A GENERALIZATION OF THE CENTRAL ELEMENTS OF A GROUP

EUGENE SCHENKMAN

1. Introduction. If a and g are elements of a group G, we shall denote by $a^{(1)}(g)$ or a(g) the element $g^{-1}ag$, and then for $n = 2, 3, 4, \cdots$ define $a^{(n)}(g) = a(a^{(n-1)}(g))$.

If for some *n* and all $g \in G$, $a^{(n)}(g) = a$ then *a* will be called *weakly central* of order *n* or simply *weakly central*. Thus the center elements of *G* are weakly central of order 1.

As usual, let

$$[g, a] = a^{-1} g^{-1} ag = a^{-1} \cdot a(g);$$

then it can readily be verified by induction on n that

$$a^{-1} \cdot a^{(n)}(g) = a^{-1} \cdot [a \cdots [a, g] \cdots]^{-1} \cdot a \cdot [a \cdots [a, g] \cdots]$$

$$n \text{ times}$$

$$= [a \cdots [a, g] \cdots].$$

Thus $a^{(n)}(g) = a$ is equivalent to

$$[\overbrace{a\cdots}^{n \text{ times}} [a, g]\cdots] = e,$$

where e is the identity of G. It follows that if a is an element of a normal nilpotent finite subgroup of G then a is weakly central. Another easy consequence of the definition is that if a is weakly central in G then a is its own normalizer in G if and only if $\{a\} = G$; here $\{a\}$ denotes the subgroup generated by a. It should also be noted that if a is weakly central in G, then \overline{a} is weakly central in \overline{G} , where \overline{a} is the image of a under a homomorphism which takes G onto \overline{G} .

Received July 2, 1952.

Pacific J. Math. 3 (1953), 501-504