Rn) ,  no tab ly  weak-Lq (f~), certain 'g rand '  

Lebesgue spaces and Orlicz spaces with exponential  Young functions. 

In this paper  we give a positive answer to the question raised above, even 

in settings considerably more  general t han  those described. The  abs t rac t  results 
obtained give rise to formulae for the distance in a wide variety of concrete sit- 

uations. To explain this, let A0 and A1 be as above, let fcAo+A1 and let 
t ~K( t ,  f )=K(t ,  f; Ao, A,) be Peet re ' s  K-funct ional .  Let  w: (0, e c ) - + R  be posi- 
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tive and continuous, with w(t)inin{1,t}--+0 as t-+0 and as t-+oo; and suppose 
that  w is equivalent to a non-increasing function, while t~ tw( t )  is equivalent to a 
non-decreasing function on (0, oc). Corresponding to the classical real interpolation 
spaces defined by means of the function t ~ t  o (0<0<1) ,  we define Aw,oo to be the 
space of all fCAo+A1 for which the quasi-norm 

I l f l l ~ , ~ : =  sup w(t)K(t , f )  
' 0 < t < o c  

is finite. Endowed with this quasi-norm, ff*w,o~ is a quasi-Banach space. Given any 

fEA~,oo, its distance from AortA1, measured in 27,w,oo, is 

distx~,~ (f, Ao~A1) := in f{ l l / -g l Ix  .... : g c AortA1}. 

We give upper and lower estimates for this distance. For example, when A0 and A1 
are Banach spaces with A1 cA0,  the norm of the embedding being 1, and w(t)=t -~ 
0 < 0 < 1, we show that  

lim sup t 0K(~, f )  <_ distff0 (f,  A 1) ~ 2 lim sup t OK (t, f ) .  
t -+0  ' ~  t - + 0  

Corresponding results are given for the case A0 cA1,  and also for the general situ- 
ation when (A0, A1) is simply a compatible pair of quasi-Banach spaces. 

With the exception of Remark 2.4, our abstract theorems, such as those just 
mentioned, give only equivalence formulae for the distance. However, they provide 
important  guides tbr the establishment of the precise formulae ~br the distance in 
the numerous concrete situations which are considered. A special case of the results 
established here is that  the distance of an element f of weak-Lq(f~) from L~176 
when ft has finite measure and 0<q<oc ,  is precisely 

lim sup tl/q f * (t). 
t - ~ 0  

Here f* is the familiar non-increasing rearrangement of f (see [2], Chapter 2). This 
particular result, with the restriction q > l ,  was given in [4]. Sequential versions 
of our theorems enable us to handle similar questions related to ideals of compact 
operators, although we shall not do this here. 

Cases of particular importance arise when the interpolation space ff~,~,oo can be 
characterised as an extrapolation space. We mention here two special examples of 
what we prove. First, suppose that  f~ has finite measure and that  a>0 .  Then for 
all f in the Zygmund space X : = L  ~ (log L)_~(~),  which is actually an Orlicz space 
of exponential type, 

d i s tx ( f ,  L~176 =limsup~[[fllL~/%~) = ]imsup Ilogtl-~f*(t). 
c r y 0  t - + 0  
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A similar result is contained in [4]. Second, if 0<q<<x~ and Lq)(~) is the 'grand' 
Lebesgue space introduced by Iwaniec and Sbordone [7], then 

dist L~)(a)(f, L~ (f~)) = lira sup al/q II/11 
( 7 ~ 0  

a result proved, when l < q < o c ,  in [4]. 

2. T h e  d i s t a n c e  in i n t e r p o l a t i o n  s p a c e s  

First we recall some definitions. Let ff~= (A0, A1) be a compatible pair of quasi- 
Banach spaces, so that  A0 and A1 are continuously embedded in some quasi-Banach 
space EA. Let Ao,p (0<0<1 ,  0<p<_oc) denote the real interpolation scale of Lions 
and Peetre, defined by the K-method.  

If we replace t 0 in this definition by a more general positive and continu- 
ous weight w(t), we can define the corresponding real interpolation spaces A~,p 
associated with the K-method  in the familiar way using the quasi-norms 

dt~ 1/p 
IIfII .,p t ) , 

with the natural interpretation when p=oc .  Here 

K( t , f ; f f~ ) :=  inf (MfOMAo+tMflMA~), fCAo+A1.  
]=fo+A 

We shall suppose that  the weight w has the following properties: 

(2.1) 
(2.2) 
(2.3) 

min{1,t}w(t)--+0 as t--+0 and as t--+ oo, 

w is equivalent to a non-increasing function on (0, oc), 

t ~+ tw(t) is equivalent to a non-decreasing function on (0, oc). 

Denote by d i s t ~ , ~  (f, AortA1) the distance of f in A~,~ to the intersection 

AoNAI : 

(2.4) d i s t x . ~ ( f ,  AoNA, ) :=  inf ltf-gllx~,~. 
' g E A o K I A 1  ' 

Note that  in this definition we can replace the space AoNA1 by any dense subset. 
Let 

(2.5) dl(f) := lira sup w(t)K(t,  f), 
t ~ 0  

(2.6) d2 (f)  := lim sup w(t)K(t, f)  
~-+oo 
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and 

(2.7) d(f):=max{dl(f),d2(f)}, 

where K(t, f ) :  K(t ,  f ;  A0, A1) :=K( t ,  f ;  A). 
We recall that  a p-norm on a linear space X is a map II.II:X~R§ which 

satisfies the norm axioms with the triangle inequality replaced by the condition 

II +ylY<II IY+IMY,  ,yex. 

Given any quasi-norm ]1" II1 on X, there is an equivalent p-norm on X (see, for 
example, [5]): the particular value of p is given by the relation C=21/p-1, where C' 
is the best constant in the quasi-triangle inequality 

Of course, p =  1 when X is a Banach space. Henceforth the value of p will be that  
determined in the way just explained. A quasi-Banach space equipped with the 
corresponding p-norm will be called a p-Banach space. 

We begin with the p-Banach case, that  is, when both A0 and A1 are p-Banach 
spaces. Then f~-+K(t, f; A) is a p-norm for all t>0 .  It turns out that  if we measure 
the distance to the intersection AIAAw,~, then the functional dl(f) suffices. 

Note the particular case when A1CAo, the p-norm of the embedding be- 

ing 1. Then K(t,f)=l]fUo for t_>l (we use the abbreviations IIIllj=IIIllAj for 

j = o ,  1). Hence, if w satisfies (2.2), then the p-norm of f in A~,~ is equivalent to 
sup0<t_< 1 w(t)K(t, f). Thus the values of w on the interval (1, ec) are not important 
and we can take w( t )=0  for t_>l and define 

Ilfll/7~, = sup w(t)K(t,f). 
0<t_<l 

Analogously, if AoCA1, with the p-norm of the embedding being 1, then K(t, f ) =  
tll/lla for 0 < t < l ,  and so now we define the p-norm in A,w,oo by 

II fll/7 . . . .  = sup w(t)K(t, f). 
t ~ l  

T h e o r e m  2.1. (The p-Banach case) Let w have the properties (2.1), (2.2) 

a, d (2.3). rhe  for all f 

(2.8) d l ( f )  <_distx~,~(f, AiNAw,oc) _< max{blw, (l+C~lw)l/p}dl(f), 
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where 

().9) 

and 

(2.~o) 

Proof. 

b~,. := li,~ sup g~(t) ,  g~(t)  := w(t) 

c>, :=  liln sup h~(t), h~( t ) : -  tw(~) 
~Oo<~_<~ ~w(~)" 

Since for any gEA1 we have 

KP(t, f) <_ KP(t,g)+KP(t, f - g )  <_ t~llgll~+K'(t, f - g ) ,  

the left inequality of (2.8) follows. To complete the proof, we take ally e>0 and for 
any a > 0  choose f~cA1 so that 

I]f - f~[lo+allf~ll~ < (l+c)K(c~, f). 

Let 

Since 

and 

[ (~) :=  sup w(t)K(~,f). 
O<t_<c~ 

IIf f~llz~ ma w sup w(f)K(t , f  f~), sup w(t)K(t , f  f~)} 

K(t, f-f•)  < IIf-f~ll0 < (l+c)K(a, f), 

sup w(t)K@,f~)< sup tw(Ql lAl l l~ ( l+c ) / (~ )  sup ha(t). 
0<t<ct 0<t<c~ 0<t<ct 

) (  ) ) l / p  
sup w(t)K(t, f - f~,)  <_ I(a 1+(1+e) p sup hP(~ 

0<t<c~ 0<t<c* 

Thus . / - f ~ , o o .  In particular, f~E&,oo and therefore dist/~,~ (./, A1NA~,oo) 
is bounded from above by 

{ ( ,1/v~ 
I(c~)max ( l+s)  sup 9a(t), 1+(1+c) p sup hP(t)) ). 

c~<t<oo 0<t<c~ 

Now take the limit as a-+0 and then as s-+0. [] 

Analogously, if we measure the distance to the intersection A0 AA,~,oo, then the 
functional d2 (f) suffices. 

Hence 

and 

we have 
sup w( t )K( t , f - f~ )  <_ ( l+s ) I (a )  sup g~,(t). 

c~<t<oo c*<t<oo 

On the other hand, 

sup [w(t)K(t, f - f~ ) l  v <_ IV(a)+ sup [w(t)K(t, f~)l p 
0<t<c~ 0<t<c~ 
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T h e o r e m  2.2. (The p-Banach case) Let w have the properties (2.1), (2.2) 
and (2.3). Then for all fEA~,oo, 

(2.11) d2(f) <_ dist z .... (f, AoN.~.~,~) <_ max{b2~, (l + ~ ) l / P } d 2 ( f ) ,  

where 

(2.12) b2w := lira sup hz(t) 
;~+o~ o<t_<~ 

and 

(2.13) c2~: lim sup g~(t). 
r ec t>~  

T h e o r e m  2.3. (The quasi-Banach case) Let w have properties (2.1), (2.2) 
and (2.3). Then for all fcAw,oo, 

1 
(2.14) - - d ( f )  <_ distff~,~ ( f  , AoNA1) < cd(f), 

CA 

where c A is the best constant in the quasi-triangle inequality 

K(t, g - h )  < cA[K(t, g)+K(t,  h)], g, h C Ao+A1, 

C : :  CA m a x { c w ,  1 + I I l a x { c l w ,  c2w}}, cw:= lira sup h~,z(t) 
c~-+O c~<t<fl 

and 

(2.15) h~,z(t):=w(t ) + for 0 < c ~ < t < / ~ ,  c ~ < l < ~ .  

Proof. Let f c A  . . . .  Since for any 9CAoOA1 with (AoNA1)-norm 11911 we have 

1 
- - I f ( t ,  f )  <_ min{1, t}llgll +K( t ,  f 9), 
CA 

the left inequality of (2.14) follows. To prove the remainder we take any c>0  and 
choose a representation f = f0 (s) + f l  (s) (f0 (s) C A0, f l  (s) E A 1) such that 

IIf0(s)ll0+sllfl (s)II1 <- (1 +s )K(s ,  f )  
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2/2 for all s>0.  Here Ilhllj==[IhllA~ for j = 0 , 1 .  For all integers v put fj,~=fj( ) and 
g~=fo,,-fo,~ 1; then for any M>Mo and N>No, say, 

and 

M 

g:= ~ gv fO,M--fO,-N-I=fl,-N-I--fl,MEAoNA1, 
l ] : - -  g 

f g=fO,-N-l+fl ,M. 

Let ct:=2 - N - l ,  3 :=2  M and let 

I (a ,  3 ) : =  max~ sup w(t)K(t, f), supw(t)K(t, f ) } .  
~0<t<c~ t>_~ 

Then 

and so 

K(t , f -g)  ~ lifo, N-~llo+tll/1,Mlll ~< ( l+c)  K(c~,f)+~K(3,f) 

w(t)K(t, f-g)<-(l+c)I((~,fl)h~,/3(t). 

Hence 

(2.16) sup w(t)K(t, f -9)  <- (l+s)I(c~, 3) 

On the other hand, for t > 3  or t < ~  we have 

sup h~,~(t). 
a<t<~ 

1 
(2.17) --w(t)K(t, f g) <_ I(c~, 3)+w(t)K(t, g). 

CA 

Now we estimate Ilgll. We have 

Ilgll0 ~ II/oyll0+ II/o,-N-1 Iio ~ (l+s)[K(3, f)+K(c~, f)] 

and 

( I[g[ll < l l f l , M I I l + l l f l , - N  1Ill < ( l + C )  K(3 ' f )  ~ 

Hence if t>3 we obtain 
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and for ~< c* we have 

t~(~) 
w(t)K(t, g) < t~(t)llglll < (l+c)I(~, a)h~,~(~)~-g~(~). 

This and estimates (2.16) and (2.17) show that  c5111f-gll~,o,~ [(1+c)I(< fl)]-i is 
bounded above by 

~a<_t<fl "0<t<c~ t>13 

where g~ and h~ are defined by (2.9) and (2.10). The right inequality of (2.14) now 
follows and the proof is complete. [] 

R e m a r k  2.4. The weights w ( t ) = l  and w(t)=l/ t  do not satisfy condition 
(2.1). However, we can prove directly that 

distdo (f, A0 NAI ) = lira sup K(t, f; Ao, A1 ) 
t ~ 0  

(2.1s) 

and 

(2.19) 

Proof. 

Hence 

distal (f, A0 n A1) = lira sup 
t-+co 

K(t, f ;  Ao, A1) 

If f cAo then 

K(t , f ;Ao,A1)= inf ( l l f -  flllo+tllfllll). 
flEAoVIA, 

K(t.,f;Ao,A1)>_ inf IIf-fll]o, 
.ficAonA~ 

which proves half of (2.18). On the other hand, 

and so 

AT(t, f ;  Ao, A1) < [[f-fl[Io+tllfl I[1, fl E AoAA1, 

l imsupK(G f;Ao,A1) < IIf-flIlo, fl ~AoNA1, 
t-~0 

which completes the proof of (2.18). The proof of (2.19) is similar. K] 

As illustrations of these results, consider the pair (LI(R), L~176 where R is 
an arbitrary a-finite measure space. Then using Remark 2.4 and the fact that  

K(t , f ;LI(R) ,L~176 f*(s)ds 
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(see [11], p. 133), we have the following formula for the distance of f~L~ to 
the intersection L 1 (J~) N L ~176 (_~): 

(2.20) distL~(R)(f 'Ll(R)aL~176 l imsupl  /o ~f*(s) t 

In a similar way we see tha t  

(2.21) distz~ ( f , /1)  = lira su p _1 ~ f * ( k )  = f*(oc). 
k--1 

In part icular ,  since 11 is dense in the subspace co Cl ~, it follows tha t  

distl~ (f, co) = f*  (oc ) .  

Now let A be a quasi-Banach space which is in termediate  for (A0, A1); tha t  is, 
AortA1 cACAo+A1.  Denote  by A ~ the  closure of AoNA1 in A. Using Theorem 2.3 
we can characterise the space (.~,~,~)o as follows: 

T h e o r e m  2.5.  Let w satisfy (2.1), (2.2) and (2.3). Then 

(2.22) (Aw,~) ~ = { f  E &,oo: d(f) = 0}. 

3. E x a m p l e s  o f  c o n c r e t e  spaces  

Here we consider some par t icular  spaces in which a direct approach gives precise 
formulae for tile distance (cf. [4]). 

Let  b be a positive continuous funct ion on the interval [1, oc). We say tha t  b 
is slowly varying on [1, oc) (in the sense of Karamata )  if for all c>0 ,  the funct ion 
t~-+t~b(t) is equivalent to a non-decreasing funct ion and t~+t ~b(t) is equivalent to 
a non-increasing function. By symmetry,  we say tha t  a positive continuous function 
b on the interval (0, 1] is slowly varying on (0, 1] if the funct ion t~+b(1/t) is slowly 
varying on [1, ec). Finally, a positive continuous funct ion on (0, oe) is said to be 
slowly varying on (0, oc) if' it is slowly varying oil bo th  (0, 1] and [1, oc). 

Let  (t2, #) be a a-finite measure space and let b be slowly varying on (0, oc). 
Then  if 0<q_<oc and 0<r<_oc,  the Lorentz  K a r a m a t a  space L~'r(t2) (see [10]) is 
defined to be the set of all functions f on f~ for which the quasi-norm 

(3.1) IlfllLg,"(~) :=  [ t l /qb(~) f* (~)]  "r 
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is finite. When r----oo this is to be interpreted as 

IlfllLq,~(~) := sup tl/qb(t)f*(t). 
0<~<.(~) 

If q=r we s imply  write L~(ft) instead of L~'*(f~), and if no ambiguity is possible we 

write LV for LV'(e). 
We also need an equivalent definition in terms of the corresponding p-norm, 

where O<p<_l and p<q,p<r.  Since the distance depends on the particular quasi- 
q,v 

norm or p-norm being employed, we use a different notation, Lb,(p)(f~), for the 
Lorentz Karamata  space when equipped with the p-norm 

"f"Lq:ip)(f~) := (~o~(f~)[t l /q_l/Pb(t)( fot f . (s)Pds)l /plr  ~ ) l / r  

When p--1 this simply means that  f**( t ) :=t- l f~  f*(a)da is being used instead 

of f* (t). 
Note two particular cases. If b= l ,  then we obtain the Lorentz spaces L q'~" and 

q" while the Lorentz Zygmund space Lq'r'(log L) a (see [1]) results from the choice L(p), 
b(t)=(l+llogtl) a. 

Now suppose that  w(t):=tl/q-~/Pb(t) and w(t p) satisfy (2.1), where p is de- 
termined as explained above for L~i~)(t2 ). Since the space L~i~)(f~ ) is just the 

interpolation space (LP(ft), L~176 we can apply Theorem 2.1 in the case 
of a finite measure space and conclude that  

(3.2) distLq;~) (a)(f,  L ~  (f~)) ~ dl,(p)(f), 

where 

(3.3) f0t \ 1/p dl,(p)(f):=li~lsupt 1/q 1/pb(t) f*(s)P ds)  . 

Here we use the fact (see [111, p. 135) that  

(f0 p ,1/p K ( t , f )  ~ f*(s) p ds)  . 

Moreover, 

(3.4) 

where 

distLg,~ (fi)(f, L~176 (ft)) ~ dl (f) ,  

dl ( f )  := lira sup tl/qb(t)f * (t). 
t-+0 

When the measure space is merely (r-finite, we can apply Theorem 2.3 to give 

(3.6) distLg, ~ (fl)(f, LP (ft) • L ~ (ft)) ~ lim sup t*/qb(t)f* (t) + lim sup t 1/q b(t)f* (t). 
t--+0 t--+oo 

We shall now prove that  in (3.2) we have equality. Moreover, (r-finiteness of 
the measure space is enough when we estimate the distance to 
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T h e o r e m  3.1. Suppose that b is slowly varying on (O, oc). Let qE(0, oc] and 
let pc(O, 1], p<q, be chosen appropriately for Lg'~ as explained above. Assume 
further that tl/qb(t)-+O as ~-+0. Then for all fEX'=Lg'~p)(Q), 

�9 ,( 

(3.7) distx (f,  L ~ (~2) N X) = dl,(p)(f). 

Pro@ The estimate of dl,(p) (f) from above is similar to that  given in the proof 
of Theorem 2.1, using the fact that  the functional 

(/( 1/p 
If(t, f)  := f* (s) p ds] 

is a p-norm�9 Namely, 

KP( t, f)  <- KP( t, 9) +KP( t, f - 9 )  

for any g~L~(~)  with quasi-norm Ilgll, and hence 

wP(t)KP( t, f) <- twp(t) llgllP+ II/-gll~:, 

where w(t):=t 1/q 1/Pb(t). Thus dl,(p)(f)<_llf-gllx and the required estimate fol- 
lows. 

It remains to estimate dl,(p)(f) from below. We follow the proof of Theorem 2.1, 
but now we have a better  choice for the approximating functions fk. Thus for f E X  
we take any large k and define 

(3.8) I(k) = sup w(t)K(t, f), 
o<t<uf (~) 

where # i ,  # f ( ~ ) : - p { x C ~ : l f ( x ) l  >~}, is the distribution function of f .  Note that  
(since f ~ L p (f~) + L ~ (a)) 

(3.9) 

We define fk by 

~ f ( k ) ~ O  as k-~oc.  

f (x ) ,  If(x)l<_k, 
f~ (x) = 0, otherwise. 

Hence f - f ~ = f  on the set f~k-{xCf~:lf(x)]>k}, and we obtain the formulae 

(3.10) 
(3.11) 

( f - f k ) * ( s )  f*(s), i f s<p f (k ) ,  

( f - f k ) * ( s )  = 0, if s_> #/(k) .  
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In particular, 
K ( t , f ) ,  ift<_pf(k), 

K ( t , f - f ~ ) =  K(p f (k ) , f ) ,  i f t > p f ( k ) .  

For shortness, put J(t, k ) -w( t )K( t ,  f - f k ) .  Then 

IIf - fkllx=rnax~ sup J(t,k),  sup 
v 0<t</xf (k) t >/*.f (k) 

and so, using the monotonicity of w, (3.8) and the estimates above, 

I I f - f k l l x < m a x (  sup w(t)K(t , f ) ,  sup w(p f (k ) )K(p f (k ) , f ) }  < I(k).  
- ,0<t<~s(k ) t>~s(k) - 

Application of (3.9) now gives the desired estimate 

distx (f, L ~(f~)cqX) < dl,(v)(f). [] 

We observe that  a similar result is established in [4] for the Banach ease q > l ,  
with b= 1. 

It turns out that  we can also prove equality in fbrmula (3.4) if, in addition, 
t-Nb(t) is non-increasing fbr some N > I .  To cover this case, we notice that  the 
quasi-norm, although not a p-norm any more, has a special property that will 
suffice, nalnely that 

(3.12) v(t)f*(t) < III--YlILg,~ +v(t)llgllLOO , 

where v(t):-tl/qb(t) and it is assumed that t-Nb(t) is non-increasing for some N >  1. 

T h e o r e m  3.2. Let b be slowly varying on (O, oc) and suppose that v ( t ) : -  
t~/qb(t)--+O as t-+0; assume additionally that for some N > I ,  t-Nb(t) is non- 
increasing. Then for all f E L~ '~176 

(3.13) distL~,~(f,L~176 '~176 lirnsupv(t)f*(~). 

Pro@ For any small e>0  and gCL ~176 we have 

v(t)f*(t) <v( t ) ( f  g)*((1 e)t)+v(t)g*(et), 

from which, using the monotonicity property of b, we obtain 

v(t)f*(t) <_ ( l - e )  N-1/qv((1 e)t)(f  g)*((1-e)t)+v(t)g*(et) 

< (1--c)--N-1/qllf--gllLg,Or +V(t)]]g]lLOO. 
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Taking the limit as ~-+0, we see that  

d l ( f ) _ < ( 1 - c )  -N  1/qllf--gllL~,~, 

which gives the estimate (3.13) from below. The reverse estimate is proved using 
the same approach as in the proof of Theorem 3.1. We let f ~ L  q'~, and observe 
that  f cLP+L ~, where p<q, so that  >f (k) -+0 as k--~oc. Again we choose the 
approximating functions ]'k to be 

f (x ) ,  If(x)l<_k, 
fk (x) = 0, otherwise. 

Using (3.10) and (3.11) we have 

IIf -- f~llzq,~ < sup 
0<t_<,s(k) 

Hence 

distLg.~ (f, L~ '~ < 

v(t)f*(~). 

sup v(t)f*(t), 
0<t_<F*s(k) 

and it remains to take the limit as k--+oc. [] 

4. T h e  d i s t a n c e  in e x t r a p o l a t i o n  s p a c e s  

First we recall some definitions from [8] and [9]. Let {A~}, 0 < ~ < g < l ,  be 
a scale of compatible quasi-Banach spaces. This means that  there exist quasi- 
Banach spaces AA and EA such that  AACA~CEA for all ~E(0, e), the quasi- 
norms of the embeddings being uniformly bounded. Let M: [0, e] + R  be positive 

and continuous. Then the A-extrapolation space A(o~)(M(~)A~, ) consists of all 

elements fE/')0<~<~ A~ such that  

]lfllA(oT~>(M(~)A ):= sup M(c~)llfllA ~ 
, ~ 0 < c r < r  

is finite. 
Suppose that  {w~}, 0<or<c,  is a family of positive continuous functions on the 

interval (0, cx~) such that  

(4.1) sup sup min{1,@w~(0<oc and inf w~(1)>0. 
0 < ( r < ~  0 < t  <:cx~ 0 < o - < a  



158 D a v i d  E.  E d m u n d s  a n d  G e o r g i  E.  K a r a d z h o v  

Then the interpolation space A~,o~ is well defined and A0 A A 1 c A~o,o~ C A0 + A 1, 
uniformly with respect to crE(0, c). Hence we can define the extrapolation space 

A~,~)(M(~)A . . . .  ). It is clear that  

O,c 

where 

(4.2) 

Suppose, moreover, 

(4.3) 

w(t)= sup M(.)w.(t). 
O<o-<c  

that  

limsup M(o-) sup min{1, t}w~(t) = O. 
c ~ 0  0 < t < o o  

From the definition of w(t) there follows the existence of some a(~) such that  

(4.4) M(cr(t))w~(t) ~ w(t), 0 < t < oc. 

We shall require that  

(4.5) ~(t) -+ 0 as t -+  0 and as t -+  oc. 

We also introduce the function 

(4.6) D(f)  := lira sup M(a)II f l l f f~  ~- 
o- ,0  

T h e o r e m  4.1. Suppose the weight w~ satisfies (4.1), (4.3) and (4.5). If w, 
defined by (4.2), satisfies (2.1), (2.2) and (2.3), then 

(4.7) distx~,~ (f, AoNA1) ~ D(f).  

Pro@ Since for any gEAoNA1 with quasi-norm Ilgll we have 

cK(t, f)  < rain{l, t} l lg l [+K(t  f - g ) ,  

the estimate of the distance from below in (4.7) follows from (4.3). To prove the 
reverse estimate we notice that  

ew(t)K(t, f)  <_ M(cr(t))w~(t)(t)K(t, f)  < M(cr(t))llfll~r~<~),~. 
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Hence taking the limit as t -+0 or t -+oc and using (4.5) together with Theorem 2.3, 

we derive cd(f)<D(f),  as desired.  []  

In some particular cases we can give a direct proof of this result in a sharper 

form, with precise formulae. 
We start with what we shall call the generalised grand Lebesgue Karamata  

spaces. We define these to be the spaces 

with quasi-norm 

. _ A  (~) L~>(a) '-- 0,~ (M((7)Lq-~(a)), 

IIfIILz)(f~):= sup M(cr)l[fIIz<,-~(f~ ), 
O<o-<a 

where M is a positive continuous function on (0, g), 0 <q <o o ,  L"(~)  is tile classical 
Lebesgue space on a finite measure space (ft, #), with >(f~)=l  for simplicity, and 

(4.8) b(t)=b~(t):= sup M(~) t  ~. 
0<cr<m 

The function b is increasing. To ensure that  b is slowly varying on (0, 1), we require 
a little more of the weight M. We say that  M is tempered in the sense of [8] if 

(4.9) M(cr)~M(�89 0<or <s .  

When M has this property, b is slowly varying on (0, 1). Indeed, b~(t)~b~/2(t), 
O < t < l ,  for 

bs ( t )~  sup M( �89  ~ =  sup M(a)t2a_< sup M(a)tC~=be/2(t)<_bs(t). 
0<c~<s 0 < ~ < s / 2  0<~r<~/2 

Let c~>0 be arbitrary and choose an integer k so that  2 - ~ s < a .  Then 

t %~( t )~c~ ,~ ( t ) :=  sup M(~)t ~ ~, 
0<c~<e/2 

and this function is decreasing. 
When q=oc,  we have s176 , with quasi-norm 

IlfllLaO(a) :=  sup a(~)llfllL*/-,~(a)~ sup b(t)f*(t). 
O<cr<r O < t < l  

Now we define 

(4.10) Dq(f)=limsupM(~)HfllL,,-.(e), Do~(f)=limsupM(a)llfllc,/.,~(e ). 
cr-+O ~ 0  
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The formula for D~(f )  can be simplified if, in addition, we assume that  M(a)_< 
e ( ~ ) M ( ~ )  for an ~ 1, whe~-e lim s u p s <  c(~)_< 1. Then 

(4.11) D~(f) limsupM(cr)llfllL1/~(~ ). 
c~--+O 

Indeed, we have only to prove the estimate from below for D+(f). For 0 < a < l  we 
write 

/ 1  f t~f.(t)~/~ *(t) ~/~ dt < sup 
J0 0 < t < l  1--Oz 

whence 

M(~/a) llflrL~/~(m ~ c(oz)(1--c~)-"/~M(cr)llfllL1/~,~(~). 

Letting first (7--+0 and then a -+1  we obtain the desired estimate. 

T h e o r e m  4.2. Let the weight M be tempered and suppose that M(cr)-+O as 
a-+O; let b be defined by (4.8). Then for" all f~L~)(~t),  

(4.12) distL~)(~) (f,  L~176 (f~)) = Dq(f), 0 < q < oo, 

and 

(4.13) dist L;~ (a) (f,  L ~ (a))  = Do~ (f) .  

Pro@ Let 0<q<oc ;  the case q=oc  is analogous. Since the spaces Lq-~(ft) 
( 0 < ~ < e < q )  are rain{l, q -s}-normed,  we have the estimate of Dq(f) from above. 
Now we consider approximating functions fk defined as in the proof of Theorem 3.2. 

For any 5E(0, c) we have f~Lq-5(f~) and dis tL~(a)( f  A~7)(M(cr)Lq ~(f~))) is 
bounded above by 

i f  \ 1/(q-5) "1 max{ sup M(~)II/IIL~ ~(~), sup M(cr) ,S(x)lq-adx) ). 
k0<~<5 a<~<e (x)l>~ 

The required estimate follows by letting first k--+oc and then 5-->0. [] 

Example 1. (The grand Lebesgue spaces, cf. [7]) By definition, these are the 
spaces 

Lq) (~,) :=/,(07 > (~*/qL~ ~ (~)) 
Thus fl'om Theorem 4.2 we have 

(4.14) distf~) (n) (f,  L~176 (f~)) : lira sup cr l/all f[[ L~ "(n). 
~--+0 

Note that  in the Banach case q> 1, this formula is proved in [4]. 
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Example 2. (The Zygmund space of exponential type, X:=L~176 
a>0)  This is the space L~(gt) with b(t) ( l+l logt l )  ~. Then (4.13) and Theo- 
rem 3.2 give 

(4.15) distx (f, L ~ (~)) = lim sup ~ 11 f II c~/~ (~) = lim sup Ilog t I-~f* (t). 
~ 0  t ~ 0  

In fact, a similar result can be proved in the general case, chaa'acterising LZ ) (f~) 
as an interpolation space: 

(4.16) L~ ) (fi) = (L~(a), L~(a))~,~, 

where w(t)=t-lb(t),  0 < p < q < o c  and b is defined by (4.8), M being tempered. To 

do this, we first observe that  in the definition of the spaces L~ ) (ft) we can replace 
Lq-~(t2) by the Lorentz s p a c e  Lq-G'q(~), in view of the monotonieity of this scale 
and the fact that  M is tempered. Thus 

(4.17) A(o~ ) (3I(~)L q-~ (f~)) : A~ ) (M(o-)L q-~'q (f~)). 

We need the formula 

( ) ( ( ) ( ) )  ( )_l_O_l/q_Lp_f~,Lql2__O,q:Lqo,q_f~ ' 1 1--0 0 (4.18) - - - -  {--, 0 < 0 0 < 0 < 1 ,  
qo P q 

in the sense of equivalent quasi-norms, the equivalence constants being independent 
of 0. To see this we write 

Lq(ft) = (LP(f~), L~ )O,q, 
1 1-7] 

q P 

and use the Holmstedt formula [3] 

K(t, f; LP(~t), Lq(~)) ~ t q u_~qKq(u, f )  d u 
/ v  u 

If(u, f ) := K(u, f; LP(ft), L~(f~) ). 

Then straightforward calculation shows that  

llfll(L~(~),L%~))o,~ = [7(1 O)q] i/qHfll(S.(~),L~(~)).o,. 

Thus (4.18) ibllows. Now we can continue the formula (4.17) as follows: 

, : o,~ L q ( ~ ) h  ~ , ~ ) ,  ~ : -  
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and according to [9], Theorem 12, this is the same as 

A(OO) O,e (A//(~ Lq(f~)) l-a ,  oo) = (LP(f~), Lq(a)) . . . .  

where w(t)=t-%(t). 
Application of Theorem 2.1 now gives 

(4.19) distL~ (fi)(f, L~176 (f~)) ~ lim sup w(t)K(~, f; LP(a), Lq(f~)), 
t-~0 

if b(t)~O as t ~ 0  and b is equivalent to a non-decreasing function. 
To simplify this formula, we use the Holmstedt formula [3] 

K (t, f ; Lp(f~), Lq(fl) ) ~ ( ~  f .  (s)P ds) l/p+t (/~l \ l/q f* (8)  q d s )  , 

where 1/a=l/p-1/q. Since b is slowly varying on (0, 1), we see that 

IIf[l<LP(~>,L~<a>)w,~ 

Indeed, 

Analogously, 

(.s f )l/q sup b(t) *(~)~ d~ 
0<t<l 

< c  sup ~l/qb(~)f*(t)  
0<t<l 

ix f2 t  a • 1/q 
_<c0<t<lsup b(t) l L\Jt f*(s)qds) " 

( ~  \ 1/q 
limt~0sup w(~)K(t, f; LP(f~), Lq(f~)) ~ lim sups_40 b(~) f* (s) q ds) . 

These formulae suggest the following result. Let the quasi-norm on L q) (f~) be 
defined by 

(j/t.1 ,~l/q 
(4.20) [[flILZ)(a):=0<t<lSUp b(t) f*(s)q ds) . 

Then we have the following result. 
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T h e o r e m  4.3.  Let b be defined by (4.8) and suppose that M is tempered. If  
b(t)-+O as t-+O, and also for some N > I ,  t Nb(t) is non-increasing, then for all 

(4.21) (~t I .~ 1/ q distL~)(~)(f'L~ f*(s)qds)  , 0 < q < o o .  

Pro@ First  we claim tha t  the distance is bounded  from below by the expression 

d(f)  :=  lira sup I(t, f ) ,  
t--+0 

where 

[-(t,f) D(t)Qflf*(s)qds) 1/q 

Since the expression in (4.20) is not  a p-norm,  we argue as in the proof  of The- 

orem 3.2. Consider the case q_>l. (The proof  when 0 < q < l  is similar.) For any 

small g > 0  and gCL~176 we have 

(f l  ~ ( / 1 ) l / q  
I(t,  f )  <_ b(t) ( f - g ) *  ( ( 1 - c ) s )  q ds/X/q+b(t) 9" (es) q ds 

Hence, using the monotonic i ty  proper ty  of b, we obta in  

I(t, f )  < (1--c)-N-1/qllf --gllLg)(~)+b(t)llgllf~(fi ). 

Taking the limit as t -+0 ,  we see tha t  

d(f)  <_ (1 r N 1/qllf gllLq)(~) ' 

which establishes our claim. For the reverse inequality we use the same approx- 
imat ing functions f~ as in the proof  of Theorem 3.1. From (3.10) and (3.11) we 

have ( ~ 1 ) l / q  
[]f -- fk[[L~)(f~) < sup b(t) f*(s) q ds , 

0<t_<~• 

and so 

(,~t 
l .,1/q 

distLq)(~) (f,  L ~  (f~)) _< sup b(t) f*(8) q d s )  . 
/ 

All tha t  remains is to take the limit as k--+oc. [] 

As a consequence we obtain  the following result. 
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C o r o l l a r y  4 .4 .  

(4 .22)  II/llg~><~) = 

Then for all fELq)(f~), 

(4.23/ 

David E. Edmunds and Georgi E. Karadzhov 

Let O<q<cx~ and define the quasi-nor~z on Lq)(ft) by 

sup (1-1ogt) -1/q f*(s)q d8 
o<t<l  

(fl /ljq 
distL~) (a) ( f ,  L ~  (ft)) = lil~l s u p ( i - - l o g  ~) -1/q  f*(s) q ds 

t--+o 

Fur the r  deve lopment s  of these  ideas are  c lear ly  possible.  
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