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A large data existence result for the stationary
Boltzmann equation in a cylindrical geometry

Leif Arkeryd and Anne Nouri

Abstract. An L'-existence theorem is proved for the nonlinear stationary Boltzmann equa-
tion with hard forces and no small velocity truncation—only the Grad angular cut-off—in a setting
between two coaxial rotating cylinders when the indata are given on the cylinders.

1. Introduction

General L!-solutions for stationary, fully nonlinear equations of Boltzmann
type, have so far been obtained by weak compactness techniques. Examples are ex-
istence results far from equilibrium for the stationary Povzner equation in bounded
domains of R™, as obtained in [3], [15], and general L'-solutions of the stationary
nonlinear Boltzmann equation in a slab, as studied in [2] and [4]. Also half-space
problems for the stationary, nonlinear Boltzmann equation in the slab with given
indata can sometimes be solved by such techniques; see [5] for a collision operator
truncated for large velocities and for small values of the velocity component in the
slab direction. For more complete references the reader is referred to the above
cited papers.

For bounded domains in R", a general existence result was obtained in [6]
for the stationary Boltzmann equation under a supplementary truncation for small
velocities. The removal of the small velocity cut-off for the nonlinear, stationary
Boltzmann equation with large boundary data, remained an open problem in more
than one space dimension. The present paper studies that problem in a particular
R? case, a two-roll configuration without any small velocity truncation, using a
generalization of the techniques from the slab case. Also recall that the close to
equilibrium R7™-situation is better understood, since there more powerful techniques
such as contraction mappings, can be used. In that case a number of existence
results are published, see [11], [12], [13], [14], [17] and others. In particular, see [7]
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and [16] for the present two-roll problem close to equilibrium.

The set-up for the two-roll problem is as follows. Consider the stationary
Boltzmann equation in the space {2 between two coaxial cylinders,

(11) v'vxf(xvv):Q(faf), .’EEQ7 UERB?

for axially homogenous solutions f. We may then take QCR? as the annulus
between two concentric circles of radii 74 <rp. The nonnegative solution f(z,v)
represents the density of a rarefied gas with 2 the position and v the velocity.
Solutions are here understood in the weak sense, which is somewhat stronger than
the renormalized one or equivalently the mild, exponential, iterated integral form
(cf. [9] and [1]). The operator @ is the nonlinear Boltzmann collision operator with
angular cut-off,

QD) = [ [ Blo=00)( ) f0,00) = £0,0) ,0.) do do

where v/ =v—(v—vs,W)w, V.=V +(v—0.,w)w. The function B is the kernel of the
classical nonlinear Boltzmann operator for hard forces,

[v—v,1Pb(0) with 0<B<2, be L1 ((0,27)), b(#) >c>0 ae.

The solutions considered, are axially and rotationally uniform functions with respect
to the space variables. Denoting by (7,6, z) and (v, vg, v, ), respectively, the spatial
coordinates and the velocity in cylindrical coordinates, the solutions are thus func-
tions f(r,v,,vg,v,). As boundary conditions, functions f; are given on the ingoing
boundary 90" at A and B, equal to f4>0 and f5>0 defined on {(ra4,v);v,>0}
and {(rp,v);v, <0}, respectively. Solutions f(r,v) to (1.1) are sought with profiles
fa and fp on the inner and the outer cylinders, i.e.

(1.2) f(ra,v)=kfa(v), v, >0, f(re,v)=kfs(v), v, <0,

for some positive constant k. The test functions ¢ are taken in L= (QxR?) with
v- V€ L®(QxR?), continuously differentiable along characteristics, with com-
pact support in 2xR3, and vanishing on {(ra,v);v,<0}U{(rp,v);v,>0}. Here
R3=R3\{v;v,=0}.

The main result of this paper is the following result.
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Theorem 1.1. Suppose that
| ol P os fa)fa(w)do
v >0

+/ lv| (14 |v|? +log™ fr(v)) fa(v) dv < cc.
v <0

Then, for any m>0, the equation (1.1) has a weak L'-solution f., satisfying (1.2)
with k=k,,>0, and

(1.3) /TB 1;3 Fnlr,0)r(1+ )P dodr =m.

The weak compactness arguments in the proof below do not provide continuity
for the map m+—k,,. Connected to this, the theorem does not state the existence
of a solution with arbitrary indata. Instead a particular moment is fixed, leaving
only the profile of the arbitrary indata free at the boundary.

Entropy related quantities are widely used to study kinetic equations and ki-
netic formulations of conservation laws. In the context of stationary kinetic prob-
lems, it is often the entropy dissipation term that provides the most useful control.
That was the case in the Povzner and Boltzmann slab papers [2], [3], [4], where this
term was an important tool to obtain existence results for (1.1} under (1.3) via weak
L'-compactness. In the present paper the same approach is generalized from the
slab case to cylinders. Approximations of the problem at hand are first constructed
in Section 2, similarly to those earlier papers. Starting from those approximations,
Section 3 is devoted to taking the approximations into true solutions through a
sequence of limit steps.

2. Approximations

Without loss of generality we can restrict the discussion to the case m=1.
Denote by fo=f(z,v.), f'=Ff(x,v'), and fi=f(z,v)). Let s>1/p>0, and let
X5, Ux,w) be a C°-function, such that 0<x3<1 is invariant with respect to the
collision transformation J(v, v.,w)=(v',v,, —w), as well as to an exchange of v and
Uy, and such that

. 1 1 1 1
Xo(v,v,w) =1, if |vr|28+5, [Vsr| > 54—, \vi|23+5 and \vir\ZH—E,
@

X (v, v, w0) =0, if Ju| <, or |u,| <s, or |v]]| <s, or |v,,.|<s,

and define x*:=x2,. Set x°(v)=1if |v.|>s and ¥*(v)=0 otherwise. Denote by
Q*(f, f)(ﬁv):/ X (v, 04, w) B(f' fi— f f) dvs dw.

R3x 52
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Lemma 2.1. For any 0<s<1, there are a function f° and o real number k*>0
which form a solution to

(2.1) sPE+u-Vaf*=Q(f°, %), (z,v)cQxR?,
(2.2) Pz, v) =k folz,v), (x,v)€0NT,

(2.3) / 1+ fo (2, v) dedv=1.
OxR3
Moreover,
(2.4) 0 < k® <co, / |52 £5(z,v) dx dv < 1k,
QxR3

and

Fad
fefs

(2.5) / B 5 f512)log dz dv dv, dw < ok,
OxREx 52

where U=(v,,vg), and cg, c1 and ¢y are positive constants independent of s.

Proof. Only the main lines of the proof are given, similar arguments being
developed in [6].

Let 0<j,p,n, u€N and p>1 be given, as well as a positive C* regularization
b of b. Let K be the closed and convex subset of L'(Q2xR3) xR, defined by

k={rent@m) [ v e dea=1,
QxR3
flz,v)=0 for |v,| < s} x [0, c3].
Here R
€(1+87r2n‘3j,u\b|L1/3)2rB
c3= : ,
’ Jos iy XA+ DA (fola—s*(z,v)v, v)Af) da dv

f» is the ingoing boundary value f4, fg, and

st(z,v):=inf{sc R, ;(z—sv,v)€dQT}, foAj=min{fp,j}.

Similarly, take
s (z,v):=inf{se R, ;(z+sv,v) €N},

where 92~ denotes the outgoing boundary.
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Define the map T on K by

vF 1
fﬂng X (1+w)PF(x,v) dx dv’ foRS W (1+v])PF(z,v) dz dv)’

7.0 =

where F' is the solution to

sProVF= [ B — )L )
R3x 52 1+__ 1_|_f*¢9
J J
f*(pg 3
(2.6) —F(@v)T(az,v*) dv, dw, (z,v) €IxR7,
141 5Fe
J

F(z,v)=fo(z,v)A], (z,v)€d0’.

Here,
1 -
B, (v,vs,w) = max{;, min{pu, [v—v. |ﬁ}}b(0).

The function XP™(v,v.,w) is taken in C°°, such that 0<XP* <1, invariant with
respect to the collision transformation J{v,v,,w)=(v', v, —w), and invariant under
an exchange of v and v,. Moreover, it satisfies

2

~ . n
Xt (v, v,w) =1, ifv? el < —,

1 1
- <
2 p~

and |v—v.| > =,
b

| |< 1
or |(v—v -—.

U,
W
lv—o.]

— Uy

XP (v, va,w) =0, if v* 402 >n? or —~w}<—
lv—v.] 2p

The functions ¢, are mollifiers in x defined by

cofe) = olen). 0<PECERY. p@)=0for 21, [ pw)do=1.

The function 7" maps K into K. Indeed, from the exponential form of F,
obtained by integration of (2.6) along characteristics,

F(z,v) > fo(z—s"(z,v)v,v)eAjexp <—ss+(az, v)

0
_/ / , XZ)?WBH%(:H—M,U*)(IU* dw dt
—st(z,v) JR3xS? 1+ ?DQ
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for (z,v)€QxR3. Hence,
)2(fb(x—s‘L(fc,v)v,v)/\j)exp(—(H—%w2n3jull~){L1)27’B), zeq, |o|>1.

F(z,v

And so,
/ X (L+[o))PF(z,v) do dv> —.
QxR3 C3

By a monotone iteration scheme applied to (2.6), it is easy to see that T is well
defined. As in [6], the map T is continuous and compact for the strong L® topology.

1

Hence the Schauder fixed point theorem applies. A fixed point
Jaxrs X* A+ PP F(z,v) dz dv’

(fs ks,jm,p,g,u)) with Es jn.p,0u =

satisfies
sf+v-V,f= XZ?mBu< ff (x,v") f?':g (z,v))
R3xS2 1+2 14 Po
J
(2.7) —flz,v) f}ig (xw*)) dvy dw, (z,v) €AxR3,
1+—2
J
(z,v) €007,

f($7 U) = ks,j,n,p,g,,ufb(xv U) /\j>
/ X (1+w))? f(z,v) da dv =1,
<R3

with 0<ks jn,p,0,u<C3.

Again following the proof in [6], a strong L' compactness argument can be used
to pass to the limit in (2.7) when o tends to infinity. It gives rise to a solution f of

Sf+UV1;f: XsfpnBH <—f(l‘,1),) ff (xavfk)
R?xs? 1+= 1+=
J J
(2.8) —flz,v) ff (m,v*)> dv, dw, (z,v) € QAxR3,
1+=
J
(z,v) €90,

f(iL’, U) = ks,j,n,p,ufb(l', U)/\j7

(2.9)
/ (14 v)P f(x,v) de dv=1.
xR3

(2.10)
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Here 0<ks_j np . <Cs3, since the norm of F' is bounded from above.

For v a unit vector in the plane, let 0, denote the line segment which is the
orthogonal projection of £ onto a line in R? orthogonal to . For any x€€, denote
by z. its orthogonal projection on €. The length of Q. is {Q,|=2rp. It follows
from (2.10) that

/ / / X (L+|va )P f (277, vi) dvs dy dT = 1.
Q, J{r;zy+77€Q} JR3

Hence there is a subset (va of Q. with |§vlfyl <110, | such that for 2<|v|<4, ¥/|0|=",
it holds that

0
/ / Xsypan‘f—(-’E-y +5v,v,) dv, dw ds
—st(z,v) JR3xS? 1+i

J
0 ¥ R B
S/ / XX By~ (X + 77, 0:) doy dwdr < c|b|pr,  z,€Q,.
—st(z,y) JR3xS2 1+i
J
By the exponential form of (2.8), (2.9) and (2.10),

1>/|vr|2s /mm(lJrlvl)ﬂf(m’v)dardv

1o]>1
2<]v|<4
> K gnpyue” O L) / e 23 / _ (1)) fo(w—s" (z, v)v, v) Al da do.
o|>1 Jzy€Qy
2<]|v|<4

Hence the family (ks j n,p,.) is bounded from above by a constant cg, uniformly with
respect to s, j, n, p, and u. Denote the solution of (2.8) by f7. Multiplying (2.8) by
14+log(f7/1+f7/5), then integrating the resulting equation over QxR?, and using
Green’s formula, implies that

3/ 7 (1+log f7)(z,v) dzdv < c <o,
QOxR3

uniformly with respect to j. And so, as in the time-dependent case (cf. [8]), the
weak L1-limit f of f7 when j tends to infinity, satisfies

sf+v-Vaf= e XTXP" By (f (,0") f (2, 0%) — f(,0) f (2, v.)) dvs dw,
(z,v) € AxR?,
(2.11) fla,v)=ksnpufo(z,v), (z,0)€00,

(4P f(z,v) dedv=1,
QxR3
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with 0<kg pn p,u<co. Here 0<ks rp . is a consequence of Green’s formula.

Given s>0, write f™P# for f in (2.11) to stress the parameter dependence.
Multiplying (2.11) by 14+v? and by log f™P*, then integrating both resulting equa-
tions over Qx R? and using Green’s formula implies that

s/ (14+0? +log fPH) froPt (2, v) de dv < oo,
OxRS3

uniformly with respect to n, p, u, and b. And so, when b tends to b, n and p tend
to infinity, and p tends to zero, the weak limit f® of f™P# satisfies

Sf -V f* = X B S~ 212 dvs dw,  (z,v) € QxR
R3x S?
(2.12) [z, 0) =k fo(z,v), (z,v) €00,
(2.13) / (4P f2 (2, v) de dv =1,
OxR3

with k®* <c¢p. Moreover, k>0 and
/ |51 f2 (2, v) dzdv < cy,
OxR3

for some c; >0, uniformly with respect to s. Indeed, multiplying (2.12) by 1+v?2
and integrating it over QxR3 leads to

S/ (1+v?) f3(z,v) dmdv+/ |v-n(z)|(14+v?) f5 (2, v) dz dv
QxR3 0~
(2.14) :ks/ v-n(x)(1+v?) fo(z,v) dz dv
o+
gco/ v-n(z)(14+v?) fy(z,v) dz dv.
ont

It follows from (2.13) and the left-hand side equality in (2.14) that k*>0 for
5>0. Then, denote by (v, vy, v.) the three components of the velocity v in cartesian
coordinates with (vg,v,) parallel to Q. Multiply (2.12) by v, and integrate it
over O, xR3, where 0, is the part of Q with z;<a. Set S,:={z€Q;z;=a} and
80, :=00NQ,. This gives

s/ v f(x,v) dxdv—f—/ V2 f(a, 20, x3,v) dao dos dv

(2 15) Q,xR3 S, xR3

—/ vpv-n(x) f*(z,v)drdv=0.
80, xR3
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Integrating (2.15) over [—rg,rp], leads to

/ v3 f*(x,v) dxdeQTBS/ (14+v2) f5(z,v) dx dv
OxR3 QxRS

+/ / vev-n(z) f*(z,v) dz dvda < i k°,
—rp JO xR3

by (2.14). Analogously, fngB vs f2(z,v) dz dv is bounded from above, uniformly
with respect to s. And so, the boundedness in (2.4) follows. Finally, Green’s formula
for f®log f*® implies that, for some ¢5>0,

Fr
A M

uniformly with respect to s. This ends the proof of Lemma 2.1. O

dx dv dv, dw < cok?,

@i6) [ CBUTE - f

Lemma 2.2. There is a constant cs such that

/’Uffs(r,v)deCsksa a.ce. 7€ (ra,rp).
R3

Proof. Multiplying (2.1) by 1+v? and integrating over Qx R? leads to

(2.17) / B lv-n|(1+v?) f(ra,v) dv+/ v-n{1+v%) f(rg,v) dv < ck®.

v-n>0

In cylindrical coordinates, f* is a solution to

ofrt 1 < 2 Of° of°
T

(2.18) sf* o U0 G Y G ) Q°(f°, ).

Multiplying (2.18) by v, and integrating over (ra,7)x (0, 27)x R3, gives by (2.4),
(2.14), and (2.17) that

/RsmﬂfS(r v)dv</ 74V} f(ra,v) dv— S/r /Rstvrf (t,v) dv dt

//vgf t,v) dvdt
ra JR3

§cks+cs/ / (14+v?) fo(t,v) dvtdt
rqa JR3
SCgks

for some constant ¢c3. O
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Lemma 2.3. Let o be the angle of aperture of the cone starting at (rg,0)

(in cartesian coordinates), with axis Ox (where O denotes the origin), and tangent

to the circle of radius ra. For any x in Q, denote by C, the cone with azis Oz,

summit on the outer cylinder, and tangent to the inner cylinder. Denote by C,

the homothetical cone with %a as angle of aperture. Then for any 6>0, there is a
constant cs>0 such that

filx,v) > sk’ falv), ae x€Q, v,>0, vE€C,, §<|v|<

3

filz,v) > sk’ fp(v), ae e, v.<0, vel,, <Y<

S| = Oa| =

Proof. It follows from (2.1) written in exponential form with the collision fre-
quency v, that

Iz, v) > cks folz—sT (z,v)v, v)e_(s/é)%B‘fEs*(z,v) v ertov)dt 5 o vl <

S

Then,

0 0
/ v(f¥)(z+tv,v)dt<c / |v—v,|° 5 (z+tv, v,) dv, dt
R3

—st(z,v) —st(z,v)

0
Scé/ / (14w )P f5 (x+tv, v,) dv, dt
—st(z,v) JR3

0
§C§/ / (14]ve )P f5 (x4 5w, v,) dv, ds,
—st(z,w) JR3

where w=v/|v|. And so, by the change of variables srr=|z+sw|, with Jacobian
|Ds/Dr|=|z+sw|/|(w, x+sw)| uniformly bounded from above by the definition of
the cone Cj,

0 TB
/ y(fs)(x+tv,v)dt§65/ / (4w )P fo(r,v0) dvardr <cs. O
rqa JR3

—st(z,v)

3. Passage to the limit

For proving the existence Theorem 1.1, it remains to pass to the limit in (2.1)—
(2.3) when s—0.

Lemma 3.1.

sup k®=ky < 0.
0<s<1
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Proof. It follows from Lemma 2.3 that

fi(r,v) > ck® fa(v), a.e.re€(ra,ru), vr>%7 veC, %§|v|§2,

so that .
1:/ / (4o £2 (r,v) dv dr > ck*,
ra JR3
and )
ksfk()::—. ]
c

Lemma 3.2.
liminf k% > 0.
s—0

Proof. We shall prove Lemma 3.2 by contradiction. If liminfs_,q%k°=0, then
there is a sequence (sj);-il tending to zero when j— o0, such that k;:=k% tends to
zero when j—o0. Fix e<1. Prove that for j large enough, f7:=f% and ¥’ :=%%
satisfy

//)Zj(1+|v|)ﬁfj(r,v)dvdr<55,
ra JR3

contradicting

//)_(j(1+|v|)ﬁfj(r,v)d'udr:1.
ra JR3

By Lemma 2.2, given ¢/ >0 there is ¢>0 such that

(3.1) V2 f () dvgc/ W2 £ (r,v) dv < c;.
R3

/c’vr>./'u§+v§

Let us next prove that for A>>10,

(3.2) / N =28 (14| £ (r,v) dv dr < 2,
s<|vp|<y/vE+v2 /10

by splitting the integral into two pieces,
/\/v%—vgﬂ(1+|v|)ﬂfj(7",v)d0d?“,
A/10> v |>s

and

1+[v)? f7(r,v) dv dr.
/,/vg+v§>10vrl>k< +|v|) f (T7U) var
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For each of these two pieces, construct j-dependent v.-set V., CC and w-set T'C .52,
with measures bounded from below by a positive constant, such that

lv—v.| >clv], fv)]>clv], [vl,.|>clv|, v.€Vi, weT.

Hence, for any L>1,

(L4107, 0) < e+ o)) 2, 200

;
£ (r, )
k;

o =0 [P6O)(f7 (r,0) 7 (r, 00) = f (r, ) 2 (1, 0,))

gL
fr(r,v) f2(r,v.)
fI (o) 7 (r,vl)

< cL(\vﬂa ol ) (r, )

cx
k;lo
% log

And so, using (3.1)

cL ¢
JamEes AP F ) dvdr <5 g <o

s<|vp|<q/vE4+02 /10
and

j cL
/\/5§+—v§>,\ (1+|v|)ﬂfﬂ(r,v)dvdr§ ﬁ—i_l 7 <
s<|vr|<A/10

by first choosing L large enough, and then X large enough. Similarly

, c
N (1+lv[)ﬁf7(r,v)dvdr<chj+@ <&,
s<|vp|<y/vE+02 /10

by also choosing j large enough. This completes the proof of Lemma 3.2. [

Lemma 3.3. The family (%°f*) is weakly precompact in L*((ra,rp)xR?).

Proof. First,

/ X°fP(ry,v)rdrdo<l.
|lvn|>s

It follows from the proof of (3.1) and (3.2), that it is enough for §>0 to consider

|v|<1/5. There, let us prove the equiintegrability of (x°f*) by contradiction. Sup-
pose that for some £>0, there is a sequence ( fJ) ; from the family (f¢), and a
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sequence of subsets A; of {(r,v);lv,|>s; and |v|<1/6} such that |A;]<1/j and
fAj X/ f3(r,v) dv dr>e. Consequently,

/(‘r‘,v)eAj fj(r,v)dvdr>§.
f 2

I (rw)>ej/2

For (r,v)€A; such that f(r,v)>%ej, choose v, €C with 10/5<|v.|<11/§. In the
ve-volume thus created, there is a subvolume V, of measure uniformly bounded
from below by a positive constant, such that for v, in this subvolume, there is a
set T'C.S? again of positive measure uniformly bounded from below, such that for
(v, w) €V, xT and using Lemma, 2.3, v’ and v/, satisfy

sz >3 Pr)<e Plu)<e
F1(r,0) S e (r,0) 2 0)— 2 (r, ') 2 (r,0),

an F3(r0) £ (r, )
v 7, Us .
P o) fife)

Moreover, |[v—v.|>1/§. And so,

f%hv)<ﬁ%%hﬁ%uWMQXﬂﬁnWfﬂnvﬂ—fﬁnv@anvD)

FI(r, ) f7(r, v
fHr v ) 7 (rl)

Integrate (3.3) over X:={(r,v,v,,w);(r,v)€A;,v.€V, and wel'}. Hence,

(3.3)
xlog

05 <o . X HO P ) P v = 1 () 2 r,00)
Clog 207 0)

7, o) 31,00
| XU 0 )= £ ), 00)
OxR3x 52

fj(ra U)fj(rv U*)
%8 Fi(r, o) 3 (ry L)
< _c

0gJ

dr dv dv, dw

x1 dr dv dv, dw

This leads to a contradiction when j—o0o.
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By Lemma 3.3 there is a sequence (f7)2, from the family (f*) and a func-
tion f, such that lim; yoo X’ f/=f weakly in L'((ra,rg)xR?). It follows from
Lemma 2.2 and the proof of (3.1) and (3.2), that the limit f satisfies the moment
condition (2.3). So Theorem 1.1 holds, if f:fng QIE(f7, f9)p(r,v) dv dr have the
limits frrf Jrs Q*(f, f)e(r,v) dvdr. For this we first prove the following four lem-
mas.

Lemma 3.4.

lim  sup / L (1+o))P fi(r,v) dvdr =0,
EHOSC(TA,TB) SxR3
|S|<e

uniformly with respect to j.

Proof. Analogously to the proof of Lemma 3.2, for each (r,v)eSxR3, de-
termine subsets V. of C and I' of S? of positive measures, such that for each
(4, w) €V, XT,

lo—vi| Ze(U+o]), ol Zel, |lze Junlzcpl o] >e

and for any L>1,
(3.4)
(L 0])2 9 r,0) < Lok P00, )£ ) £ 1,0
+1§§;|U_v*'ﬂb(9)(fj(7”a 0) 7 (r,v) = 2 (1, 0") 2 (r,00)
Fi(r, o) fi(r,vl)

xlog
So by Lemma 2.2

(1 B g <cL _c
/S><R3X( +|v|)? f2 (r,v) dvdr <c ‘S|+logL

The result of Lemma 3.4 follows, by first choosing L large enough, and then |S|
small enough. [
Lemma 3.5. Given n>0, there is an integer jo such that for j>jo and outside

of a j-dependent set in r of measure smaller than 7,

lim F(+ )P f(r,v) do=0

N N o2

uniformly with respect tor and j.
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Proof. For each (r,v) with y/v§+v2 >, choose v, in a subset of C' of measure
uniformly bounded from below by a positive constant, so that for a subset of we S?
of uniformly positive measure,

clol] > | > e vE+vE, ) <1,
cloi | > ol| > ey o2, f(rv)) <1,
and for any L>1,

X (L+[0)? £ (r,0) S ex? (L+[o])? £ (r,0) £ (r, vs)
<Ll |7 {7 (r,o") f (r,00)

ex? ) j j y |
-I-@*Iv—v*]ﬁbw)(f (r,0) f2 (r,ve) — 2 (r,0) f7 (7, 0)

FI(ry0) £ (r,vs)
fi(r, o) fi(rvl)

It follows from (2.5) that uniformly in j,

x log

/ X [0 =0 PB(O) (f7 (ry v) [ (r, 04) = f7 (r, ') 7 (7, 0)))
R6x 52

£ (r,0) f (r,v2)
%8 Filr, o) f(r, oL)

outside of a set S;—C(TA, rp) of measure 7. Hence,

x 1 dvdv, dw<c,

cLJr Cy

B i <
(1+|v|) f (T7/U)d/U7A27ﬁ IOgL,

/ xE€ S;»C.

Vvgt+vE >A

The result of Lemma. 3.5 follows, by first choosing L large enough, and then A large
enough. O

Lemma 3.6. Given A>0 and >0, there is an integer jo such that for j>jo
and outside of a j-dependent set in r of measure smaller than ¢,

v
vgtoz <a X (
|vrf<1/

lim
i—00

1+ [P fi(r,v) dv=0

untformly with respect to r and j.

Proof. Given 0<n?<mn, r and j, either

/\/53—4720 X (L)) f (r,v) do <,

|lon| <1/
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or
Jamma X )£ ) do >
|ve|<1/4

In the latter case,

v |3,

SamTe XO+RD I (rv)de<
_ |vr| <1/
Frw)<n?i/anrh

/\/WQ X (1+[o])? 7 (r,v) dv >
lun|<1/d
S (rw)=n?i/amr>*P

3

v |3,

For each (r,v) such that f7(r,v)>n?i/4rA?*# using (2.3) and Lemma, 2.3, consider
subsets V, CC and I'C 5? of measure uniformly bounded from below, such that

lv—vi| >col, frv)>e, =1, fr) <,
|,U:<r[21; fj(r,vi)gcl’ ve €V, wel.
Hence, for such r, v, v., and w, and for i large enough,
X7 (LH[o])P 7 (ry0) < ex? (1+ o)) £ (r, v) £ (7, v.)
ex! 8 i j 3 (r o) 9 (r, 0]
< @lv—v*l b(O)(f (r,0) f7 (r,vi) = 7 (r, ") f7(r, 0L))

f(r,v)f7 (r,v.)
fir, ) 7 (r0l)

It follows from (2.5) that there is a constant ¢’ such that

xlog

/ X o=vP0(8) (f7 (r, v) 7 (r,0.) = 7 (r, ) £ (r, 1)
R6x 52

f(r,v)f7(r, v.)
fI(r,v') 3 (r,vl)
is bounded by ¢”, uniformly with respect to j, outside a j-dependent subset SiC
(ra,rp) of measure . Hence,

xlog dv dv, dw

e

/\/WSA X (L+[o])P 7 (r,v) dv < +2n < 3n, TGS;‘C’

o] <1/4 log

for 1 large enough. 0O
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Lemma 3.7. The sequence of loss terms
Q17 17) 1=fj/ X5 [o—v.|PB(0) £ (7, v4) dv.c dew
R3xS2

is weakly compact in
1 3 1
L <{(T;U)E(TA77‘B)><R s|loe| > 8 and |v|<5}).
Proof. Tt follows from (2.3) and Lemma 2.2 that

Jomrtenspens [0=0. 6O ()£ ) dodo, dr

[vr[>6
lo|<1/6

: c[jiém (L) £ (r, v.) dvw dr =c.

It remains to prove that, for any sequence of sets (S;)5°, with

i=
S; c{(r,v) € (ra,r)xR*;|v,| > § and |v| <1/6}

and |S;{<1/4,
(3.5) lim Q7 (F, f)(r,v) dvdr =0.
j—oo0 s;

First, for any sequence of sets R; C(ra,rg) such that lim;_, |R;|=0, it holds that

(3.6) ‘lim/R [or|>6 Q= (f7, fY(r,v) dv dr =0.

e lui<1/68

Indeed, by Lemma 2.2

o o
f, fizs @ fj,fj)(m)dvdrﬁc/Rj«/RB (o) do)
x/ I(1+|w P F7 () U*)d'l)*> dr

<cko/ / I+ |v )P f (1, v.) du.. dr,
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which tends to zero when j— oo by Lemma 3.4. Then, let

S ={(r,v)€S;;r¢ X,}.

Since | X;|<1/v7,

(3.7) lim Q7 (7, f)(r,v) dvdr=0.

j—roo X; /RS

Given A>0,
(3.8) / / @)L+ ) 9 0) 9 (r 02) do do dr
LS Jvwr|>A

<caky [ D@1+ ) L0 dodr

7

which tends to zero when j— 00, by Lemma 3.3. This also holds for
(3.9) / / O (U 02) £, 0) £ (7, v2) dy do
’ [v*r|>A
by a similar argument. By Lemmas 3.5 and 3.6,
[ R ) do.
[var|<A

tends to zero when A—0, uniformly with respect to r outside a j-dependent small
set, that is taken care of by Lemmas 2.2 and 3.4. Hence,

(3.10) hm(hmsup/ /lvaA )1+ 0P R (vs) (140, )P

j—o00
x fj(r7 v)fj (Ta U*) d’l)* dU d’)”) = O

But (3.5) follows from (3.6)—(3.10), and so the lemma holds. O

End of the proof of Theorem 1.1. It is a consequence of the weak compactness
of Q77 (f7, f7) and the inequality (2.5) that (Q7*(f7, f7)) is also weakly compact
in any L'({(r,v);|v;|>§ and |v|<1/8}). This implies a (subsequence) limit when
Jj—o0 in the weak form of equation (2.1) for any test function ¢ with compact
support and vanishing on {(r,v);|v,| <4} for some §>0. Let us prove that

(3.11) hm/ / QI (f7, ) (r vrdrd'v~/ / eQ{(f, H(r,v)rdrdv.
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First,
/ Bo(f7(r,v) f7 (r,0.)x" 4+ f (r,v) f(r,v:))7r dr dv dv. dw
jve| >V,

can be made arbitrarily small for V, large enough, since by Lemma 2.2,
/ Bo(f1(r,v) f {(r,v)xE + f(r,0) f{r,v,))r dr dv dv. dw
|va | >V,
<es [ W@ o)+ 0)) dondr,
[va| >V,

which by the proof of (3.1) and (3.2) tends to zero when V, —o00. For V, fixed, let
{vs;|ve| <Vi} be covered by | J; BY, where B} :={v,;|v. —w}|<1/n}. Using the av-
eraging lemma (see [10]) and a diagonal process, [gs [v—wlPpfI(r,v) dv converges
a.e., hence for each n, and outside of an arbitrarily small set RC(r4,rg), uniformly
with respect to 4. Consequently,

zi:/c (/RS [v-—wﬂﬁ@fj(r,v)dv> </n () f (r, m)dm)rdr
3 ([ eorns) (] e 5o

Using Lemma 2.2,

Z/C/?(/Rg(lU*U*W'\v—wﬁﬁ)tpfj(r,v)dv)fj(r,v*)rdrdv*—>0,

when n—o00. It follows that

/ @Q‘(fj,fj)rdrdv—/ 0@ (f, firdrdv—0, when j— oo.
RxRS3

RxR3

It remains to prove that

(3.12) hm/ / ©QT(f7, f’)(rvrdrdv;/ / ©Q* (f, fY(ryv)rdrdv.
R3 Jry R3 Jry

Vide el

For R>0, let fR=weak-L" lim; ,o0(f71¢.g). Split

/ / e(Q (7, ) =Q"(f, ) (r,v)r dr dv



48 Leif Arkeryd and Anne Nouri

into Il+Iz+Ig+I4+I5, where
I —/ / QP ) —Q" (f, f))rdr dv,
I2::/ X (r,v)Bf2 (v, 0") f2(r,vl)r dr dv dv, dw,
fi(rw’)>R

Iy:= /J;j(r,v’)<R X2 (r, 0)BF (r, ') f (r, v )r dr do . duw,
|ve|>V

1, ;:/ Bo(r,v) fE(r, ") f(r,vl)r dr dv dv,, dw,
v2+vZ>V2+1/67

I ::/ fi(ro)<R Xngp(r,v)fj(r,z)’)fj(r,v;)rdrdvdv* dw
V2w <Vi41/57

—/ Be(r,v) fR(r, ") f(r,v)r dr dv dv, dw.
2402<V241/82

Let >0 be fixed. By the monotone convergence theorem,

(3.13) |I,{|<e, R>Ri,

for some R;>0. Again arguing as in the proof of (3.1), (3.2) and (3.11), we get
(3.14) 2| <e, R> Ry,

for some R2>0. Comparing the gain term with the loss term and the entropy
production term, it holds that for K >1,

. . c
I <K r, ) B (r,0) f7(r,v.)r dr dvdv, dw+——
BISK [ e oBre ) o

(3.15)
, . c
§05I(/ ¥ (w )1+ P F7 (r,v)r dr dve+—— <&,
|v.|>V ‘ ) log K

for K, and then V large enough. Then,
(3.16) 4| <e

for V large enough, by the integrability of (r, v, vs,w)—> Bo(r,v) f(r,v") f(r,v}). No-
tice that f¥ is also the weak* L™-limit of f71 si<r- Moreover, it follows from the
averaging lemma that

/ X! Bo(r, o) {2 (r, v.) dv, dw
v2<V24(1/62)—v?
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strongly converges in L'((ra,rp) x {v;|v|<R}) to

/ Bo(r,v") f(r,vs) dv, dw.
v2<V24(1/62)—v2

Hence lim;_.o, Is=0. And so,

hm/ /B<P(Q+(fjafj)—Q+(f7f))(rav)rdrdﬂzoa
R3 Jra

j—oo0

by choosing R and V' large enough so that (3.13)-(3.16) hold. The limits (3.11),
(3.12) are thus proved, which completes the proof of Theorem 1.1. O
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