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Geodesic inversion and Sobolev
spaces on Heisenberg type groups

Francesca Astengo and Bianca Di Blasio

Abstract. Let o be the geodesic inversion on a Heisenberg type group N with homogeneous
dimension @, and denote by S the jacobian of 0. We prove that, for —%Q<a< %Q, the operators
To: fr81/2=2/Q(fo5) are bounded on certain homogeneous Sobolev spaces H*(N) if and only
if N is an Iwasawa N-group.

1. Introduction

The class of Heisenberg type groups was introduced by Kaplan in [8] as a class
of two-step nilpotent Lie groups whose standard sublaplacians admit fundamental
solutions analogous to that known for the Heisenberg group. It includes all Iwasawa
N-groups associated to real rank one simple Lie groups. The formalism of Heisen-
berg type groups provides a unified way for studying many problems on real rank
one simple Lie groups that can be reduced to problems on the associated Iwasawa
N-group [3], [4], [5].

In [3] it was proved that the Iwasawa N-groups are characterised among all
Heisenberg type groups by a Lie-algebraic condition, the so called J?-condition;
moreover it was proved that the geodesic inversion o on N is conformal if and only
if the J2-condition holds.

In this paper we study some properties of the action of the inversion o on
functions. We consider the operators T, defined on C'S°(N) by the formula

T f=S8Y27219 (foq), feCX(N), ~2Q<a<1iQ,

where S denotes the jacobian of the map . Clearly the operator T, extends to an
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isometry on LP(N), for
1 1 «

p 2 Q

We prove that the J2-condition holds if and only if the operators T,, are bounded
on suitable homogeneous Sobolev spaces H¥(N), defined in terms of the standard
sublaplacian on N. An important application of our result is an elementary proof
of the uniform boundedness of certain representations of real rank one simple Lie
groups on H*(N) (see [10], [11], [12] for the first papers on this subject). The ap-
proach used in this paper appeared in [2], where M. Cowling attacked this problem
for the real, complex and the quaternionic cases before the introduction of Heisen-
berg type groups. Additional results concerning uniformly bounded representations
can be found in the paper by Cowling and the authors [1].

The authors would like to thank Michael Cowling for many useful conversations
and for suggesting the subject of this paper.

2. Heisenberg type groups

Let n be a two-step real nilpotent Lie algebra, with an inner product (-,-).
Write n as an orthogonal sum n=v&3, where 3 is the center of n. For each Z in 3,
define the map Jz:v—v by the formula

(I X, YY={(X,Y],Z), X,Yen.
Following Kaplan [8], we say that the Lie algebra n is H-type if
(1) J%:_|Z|2103 Z€57

where [, is the identity on v. A connected and simply connected Lie group N
whose Lie algebra is an H-type algebra is said to be an H -type group. The Iwasawa
N-groups associated to all real rank one simple groups are H-type. Note that from
property (1), it follows that 3=[v, v], and moreover the dimension of v is even. We
denote by @ the number d,+2d,.

In Section 5 we shall need the following properties of the map J. These prop-
erties are proved in [3, Section 1]:

Jzdz+dgdz =27 2", 2,7' €3,
(JzX, Iz XV (2 X, Iz XY =22, 2V X, X"), 2,7 €3, X, X €v,
Jix,xn X =|X> Py x X', X, X ev,
(X, JzX]=|X|*Z, Xev, Zey,

(2)
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where Pj x X' is the projection of the vector X’ on the space J;X={JzX:Z¢€;3}.
Since N is a nilpotent Lie group, the exponential mapping is surjective. Let X
be in v and Z be in 3; we denote by (X, Z) the element exp(X +7) of the group N
and by log(X, Z) the element X + 7 of the Lie algebra n.
By the Baker-Campbell-Hausdorff formula, the group law is given by

(X,2) (X", Z)=(X+X".Z+ 7' +1[X, X)), X,X'ev, Z,7'¢3.

The group N is unimodular and a Haar measure dn on N is dX, dZ, where dX and
dZ are the Lebesgue measures on the real vector spaces v and 3 respectively.

The Iwasawa N-groups are characterized, among all H-type groups, by an
algebraic condition, called the .J?-condition.

Definition. ([3]) We say that n satisfies the J2-condition if, for any X in v and
Z,Z' in 3, such that {Z, Z")=0, there exists Z” in 3 such that

Jgdg X =Jgn X.

In Section 5 we shall see that this condition is strictly linked with the geometric
properties of the inversion o on N.

When N is abelian, o is the classical inversion ¢: z+ —|z| 2z on R4 ~N. In
the general case it is the limit on the boundary N of the geodesic inversion on the
Damek-Ricci space associated to N (see [4] and [5] for further details). The map o
has been studied in [3]; it is given by

U(XaZ):(7B(sz)71A(X7Z)Xa*B(X7Z)A1Z)7 (XaZ)GN\{O},
where
AX,Z)y=YXP+Tz, AX,Z)=1X]*-Jz; and B(X,Z)=L|X|*+|Z|%

In [3] it is proved that o is conformal if and only if the J?-condition holds, i.e., if
and only if N is an Iwasawa N-group.
Let t be a positive real number. We define the homogeneous dilation 6; on N
by
(X, 2)=(tX,t*Z), (X,Z)eN.

It is easy to check that d; is a group automorphism and that the number Q=d, +2d,
is the homogeneous dimension of N. A homogeneous gauge on N is the function
B/%. Let ¥ be the unit sphere with respect to this gauge, i.e.,

Y={neN:B(n)=1}
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there exists a unique C*° measure dn on X such that the following polar coordinate
integral formula holds:

[ taan= [ /Ooof(&n)t@‘ldtdn, fec=w).

We fix orthonormal bases {E; }d . and {Uk}k ; of v and 3, respectively. For
X in v and Z in 3, we write X—ijl z;E; and Z:Zkzl 25 Ug. Given a vector V

in n, we denote by V the left-invariant vector field associated to it, hence we write

f(nexptV).
=0

We shall refer to vectors in v as horizontal tangent vectors.
It is easy to check that, for a smooth function f on N,

d,

- B f(X,2) =00, f(X, 2)+= Y (Ju, X, E;)0., (X, Z),
k=1

(N]kf(Xaz):azkf(XaZ)a

DN =

where j=1,...,d, and k=1, ...,d;.
From now on we shall write

Je=Ju,, k=1,..,d,.

Finally, we use the “variable constant convention”, according to which con-
stants are denoted by C, and these are not necessarily equal at different occurrences.
All “constants” are positive.

3. Fractional powers of the sublaplacian

In this section, we recall some properties of homogeneous distributions which
we will use in the next sections. For further details, the reader can refer to [2]
and [6].

Let d be in C. A function f on N is said to be homogeneous of degree d if

foét:tdf, teR".
Since Bod;=t*B, any homogeneous function f of degree d satisfies

fln)=2n)Bm)**, neN\{0},
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where {2 is homogeneous of degree 0.

We say that a distribution K on N is a kernel of type « if it coincides with a
homogeneous function fx of degree a—@Q on N\ {0}. In what follows, we shall use
the same notation K for the distribution K and the associated function fx.

Let A be the sublaplacian, defined by

da
A=-)"E2,
j=1

where Ej are the left-invariant vector fields given by formula (3). The operator A
is a densely defined, essentially self-adjoint, positive operator on L?(N). Hence it
has a spectral resolution given by

Az/ AdAj.
0

Moreover 0 is not an eigenvalue of A, as proved by Folland [6, Proposition 3.9];
therefore if « is in C, we may define the operators A® by the formula

A® :/ A% dAjy.
0

Proposition 1. ([6, Theorem 3.15, Propositions 3.17 and 3.18|) The operators
A have the following properties:

(i) the operator A% is closed on L?(N) for every a in C;

(ii) if f is in Dom(A®)NDom(A%*tP), then A f is in Dom(A?) and APA® f=
A%TB £ in particular, A™*=(A%)"1;

(iii) if 0<Re(a)<Q, there exists a kernel Ry of type o such that if f is in
Dom(A~—/2), then A=/ f=fxR,.

4. Lorentz and Sobolev spaces

Let f be a measurable function on the group N. The nonincreasing rearrange-
ment of f is the function f* on R* defined by
@) =inf{seR*:|[{ne N:|f(n)| >s}| <t}, teR",
where [E| denotes the Haar measure of a measurable subset F of N. The function

f7 is nonincreasing, nonnegative, equimeasurable with f and right-continuous. For
any given measurable function f on N, we define

q [~ ds\/*
e =(2 [T E) L << 12020
0

and
[£llrec =sup{s'/Pf*(s):s€R*}, 1<p<oo.
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Definition. Let 1<p<oo and 1<g<occ. The Lorentz space LP4(N) consists of
those measurable functions f on N such that || f||ze. is finite.

It is easy to check that LP?(N) coincides with the usual Lebesgue space LP(N),
with equality of norms. Moreover, if ¢; <gg, then LP% (N) is contained in LP% (V)
and, if 1<p, g<oo, the dual space of LP9(N) is L?’/’q/(N), where

1 1 1 1
-+ = + — = 1.
p p g9 q

A good reference for Lorentz spaces is [7]. We recall a few facts from that

paper.

Lemma 2. ([7, p. 273]) Let p and r be in (1,00). Then there exists a constant
C(p,7), depending only on p and v, such that for every f in LP*(N) and g in
L™°(N)

1£%gllzez <Clp,r)ligliLrell fllLr2,
where
1 1
—t+-=—+1
p r q
and 1<p<g<oo.

Lemma 3. ([7, p. 271]) Let p and r be in (1,00). Then there exists a constant
C(p,r), depending only on p and r, such that for every f in LP2(N) and m in
L’V',OO(N)

[mflipez <Clp,m)limlipre [ fllree,
where
1. 1.1
qQ p T

and 1<g<p<oo.

Definition. For real a, we define the homogeneous Sobolev space H*(N) to be
the completion of the space of smooth functions with compact support on N with
respect to the norm

£ l3ee =182 fllz2,  fECS(N).
The spaces H*{N) and H~*(N) are dual with respect to the pairing
(F.9)= [ fmg(mydn, fEH(N), geH ().
N

We have the following Sobolev immersion properties.
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Proposition 4. If —% <a<0 and
1 1 «a

p 2 Q

then LP2(N) is contained in H*(N), and moreover

£l <Clfllzoz,  fEHT(N).

Proof. 1f a=0, the proposition is clearly true. If « is in (—%Q, O), by item (iii)

of Proposition 1, we have for f in C°(N),

Aa/2f: f*Rfa;
where R_o=QB(@T@)/4 and Q is homogeneous of degree 0 and smooth away from
the identity. Since |R_q(n)|<CB~(@+@)/4(n), we obtain

(R_o)*(t) <CB~EFQ/M*(1) te(0,+00).
Now we compute (B=(¢t@)/4)* For t>0 we have

(B~ (+ @/ (1) =inf{s e R*: [{ne N : [B~(+ /()| > s}| <t}

s~ 1/(Q+a)
*inf{8€R+:/ u@! dug‘tﬁ}:ct’(lﬂl/@.
0

It follows that R_, is in Z7°°(N) when 1/r=1+a/Q. If

F | =
o =
Ol e

then 1<p<2 and

1 1 1
—4+-=_+1
p r 2
Therefore, by Lemma 2, we obtain

1A fll 2 = | f+R allze < CIR - allLres [ Il o2,

as required. O
By duality, we obtain the following result.
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Corollary 5. If O<a<%Q and

o

1«
27 Q

1
p
then H*(N) is contained in LP2(N), and moreover

1Fllze> SCl@)fllgees  FEHNN).

We need the following characterization of Sobolev spaces, proved by Folland in
the nonhomogeneous case for a:>0; his proof can be adapted without substantial
changes to the case of homogeneous Sobolev spaces of any order.

If fis in H¥(N), we shall write Ej f for the distributional derivatives of f.

Theorem 6. ([6, Theorem 4.10]) Let « be real. Then f is in H*TL(N) if and
only if for every j=1,...,d, we have that E;f is in H*(N); moreover the norms
|| flla+1 and Z?;l |1E; fllne are equivalent.

The following multiplier theorem was proved in [2] for the real, complex and
the quaternionic Iwasawa N-groups.

Theorem 7. Let M4(N) be the space of functions in C°(N\{0}), which are
homogeneous of degree d, where d is in C and Re(d)<0. If ~%Q<a§ﬁ<%Q, m is
in MA(N) and a—B=Re(d), then pointwise multiplication by m defines a bounded
operator from HP(N) to H*(N).

Proof. For m in M%(N), denote by A(m) the operator defined by A(m)f=mf
for every measurable function f on N. We divide the proof into four steps.
(i) If <0 and B>0, then A(m) is bounded from H?(N) to H*(N), for m in
with Re(d)=a—4.

MAN)
(i) If ~1<a=pB<1, then A(m) is bounded on H*(N), for m in M%(N) with
):

Re(d

(ii
Re(d)
(w) By duality and complex interpolation A(m) is bounded from HP(N) to
H*(N), for —2Q<a<8<2Q, Re(d)=a—p3 and m in M4(N).
Let us proceed with the proof.
(i) The case where o=/5=0 is trivial because if Re(d)=0 any function in
M?(N) is bounded. Let —1Q<a<0<A<1Q, but a#3. If m is in MHN), with
Re(d)=a—p, then

) If 0<a=@<1Q, then A(m) is bounded on H*(N), for m in M?(N) with

Im(n)] < CBRD/ 4 (), ne N\{0}.
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Proceeding as in the proof of Proposition 4, one can check that m is in L™ (N)
for 1/r=—Re(d)/Q. Moreover, for every f in C2°(N), by Lemma 3, Proposition 4
and Corollary 5, we have

[mflise < Cllmflipez < Cllmllzre || fllzr2 < Cllm|Lro|| fllae,

where

1 la 1 11 138

—=-—— and —-=-——-=—-——.

q 2 Q p g r 2 Q
We conclude that A(m) is bounded from H?(N) to H¥(N) for m in M*(N) with
Re(d)=a—g0.

(ii) Let m be in M?(N) with Re(d)=0 and let f be in H!(N). We shall prove
that mf is in H1(N) by using Theorem 6, i.e., we shall verify that F;(mf) is in
HP(N)=L?(N) for every j=1,...,d,. We have

E;(mf) = E;(m)f+mE;(f).

Since f is in H}(N), by Theorem 6 the function Ej(f) is in HO(N). Moreover the
function m is in M°(N), so E;(m) is in M~1(N). Therefore by step (i) we obtain

1B (mf)ll 2 < NEsmll La.ce |l +mll oo | Es fllp2 < Cllfllae-

Thus, by Theorem 6, A(m) is bounded on H!(N). By real interpolation and duality,
A{m) is bounded on H*(N} for « in [—1, 1]. Indeed, we have seen that if Re{d}=0,
then A(m) is bounded on H°(N) and on H!(N). Hence A(m) is bounded on H*(NV)
for every a in [0, 1] by real interpolation. By duality, A(m) is bounded on H*(N)
also for every a in [—1,0].

(iii) Let 0<a<3Q and let m be in M?*N) with Re(d)=0. For any posi-
tive integer s, denote by D* a left-invariant differential operator of the form D=
I, Ejk, where j1,..., s are in {1, ...,dy }. Let k be the positive integer such that
a—k is in [~1,0). By Theorem 6 it suffices to prove that D*(mf) is in H*F(N),
for every f in H%(N) and for every differential operator D* of order k. By Leibniz’

rule we have
k

k _ 8 s ks
D) =3 (1) Dm0t 1),
where DO is the identity operator. Note that, for s=0,1, ..., k, the function Dm is
in M9#(N) and the function D*~%f is in H* *+5(N), by Theorem 6. Therefore,
by steps (i) and (ii), the function D¥(mf) is in H* *(N) and A(m) is bounded on
HY(N).
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(iv) Consider the case where 0<a<S<1Q and let m be in M(N) with
Re(d)=a—p. Consider the analytic family of operators zr+A(m™*%/?). Note that
m~*#/4 is in M7*P(N). For Re(z)=0, the operator A(m~*?/%) is bounded on
HP(N), by step (iii). For Re(z)=1, by step (i), the operator A(m*5/¢) is bounded
from HP(N) to HO(N). Therefore, by Stein’s complex interpolation theorem [15],
the operator A(m~*#/9) is bounded from #?(N) to H{-ReCDI(N) for 0<Re(2)<1.
For z=—d/( we have (1-Re(z))8=c«. Thus the operator A(m) is bounded from
HP(N) to H*(N). Duality or complex interpolation can be used for the case where
-%Q<a<ﬁ<0. This concludes the proof of the theorem. L[l

5. Inversion and Sobolev spaces

Denote by S the jacobian of the inversion o, i.e.,
[ smdn= [ fo@m)smn, feczm).
N

In [3] it is proved that, if the J2-condition holds, then S=B"9/2. The expression
of the density S in the general case is not known; however it is easy to prove that
S is homogeneous of degree —20Q).

For real «, define a linear operator 7, by

Tof(n)=S(n)'/*"*/f(a(n)), neN,

for every measurable function f on N.

It is easy to check that the operator Tj is bounded on L?(N). In this section
we prove that the operator T, is bounded on H*(N), for every f%Q<o¢<%Q, if
and only if NV is an Iwasawa N-group (see Theorem 9). The proof uses the fact,
proved in [3], that the inversion o on N is conformal if and only if the J2-condition
holds.

We recall that a map p: N—N is conformal if du maps horizontal tangent
vectors to horizontal tangent vectors, and restricted to the space of such vectors is
a multiple of an isometry at each point. Actually, in the proof of Theorem 9, we
use the fact that do maps horizontal tangent vectors to horizontal tangent vectors
if and only if the J2-condition holds.

Lemma 8. The map do maps horizontal tangent vectors to horizontal tangent
vectors if and only if the J?-condition holds.

Proof. Note that do maps horizontal tangent vectors to horizontal tangent
vectors if and only if for every n in N and every V in b there exists a vector V,, in
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v such that N B
V(feo)(n)=[Vafl(o(n), feCZ(N).
It is enough to verify that the latter condition holds for the vectors of the basis
{E;}z, of v.
We have

=N

do R
Ey(foo)(n) = (Ejor,)(n)ds, f(o(n)+ > (Ejou,)(n)ds, fla(n))
i=1 k=1
(4)
—Z Ejop) ) (E: f)(o(n)+> . G u(n)ds, f(a(n)),

1

I}

=N
o

b
i

where, for V in n, we denote by oy the function on N given by oy (n)={logo(n), V),
and for n=(X, Z),

dw N
C3m) = (Byou)(n)+ 3 S (BX. 2)7 AKX, 2)X, E(Fjor,)(n).

i=1
It follows that the theorem is proved if we show that
Gip=0, j=1,..,de, k=1,..,d,
if and only if the J2-condition holds. We claim that
(5)  Giw(X,2)=3IXI*B(X,2)" (I Jz X +X(Z,Ux)— P, x (JxJz X), Ej)

for every (X, Z) in N, and for every j=1,...,d, and k=1, ..., d;.
It is easy to see that if the J2-condition holds then this expression vanishes; on
the other hand from this equality it follows that if G; =0, then

Py x(JwJzX)=(Z,W)X = —JwJzX, Xev, W,Z€;.

In particular for (W, Z)=0, the last equality implies that Jyw JzX belongs to J; X,
i.e., the J2-condition holds.

We now prove the claim, i.e., equality (5). Let Ay (X,Z)=(A(X,Z)X,V).
Using formula (3) (see also [3, pp. 27-28]) we have

E;B(X,Z)=(A(X, 2)X, E;)

and
E; Ay(X, 2) = H(X, ENX, V) +{A(X, 2)E;, V) = HJix 5, X, V).
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From now on we shall write
B=B(X,Z), AX=A(X,Z)X and AX=A(X,Z)X.
Since oy, (X, Z)=—B 'z and o, (X, Z)=—B~}{AX, E;), by (3) we obtain
(Bjou)(X, 2) =B *(E;B)zx~ 3B (kX E;)
=B 2(AX, E;)z,+ 3B X, JE;)
=B 2 Y X Pzz+ (2 X, By)zu+2B(X, L E;)|

and

(Ejom,)(X,2)=B7*(E;B)(AX, E;) - B~ (E;Ap,)(X, 2)
(6) =B AX, E;)(AX, E)— 1B YX, E;){X, E;)-B™ ' (AE;, E;)
+3B7 (x5 X, Ei).
Therefore, since (Jy AX, AX)=0, we get
Gjk(n) = (Ejou,)(n)
+ B[ H W AX, X) 2 — LI AX, AE;) + 1 (JeAX, Jix 5, X))

Using properties (2), we shall treat the terms in the square brackets separately.
For the first term, we have

—HIAX, Xz = — | X2 (TeX, X)x;— Iz X, T X)z; = -3 X Py
For the second term, we have
— 3 (IWAX, AE;) = — L X P(JLAX, E;) + 5 (e AX, T2 Ej)
= %‘Xrl(Xv J/CEj> - %lX]2<JZX7 JkEj>
+ L XX, Iz Ey) — (I 2 X, Tz E;)
= | XIHX, JhEy) — X (I X, JuE;) + 5| X Pz
+ Iz X, J2E;) —{J2 X, Ej) 2,
= (I XI* =312 (X, JhEy) — | X [P (Jz X, JL E;)
+i|X122k{Bj7<JzX, E]‘>Zk.
For the third term, we have
TIAX, Jix 5 X) = £ X (T X, Jix,50X) — {2 X, Jix 5, X)
= EIXIM[X, E;], Us) = 3 (JeJ2 X, J x,5,) X)
= — 15| XX, Jo Ej) = 3 (2 X, Jix, 5, X).
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Now we compute

BGin(X,Z) = 2| X Prjan+(Jz X, Ej)zn+ 3 B(X, JEj) — 21X P2
+ (55| X[ =312 )X, JeBy) — 1| X P (Jz X, JL Ej)
+ X Papa; — (2 X, Ej) e — 15| X|M(X, JLE;)
— 1 (T2 X, Jix, 5, X)
= X[ (T dz X+ Uk, Z)X, Ej) ~ 1 (I J2 X, Jix 5, X)
= XX (T2 X +{Up, Z2) X, Ej)~ | X *(Ju J2 X, Py, x E)
=X P Iz X+ X(Z,Uk)— Py, x(JeJ 2 X), Ey).

Equality (5) follows and the proof is complete. [

We shall use this lemma in the proof of the following theorem.

Theorem 9. The operator Ty, is bounded on H* (N} for every o in (—%Q, %Q)
if and only if the J?-condition holds.

Proof. The operator Ty is clearly bounded on H°(N)=L?(N). Suppose that
the J2-condition holds. By Theorem 6, to show that T, f is in H*(N), it suffices
to prove that Ej(Taf) is in H¥ 1(N) for every j=1,...,d,.

First consider a=1 and let f be in H'(N). By formula (4) in the proof of
Lemma 8, we have

By (Tyf) = (E;8'27YQ) (foo)+ 82 YRE (fo0)

dy
= (E;SY*7Y9) (foo)+ 82N (B0, ) (Eif)o0.
=1

Remember that S is homogeneous of degree —2@Q, so that 51/2(53,51/271/@)00 is
homogeneous of degree —1, and by Theorem 7 we conclude that

I(E;SY2 1) (foo) |2 = [ S2((E; 51271 @)00) f 12 < C| -
Analogously, since S/ Q((Eja g, )°0) is homogeneous of degree 0, we obtain

182 Q(Ei0p,)(Eif)oo)| 12 =S¥ ((Ejor,)o0)E; f| 12
<C||Eif||g2 <C||f |l

Therefore T} is bounded on H!(N).
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The case where 0<a <1 follows by complex interpolation arguing as in Theo-
rem 7.

We write [O, %Q) = gﬁ[h— 1, h) and proceed by induction on k. We have just
proved that T, is bounded on H*(N), when « is in [0, 1).

Now suppose that T, is bounded on H%(N) when « is in [h—1,4) and let «
be in [h, h+1). We have

p
Ej(Taf)=SY272/Q"YE,S)(fo0) +SY* /2N " (Ejop,)(Eif)oo

i=1
dy
:Ta—l[SI+I/Q((EjS)OO)f]+Ta—1 [SI/Q <Z(EJ‘UE¢)OU) Eif] :
i=1

Note that the functions S*/Q((E;8)o0) and SY/2 (X% (E;op,)°0) are homoge-
neous of degrees —1 and 0, respectively. Therefore, from the induction hypothesis
and from Theorems 6 and 7, it follows that, for every j=1,...,dy,

I B (TaH)llpar <CISTYQ(E;8)00) fligge-

dn
+CH51/Q (Z(Eja&)oa> Eif

i=1

‘Hoz~1

do
<Ol fllm=+Y | Cill Esfllaga—r < CN f[l3n-
i=1
The case where —%Q<a<0 follows by duality, since T, =17 .
Conversely, we show that the operator T,, is unbounded on H!(XN) when N is
not an Iwasawa group.
Let ¢ be in C*(N) such that ¢=1 in a neighbourhood U of the identity 0.
Suppose that the J%-condition does not hold and let 72 be in N\U such that G; (1) #
0 for some j and k, where G; ;. was defined in Lemma 8. Let —4<3<—2 and define

F(n) = (i~ n)B(R™n)~BrA/E  peN.

Note that the function f is in H!(NN), because it is compactly supported and it
behaves like B(A~!-)~(8+Q)/8 in a neighbourhood of 7 and B<—2.
We now show that 73 f is not in H!(N). From formula (4) it follows that

Ej(Tuf)(n) = (B3 812 Q) (n) f(o(n) +S(n) /2719 S (Bjom) ()(E:S) (o))

dé
+S(n)! /29N Gip(n)0s, f (o (1)

k=1
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As proved before, all the functions in the previous sum are in L?(N) except for
S1/2-1Q@G, (8, f)oo. Indeed, since ﬁkzﬁzk is left-invariant and homogeneous of
degree —2, the function [S*/? G 4°0(d,, f)]? behaves like B(n~ 1)~ (F+Q+4)/4 i 4
neighbourhood of 7, hence it is not locally integrable, since >—4. It follows that
E'j (T1f) is not in L2(N) so that, by Theorem 6, T f is not in H}(N). O

6. Uniformly bounded representations

In this section, we assume that the J2-condition holds, i.e., that N is the
Iwasawa nilpotent subgroup of a connected, real-rank-one simple Lie group.

The group G of conformal transformations of NU{oo} is generated by trans-
lations, rotations, dilations and the inversion ¢ and it is isomorphic to the afore-
mentioned simple group [9], [13], (14]. For g in G denote by n+>g~'-n the action
of g on NU{oo} and by J, its jacobian, i.e.,

/ f(n) dn= / Flg m)Ty(n)dn, [ ECE().
N N

Let a be a real number and define a representation m, of G on C°(N) by the
formula

wal9)f ()= Ty(n)**~*/9f (g™ n), geG, neN, feCX(N).

Corollary 10. Let —%Q<a<%@, then m,, is uniformly bounded on H*(N).

Proof. Any element of G may be written as a product of translations, rotations,
dilations and inversions, and there is a bound on the number of factors required in
the product.

Let —1Q<a<3Q. When g is a (left) translation or a rotation then 7, (g) acts
unitarily on H*(N), since

J,=1 and A%%oq,(g)=ma(g)o A2
When g is the inversion o, then
7"04(9) =T,

which is bounded on H*(N) by Theorem 9.
Let ¢ be a dilation d¢, for ¢ real. We have

Ta(g) f =19/*72 fo5,
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and
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A%T2(fad,) =t (A2 f)o6,.

Therefore

w0

10.

11.

12.

13.

7 (9) fllne = A (walg) | 22 = [#9/2 A2 (fo6,)]| 12
= [t (A2 f)odi 2 = | f . O
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