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1. Introduction, In this note, some theorems which concern matrices of complex

numbers are generalized to matrices over real quaternions. First it is proved that

every matrix of quaternions has a characteristic root. Next, there exist n ~~ 1

mutually orthogonal unit ^-vectors all orthogonal to a given vector. It is shown

that Schur's lemma holds for matrices of quarternions: every matrix can be trans-

formed into triangular form by a unitary matrix. For individual quaternions, it is

known that two quaternions are similar if they have the same trace and the same

norm—thus every quaternion has a conjugate a + bj(b > 0). This fact is proved

again.

The quaternion λ. is called a characteristic root of a (square) matrix A pro-

vided a non-zero vector x exists such that Ax — x λ.. Similar matrices have the

same characteristic roots; if y — Tx, where T has an inverse, then TAT~ly

— T Ax — Tx λ = y λ . Another interesting fact is that if λ is a characteristic

root, then so is p~~ι\p; for from Ax ~ x λ follows A(x p) = (x p) p~ιλ p; thus if

the vector corresponding to the characteristic root λ is χ9 then xp is the vector

corresponding to the characteristic root p~~ιkp.

2. Lemma. We shall need the following result.

LEMMA 1. If A — (θj ί) is a matrix of elements from any field or fields, then

a triangular matrix T exists such that T~ι AT — C — (cij)i where C{; — 0 when-

ever i > ~f 1. The elements of T are rational functions of the elements of A,

Proof. The proof consists in transforming A in steps so that an additional

zero appears at each step. First A is transformed so that all the elements in the

first column (except the first two) become zero; the transformed matrix is further

transformed so that all the elements in the second column (except the first three)

become zero, and so on. The formal proof is inductive; it will be sufficient to give

the idea of the proof. In the first column of A9 either αy ! — 0 for all / > 1, or else
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