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Polya’s inequalities, global
uniform integrability and the size
of plurisubharmonic lemniscates

Slimane Benelkourchi, Bensalem Jennane and Ahmed Zeriahi

Abstract. First we prove a new inequality comparing uniformly the relative volume of a
Borel subset with respect to any given complex euclidean ball BC C™ with its relative logarithmic
capacity in C™ with respect to the same ball B. An analogous comparison inequality for Borel
subsets of euclidean balls of any generic real subspace of C" is also proved.

Then we give several interesting applications of these inequalities. First we obtain sharp
uniform estimates on the relative size of plurisubharmonic lemniscates associated to the Lelong
class of plurisubharmonic functions of logarithmic singularities at infinity on C™ as well as the
Cegrell class of plurisubharmonic functions of bounded Monge—Ampere mass on a hyperconvex
domain Q€ C™.

Then we also deduce new results on the global behaviour of both the Lelong class and the
Cegrell class of plurisubharmonic functions.

1. Introduction

Local uniform integrability and estimates on the size of sublevel sets of plurisub-
harmonic functions in terms of capacities or various measures have been studied ear-
lier in several works (see [CDL], [Ki], [K2], [Z2], [Z3], [P] and [BJ]). Such estimates
turn out to be useful in many areas of complex analysis such as pluripotential theory,
Padé approximation and complex dynamics (see [Ki], [K1], [K2], [CDL] and [FG]).

Our aim here is to generalize the classical Polya’s inequality to subsets of any
generic subspace of C™ and to give several new applications to the study of the
global behaviour of two important classes of plurisubharmonic functions.

More precisely, given a generic subspace GCC"™, we prove a new inequality
estimating from above the relative volume in G of a Borel subset with respect to a
euclidean ball BC G in terms of its relative logarithmic capacity in C™ with respect
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to the same ball B, up to a multiplicative numerical constant which depends only
on the dimension of G but not on the “condenser” considered.

Formulated in this way, Polya’s inequalities turn out to play an important
role in applications, implying interesting results which improve significantly earlier
results obtained by several authors (see [CDL], [K2], [Z1] and [Z2]).

Indeed, first we easily deduce new estimates on the relative volume with respect
to balls in a generic subspace of C™ of the plurisubharmonic lemniscates associated
to the Lelong class of plurisubharmonic functions with logarithmic singularities
at infinity on C™ as well as the Cegrell class of plurisubharmonic functions with
bounded Monge-Ampere mass on a bounded hyperconvex domain of C™.

Then we give estimates on global uniform integrability of the Lelong class of
plurisubharmonic functions with logarithmic singularities at infinity on C™ with
respect to the Lebesgue measure on any generic subspace. These estimates can be
considered as precise quantitative versions for the Lelong class of the well-known
John-Nirenberg inequalities for BMO-functions on R™ (see [St]).

In particular we prove that restrictions to any generic subspace GCC™ of
plurisubharmonic functions with logarithmic singularities at infinity on C” are in
BMO(G) with a uniform explicit bound on their BMO(G)-norms depending only
on the dimension of G.

Finally we give a general sufficient condition for uniform integrability of a given
class of plurisubharmonic functions on some domain in terms of the behaviour of the
relative Monge—Ampere capacity of their sublevel sets with respect to this domain.
In particular, we deduce a new global uniform integrability result for the Cegrell
class of plurisubharmonic functions of uniformly bounded Monge-Ampere masses
on a bounded hyperconvex domain.

2. Preliminaries

Let us recall the classical Polya’s inequality (see [R] and [T]). For convenience,
let us first recall the definition of the logarithmic capacity ¢(K) of a compact subset
KcCC. Let Dy CC be the unbounded component of C\K and let gp_ be the
(subharmonic) Green function of the domain D, with logarithmic pole at infinity.
Then the logarithmic capacity of K is defined by the formula

(2.1) —log ¢(K) :=limsup(gp_ (2)—log |z|).

EAade o]

It is well known that K CC is a polar compact subset if and only if ¢(K)=0; and
also that if ¢(K)=0 then the area of K is 0. Moreover if K CR and ¢(K)=0 the
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length of K is 0. There are quantitative versions of such results known as Polya’s
inequalities which we state now.
For any compact subset K CC,

(2.2) Ao(K) <me(K)?,

with equality for a disc, where \; is the area measure on C=R? and ¢(K) is the
logarithmic capacity of K.

Apart from this inequality, there is a corresponding inequality for sets of the
real line RCC. Namely, for any compact subset K CR,

(2.3) A (K) < de(K),

with equality for an interval, where A; is the length measure on R.
Recall that the logarithmic capacity ¢(K) of the compact subset K defined by
(2.1) coincides with its Chebyshev constant (see [R] and [T]), so that

e(K) = inf inf{||PI|{"; P € Pa},

where P is the set of monic polynomials of degree d and || P||x :=sup,c x |P(2)]-

We want to introduce similar quantities in C™. In this case, it is more con-
venient to normalize polynomials by requiring that || P||z:=maxp |P|=1 for some
fixed non-pluripolar compact subset BCC™. Then following classical notation (see
[AT] and [Si2]), we introduce the following Chebyshev constant associated to a com-
pact subset K CC7,

(24)  Tp(K):=inf mt{|[P{*; PEC[], deg P=d and |P|p=1}.

For n=1, it is easy to prove that the two constants ¢ and Tg are equivalent as we
shall see below.

The constant defined by (2.4) is related to the pluricomplex Green function with
logarithmic singularities at infinity on C™, which we will recall below. Its definition
is based on the usual Lelong class of plurisubharmonic functions of logarithmic
growth at infinity on C" defined as

(2.5) L(C™):={uePSH(C") ;sup{u(z)—log" |z|;2€ C"} < +o0}.

The global extremal function with logarithmic growth at infinity associated to a
Borel subset K €C™ is defined by

(2.6) Vi (2) :=sup{u(z) ;ue L(C") and u|x <0}, zeC",
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and its upper semi-continuous regularization Vj in C™ is the pluricomplex Green
function with logarithmic singularities at infinity associated to K (see [Z] and [Sil]).
Recall that if n=1 and K CC is not polar, then V3 coincides with the Green function
of the unbounded component Do, of C\K with pole at infinity extended by 0 on
the set K:=C\ Dq.

It is well known that Vi is locally bounded on C™ if and only if K is non-
pluripolar in C™ (see [Sil] and [Si2]).

By a theorem of Siciak [Si2], we know that if KCC™ is a compact set, then

(2.7) TB(K)zeXP(— mngfé)

The formula (2.7) allows us to extend the definition of the set function Tg(-) to
Borel subsets of C™. Moreover the extended set function is a generalized Choquet
capacity on any bounded domain in C™, which is outer regular (see [Si2]). When
K CB, the constant Tr({K) will be called the relative logarithmic capacity of K with
respect to B in C™.

It is also well known that the null sets for this capacity are precisely the pluripo-
lar subsets of C™ (see [Si2]).

Thus if K CC™ is non-pluripolar then —log Ts(K)=maxg Vj (<+00) is the
best constant for which the following Bernstein—~Walsh inequality holds

(2.8) supu <supu—log Tp(K) for all ue L(C").
B K

There is another relative capacity defined using the Monge-Ampeére operator
(see [BT1]). Here we choose a normalisation of the usual differential operators on
C" so that .

VA —
dd® :=—00.
™
Let Q&C™ be an open set and K C§) a compact subset. Then the relative Monge-

Ampére capacity of the condenser (K, Q) is defined by the formula (see [BT1])
(2.9) cap(K;Q):= sup{/ (dd°u)™;u e PSH(2) and —1<u< O}.
K

This capacity is related to the so called plurisubharmonic measure associated to the
condenser (K, (2) defined by

(2.10) hi(z) :=sup{u(z);u € PSH(R)),u <0 and u|x < -1}, z€&.
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Then if Q€C” is a hyperconvex open set and K Cf? is a compact subset, it follows
from [BT1] that

(2.11) cap(K;Q):/K(ddch}()":/g(ddch})".

We will need the following Alexander—Taylor comparison inequality (see [AT]). For
a fixed bounded domain Q€C™ and a fixed euclidean ball BC C™ such that QCB,

(2.12) T (E) < exp(—cap(E; 2)7/")

for any Borel subset EC().

We will also need to define the Cegrell class of plurisubharmonic functions.
Let Q€C™ be a hyperconvex open set. Denote by F(§) the class of negative
plurisubharmonic functions ¢ on 2 such that there exists a decreasing sequence
(¢7)22; of bounded plurisubharmonic functions on Q with boundary values 0 which
converges to ¢ on (2 and satisfies sup; [, (dd®p;)" <+oo0.

By Cegrell [C2], for ¢€F(Q2), the Monge-Ampere measure (ddp)" is a well
defined Borel measure of finite mass on {2 as the weak limit of the sequence of
measures (dd°p,)", where (cpj);?‘;l is any decreasing sequence converging to ¢ on {2
and satisfying all the requirements of the definition.

3. Relative Polya’s inequalities

Here we want to compare the relative Lebesgue measure on a generic subspace
G CC™ with respect to a real euclidean ball in G with the relative logarithmic
capacity in C™ with respect to the same ball.

First recall some definitions. A real subspace GCC™ is said to be a generic
subspace of C™ if G+JG=C", where J is the complex structure on C". We
denote by G°:=GNJG the maximal complex subspace of C™ contained in G and
set m:=dimg G¢, which will be called the complex dimension of G. Then it is clear
that dimgp G=n-+m.

If m=0 which means that G°={0}, the subspace G is said to be totally real.
If m=n then G=C".

It is easy to see that G CC"™ is a generic subspace of complex dimension m if and
only if there is a unitary automorphism U: C* — C™ such that U(G)=C™ xR"* ™ C
CmxCr—m=C".

Observe that the subspace G CC™ is non-pluripolar in C™ precisely when G is
a generic subspace.
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The subspace GCC™ will be endowed with the induced euclidean structure
and the corresponding Lebesgue measure which will be denoted by Apymm-

Now we can state our version of Polya’s inequality which is the main result of
this section.

Theorem 3.1. (1) For any complex euclidean closed ball BCC™ and any
Borel subset KCB,

Aan (K)

(3.1) o (B) <enTa(K)?,
where

4" (n!)?
(3.2) Cp 1= 2n=1)1"

(2) Let GCC™ be a generic real subspace of complex dimension 0<m<n—1.
Then for any real euclidean closed ball BC G and any Borel subset K CB,

)‘n+m (K)

(3.3) N (B)

< 8(n+m)Ts(K).

We will see below that these inequalities are sharp as far as the exponents are
concerned (see Remarks 3.6). For the proof of relative Polya’s inequalities, we start
to look at the simplest case where n=1.

Lemma 3.2. (1) For any closed disc DCC and any Borel subset K CD,

S

2(K
2(D

~—

(3.4) <ATp(K)?.

>~
~—

(2) For any real closed interval ICR and any Borel subset K C1

A1(K)
A1 (I)

(3.5) <ATy(K).

We do not know if 4 is the best constant in these inequalities.

Proof. (1) By regularity of the Lebesgue measure and the relative logarithmic
capacity in C, we can assume that K is a non-polar compact subset. We can also
assume that C\K is connected since Ag(K)<A2(K) and Tp(K)=Tp(K). Then
the extremal function V}{ is a subharmonic function on C which coincides with the
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Green function of C\ K with a pole at infinity. Therefore it can be represented by
the formula

Vlﬁ(z):/Klog|z—(|du(g“)—logc(K), z€C,

where p:=(1/27)AV} is the normalized equilibrium measure of K. From this
representation formula, we get the estimate

max Vi <log(2R)—log c(K),
where R is the radius of the disc DCC. This inequality implies that
(3.6) ¢(K)<2RTp(K).
Therefore using the inequality (2.2), we get from (3.6) the estimate
Ao(K) <4 (D)Tp(K)?,

which is the required estimate.
(2) In the real case we prove in the same way that

o(K) <2RTi(K),
where R is the radius of the interval I. Therefore using the inequality (2.3), we get
A(K) <4\ (DTi(K),
which is the required inequality. [

To prove our theorem in higher dimension, we need the following elementary
slicing lemma.

Lemma 3.3. (1) Let BCC™ be any complex euclidean closed ball, KCB be a
Lebesque measurable subset and ac€dB. Then there exists a complex line L,CC"
passing through the point a such that A2(BNLg)>0 and

Aon(K) _ , Aa(KNLa)

(3.7) Aan(B) = " 2(BNL,)’

where ¢, =%c,=4""1(n!)?/(2n—1)L.
(2) Let BCRY be any euclidean ball, K C B be any Lebesgue measurable subset
and a€B. Then there exists a real line I, CRY passing through the point a such

that A\ (BNly)>0 and

(3.8)
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Observe that ¢, ~2v/7 132 as n— +o00. We conjecture that the inequality (3.7)
is true with the constant ¢/, =n. The inequality (3.8) could be deduced from [BG],
Lemma 3, with the constant N but the proof given there is not clear for us. So we
decided to give another proof which uses the same idea of symmetrisation but leads
to the constant 2NN instead of N, unless the point a in the lemma coincides with
the center of the ball B.

Proof. (1) We can of course assume that n>2. Since our inequality is invariant
under translation, we can also assume that a=0€dB is the origin and As, (K )>0.

Now assume by contradiction that the inequality (3.7) is not true. Then we
will have

Azn (K)

)\Q(BQL),

for any complex line I passing through the origin a=0 such that Ao(BNL)>0.
Since relative volume and relative area are invariant under non-singular affine
transformations, we can assume that

B={z=(z1,20,...,2n) €C"; |21 — R*+| 2> +.. 4|2 |* < R?}
and L, ={Cw;C€C}, where w=(wy, ..., w,)€S** 1. Then
LB ={Cw;|¢|* <2RRe(w;}
is the disc centred at R of radius R|w;| which by the last inequality leads to

)\2n(K)

(3.10) Ap(KNLy) < T (B)

AR |wi |2, weS*™ 1 w £0.
Now, integrating in polar coordinates and using the invariance of the sphere 271
by rotation, we obtain the formula

1
>\ " K o — 2n—2 .
0= 5 /52"1/<i<2m<w1| (I a0 BhalC) doan-a )

2n—2 p2n—2
2 R

< e w) dra(O) dosaa (w),
2 gan=1 II<2R|wi |
where X is the characteristic function of the set K.
Using inequality (3.10), we deduce from the last inequality that

Aon (K)

3.11 Aon (K <22”*2R%7/ n _ }
(3:.11) 2n(K) 26 Aon(B) Jgon s [ror ™ dorzn 1 (w)
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Now, an elementary computation using spherical coordinates leads to the formula

2(n!)?
12 M dogy 1 (w) =
(312) S () = G,

where 75, is the volume of the euclidean unit ball in R?".
The last formula (3.12) combined with (3.11) leads finally to the inequality

220 2R ), (K) . (n])?

K
Aan(B) < — ) Mo

)!TQn :/\Qn(K)v

which yields a contradiction.

(2) As in the complex case, we assume that a=0 is the origin in R, Ay (K)>0
and the ball B is of radius 1.

First, observe that A\ (Bnl,)<2 for any real line I, passing through the point
a, then to show (3.8) it is enough to prove that

1 An(K
N An(B)

~—

<M (KNl

for some real line /,.
Assume by contradiction that the last inequality is not true. Then we will have

1 An(K)

(3.13) MK < o

for any reNaI line [ passing through the origin a=0.
Let K be the annulus with the same center zy as B and of radii  and 1 (r<1)

such that Ay (K)=An(K).
Then we deduce the formula

(o

Denote by e(IN( ):=1—r the depth of the annulus K and observe that

. AnENN 1 AN(K)
®=1-(1-535) 25z

The last inequality together with (3.13) lead to

(3.14) e(K)> A (KNI
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for any real line [ passing through a.
Now, observe that,Nif ! is any real line passing through the origin such that
INB(zg,r)#0, then Ay (KNl)>2e(K ) and hence from (3.14) we derive the inequality

(3.15) A (KN >2X (KNID)

for any real line ! passing through the origin a=0.

Now to get a contradiction with the fact that /\N(IN( Y=An(K), it is enough
to construct a Borel set K9 CK such that Ay (K)<An(K®)<Ay(K). For the
construction of the set K(*), we will use the inequality (3.15) and a special sym-
metrisation process following an idea of [BG]. Indeed, let | be a given real line
passing through the point a=0. Then, it follows from (3.15) that the segment BNl
contains an extreme segment I(KNI) (i.e. issued from the boundary of BNI) with
length equal to A;(KN!l) and of maximal distance from the origin a=0. Then from
the inequality (3.15), it follows that I(Kﬂl)Cf(ﬂl. Now denote by K (*) the union
of all the segments I(KNI) when [ runs over all the real lines passing through the
origin. Then K®cK and

(3.16) An (K®) < Ay (K).

On the other hand, from the construction of the set K9, we see that if [ is a
real line passing through the origin a=0, then for any re(KnNI)\K®) and any
te (K ND\K we have |7|<|t|. Since A (KNI)=X (K®)N1), it follows that

(3.17) / FIR dr§/ [t Y1 dt
Kl KN

for any real line ! passing through the origin a=0.
Now, integrating in polar coordinates we obtain

/\N(K):%/SNA (/R|T|N1XK(W) dT) doy—1(w)

([ o

where x ¢ is the characteristic function of the set K and [, ={t-w;t€R}.
Using the last formula and the inequality (3.17), we obtain

1
)\N(K)S—/ (/ |t V1 dt) doy—1(w)
2 fov-1 K,
< 1

_“/ (/ |t|N71XK(S) (tw) dt) dcrN_l(w)S)\N(K'(S))7
2 Jov-1\Ur

which proves that the set K (®) satisfies the required properties. [J



Polya’s inequalities, global uniform integrability and plurisubharmonic lemniscates 95

Now we are ready for the proof of Theorem 3.1.

Proof of Theorem 3.1. (1) By outer regularity of the Lebesgue measure and
the relative logarithmic capacity, we can assume that K CB is a compact set with
non-empty interior in C” so that Ay, (K)>0 and Tg(K)>0. Therefore Vi< L(C")
and by the maximum principle there exists a€9B such that Vi (a)=supg V. By
translation we can assume that a=0 is the origin in C™. Now the key of the proof is
contained in the following fundamental observation: For any complex line L passing
through the origin =0, KNL is a compact subset of the complex disc BNL in L and
Tenr(KNL)<Tg(K). Indeed identifying L with the complex line C, we see that
any function € £(C") with u|g <0 satisfies u*|, € L(C) with v"|(xnr)<0. Then
from the definition of Vinr, it follows that Vi <Vgnr on L. Since a€BNL and
maxg Vi =V} (a), we deduce that maxg Vi <maxpnr Vi, which implies that
Tenr (KNL)<Tg(K).

Now by the complex slicing lemma, we can find a complex line LC C™ passing
through the point a=0 such that Ay (KNL)>0 and

Aan (K) < Az(KNL)

(3.18) don(B) = cn BAL)

Therefore from (3.18) and (3.4) we finally deduce that

Azn (K)
)\Qn(B)

which is exactly the required inequality (3.1).

(2) We assume for simplicity that GCC™ is a generic subspace of complex
dimension 1<m<n—1 (the totally real case m=0 can be treated in the same way).
By the invariance of the Lebesgue measure and the relative capacity Tz by unitary
transformations, we can assume that G=C™ xR"~". By outer regularity of the
Lebesgue measure and the relative capacity T, we can assume that KCB is a
compact subset with non-empty interior in G so that Ay, (K)>0. Let us prove
that Tg(K)>0. Indeed, since K is a compact subset with non-empty interior in
G, there exists an interval I CR of positive length and a disc DCC with positive
radius such that D™ x 7™~ CK. Then by the product property of the extremal
function (see [Sil]), we get

(3.19) <4c,Tg(K)?,

Vi (z,¢) <max{Vp(2;),Vi(¢;);1<i<m and 1<j<n—m},

for any z=(z1, ..., 2m ) EC™ and {€C™ ™. Therefore Vi is locally bounded on C"
and then Tp(K)>0. Then VieL(C™) and there exists a€B such that V}(a)=
supp Vi
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By translation we may assume that a=0 is the origin in G. Then by the real
slicing lemma, there exists a real line [ C G passing through the point a=0 such that
A (KNi)>0 and

AngnlF) MDD

Let L:=I[+il be the complex line in C™ generated by the real line [. As in the
complex case we see easily that T (KNI)<Tg(K) and then from (3.5) and (3.20)
we deduce that

(3.20)

Anim(K) /
m <8(n+m)Tp(K),

which is exactly the required inequality (3.3). O

(3.21)

It is interesting to observe that from the formula (2.7) it follows that our relative
Polya’s inequalities leads to the following quantitative version of the Bernstein—
Walsh inequality.

Corollary 3.4. (1) For any closed complezr euclidean ball BCC™, any Borel
subset K CB and any function ue L{C"),

1 1 Aon (K)
3.22 supu <supu+-loge,—=lo ,
(3.22) Upu < suputy logen— 5 log 3 =

where ¢, s the constant given by the formula {3.2).

(2) Let GCC™ be any generic subspace of complex dimension m<n—1. Then
for any closed real euclidean ball BC G, any Borel subset K CB and any function
ueL(C"),

>\n+m(K)

(3.23) sup v < sup u+log 8(n+m)—log ———=.
B K Anam(B)

Let us mention that in the totally real case G=R", inequalities like (3.23) were
obtained earlier by A. Brudnyi (see [B1], [B2]).

From the relative Polya’s inequalities (3.1), (3.3) and Alexander—Taylor’s in-
equality (2.12), we deduce the following interesting comparison inequalities between
the relative volume and the relative Monge—-Ampere capacity.

Corollary 3.5. (1) For any complex euclidean ball BCC™ and any Borel
subset KCB,

Aon (K)
Aon(B)

where ¢y, s the constant given by (3.2).

(3.24) <ep exp(—?cap(K;B)_l/"),
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(2) Let GCC™ be a generic real subspace of complex dimension 0<m<n-—1.
Then for any euclidean ball BCG and any Borel subset K CB,

)\'n+7n (K>
)‘n+m (B)

where B is the euclidean ball in C™ such that BNG=1B.

(3.25) <8(14+v2)(n+m) exp(— cap(K;B) /"),

Proof. (1) The inequality (3.24) is a direct consequence of (2.12) and (3.1).

(2) Let us prove the inequality (3.25). Since both the relative volume and the
relative capacity are invariant under non-singular affine transformations, we can
assume that G=C"™ xR" ™, B is the unit real euclidean ball in G and B is the
unit complex euclidean ball in C™. Then by (3.3), we have

(3.26) _i% <8(n+m)Tz(K).

On the other hand, by (2.12), we have
T (K) < exp(—cap(K; B) /™).

So to prove (3.25), it remains to estimate Tp(K) from above by Tp(K). Indeed,
from the definition of the extremal function Vg, it follows that

Vie(z) Smax Vi +Vp(2), 2€C™
Therefore, we get
(3.27) Tp(K) < exp (mBax Vi) T (K).

It remains to estimate maxg Vg. Since R"CGQG, the euclidean unit ball B in G,
contains the euclidean unit ball D of R™ and then Vg <Vp on C™, which implies
that maxp Vg <maxg Vp. Now by Lundin’s formula (see [Lu], [S2] and [Kl]), we
have

(3.28) Vp(z) =max{log |h{¢-2)];6€ 5™}, zeC™,

where A(¢):=(++/¢2—1 for (€C, with the right branch of the square root, S* 1=
0D is the euclidean unit sphere of R"CC™ and &-2=},.,., &7 It is easy to
see from the formula (3.28) that

max Vp= lml%}i Vp(z)= lrg:?f log [R{¢)| = log(1+\/§)

and then exp(maxg Vg)<exp(maxg Vp)=1-++/2, which by the inequalities (3.27)
and (3.26) implies the required inequality (3.25). O
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It is interesting to observe that the inequality (3.25) shows that the Lebesgue
measure on any generic subspace restricted to any hyperconvex domain Q&C” is
dominated by capacity in a strong sense and then by a result of S. Kolodziej, it
belongs to the image of the complex Monge-Ampeére operator acting on the class
of bounded plurisubharmonic functions on  (see [K1], [K2] and [C1]).

Remarks 3.6. (1) Polya’s inequalities (3.1) and (3.3) can be stated in one for-
mula as follows. Given a generic subspace GCC™ of complex dimension 0<m<n,
then for any euclidean ball BC G and any Borel subset K'C B, we have

)‘n+m(K)

(3.29) S (B)

S Cn,mTB (K>1+[m/n]7

where ¢, p,:=8(n+m) if 0<m<n—1 and ¢, ,,:=¢y.

We can deduce from the general relative Polya’s inequality (3.29) analogous
inequalities in terms of relative volume and relative logarithmic capacity with re-
spect to balls associated to any fixed real norm on the generic space G. Indeed, if
we denote by |- | the euclidean norm and we are given another real norm || - || on
G, then there exist two constants «, 5>0 such that

allz| <lz[<Bllzll, zeG.

Then given a ball B’ for the norm || - ||, there exists a ball B for the norm | - | such
that a« BC B’C3B. Then it follows easily from (3.29) that for any Borel set K C B’,
we have

>‘n+m(K)

(330) >\n+m(B/)

< Cn,m(ﬁ/oé)n+mTB/ (K)H[m/n].

(2) Observe that the relative Polya’s inequalities proved above are optimal as
far as the exponents are concerned. Indeed we will use inequality (3.30) for the
sup-norm, since in this case, explicit computations can be made using the product
formula for the relative logarithmic capacity. Let By, ..., B, be regular sets in C,
Ky, ..., K, Borel subsets such that K;CB; for j=1,...,n and set K:=K; x...x K,
and B:=B; x...xB,,. Then using the product property for the extremal function
(see [Sil]), we get the formula

(331) TB(K): min TBj(Kj)‘

1<5<n

In the case where G=C", take B’ to be the closed unit polydisc A™ in C™ and
K, ={2€A™;|21|<r}. Then the relative volume of K, with respect to A" is
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Aon (K )/ Agn (A™)=r? while its relative logarithmic capacity is Tan(K,)=r. By
(3.30) this proves that the exponent 2 in the complex Polya’s inequality (3.1) is the
best possible.

In the totally real case, we can assume that G=R"™ and consider an analogous
example with intervals. Take B’ to be the unit n-cube I", where I:=[—1, +1] is the
closed unit real interval, and define I™(r):={z€I";|z,|<r}. Then it is easy to see
that

T (I™(r)) = as 1 —0,

r T
1+vVI-r2 2’
while the relative n-volume of I"(r) with respect to I" is equal to r, which proves
by (3.30) that the exponent 1 in Polya’s inequality (3.3) is the best possible in this
case.

Now if G=C™ xR" ™ with 1<m<n—1, it is enough to take B’=A" xI*"™
and K,:=A"xI""™(r). Then Tp (K;)~ir as r—0, while Ay (K7 )/ Ay im (B') =
r, which prove again by (3.30) that the exponent 1 in Polya’s inequality (3.3) is the
best possible in this case.

4. The relative size of plurisubharmonic lemniscates

Here we want to deduce from the relative Polya’s inequalities an estimate on
the relative size of plurisubharmonic lemniscates (i.e. sublevel sets) associated to
two important classes of plurisubharmonic functions.

Let us start with estimating precisely the size of the plurisubharmonic lemnis-
cates associated to the Lelong class £(C").

Theorem 4.1. (1) For any complex euclidean closed ball BCC™ and any
u€L{C™) with maxg u=0,

dan({z€B;u(z) < —s})

(4.1) >on(B)

<cpe, 50,

where ¢, is the constant given by (3.2).
(2) Let GCC™ be a generic real subspace of complex dimension m<n—1. Then
for any real euclidean closed ball BCG and any ue L(C™) with maxp u=0,

Antm({z € Bju(z) < ~s})
Antm(B)

(4.2) <8(n+m)e %, s>0.
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Proof. (1) Let BCC™ be an arbitrary complex ball and let ©€£(C™) with
maxp u=0. Set E;(u):={z€B;u(z)<t} for t<0. Then u—t<Vp, () on C” and
then —¢=maxp u—t<maxg Vg, (). This implies that Tg(E;(u))<e’ for any t<0.
Now in order to get the estimate (4.1), it is enough to apply the complex Polya’s
inequality (3.1) to the Borel set F(u) with s=—t. To prove the estimate (4.2), we
proceed in the same way using the real Polya’s inequality (3.3). O

Observe that estimates of plurisubharmonic lemniscates were obtained in the
complex case earlier by the third author in a more general context but with less
precise exponents (see [Z2] and [Z3]).

In particular, observing that (1/d)log|P|€£(C"™) for any polynomial PeC|z]
with degree d>1, we obtain the following precise estimate for polynomial lemnis-
cates.

Corollary 4.2. (1) For any complex ball BC C™ and any polynomial P& C|z]
of degree d>1 satisfying ||Plls=1, we have

Aan({z €B;|P(2)| <))
>\2n(B)

(4.3) <ecng?, e€]0,1],
where ¢, is the constant given by (3.2).

(2) Let GCC™ be a generic subspace of complex dimension 0<m<n—1. Then
for any real euclidean ball BC G and any polynomial PE€C[z] of degree d>1 satis-
fying ||P|ls=1, we have

Anam({z € B3 [P(2)| <e})

(4.4) Nmson(B)

<8(n+m)e, e€0,1].

All these estimates are optimal as far as the exponents are concerned (see
Remarks 3.6 above). The first inequality is an improvement of previous results (see
[CDL], [22] and [Z3]) and answers a question asked by the third author in [Z2]. In
the totally real case where G=R", the second inequality appears also in [BG].

Now let us estimate the size of plurisubharmonic lemniscates associated to the
Cegrell class F(2). These estimates are important in the study of the complex
Monge-Ampeére equation (see [K1] and [K2]).

Theorem 4.3. Let Q&C" be a hyperconvex open set. Then for any plurisub-
harmonic function € F(Q) with [, (ddp)" <1, we have

(4.5) Aon ({2 €Q5p(2) € ~5}) cnmon (e, 50,

where T2, (Q) is the volume of the smallest euclidean ball of C" containing Q and
¢, 1s the constant given by (3.2).
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Moreover, if GCC™ is a generic subspace of complex dimension m<n-—1 such
that D:=QNG#D, then for any s>0,

(4.6) Aim({z € D;p(z) < —s}) <8(1+V2) (n+m)Tpm(D)e

where Ty 1m (D) is the volume of the smallest euclidean ball of G containing D.

Observe that our estimates are sharp as far as the exponents of decrease are
concerned and improve previous estimates obtained in the complex case by Kolodziej
and the third author (see [K1], [K2] and [Z2]).

For the proof of this theorem, we will need the following elementary lemma.

Lemma 4.4. Let Q€C" be a hyperconvexr open set. Then for any ¢€F(£),
e,
(4.7) cap({z € Q;p(2) < —s}; Q) < — / (ddp)™, s>0.
s Ja

Proof. (1) Assume first that ¢ is a bounded plurisubharmonic function on 2
with boundary values 0 and finite Monge-Ampére mass on ). Let s>0 be fixed
and K CQ(p;s8):={2€0;p(2)<—s} be any fixed regular compact set in the sense
that the plurisubharmonic measure hy of the condenser (K, ) is continuous on Q.
Since hy and ¢ have boundary values 0, from the comparison principle (see [BT1]
and [K1]) it follows that

cap(K; Q) = /K (ddhi )" < /{ (i) < /Q (dd)".

s~lo<hg}

Taking an exhaustive sequence of regular compact subsets of the open set Q(s; )
and using interior regularity of the capacity we obtain our inequality in this case.
(2) Now for an arbitrary given function @€F(Q), there exists a decreasing
o0

sequence (goj);;l of bounded plurisubharmonic functions with boundary values 0

which converges to ¢ such that
@@y = tm [ @y
Q =t jq
(see [C2] and [CZ]). Then the estimate (4.7) follows from the first case and the
lemma is proved. 0O
Now we can prove the theorem.

Proof of Theorem 4.3. (1) Let B be the smallest euclidean ball of C™ con-
taining 2. Let ¢€F(2) be as in the theorem and set Q(y;s):={z€Q;p(z)<—s}
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and ¢(s)=cq(s,¢):=cap((p; 5); ) for s>0. Then applying inequality (3.24), we
obtain

(4.8) Ao (5 )) < endon(B) exp(=2ca(s) /™), s>0.

Now the estimate (4.5) follows from the estimate (4.8) using the estimate (4.7).
The estimate (4.6) is proved in the same way using the inequalities (3.25)
and (4.7). O

Remarks. The exponent of decrease of the volumes in the last theorem is sharp
as simple examples show (see Remarks 3.6). Up to the normalization factor 2, the
estimate (4.5) with an exponent arbitrary close to 2 was obtained in [K2] (see
also [Z2]).

5. Global behaviour of the Lelong class

The next application of our theorems from the last section will concern the
Lelong class of plurisubharmonic functions with logarithmic singularities at infinity
defined by the formula (2.5).

The Lelong class of plurisubharmonic functions is known to play an important
role in pluripotential theory (see [L1], [BT2], [Sil], [Si2], [S1], [Z], [Z1] and [Z2]).

Here we want to prove new general uniform integrability theorems for the
Lelong class of plurisubharmonic functions.

Let g: R*—R" be an increasing function such that g(0)=0 and lim; ,, » g(t)=
+00. For §>0, consider the following Riemann-Stieltjes integral

—+o00
(5.1) )= [ e gt

Then we have the following result.
Theorem 5.1. (1) For any complex euclidean closed ball BCC™ and any
function ue L(C")
1
5.2 — ( —)d)\n< L Io(g),
(5.2) A2H(B)/Bg maxu—u } don < ¢nlo(g)

provided that I5(g) <+oo, where ¢, is the constant given by (3.2).
(2) Let GCC™ be a generic real subspace of complex dimension m. Then for
any real euclidean closed ball BCG and any function ue L(C™)

1
)‘n+m (B)
provided that I {g) <+oo.

(5.3) /jgg(mgxu—u) dAprm <8(n+m)l1(g)
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Proof. We can assume g to be strictly increasing. Let u be any Borel measure
on C" and K €C" any Borel set. Then for any function u€ £L(C™) with u|x <0, we
have

+oo

(5.4) [atwan= [ utzeKeg-u) =
+oo

(5.5) — [ e K i) < s dats).

(1) Assume that p:=xpAan, where BCC"” is a complex euclidean closed ball
and v€L(C™) with maxg u=0. Then by (5.5), we get

+o0
(5.6) /B g(—u) dAgy, = /0 Aon({z€B:u(z) < —s})dy(s).

Applying the estimates (4.1) to the formula (5.6), we obtain the inequality

(5.7) /B g(—u) dAa, < cphan(B) /0+OO e dg(s).

If Ir(g)<+oc, we easily see that lim;_, o g(t)e” =0 and by integration by parts,
it follows that f0+°° e”2% dg(s)=12(g), which implies the required inequality thanks
to the inequality (5.7).

(2) Assume that p:=xpAntm, where BCG is a real euclidean closed ball and
u€L(C") with maxp u=0. Then applying the estimates (4.2) to the formula (5.6),
we obtain the inequality

“+oo
(5.8) /Bg(—u) dA, < 8(n+m))\n+m(8)/0 e~ dg(s).

If I1(g)<+oo, then as in the first case the required inequality follows from the
inequality (5.8) by integration by parts. O

From this general result we derive the foliowing corollaries which will be useful
later.

Corollary 5.2. (1) For any complex euclidean ball BCC™, any function u€
L(C™) and any 0<a<2,
1

" o
. - — XU < -
(5.9) p=i3) /Be dap < (1+c 5

where ¢, is the constant given by (3.2).
(2) Let GCC™ be a generic real subspace of complex dimension m<n—1. Then
for any real euclidean ball BCG, any function ue L{(C™) and any 0<a<1,

1 o
. - —au < _ i
(5.10) (B /Be dAptm < <1+8(n+m) I a) exp( amax u)

) exp(—a max u) ,
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Proof. (1) Indeed, it is enough to apply Theorem 5.1 with the increasing func-
tion g(t):=e*"—1, with 0<a<2 in the complex case and 0<a <1 in the real generic
case. U

Corollary 5.3. (1) For any complex euclidean ball BCC™, any function uc
L(C™) and any real number p>0,

1
A2, (B)
where 1" is the gamma function and c,, is the constant given by the formula (3.2).

(2) Let GCC™ be a generic real subspace of complex dimension m<n—1. Then
Jor any real euclidean ball BC G, any function u€ L{C™) and any real number p>0,

1
/\n+7n(B )

(5.11) /(maxu~u)pd)\2n§2pcn2*pF(p+1),
B\ B

P
(5.12) / (mgxu—u) i < 8(n+m)pl(p+1).
B
Proof. Indeed, it is enough to apply Theorem 5.1 with the increasing function
g(t):=t?, t>0, which clearly satisfies the required conditions. O

Now we want to study the global behaviour of the Lelong class £(C"), esti-
mating uniformly the size of the deviation between a function and its mean values
on complex or real euclidean balls.

Let us recall the general definition of the space BMO. Let G be a real euclidean
space of dimension £>1 and let A be the Lebesgue measure on G. For a locally
integrable function f: G—R and any euclidean ball BCG, define the mean value

of f on B by
1
fB'—m/de“'

Then we say that f€e BMO(G) if and only if

IfllBmoa) SUP)\ /lf fBldX\g <400,

where the supremum is taken over all the euclidean balls BC G.

Let us first prove the following result which can be considered as a quantitative
version for the Lelong class £(C™) of the classical John—Nirenberg inequality for
BMO-functions (see [St]).

Theorem 5.4. (1) For any complex euclidean ball BCC™, any function u€
L(C™) and any real number a<2,

1 Oz‘u uBf
(5.13) AQH(B)/e dhan < (1+cn2

where up:=(1/A2n(B)) [gudXen and ¢, is the constant given by (3.2).

« ) acy,
exp —,
« P 2
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(2) Let GCC™ be a generic real subspace of complex dimension 0<m<n-—1.
Then for any real euclidean ball BC G, any function ue L(C™) and any real number
a<l,

1
)‘n-&-m (B)

where up:=(1/An1m(B)) [z udAnim.

(5.14) /ealu*“BJd/\nerg <1+8(n+m) < )exp8a(n+m),
B 63

1—

Proof. (1) From Corollary 5.2, it follows that for a fixed function ue£L(C™)
and any euclidean ball BC C™,

1

(5.15) Son(B)

/ea(maxgufu) Aoy < 14¢, «
B 2

Now, from Corollary 5.3, we get
(5.16) max u—up < tcn

Therefore by (5.15) and (5.16) we get

1
Ao, (B)

/ R (1+cn20‘
B

>ecno¢/2.

The real case is proved in the same way. [J

Observe that in the complex case, a better estimate can be obtained using a
refined version of the inequality (5.16) due to Lelong (see [L2], [D] and [Si2]).

From the last theorem we deduce the following result which is an effective
version of a result by E. Stein (see [St], [B2]).

Corollary 5.5. Let GCC"™ be a generic real subspace of complex dimension
m<n. Then for any function ue L{C"), ulc €EBMO(G) and

lullBmo(a) < onm-

In particular, for any polynomial PeClz], with deg P=d>1,
(5.17) HoglPlllpuio () < onmd:

Here 0y,m:=2log(1+8(n+m))+8(n+m) #f 0<m<n—1 and on,:=log(l+c,)+

Le,, where ¢y, is the constant given by (3.2).

In the totally real case where G=R", the existence of a (non-effective) uniform
bound for the BMO(R™)-norm of plurisubharmonic functions of logarithmic singu-
larities on C™ was proved earlier by A. Brudnyi with a different proof (see [B1],
[B2]). Our proof gives a precise quantitative estimate of the uniform bound.
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6. Global uniform integrability of plurisubharmonic functions

Here we want to give a sufficient condition for global integrability of plurisub-
harmonic functions in terms of the relative Monge—Ampére capacity of their sublevel
sets. Then we will deduce a global integrability theorem for the class of plurisub-
harmonic functions with uniformly bounded Monge~Ampére masses.

For any u€PSH™ () and any Borel subset ECQ we define the truncated
plurisubharmonic lemniscates associated to u as E(s,u):={z€ E;u(z)<-s} for s>
0, and the corresponding capacity function

cp(s,1) = Cap(E(s, u); ).
Let #CPSH™ () be a class of plurisubharmonic functions on  and define
ce(s,U):=sup{cg(s,u);ucld}, s>0.

Let g: R" —=R" be an increasing function such that g(0)=0 and lim,_,; o, g(t)=-+00.
As in the last section, consider the following Riemann—Stieltjes’ integral for §>0,

+oo
(6.1) Iig) = / et dg ().

The main result of this section is the following theorem.

Theorem 6.1. Let UCPSH™ () be a class of plurisubharmonic functions on
Q and ECQ a Borel subset such that

n=n(E;U):=sup scg(s,U)"/™ < 0.
s>0

Then the following properties hold:
(1) For any function ucld,

/Eg(fu') d)\2n S CnT2n (E)IQ/n (9)7

provided that I5;,(g) <+oo, where T9,(E) is the 2n-volume of the smallest complex
euclidean ball of C™ containing E and c,, is the constant given by (3.2).

(2) Let GCC™ be a generic real subspace of complex dimension m<n—1 such
that QNG #£D and ECONG. Then for any function ucl,

[E 9(—t) Doy <814V ) (141 Ty (F) 1 (9),

provided that I ,(g) <400, where Tpim(E) is the (n+m)-volume of the smallest
euclidean ball in G which contains E.
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Proof. By approximation we can assume that g is strictly increasing. Let p be
any positive Borel measure on © and € PSH™(£2). Then

+oo
(6:2) [atudu= [ gz ruier < =) dats)

Now let g=xgA2, and B be a complex euclidean ball of C™ containing F. Then
by (3.24) we get

)\271({2 el u(z) < _S}) < Cn/\Qn(B) exp(_QcE(s7 U)'l/").

Therefore from (6.2) we conclude that

+oo
(6.3) /E (=) dhan < cndan(B) /O exp(—2cx(s, 1) /™) dg(s).

From this and the hypothesis, we deduce that

“+oo
[ ot wdran <enan®) [ exp(-25/m)dgfo)
E 0
which proves the required estimate. The real generic case is proved in the same
way. O
From this result we can deduce the following corollaries.

Corollary 6.2. Let UCPSH™(Q2) be a class of plurisubharmonic functions on
Q and ECS) be a Borel subset such that

n=n(E;U):=sup scg(s,U)"™ < +o0.
8>0
Then the following properties hold:
(1) For any function u€ld and any exponent 0<a<2/7,

Qarn
2—an’

/ e” ™ dAopn < Aan (BE)+cnman(F)
E

where To, (E) is the 2n-volume of the smallest complex euclidean ball of C™ con-
taining E, and c,, is the constant given by (3.2).

(2) Moreover if GCC™ is a generic real subspace of complex dimension m<
n—1 such that QNG#£D and ECQNG, then for any function ucldand any real
number 0<a<1/n,

afn
1—an’

/ e A < Ansm (D) 48(14V2 ) (1) T (D)
D

where Topm (D) s the (n+m)-volume of the smallest euclidean ball of G contain-
ing D.

From the last result we can also deduce the following consequence.
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Corollary 6.3. Let UCPSH (Q) be a class of plurisubharmonic functions
on 1. Then the following properties hold:

W If

~:=limsup ch(s,L{)l/” < 400,

§—+0o0

then for any exponent 0<a<2/v, there exists a constant Asgp=Ao, (v, 6,2,U)>0
such that

/ e Aoy < Asn, uwell.
Q

(2) If GCC™ is a generic real subspace of complex dimension m<n—1 such
that D:=QNR"#£D and

6 :=lim sup scD(s,U)l/” < 400,

s—+oo

then for any a<1/0, there is a constant Ay pm=An.m(a,d, D, U)>0 such that

/ € A im < Apm,  UEU.
D

Proof. (1) If y<4o0, then for any a<2/~, there is so>0 and ~5>0 such that
a<2/v and
sca(s,u)Y™ <~y for all s> sy and ueld.

Then if we define the class V:=U+sg, it follows that
th(t,v)l/” <59 forallt>0and veV,

which implies that n:=n(Q,V)<~yy. Therefore, since a<2/~v<2/n, we can apply
Theorem 6.1 to the class V and get the estimate

an
2—an’

/ e “dhy, < )\Qn(Q)+CnT2n(Q)
Q

This inequality implies clearly that
/Q e dAg, < /\2n(9)+cn72n(9)easo 2—an
which proves the first estimate of the theorem. The second estimate is proved in

the same way. [J

Now we will give an application of Corollary 6.2 to the global uniform inte-
grability of the Cegrell class of plurisubharmonic functions of uniformly bounded
Monge—Ampeére mass on a bounded hyperconvex domain.
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Corollary 6.4. (1) For any <2 and any p€F(Q) with [(dd°p)"<1,

(6.4) / &) g (2) §A2H(Q)+cn72n(9)2—(}—,
Q

—
where ¢, 1s the constant given by (3.2).
(2) If GCC™ is a generic real subspace of complex dimension m<n—1 such
that D:=QNG#0, then for any a<1 and any @€ F(Q) with [,(dd°p)" <1,

(6.5) / e “* A\ pm(2) < Mg (D) +8(1+V2) (n-’-m)Tn_;_m(D)%.
5 _
Proof. Consider the class U of plurisubharmonic functions € F(Q) such that
Jo(dd®p)*<1. By Lemma 4.4, we get the inequality n=n(E,U)<1 for any Borel
subset EC§). Hence the results above follows immediately from Corollary 6.2. [l

A uniform estimate of type (6.4) was obtained recently in [CZ] with a different
method and a non-explicit uniform constant, while the estimate (6.5) seems to be
new.

As in Section 5, from Theorem 6.1 we can deduce uniform LP estimates for
functions from the class F(Q).

Corollary 6.5. (1) For any € F(Q) and any real number p>0,

| =or o <cmm@z e ([ (ddw)p/n,

where ¢, is the constant given by (3.2).
(2) If GCC™ is a generic real subspace of complex dimension m<n—1 such
that D:=QNG#D, then for any € F(2) and any real number p>0,

p/n
[ oy dmms8(1+¢é)<n+m>7n+m<D>r<p+1>( / <dd%o>") |
D Q

Proof. Indeed, by Lemma 4.4 the real number n=n(FE,U) for the class U of
plurisubharmonic functions € F(Q) such that f,(dd°p)™<1 and any subset £C2
satisfies the inequality n<1. Since the function I5(g) is decreasing in 4, we easily
see that the corollary is an easy consequence of Theorem 6.1 with the function
gt)y=tr. O
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110

[AT]
[BT1]
BT

[BJ]

[CDL]

Slimane Benelkourchi, Bensalem Jennane and Ahmed Zeriahi

References

ALEXANDER, H. J. and TAYLOR, B. A., Comparison of two capacities in C", Math.
7. 186 (1984), 407-417.

BEDFORD, E. and TAYLOR, B. A., A new capacity for plurisubharmonic functions,
Acta Math. 149 (1982), 1-40.

BEDFORD, E. and TAYLOR, B. A., Plurisubharmonic functions with logarithmic
singularities, Ann. Inst. Fourier (Grenoble) 38 (1988), 133-171.

BENELKOURCHI, S. and JENNANE, B., Intégrabilité uniforme semi-globale pour
une classe de fonctions plurisousharmoniques, C. R. Math. Acad. Sci. Paris
337 (2003), 239-242.

BRUDNYI, A., A Bernstein-type inequality for algebraic functions, Indiana Univ.
Math. J. 46 (1997), 93-116.

BrRUDNYI, A., Local inequalities for plurisubharmonic functions, Ann. of Math.
149 (1999), 511-533.

BruDNYI, YU. A. and GANZBURG, M. 1., On an extremal problem for polynomials
in n variables, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 344-355 (Russian).
English transl.: Math. USSR-Izv. 7 (1973), 345-357.

CEGRELL, U., Pluricomplex energy, Acta Math. 180 (1998), 187-217.

CEGRELL, U., The general definition of the complex Monge—Ampere operator, Ann.
Inst. Fourier (Grenoble) 54 (2004), 159-179.

CEGRELL, U. and ZERIABI, A., Subextension of plurisubharmonic functions with
bounded Monge-Ampere mass, C. R. Math. Acad. Sci. Paris 336 (2003),
305-308.

CuyTt, A., DrRIVER, K. A. and LuBINsKY, D. S., On the size of lemniscates of
polynomials in one and several variables, Proc. Amer. Math. Soc. 124 {1996},
2123-2136.

DeEMAILLY, J.-P., Potential theory in several complex variables,
http://www-fourier.ujf-grenoble.fr/~demailly/lectures.html.

Favre, C. and GUEDJ, V., Dynamique des applications rationnelles des espaces
multiprojectifs, Indiana Univ. Math. J. 50 (2001), 881-934.

KiseLman, C. O., Ensembles de sous-niveau et images inverses des fonctions
plurisousharmoniques, Bull. Sci. Math. 124 (2000), 75-92.

KLIMEK, M., Pluripotential Theory, Oxford Univ. Press, New York, 1991.

KoLobziEJ, 8., The complex Monge-Ampere equation, Acta Math. 180 (1998),
69-117.

Koropzizs, S., Equicontinuity of families of plurisubharmonic functions with
bounds on their Monge-Ampeére masses, Math. Z. 240 (2002), 835-847.
LELONG, P., Théoreme de Banach-Steinhaus pour les polyndmes; applications
entieres d’espaces vectoriels complexes, in Séminaire P. Lelong (Analyse),

Lecture Notes in Math. 205, pp. 87-112, Springer-Verlag, Berlin, 1971.

LELONG, P., Mesures de Malher et calcul de constantes universelles pour les
polynémes de N variables, Math. Ann. 299 (1994), 673—695.



Polya’s inequalities, global uniform integrability and plurisubharmonic lemniscates 111

LuNDIN, M., The extremal PSH for the complement of convex, symmetric subsets
of R™, Michigan Math. J. 32 (1985), 197-201.

PLESNIAK, W., Volume of polynomial lemniscates in C™, Numer. Algorithms 33
(2003), 415-420.

RANSFORD, T., Potential Theory in the Complex Plane, Cambridge Univ. Press,
Cambridge, 1995.

SADULLAEV, A., An estimate for polynomials on analytic sets, Izv. Akad. Nauk
SSSR Ser. Mat. 46 (1982), 524-534, 671 (Russian). English transl.: Math.
USSR-Izv. 20 (1983), 493-502.

SADULLAEV, A., The extremal plurisubharmonic function of the unit ball BCR",
Ann. Polon. Math. 46 (1985), 433-437 (Russian).

SICIAK, J., Extremal plurisubharmonic functions in C”, Ann. Polon. Math. 39
(1981), 175-211.

SICIAK, J., Extremal plurisubharmonic functions and capacities in CV, Sophia
Kokyuroku in Math. 14, Sophia University, Tokyo, 1982.

STEIN, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Os-
cillatory Integrals, Princeton Math. Ser. 43, Princeton Univ. Press, Princeton,
NJ, 1993.

TsuJi, M., Potential Theory in Modern Function Theory, Chelsea, New York, 1975.

ZABARIUTA, V. A, Extremal plurisubharmonic functions, orthogonal polynomials
and Bernstein-Walsh theorem for analytic functions of several variables, Ann.
Polon. Math. 33 (1976), 137-148 (Russian).

ZERIAHI, A., A criterion of algebraicity for Lelong classes and analytic sets, Acta
Math. 184 (2000), 113-143.

ZERIAHI, A., Volume and capacity of sublevel sets of a Lelong class of plurisubhar-
monic functions, Indiana Univ. Math. J. 50 (2001), 671-703.

ZERIAHI, A., The size of plurisubharmonic lemniscates in terms of Hausdorff-Riesz
measures and capacities, Proc. London Math. Soc. 89 (2004).



112 Slimane Benelkourchi, Bensalem Jennane and Ahmed Zeriahi:
Polya’s inequalities, global uniform integrability and plurisubharmonic lemniscates

Received August 18, 2003

Slimane Benelkourchi

Université Mohammed V

Faculté des Sciences de Rabat-Agdal
BP. 1014

Rabat

Morocco

Current address:

Université Paul Sabatier-Toulouse 3
Institut de Mathématiques
UMR-CNRS 5580

118, Route de Narbonne

FR-31062 Toulouse

France

email: benel@picard.ups-tlse.fr

Bensalem Jennane

Université Mohammed V

Faculté des Sciences de Rabat-Agdal
BP. 1014

Rabat

Morocco

Ahmed Zeriahi

Université Paul Sabatier-Toulouse 3
Institut de Mathématiques
UMR-CNRS 5580

118, Route de Narbonne

FR-31062 Toulouse

France

email: zeriahi@picard.ups-tlse.fr



