ASYMPTOTIC LOWER BOUNDS FOR THE FUNDAMENTAL FREQUENCY OF CONVEX MEMBRANES

George E. Forsythe

1. Introduction. Let the bounded, simply connected, open region R of the (x, y)-plane have the boundary curve C. If a uniform ideal elastic membrane of unit density is uniformly stretched upon C with unit tension across each unit length, then λ, the square of the fundamental frequency, satisfies the conditions (subscripts denote differentiation)

$$
\left\{\begin{array}{l}
\Delta u \equiv u_{x x}+u_{y y}=-\lambda u \quad \text { in } \quad R, \tag{1a}\\
\lambda=\text { minimum },
\end{array}\right.
$$

with the boundary condition

$$
\begin{equation*}
u(x, y)=0 \quad \text { on } \quad C \tag{1b}
\end{equation*}
$$

Variational methods of the Rayleigh-Ritz type are frequently used to approximate λ. They always yield upper bounds for λ, and the upper bounds can be made arbitrarily close.

Another common practical method of approximating λ is to calculate the least eigenvalue λ_{h} of a suitably chosen finite-difference operator Δ_{h} over a network with small mesh width h. For one choice of Δ_{h} it was shown by Courant, Friedrichs, and Lewy [3, p. 57] without details that $\lambda_{h} \rightarrow \lambda$ as $h \rightarrow 0$. For convex regions R of a special polygonal form the author has shown [4] that a special case of (11) below is valid for a common choice of Δ_{h}, and hence that λ_{h} is asymptotically a lower bound for λ as $h \rightarrow 0$. For an unusual finite-difference approximation to problem (1) when R is the union of squares of the network, Polya [12] has found that $\lambda_{h}>\lambda$ for all h, and also for the higher eigenvalues. The author knows of no other study of the sign or order of decrease of $\lambda-\lambda_{h}$ to 0 .

In the present paper the investigation of [4] is extended to a much wider class of regions: those with piecewise analytic boundary curves and convex corners. The new theorems are stated and proved in §§ 3 and 4. Theorem 2 contains the theorem of [4] as a special case. Lemmas used in the proof of Theorem 1 are given in §5. Identity (31) of Lemma 7 is interesting in itself.

[^0]
[^0]: Received December 2, 1953. Presented to the American Mathematical Society September 4, 1953. The preparation of this paper was sponsored in part by the Office of Naval Research, U.S.N.

