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1. Introduction. If @ and g are elements of a group G, we shall denote by

a'(g) or a(g) the element g 'a g, and then for n = 2, 3, 4, -« - define a(")(g) =

a(a®V(g)).

If for some n and all ¢ € G, a(")(g) = a then a will be called wedkly central

of order n or simply weakly central. Thus the center elements of G are weakly

central of order 1.

As usual, let

lgoal =a g ag=a"t - alg);

then it can readily be verified by induction on n that
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Thus '™ (g) = a is equivalent to

n times
e,
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where e is the identity of . It follows that if a is an element of a normal nilpo-

tent finite subgroup of G then a is weakly central. Another easy consequence of

the definition is that if a is weakly central in & then a is its own normalizer in

G if andonly if {a} = G; here { a} denotes the subgroup generated by a. It should

also be noted that if a is weakly central in G, then a is weakly central in G,

where @ is the image of a under a homomorphism which takes G onto G.
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