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Polya's inequalities, global 
uniform integrability and the size 
of plurisubharmonic lemniscates 

S l i m a n e  Bene lkou rch i ,  B e n s a l e m  J e n n a n e  a n d  A h m e d  Zer i ah i  

A b s t r a c t .  First we prove a new inequality comparing uniformly the relative volume of a 
Borel subset with respect to any given complex euclidean bail B C C ~ with its relative logarithmic 
capacity in C ~ with respect to the same ball B. An analogous comparison inequality for Borel 
subsets of euclidean balls of any generic real subspace of C n is also proved. 

Then we give several interesting applications of these inequalities. First we obtain sharp 
uniform estimates on the relative size of plurisubharmonic lemniscates associated to the Lelong 
class of plurisubharmonic functions of logarithmic singularities at infinity on C ~ as well as the 
Cegrell class of plurisubharmonic functions of bounded Monge Ampere mass on a hypereonvex 
domain f~�9 ~ . 

Then we also deduce new results on the global behaviour of both the Lelong class and the 
Cegrell class of plurisubharmonie functions. 

1. I n t r o d u c t i o n  

Loca l  u n i f o r m  i n t e g r a b i l i t y  a n d  e s t i m a t e s  on t h e  s ize of  sub leve l  sets  o f  p l u r i s u b -  

h a r m o n i c  f u n c t i o n s  in t e r m s  of  c apac i t i e s  or  va r ious  m e a s u r e s  h a v e  b e e n  s t u d i e d  ear-  

l ier  in seve ra l  works  (see [CDL], [Ki], [K2], [Z2], [Z3], [P] a n d  [BJ]).  Such  e s t i m a t e s  

t u r n  ou t  to  be  useful  in m a n y  a reas  of  c o m p l e x  ana lys i s  such  as p l u r i p o t e n t i a l  theory ,  

P a d 6  a p p r o x i m a t i o n  and  c o m p l e x  d y n a m i c s  (see [Ki], [K1], [K2], [CDL] a n d  [FG]). 

O u r  a i m  he re  is to  gene ra l i ze  t h e  c lass ica l  P o l y a ' s  i n e q u a l i t y  t o  subse t s  of  any  

gene r i c  s u b s p a c e  of  C n a n d  to  g ive  severa l  n e w  a p p l i c a t i o n s  to  t h e  s t u d y  of  t h e  

g loba l  b e h a v i o u r  of  two  i m p o r t a n t  c lasses  of  p l u r i s u b h a r m o n i c  func t ions .  

M o r e  precisely ,  g iven  a gener i c  s u b s p a c e  G c C  ~, we p rove  a n e w  i n e q u a l i t y  

e s t i m a t i n g  f r o m  above  t h e  r e l a t i v e  v o l u m e  in G of  a Bore l  subse t  w i t h  r e spec t  to  a 

e u c l i d e a n  b a l l / 3  C G in t e r m s  of  i ts  r e l a t i v e  l o g a r i t h m i c  c a p a c i t y  in C ~ w i t h  r e spec t  
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to the same ball B, up to a multiplicative numerical constant which depends only 
on the dimension of G but not on the "condenser" considered. 

Formulated in this way, Polya's inequalities turn out to play an important  
role in applications, implying interesting results which improve significantly earlier 

results obtained by several authors (see [CDL], [K2], [Z1] and [Z2]). 

Indeed, first we easily deduce new estimates on the relative volume with respect 

to balls ix a generic subspace of C ~ of the plurisubha~'monic lemniscates associated 
to the Lelong class of plurisubharmonic functions with logarithmic singularities 
at infinity on C n as well as the Cegrell class of plurisubharmonic functions with 
bounded Monge-Amp6re mass on a bounded hyperconvex domain of C ~. 

Then we give estimates on global uniform integrability of the Lelong class of 
plurisubharmonic functions with logarithmic singularities at infinity on C ~ with 
respect to the Lebesgue measure on any generic subspace. These estimates can be 
considered as precise quanti tat ive versions for the Lelong class of the well-known 
John Nirenberg inequalities for BMO-funetions on R ~ (see [St]). 

In particular we prove that  restrictions to any generic subspace G c C  ~ of 
plurisubharmonic functions with logarithmic singularities at infinity on C *~ are in 
BMO(G)  with a uniform explicit bound on their BMO(G)-norms  depending only 
on the dimension of G. 

Finally we give a general sufficient condition for uniform integrability of a given 
class of plurisubharmonic functions on some domain in terms of the behaviour of the 
relative Monge-Amp6re capacity of their sublevel sets with respect to this domain. 
In particular, we deduce a new global uniform integrability result for the Cegrell 
class of plurisubharmonic functions of uniformly bounded Monge Amp6re masses 
on a bounded hyperconvex domain. 

2 .  P r e l i m i n a r i e s  

Let us recall the classical Polya's inequality (see [R] and [T]). For convenience, 
let us first recall the definition of the logarithmic capacity c(K) of a compact  subset 
K c C .  Let D ~ c C  be the unbounded component  of C \ K  and let gD~ be the 
(subharmonic) Green function of the domain D ~  with logarithmic pole at infinity. 
Then the logar'ithmic capacity of K is defined by the formula 

(zl) - log c(K) := lira Sup(gD ~ (z)--log [z/). 
Z --+ OO 

It  is well known tha t  K c C  is a polar compact  subset if and only if c ( K ) = 0 ;  and 
also that  if c ( K ) = 0  then the area of K is 0. Moreover if K c R  and c ( K ) = 0  the 
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length of K is 0. There are quantitative versions of such results known as Polya's 
inequalities which we state now. 

For any compact subset K c C ,  

(2.2) ~2(K) _< ~c(K) 2, 

with equality for a disc, where A2 is the area measure on C = R  2 and c(K) is the 
logarithmic capacity of K.  

Apart from this inequality, there is a corresponding inequality for sets of the 
real line R c C .  Namely, for any compact subset K c R ,  

(2.3)  I(K) _< 4c(K), 

with equality for an interval, where A1 is the length measure on R. 
Recall that  the logarithmic capacity c(K) of the compact subset K defined by 

(2.1) coincides with its Chebyshev constant (see [R] and IT]), so that  

. ~ / d  c(K) = inf mf{lIPll~; ; P  E 75d}, 
d>l  

where 75d is the set of monic polynomials of degree d and Ilrll~c: supzcK IP(z)l. 
We want to introduce similar quantities in C% In this case, it is more con- 

venient to normalize polynomials by requiring that  IIrllB:=ma~B Irl=] for some 
fixed non-pluripolar compact subset B C C n. Then following classical notation (see 
[AT] and [Si2]), we introduce the following Chebyshev constant associated to a com- 
pact subset K c C  n, 

�9 1/d (2.4) TB(K):=infmf{llPllr{ ; P E C [ z ] ,  d e g P = d a n d  I l P l l , = ] } .  
d> l  

For n = l ,  it is easy to prove that  the two constants c and TB are equivalent as we 
shall see below. 

The constant defined by (2.4) is related to the pluricomptex Green function with 
logarithmic singularities at infinity on C n, which we will recall below. Its definition 
is based on the usual Lelong class of plurisubharmonic functions of logarithmic 
growth at infinity on C n defined as 

(2.5) s  n) := {u e PSH(C '~) ; sup{u(z) - l o g  + [zl;z e C ~ } < +oc}. 

The global extremal function with logarithmic growth at infinity associated to a 
Borel subset K G C  n is defined by 

(2.6) V K ( z ) : - - s u p { u ( z ) ; u C s  ~) and ulK _< 0}, z e C  ~, 
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and its upper semi-continuous regularization V~: in C ~ is the pluricomplex Green 
function with logarithmic singularities at infinity associated to K (see [Z] and [Sil]). 
Recall that  if n =  1 and K c C is not polar, then V~ coincides with the Green function 
of the unbounded component D ~  of C \ K  with pole at infinity extended by 0 on 

the set K : = C \ D ~ .  
It is well known that VK is locally bounded on C ~ if and only if K is non- 

pluripolar in C ~ (see [Sil] and [Si2]). 
By a theorem of Siciak [Si2], we know" that  if K c C  ~ is a compact set, then 

(2.7) = exp - x 

The formula (2.7) allows us to extend the definition of the set function TB(-)  to 
Borel subsets of C ~. Moreover the extended set function is a generalized Choquet 
capacity on any bounded domain in C ~, which is outer regular (see [Si2]). When 
K C B, the constant TB (K) will be called the relative logarithmic capacity of K with 
respect to B in C ~. 

It is also well known that  the null sets for this capacity are precisely the pluripo- 
lar subsets of C ~ (see [Si2]). 

Thus if K C C '~ is non-pluripolar then - l o g  TB(K)=maxB Vfi: (<+oo)  is the 
best constant for which the following Bernstein-Walsh inequality holds 

(2.8) s u p n < s u p u  logTB(K) for all ttCZ2(Cn). 
B K 

There is another relative capacity defined using the Monge Amp6re operator 
(see [BT1]). Here we choose a normalisation of the usual differential operators on 
C ~ so that  

ddC : = z 05. 
7r 

Let t2~C n be an open set and K c f t  a compact subset�9 Then the relative Monge- 
Ampere capacity of the condenser (K, f~) is defined by the formula (see [BT1]) 

(2.9) cap(K; t2) :=sup{ /K(dd~n)~ ; u ~ PSH(t2 ) a n d - l < u < 0 } .  

This capacity is related to the so called plurisubharmonic measure associated to the 
condenser (K, f~) defined by 

(2.10) hK(z) :  sup{u(z) ; ~ c P S H ( Q ) , ~ < 0  and ~[K_<--I}, zCt~. 
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Then  if ~2~C ~ is a hyperconvex open set and K c f ~  is a compact  subset, it follows 

fl'om [BT1] tha t  

(2.11) cap (K;  f~)=  ~ (ddCh*K)n = ~ (ddCh*K)n. 

We will need the following Alexander -Taylor  compar ison inequali ty (see [AT]). For 

a fixed bounded  domain t2 G C ~ and a fixed euclidean ball B C C '~ such tha t  t2 C B,  

(2.12) TB(E)  < exp( cap(E;  ~ ) - 1 / . )  

for any Borel subset E CD. 

We will also need to define the Cegrell class of plur isubharmonic  functions. 

Let  [ }GC ~ be a hyperconvex open set. Denote  by )c(ft) the class of negative 

plur isubharmonic  functions ~ on ft such tha t  there exists a decreasing sequence 

( J ) j=l  of bounded  plur isubharmonic  functions on Q with bounda ry  values 0 which 

converges to F on ~2 and satisfies supj f~(ddC~j)n<+oc. 
By Cegrell [C2], for ~GSc(f~), the Monge Ampere  measure (dd~) ~ is a well 

defined Borel measure of finite mass on ft as the weak limit of the sequence of 
measures (dd~pj) ~, where (~j)j~__~ is any decreasing sequence converging to p on 

and satisfying all the requirements of the definition. 

3. Relative Polya's inequalities 

Here we want  to compare  the relative Lebesgue measure on a generic subspaee 
G c C  n with respect to a real euclidean ball in G with the relative logari thmic 

capaci ty  in C '+ with respect  to the same ball. 

First  recall some definitions. A real subspace G c C  ~ is said to be a generic 
subspace of C n if G + J G = C  n, where J is the complex s t ructure  on C ~. W~ 

denote  by G C : = G N J G  the maximal  complex subspace of C ~ contained in G and 

set r r+:=dimc G c, which will be called the complex dimension of G.  Then  it is clear 

tha t  d i r e r  G = n + m .  

If m 0 which means tha t  G~= {0} ,  the subspace G is said to be totally real. 
If m = n  then G = C  +~. 

It is easy to see tha t  G c C n is a generic subspace of complex dimension m if and 
only if there is a un i ta ry  au tomorph i sm U: C n-+  C ~ such tha t  U ( G )  = C ~ x R '~ "+ c 
C "+ x C ~ m =C '% 

Observe tha t  the subspace G c C '~ is non-pluripolar  in C ~ precisely when G is 

a generic subspace. 
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The subspace G c C  ~ will be endowed with the induced euclidean structure 

and the corresponding Lebesgue measure which will be denoted by An+,~- 

Now we can state our version of Polya's inequality which is the main result of 

this section. 

T h e o r e m  3.1. 

Borel subset K c B ,  

(3.1) 

where 

(3.2) 

(2) 

(1) For any complex euclidean closed ball B c C  ~ and any 

),:n(K) 
),~n ( B ~  -< ~,/r~ (K) ~, 

4n(r~!) 2 
en . -  ( 2 n - 1 ) ! '  

Let G c C  ~ be a generic real subspace of complex dimension 0 < r e < n - 1 .  
Then for any real euclidean closed ball B c G  and any Borel subset K c B ,  

(3.3)  a~+.~(K) < 8(n+m)T.(K).  
a,~+.~(B) - 

We will see below that these inequalities are sharp as far as the exponents are 

concerned (see Remarks 3.6). For the proof of relative Polya's inequalities, we start 

to look at the simplest case where n = l .  

L e m m a  3 . 2 .  

(3.4) 

(2) 

(3.5) 

(1) For any closed disc D c C  and any Borel subset K c D ,  

a 2 ( K )  < 4TD(K)2 .  
s  - 

For any real closed interval I c R  and any Borel subset K C I  

As(K) _< 4T~(K). 
hi(I)  

We do not know if 4 is the best constant in these inequalities. 

Proof. (1) By regularity of the Lebesgue measure and the relative logarithmic 

capacity in C, we can assume that K is a non-polar compact subset. We can also 

assume that  C \ K  is connected since k2 (K) _< k2 (K) and TD(K)=TD(B2). Then 
the extremal function V/~ is a subharmonic function on C which coincides with the 
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Green function of C \ K  with a pole at infinity. Therefore it can be represented by 
the formula 

V[~(z)= ~ loglz-CId>(C)-logc(K), z ~ C ,  

where >:=(1/2~r)AV~ is the normalized equilibrimn measure of K.  From this 
representation formula, we get the estimate 

max V~ < log(2R)-log c(K), 
D 

where R is the radius of the disc D C C. This inequality implies that  

(3.6) c(K) _< 2RTD (K). 

Therefore using the inequality (2.2), we get from (3.6) the estimate 

A2(K) _< 4A2 (D)TD(K) 2, 

which is the required estimate. 
(2) In the real case we prove m the same way that  

~(K) <_ 2RTI(K), 

where R is the radius of the interval I. Therefore using the inequality (2.3), we get 

-'~1 ( K )  ~ 4/~ 1 (I)TI (K), 

which is the required inequality. [] 

To prove our theorem in higher dimension, we need the following elementary 
slicing lemma. 

L e m m a  3.3. (1) Let B c C  ~ be any complex euclidean closed bail, K c B  be a 
Lebesgue measurable subset and aEOB. Then there exists a complex line L ~ c C  n 
passing through the point a such that A2(BNL~)>0 and 

A2n(K) A2(Kr~L~) 
(3.7) A2~ ( B ~  <- c~n A2(B•La)' 

~here 4 = �88 =4n-~ (n ! ) : / (2n -  1)!. 
(2) Let B c R N  be any euclidean ball, K C B  be any Lebesgue measurable subset 

and aEB. Then there exists a real line l ~ c R  N passing through the point a such 
that AI(BNI~)>0 and 

~l(Knla) 
(3.s) ~ ( ~ : )  < 2N 
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Observe that  c ~ 2 ~ n  3/2 as n--++oc. We conjecture that  the inequality (3.7) 
is true with the constant c'~=n. The inequality (3.8) could be deduced from [BG], 
Lemma 3, with the constant N but the proof given there is not clear for us. So we 
decided to give another proof which uses the same idea of symmetrisat ion but leads 
to the constant 2N instead of N,  unless the point a in the lemrna coincides with 
the center of the ball B. 

Pro@ (1) We can of course assume that  n>_2. Since our inequality is invariant 
under translation, we can also assume that  a = 0 C O B  is the origin and A2~(K)>0. 

Now assume by contradiction that  the inequality (3.7) is not true. Then we 
will have 

 2n(K) 
(3.9) A2(KNL) < c~A2n(B) A2(BNL), 

for any complex line L passing through the origin a = 0  such that  A2(B•L)>0.  
Since relative volume and relative area are invariant under non-singular affine 

transformations,  we can assume that  

B { z -  (Zl,Z~,...,zn) ~ C ~ ; b ~ - n ? + l z 2 1 ~ + . . . + l z ~ l :  < R :} 

and L ~ = { ( w ; ( E C } ,  where w=(wl ,  ... ,w.~)cS 2" i. Then 

L ~ N B  = { (w; l ( I  2 < 2 R R e ( w l }  

is the disc centred at R'gl  of radius R]w~ I which by the last inequality leads to 

(3.10) A2(KNL~) < c'~A2~(B) 

Now, integrating in polar coordinates and using the invariance of the sphere S 2n-1 
by rotation, we obtain the formula 

/ < I 11 (0 
271" 2n 1 J ] r  [ 

where XK is the characteristic function of the set K.  
Using inequality (3.10), we deduce from the last inequality that  

(3.11) A2,~(K) < 2 2~ 2R2" X2~(K) ~ ,  2c:,A2,,(B) ~,~ 1 Iw112'~ dcr2n-l(w)" 
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Now, an elementary computation using spherical coordinates leads to the formula 

f s  ~ 2(n!)2 (3.12) 2,~_1 Iwl12nd~2~'-l(~) (2~-1)! T2~' 

where ~-2~ is the volume of the euclidean unit ball in R 2n. 
The last formula (3.12) combined with (3.11) leads finally to the inequality 

A ~ n ( K )  < - -  ~ r ~ - - ~  = A ~ n ( K )  2c'~,~(B) (2~-~)! 

which yields a contradiction. 
(2) As in the complex case, we assume that  a 0 is the origin in R N, AN(K)>0  

and the ball B is of radius 1. 
First, observe that  A I (B Al~)< 2 for any real line l~ passing through the point 

a, then to show (3.8) it is enough to prove that  

1 AN(K) <__AI(KNla) 

for some real line l~. 
Assmne by contradiction that  the last inequality is not true. Then we will have 

(3.13) ~ ( /~nt )  < 
U A~(B) 

for any real line l passing through the origin a=0.  
L e t / s  be the annulus with the same center x0 as B and of radii r and 1 ( r<  1) 

such that AN(K)=AN(K). 
Then we deduce the formula 

r (1 AN(K)~ I/N 
~ ( B ) ;  " 

Denote by e ( / ~ ) : = l - r  the depth of the annulus _K and observe that  

( AN(K)'~ UN 1 AN(K) 
e(/~) = 1 1 AN(B) J -> N AN(B)" 

The last inequality together with (3.13) lead to 

(3.14) e(R) > ~(Knl)  
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for any real line l passing through a. 
Now, observe that,  if l is any real line passing through the origin such that  

INB(zo, r)r then ~I(KN/)_>2e(K) and hence from (3.14) we derive the inequality 

(3.15) AI( NZ) > 2 I(KnZ) 

for any real line 1 passing through the origin a=0 .  
Now to get a contradiction with the fact that  AN(K)=~N(K), it is enough 

to construct a Borel set K ( ~ ) c K  such that  ~N(K)<_AN(K(~))<~N(K). For the 
cons t ruc t ion  of the set K (8), we will use the inequality (3.15) and a special sym- 
metrisation process following an idea of [BG 1. Indeed, let 1 be a given real line 
passing through the point a - 0 .  Then, it follows from (3.15) that  the segment t?Nl 
contains an extreme segment I(Knl) (i.e. issued from the boundary of BN1) with 
length equal to ~I(KNI)  and of maximal distance from the origin a=0.  Then from 
the inequality (3.15), it follows that  I(KA1)C!~NI. Now denote by K (~) the union 
of all the segments I(KNI) when l runs over all the real lines passing through the 

origin. Then K (~) C K  and 

(3.16) ,~N(K (~)) < )~N(K). 

On the other hand, from the construction of the set K (~), we see that  if I is a 
real line passing through the origin a=0,  then for any ~-~(KNI)\K (~) and any 
t~ (K (~) Nl)\K we have 17-I_< Itl- Since ~ (Knl)-~l (K(~) nS ,  it follows that  

(3.17) 

for any real line l passing through the origin a=0.  
Now, integrating in polar coordinates we obtain 

,~N(K):I ~sN_I ( L  ITI N 1XK(~-w) dz-) dCYN l(W) 

= I~ ~SN--~ (LNI ]~-IN-l d~-) l(W), 

where XK is the characteristic function of the set K and l~={t.w;tER}. 
Using the last fbrmula and the inequality (3.17), we obtain 

AN(h~) <-- ~ fs~N_~ (/t~(~)nlw 't'N-a dt) d~rN-l(w) 

<_ ~ ~-~ Itl XK(~)(tw)dt dCrN-I(W) <_)~N(K(s)), 

which proves that  the set K(s) satisfies the required properties. [] 
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Now we are ready for the proof of Theorem 3.1. 

Proof of TheoTvm 3.1. (1) By outer regularity of the Lebesgue measure and 
the relative logarithmic capacity, we can assume that  K c B  is a compact  set with 
non-empty interior in C '~ so that  A2~(K)>0 and T B ( K ) > 0 .  Therefore V ~ C s  '~) 

and by the maximum principle there exists aCOB such that  V ~ ( a ) = s u p  B V~. By 
translation we can assume that  a = 0  is the origin in C ~. Now the key of the proof is 
contained in the following fundamental  observation: For any complex line L passing 
through the origin a=0 ,  K N L  is a compact subset of the complex disc B A t  in L and 
TBnL(KNL)<TB(K) .  Indeed identifying L with the complex line C, we see tha t  

any function u C s  '~) with u l K < 0  satisfies U+[LE/2(C) with U+I(KnL)--<0. Then 
from the definition of VKnL, it follows that  VK<_VKnL on L. Since a E B N L  and 

m a x a  V[4=V[~(a), we deduce that  maxB V~_<maxBnL Vd(nL, which implies that  

~BoL(KnL)<TB(K) .  
Now by the complex slicing lemma, we can find a complex line LC C ~ passing 

through the point a = 0  such that  A2(KNL)>0  and 

(3.18) A2,~(K) , X2(KNL) 
a~(B----~ -< cn a~(BnL) ' 

Therefore from (3.18) and (3.4) we finally deduce that  

~,~(K) _< 4e~T~(K)~ ' (3.19) ~,~(B) 

which is exactly the required inequality (3.1). 

(2) We assume for simplicity tha t  G c C  ~ is a generic subspace of complex 
dimension l < m  < n - 1  (the totally real case m - 0  can be t reated in the same way). 

By the invariance of the Lebesgue measure and the relative capacity TB by unitary 
transformations,  we can assume that  G I = C  "~ •  n-re. By outer regularity of the 

Lebesgue measure and the relative capacity TB, we can assume that  K C B  is a 
compact  subset with non-empty interior in G so that  A~+,~(K)>0.  Let us prove 
that  T B ( K ) > 0 .  Indeed, since K is a compact  subset with non-empty interior in 
G,  there exists an interval I c R  of positive length and a disc D c C  with positive 
radius such tha t  D ' ~ •  Then by the product property of the extremal  

function (see [Sill), we get 

vK(~, r _< max{VD (~d, V, (r ; 1 < i < .~ and 1 ___ j _< ~ - . ~ } ,  

for any z=(z l ,  ..., z ,~)r "~ and r  ~ "~. Therefore VK is locally bounded on C ~ 
and then TB(K)>O.  Then V~eZ:(C n) and there exists a e B  such that  V~.(a)= 

SUPB V~. 
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By translation we may assume that  a = 0  is the origin in G. Then by the real 
slicing lemma, there exists a real line l c G passing through the point a = 0  such that  
)~1 (KAI) >0 and 

(3.20) ~+~r~(K)  < 2 (n+~ ,4  ~ t ( K n l )  

Let L : : l + i l  be the complex line in C n generated by the real line l. As in the 
complex case we see easily that  TBnl(KNI)<_TB(K) and then fl'om (3.5) and (3.20) 
we deduce that  

(3.21) ~ + , ~ ( K )  < S(n+~)T,(K) ,  
X,~+.~(B) - 

which is exactly the required inequality (3.3). [] 

It is interesting to observe that  from the formula (2.7) it follows that  out" relative 
Polya's inequalities leads to the following quantitative version of the Bernstein 
Walsh inequality. 

Corollary 3.4. (1) For any closed complex euclidean ball B c C  ~, any Borel 

subset K c B  and any function uCL(C~),  

1 1 ;~2n(K) 
(3.22) SUPB U __< SUPK U+ XZ log Cn -- ~ log /~2n (B)  , 

where c~ is the constant given by the formula (3.2). 
(2) Let G c C  n be any generic subspace of complex dimension r e < n - 1 .  Then 

for any closed real euclidean ball B C G ,  any BoreI subset K C B  and any function 

(3.23) sup u < sup u+log 8(n+m)  - log  A~+,~(K) 
B - /~ A n + ~ ( B ) '  

Let us mention that  in the totally real case G R ~, inequalities like (3.23) were 
obtained earlier by A. Brudnyi (see [B1], [B2]). 

From the relative Polya's inequalities (3.1), (3.3) and Alexander Taylor's in- 
equality (2.12), we deduce the following interesting comparison inequalities between 
the relative volume and the relative Monge-Amp~re capacity. 

(1) For any complex euclidean ball B c C  n and any Borel Corollary 3.5. 
subset K c B ,  

(3.24) - -  _< c,~ exp(-2cap(K;  B) - l /n) ,  

where e~ is the constant given by (3.2). 



Polya's inequalities, global uniform integrability and plurisubharmonic lemniscates 97 

(2) Let G C C  '~ be a generic real subspace of complez dimension 0 < r n < n - 1 .  
Then for any euclidean ball B c G  and any Borel subset K C B ,  

(3.25) A'~+m(K) < 8 ( I + ~ 2 ) ( n + r n ) e x p ( -  cap(K;B)  J/n), - 

where B is the euclidean ball in C ~ such that B A G = B .  

Proof. (1) The inequality (3.24) is a direct consequence of (2.12) and (3.1). 
(2) Let us prove the inequality (3.25). Since both the relative volume and the 

relative capacity are invariant under non-singular aflqne transformations, we can 
assume that  G = C ' ~ x R  ~-m, B is the unit real euclidean ball in G and B is the 
unit complex euclidean ball in C n. Then by (3.3), we have 

< 
- 

On the other hand, by (2.12), we have 

TB (K) < exp(-eap(K;  B)-I/ '~). 

S o  to prove ( 3 . 2 3 ) ,  it remains to estimate Tu(K)  from above by Tu(K) .  Indeed, 
from the definition of the extremal function VB, it follows that  

V~:(z)<_m~xV~:+VB(z), z ~ C  ~. 

Therefore, we get 

(3.27) exp VB) rB (K/. 

It remains to estimate maxB VB. Since R ~ c G ,  the euclidean unit ball B in G, 
contains the euclidean unit ball D of R ~ and then VB<__VD on C n, which implies 
that  maxB VB_<maxB Vz). Now by Lundin's formula (see [Lu], [$2] and [K1]), we 
have 

(3.28) VD (z) = max{log Ih(~-z)l ; ~ G S '~-x }, z G C "~, 

where h(C):=~+ ~/~2_ 1 for C E C, with the right branch of the square root, S ~- 1= 
OD is the euclidean unit sphere of R ~ c C "  and ~.Z=~l<j<_,~j.z j. It is easy to 
see from the formula (3.28) that  

n l a x  V D = max V D (z) = n l a x  log [h(r [ = log( l+  x/2 ) 
B I~I-i Ir 

and then exp(maxB VB)_<exp(maxB VD)=I+x/2 ,  which by the inequalities (3.27) 
and (3.26) implies the required inequality (3.25). [] 
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It  is interesting to observe tha t  the inequMity (3.25) shows that  the Lebesgue 
measure on any generic subspace restricted to any hyperconvex domain f t c C  n is 

dominated by capacity in a strong sense and then by a result of S. Kolodziej, it 
belongs to the image of the complex Monge Ampere operator acting on the class 
of bounded plurisubharmonic functions on t2 (see [K1], [K2] and [C1]). 

Remarks 3.6. (1) Polya's  inequalities (3.1) and (3.3) can be stated in one for- 
mula as follows. Given a generic subspace G c C  ~ of complex dimension 0 < r e < n ,  
then for any euclidean ball B C G  and any Boret subset K c B ,  we have 

(3.29) < Q,~T~(K)I+['~/~], 

wherec  ..... ~ :=8 (n+m)  i f 0 < m < n - 1  andc~,n:=Cn. 
We can deduce from the general relative Polya's inequality (3.29) analogous 

inequalities in terms of relative volume and relative logarithmic capacity with re- 
spect to balls associated to any fixed real norm on the generic space G. Indeed, if 

we denote by I" I the euclidean norm and we are given another real norm I1" II on 
G, then there exist two constants c~, f l>0  such that  

 11 11 Izl  PI IP, z G. 

Then given a ball B '  for the norm [1" II, there exists a ball B for the norm [. I such 
that  c~BcB 'c /3B .  Then it follows easily from (3.29) tha t  for any Borel set K c B ' ,  
we h a v e  

(3.30) _< c . . . . .  

(2) Observe that  the relative Polya's inequalities proved above are optimal as 
far as the exponents are concerned. Indeed we will use inequality (3.30) for the 
sup-norm, since in this case, explicit computat ions can be made using the product 
formula for the relative logarithmic capacity. Let B1, ..., B~ be regular sets in C, 

K1, ..., K.,~ Borel subsets such that  Kj  C B j  for j = 1, ..., n and set /~:=/~1 X... X Kn 
and B:--B1 • ... • B,~. Then using the product  property for the extremal function 
(see [Sill), we get the formula 

(3m) TB(K)= min TB(Kj). 
l<_j<_n a 

In the case where G = C  ~, take B ~ to be the closed unit polydisc A ~ in C "  and 
K~.:={zEAn;Izl l<r}.  Then the relative volume of K.,- with respect to A ~ is 
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t2,~(K~)/A2,~(A'~)=r 2 while its relative logarithmic capacity is TAr~(Ig,,.)=r. By 
(3.30) this proves that  the exponent 2 in the complex Polya's inequality (3.1) is the 
best possible. 

In the totally real case, we can assume that  G = R  n and consider an analogous 
example with intervals. Take B'  to be the unit n-cube I n, where I : = [ - 1 ,  +1] is the 
closed unit real interval, and define P~(r):= {z E I~ ; IZ l l< r  }. Then it is easy to see 
that  

r r 
Ti~(Ir~(r))-- 1 +  lx/i~_r2 ~ ' ~ ,  as r--+O, 

while the relative n-volume of I~(r) with respect to I n is equal to r, which proves 
by (3.30) that  the exponent 1 in Polya's inequality (3.3) is the best possible in this 
CaSe. 

Now if G = C  '~ •  ~-m with l < r n < n - 1 ,  it is enough to take B ' = A  "~ •  n- '~ 
and K.~.:=A ~ • P~-m(r).  Then TB,(K,.)~�89 as r-+0, while t,~+,~(/~,.)/A,~+,~(B')= 
r, which prove again by (3.3o) that  the exponent 1 in Polya's inequality (3.3) is the 
best possible in this case. 

4. The relative size of  plurisubharmonic lemniscates 

Here we want to deduce from tile relative Polya's inequalities an estimate on 
the relative size of plurisubharmonic lemniscates (i.e. sublevel sets) associated to 
two important  classes of plurisubharmonic functions. 

Let us start with estimating precisely the size of the plurisubharmonic lemnis- 
cates associated to the Lelong class/ : (C~).  

Theorem 4.1. (1) For any complex euclidean closed ball B c C  '~ and any 
u E s  ~) with InaxB u--0, 

(4.1) t 2 ~ ( { z ~ B ; u ( z ) _ < - s } )  _<cne-2~ ' s > 0 ,  
A2~(B) 

where c~ is the constant given by (3.2). 
(2) Let G C C  ~ be a generic real subspace of complex dimension rn<n-1.  Then 

C ~ for any real euclidean closed ball B C G  and any "aEs ) with maxB u=O, 

(4.2) k~+~({x C B;u(z)  _< -s})  < 8(n+m)e-*,  s > 0. 
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Pro@ (1) Let B c C  n be an arbitrary complex ball and let u c s  ~) with 
maxBu=0 .  Set E , ( u ) : = { z E B ; u ( z ) < t }  for t<0.  Then u t<<_VE,(~) on C ~ and 
then -- t=maxB u t<_maxB Vz,(~). This implies that  TB(Et(u))<_e t for any t<0.  
Now in order to get the estimate (4.1), it is enough to apply the complex Polya's 
inequality (3.1) to the Borel set Et(u) with s = - t .  To prove the estimate (4.2), we 
proceed in the same way using the real Polya's inequality (3.3). [] 

Observe that  estimates of plurisubharmonic lemniscates were obtained in the 
complex case earlier by the third author in a more general context but with less 
precise exponents (see [Z2! and [Z31). 

In particular, observing that  ( l /d) log  IPl ~C(C ~) for any polynomial P~C[~] 
with degree d_>l, we obtain the following precise estimate for polynomial lemnis- 
cares. 

C o r o l l a r y  4.2. (1) For any complex ball B c C  '~ and any polynomial PEC[z] 
of degree d>_l satisfying ItPHB=I, we have 

(4.3) X2~({z e g ; IP(z)I _<ed}) 
A2~(B) < c~e2' e el0, 1], 

where cn is the constant given by (3.2). 
(2) Let G c C  ~ be a generic subspace of complex dimension 0 < r e < n - 1 .  Then 

for arty ~al euclidean ball B C G  and any polynomial P~C[z] of degree d>_l satis- 
fying IIPllB=I, we have 

(4.4) ) ,~+,~({zEB;IP(z)I  <e~}) < 8 ( n + m ) e ,  eC]0, 1]. 

All these estimates are optimal as far as the exponents are concerned (see 
Remarks 3.6 above). The first inequality is an improvement of previous results (see 
[CDL], [Z2] and [Z3]) and answers a question asked by the third author in [Z2]. In 
the totally real case where G = R  '~, the second inequality appears also in [BG]. 

Now let us estimate the size of plurisubharmonic lemniscates associated to the 
Cegrell class 5~(ft). These estimates are important in the study of the complex 
Monge Ampere equation (see [Kt] and [K21). 

T h e o r e m  4.3. Let f~cC '~ be a hyperconvex open set. Then for any plurisub- 
harmonic function ~ Ehc(Q) with fa (ddC~) ~ <_ 1, we have 

(4.5) e _< < > 0, 

where T2n(ft) is the volume of the smallest euclidean ball of C ~ containing f~ and 
c~ is the constant given by (3.2). 
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Moreover, if G c C  ~ is a generic subspace of complex dimension r e < n - 1  such 
that D : = f t N G / ~ ,  then for any s>0,  

where v,~+,~(D) is the volume of the smallest euclidean ball of G containing D. 

Observe that  our estimates are sharp as far as the exponents of decrease are 
concerned and improve previous estimates obtained in the complex case by Kolodziej 
and the third author (see [K1], [K2] and [Z2]). 

For the proof of this theorem, we will need the following elementary lemma. 

L e m m a  4.4. Let f t c C  '~ be a hyperconvex open set. Then for any ~i}z( f t ) ,  

(4.7) cap({z C a ;(p(z) < - s} ;  ft) < __1 (dd~.qD),,, s > O. 
- -  S n 

Pro@ (1) Assume first that  ~ is a bounded plurisubharmonic function on f~ 
with boundary values 0 and finite Monge Amp6re mass on ft. Let s>0  be fixed 
and K C f t ( p ; s ) :  {zEf~;~(z)<-s}  be any fixed regular compact set in the sense 
that  the plurisubharmonic measure hK of the condenser (K, [2) is continuous on ft. 
Since hK and ~ have boundary values 0, from the comparison principle (see [BT1] 
and [K1]) it follows that  

caP(K;f t )=/K(dd~hK)~<-/~  l~<h~ } (ddChK)~<- --st ~1 f ( d d ~ )  ~- 

Taking an exhaustive sequence of regular compact subsets of the open set ft(s; ~) 
and using interior regularity of the capacity we obtain our inequality in this case. 

(2) Now for an arbitrary given fhnction ~EZ-(f/), there exists a decreasing 
+oo sequence (~J)j=l of bounded plurisubharmonic functions with boundary values 0 

which converges to ~ such that  

(see [C2] and [CZ]). Then the estimate (4.7) follows from the first case and the 
lemma is proved. [] 

Now we can prove the theorem. 

Proof of Theorem 4.3. (1) Let B be the smallest euclidean ball of C ~ con- 
taining ft. Let ~CSc(f~) be as in the theorem and set f~(~;s):={zcft;9(z)<_-s} 
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and c(s)=ca(s, ~):=cap(f t (F;  s); f~) for s>0.  Then applying inequality (3.24), we 
obtain 

(4.8) A2n(f~(~; s)) _< cnA2~(B) exp ( -2ca ( s ) - l /~ ) ,  s > 0. 

Now the estimate (4.5) follows from the estimate (4.8) using the estimate (4.7). 
The estimate (4.6) is proved in the same way using the inequalities (3.25) 

and (4.7). [] 

Remarks. The exponent of decrease of the volumes in the last theorem is sharp 
as simple examples show (see Remarks 3.6). Up to the normalization factor 2% the 
estimate (4.5) with an exponent arbitrary close to 2 was obtained in [K2] (see 
also [z2]). 

5. G l o b a l  b e h a v i o u r  o f  t h e  L e l o n g  c lass  

The next application of our theorems from the last section will concern the 
Lelong class of plurisubharmonic functions with logarithmic singularities at infinity 
defined by the formula (2.5). 

The Lelong class of plurisubharmonic functions is known to play an important 
role ill pluripotential theory (see [L1], [BT2], [Sill, [Si2], [$1], [Z], [Z1] and [Z2]). 

Here we want to prove new general uniform integrability theorems for the 
Lelong class of plurisubharmonic functions. 

Let g: R + - + R +  be an increasing function such that 9(0)=0 and l imt~+~ g(t)= 
+oc. For 5>0,  consider the following Riemann Stieltjes integral 

(5.1) Ia(g) := e dg(t). 

Then we have the following result. 

T h e o r e m  5.1. (1) For arty complex euclidean closed ball B c C  ~ and any 
function u e s  ~) 

(5.2) A2n (B) l f B g ( m B a x n - - n )  d) '2~<cf2(9) '  

provided that I2(g)<+oc ,  where c~ is the constant given by (3.2). 
(2) Let G c C  ~ be a generic real subspace of complez dimension rn. Then for 

any real euclidean closed ball B c G  and any function uEZ2(C ~) 

(5.3) 1 /Bg(m~xu ~)dAn+m<8(n+~'~)'l(g ) 
provided that 11 (g) < +oc. 
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Pro@ We can assume g to be strictly increasing. Let p be any Borel measure 
on C n and K G C  n any Borel set. Then for any function u E s  n) with ulK<_O , we 
have 

(5.4) K :  dt 

/o +~ = . ( { ~  e K :  u(z)  < -~}) rig(s). (5.5) 

(i) Assmne that #:=XB~2,~, where BcC ~ is a complex euclidean closed ball 
and uEs ~) with ma• u--0. Then by (5.5), we get 

J; /7 (5.6) g ( - u )  dA~n = A>~({z c B:  u(z) < - s})  dg(s). 

Applying the estimates (4.1) to the formula (5.6), we obtain the inequality 

(5.7) ./, 9(-~)dA~,~ < ~,~,~(~) f§ e-~ dg(~). 
If I2(g)<+oc,  we easily see that limt-~+oo g(t)e 2t=0 and by integration by parts, 
it follows that J0 +~  e -2s dg(s)=/2 (9), which implies the required inequality thanks 
to the inequality (5.7). 

(2) Assume that #:=XBA,~+,~, where B c G  is a real euclidean closed ball and 
u E s  ~') with maxB u=0.  Then applying the estimates (4.2) to the formula (5.6), 
we obtain the inequality 

(5.s) s g(-~)d~ < S(n+m)X~+,~(.) J'+~176 e-'~ ~g(8). 

If [ s (9)<+oc ,  then as in the first case the required inequality follows from the 
inequality (5.8) by integration by parts. [] 

From this general result we derive the following corollaries which will be useful 
later. 

C o r o l l a r y  5.2. (1) For any complex euclidean ball B c C  ~, any function uE 
s  ~) and any 0 < a < 2 ,  

1 /B ( ~ ) ( - c~m~xu)  (5.9) ~2~(B) e-~dA2n<_ l+enx---z_c, exp , 

where c~ is the constant given by (3.2). 
(2) Let G C C ~ be a generic real subspace of complex dimension r e < n - 1 .  Then 

for any real euclidean ball B C G ,  any function u E s  ~) and any 0<c~<1, 

(5.10) A n + m ( B ) l / s e - ~ d A n + ~ < ( l + 8 ( n + m ) l a ~ - c t ) e x p ( - a n ~ x u ) "  
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Proof. (1) Indeed, it is enough to apply Theorem 5.1 with the increasing func- 
tion 9(t) := e at - 1, with 0 < c~ < 2 in the complex case and 0 < c~ < 1 in the real generic 
case .  [~ 

C o r o l l a r y  5.3. (1) For arty eomplez euclidean ball B c C  ~, any function uC 
s  'r') and any real number p>O, 

(5.11) A2.~(B)I/B(~X'-@PdA'~<2pe~2"F(p+I)' 
where F is the gamma function and c,~ is the constant given by the formula (3.2). 

(2) Let G c C  '~ be a generic real subspace of complex dimension m<_n-1. Then 
for any real euclidean ball B c G ,  any function u ~ s  '~) and any real number p >O, 

Pro@ Indeed, it is enough to apply Theorem 5.1 with the increasing function 
g(t) :=t p, t >_ O, which clearly satisfies the required conditions. [] 

Now we want to study the global behaviour of the Lelong class s  esti- 
mating uniformly the size of the deviation between a function and its mean values 
on complex or real euclidean balls. 

Let us recall the general definition of the space BMO. Let G be a real euclidean 
space of dimension k > l  and let A~ be the Lebesgue measure on G. For a locally 
integrable function f :  G ~ R  and any euclidean ball B C G ,  define the mean value 
of f on B by 

fB . -  A~(B~) f dAk. 

Then we say that  f E B M O ( G )  if and only if 

IlfrlBMO(G) :=sup ~ ~ If - fgl dAk < 

where the supremmn is taken over all the euclidean balls B C G. 
Let us first prove the following result which can be considered as a quantitative 

version for the Lelong class s  ~) of the classical John Nirenberg inequality for 
BMO-functions (see [St]). 

T h e o r e m  5.4. (1) For any complex euclidean ball B c C  ~, any function uC 
Z;(C '~) and any real number a < 2 ,  

A2,(B) e " l ' - ' s l d A 2 . _ <  1 + 0 , ~  e x p v ,  

where U B : = ( 1 / A 2 , ( B ) ) f s  udA,,, and c,, is" the constant given by (3.2). 
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(2) Let G c C  n be a generic real subspace of complex dimension 0 < r e < n - 1 .  
Then for any real euclidean ball B C G ,  any function u ~ s  '~) and any real number 
cx<l, 

(5.14) 1 e<~ ~BJdA~+m < l+s(,~+.~)l_~ ~ 
~,~+~,(s)  

Proof. (1) From Corollary 5.2, it follows that  for a fixed function u E s  ~) 

and any euclidean ball B c C *~, 

1 /B ea(maxB u u) O~ (5.15) A2,,~(B) d,~2n <_ l + c n  2_Oz 

Now, from Corollary 5.3, we get 

(5.16) maxu  UB < 1 _ ~en 
B 

Therefore by (5.15) and (5.16) we get 

a2n(B) JB -- \ 2 - - a /  

The real ease is proved in the same way. [] 

Observe that  in the complex case a bet ter  estimate can be obtained using a 
refined version of the inequality (5.16) due to Lelong (see [L2], [D] and [Si2]). 

From the last theorem we deduce the following result which is an effective 
version of a result by E. Stein (see [St], [B2]). 

C o r o l l a r y  5.5. Let G c C  ~ be a generic real subspace of complex dimension 
m<_n. Then .for any function uds  u l o c B M O ( G  ) and 

I[UlIBMO(r <_ ~rw~- 

In particular, for" any polynomial P C C [z], with, deg P = d > 1, 

(5.17) ][l~ < ~ ...... d. 

Her~ ~ ..... :=21og(l+S(n+.~))+S(n+.~) if 0 < ~ < ~ - 1  and ~,..,~:=log(l+c~)+ 
�89 where c~ is the constant given by (3.2). 

In the totally real case where G = R  ~, the existence of a (non-effective) uniform 
bound for the BMO(R~)-norm of plurisubharmonic functions of logarithmic singu- 
larities on C ~ was proved earlier by A. Brudnyi with a different proof (see [B1], 
[B2]). Our proof gives a precise quantitative estimate of the uniform bound. 
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6. Global  uni form integrabi l i ty  of p lur i subharmonic  funct ions  

Here we want to give a sufficient condition for global integrability of plurisub- 
harmonic functions in terms of the relative Monge Ampere capacity of their sublevel 
sets. Then we will deduce a global integrability theorem for the class of plurisub- 
harmonic functions with uniformly bounded Monde-Ampere masses. 

For any u c P S H  (~) and any Borel subset E C ~  we define the truncated 
plurisubharmonic lemniscates associated to u as E(s, u):---{z E E ; u ( z ) < - s }  for s > 
O, and the corresponding capacity function 

cE(s, u) = Cap(E@, u); f~). 

Let L / c P S H  ([~) be a class of plurisubharmonie functions on [~ and define 

cE(s,Lt)::sup{cE(s,u);uELt},  s > 0 .  

Let g: R + ---~R + be an increasing function such that  g(0)=0 and limt~+oo g(t)-+oo. 
As in the last section, consider the following Riemann Stieltjes' integral for 5>0, 

(6.1) h (g )  := e -~t dg(t). 

The main result of this section is the following theorem. 

T h e o r e m  6.1. Let N c P S H - ( f ~ )  be a class of plurisubharmonic functions on 
and E C ~  a Borel subset such that 

= rl(E; bl) := sup scE(s, ~,{)l/n < @00. 
s>0  

Then the following properties hold: 
(1) For any function uCLt, 

E g(u) d 2n <_ CnT2n(E)I2/77(g), 

provided that I2/v (g) < +oc, where T2n (E) is the 2n-volume of the smallest complex 
euclidean ball of C ~ containing E and c~ is the constant given by (3.2). 

(2) Let G c C  ~ be a generic real subspace of complex dimension m<_n-1 such 
that f t N G r  and ECf~NG. Then for any function ucN, 

s  < (-u) 8 

provided that I~/~(9)< +ec, where ~n+,~(E) is the (n+ra)-volume of the smallest 
euclidean ball in G which contains E. 
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Pro@ By approximation we can assume that  g is strictly increasing. Let # be 
any positive Borel measure on t2 and uEPSH-(Q) .  Then 

(6.2) g(-u) d,  = ~({~: ~(~) < -s})  dg(s). 

Now let /z=XEA2,, and B be a complex euclidean bail of C '~ containing E. Then 
by (3.24) we get 

A2,~({z �9 E;u( z )  < - s } )  < c~A2,,(B) exp( -2cE(s ,  u)-l /~) .  

Therefore fi'om (6.2) we conclude that  

(6.3) g(u)dA2n<e~;~2~(B) exp(-2cE(s,u)  1/n)dg(s). 

prom this and the hypothesis, we deduce that  

which proves the required estimate. The real generic case is proved in the same 
way. [] 

From this result we can deduce the following corollaries. 

C o r o l l a r y  6.2. Let b / c P S H - ( t 2 )  be a class of plurisubharmonic functions on 
ft and ECf t  be a Borel subset such that 

~'] = I ] ( ~ ; U )  : =  s u p  8CE(S,b[) 1In < +eND. 
s>O 

Then the following properties hold: 
(1) For any function u�9 and any exponent 0<c~<2/r/, 

- 2_c~rl, 

where 7-~(E) is the 2n-volume of the smallest complex euclidean ball of C n con- 
tainin 9 E, and cn is the constant given by (3.2). 

(2) Moreover if G c C  ~ is a generic real subspace of complex dimension m<_ 
n - 1  such that f~OGr and ECf~OG,  then for any function u �9  any real 
number 0 < c~ < 1/~], 

JDe  - ~  dA~+m < An+.~(D) +8 at/ (1+ X/2 )(n+m)T~+,~(D)-1 - ~ '  

where ~-,~+,~(D) is the (n+m)-volume of the smallest euclidean ball of G contain- 
ing D. 

Prom the last result we can also deduce the following consequence. 
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C o r o l l a r y  6.3. Let N c P S H - ( ~ )  be a class of plurisubharmonic functions 
on ~. Then the following properties hold: 

(1) If  
"y := lira sup sca(s,ld) 1/~ < +oo, 

s-++oo 

then for any ezponent 0<c~<2/% there exists a constant A2n=A2~(oz, 5, f~,bt)>0 
such that 

.s e ~'~ dA2n < A2n, ~ bt. ~t 

(2) If G c C  n is a generic real subspace of complex dimension r e < n - 1  such 
that D : = ~ N R ' ~ 0  and 

5 := lira sup sc> (s, bt) 1/~ < +oo, 
s ~ + o o  

then for any c~< 1/5, there is a constant A ..... A~,~(c~, 5, D, 5/)>0 such that 

./D e - ~  dAn+,~ < C gg. U 

Proof. (1) I f -y<+oo,  then for any c~<2/% there is s0>0 and ~/0>0 such that  
c~ < 2/'y0 and 

sc~(s,u) 1/~ ~ ~/o for all s>  so and uCg/.  

Then if we define the class V:=g/+s0,  it ibllows that  

tc~(t, v) 1/'~ <-To for all t_>0 and v E )2, 

which implies that  r]: r / (~ ,P)~70.  Therefore, since a<2/~/o<_2/rj, we can apply 
Theorem 6.1 to the class Y and get the estimate 

f e - ~  d~2n < A2~(~) + c n ~ ( ~ )  ~J  
- 2 _ a t  I �9 

This inequality implies clearly that  

~ e  - ~  d~,2~, < X2~(~) +c ,~-~(~)e  ~~  
- 2 c ~  1' u C / . / ,  

which proves the first estimate of the theorem. The second estimate is proved in 
the same way. [] 

Now we will give an application of Corollary 6.2 to the global uniform inte- 
grability of the Cegrell class of plurisubharmonic functions of uniformly bounded 
Monge Ampere mass on a bounded hyperconvex domain. 
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C o r o l l a r y  6.4. (1) For" any ~ < 2  and any ~EJz(~) with f~(dd~)~_<l, 

(6.4) dnf e -~ (~)  d)~2~,(z) < A2~(f~)+c~72~(f~) 2 c~ 
--O~ 

where c~ is the constant given by (3.2). 
(2) If  G c C  ~ is a generic real subspaee of complex dimension re_<n-1 such 

that D:=f~NG~0,  then for any c~<1 and any ~ Y z ( Q )  with f~(dd~9~)~_<l, 

./D 
Pro@ Consider the class/d of plurisubharmonic functions 9~EF(f~) such that  

fa(dd~9~)~<l. By Lemma 4.4, we get the inequality 71=~(E, bt)_<l for any Borel 
subset ECFt. Hence the results above follows immediately from Corollary 6.2. [] 

A uniform estimate of type (6.4) was obtained recently in [CZ] with a different 
method and a non-explicit uniform constant, while the estimate (6.5) seems to be 
new.  

As in Section 5, from Theorem 6.1 we can deduce uniform L p estimates for 
functions from the class 5c(ft). 

C o r o l l a r y  6.5. (1) For arty ~ 5 ( t 2 )  and any real numberp>O, 

where c~ is the constant given by (3.2). 
(2) If  G C C  ~ is a generic real subspace of complex dimension r e < n - 1  such 

that D : = ~ N G r  then for any 9~Yz(f~) and any real number p>O, 

/ f \pl~ 
/D (--~)P d)~,,~+m _< 8(1+ xf2)(n+m)%~+,~(D)F(p+I) ~ L (dd ~9~) n) . 

Pro@ Indeed, by Lemma 4.4 the real number ~?--rl(E, ld ) for the class /d of 
plurisubharmonic functions ~E)r(t2) such that  Ja (ddr 1 and any subset E C f/ 
satisfies the inequality 71_<1. Since the function Ia(g ) is decreasing in 5, we easily 
see that  the corollary is an easy consequence of Theorem 6.1 with the function 
g(t) [] 

Acknowledgements. We thank Urban Cegrell for his usef]fl comments on the 
paper and for pointing out a mistake in our earlier version of Lemma 3.3. 
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