THE SPHERICAL CURVATURE OF A HYPERSURFACE IN EUCLIDEAN SPACE

T. K. Pan

1. Introduction. Let V_{n} be a hypersurface immersed in a Euclidean space S_{n+1}. Let P be a point of V_{n} corresponding to the point P° of the hyperspherical representation G_{n} of V_{n}. Let V denote the extension of a region ϕ of V_{n}, and V^{\prime} the extension of the corresponding hyperspherical region ϕ^{\prime} of G_{n}. If the region around P tends to zero, the ratio V^{\prime} / V tends to a limit Γ, which is called the spherical curvature of V_{n} at $P[1, \mathrm{pp} .258-261]$. It is found that $\Gamma=|\Omega / \mathrm{g}|$, where $g=\left|g_{i j}\right|$ and $\Omega=\left|\Omega_{i j}\right|$ are respectively the determinants of the coefficients of the first and the second fundamental forms of V_{n}. In this note, some properties of the spherical curvature are studied, and new interpretations of the Gaussian curvature are derived.

The notation of Eisenhart [2] will be used for the most part.
2. Some properties. Let a real and analytic hypersurface V_{n} be defined by

$$
y^{\alpha}=y^{\alpha}\left(x^{1}, \cdots, x^{n}\right) \quad(\alpha=1, \cdots, n+1)
$$

referred to a Cartesian coordinate system y^{α} in a Euclidean space S_{n+1}. Let a vector-field v in V_{n} be defined by

$$
v^{\alpha}=p^{i} \partial y^{\alpha} / \partial x^{i} \quad(i=1, \cdots, n),
$$

where the v^{a} are real and analytic functions of the x^{i}. Let C be a curve of V_{n}. The normal curvature vector of v with respect to C at P is defined as the normal component of the derived vector of the vector-field v along C at P [3]. Let κ denote a nonzero extreme value of the magnitudes of the normal curvature vectors of v with respect to all curves of V_{n} at P. Then κ, which is called a principal curvature of v at P, is defined by

$$
\begin{equation*}
\left|\Psi_{i j}-\kappa^{2} g_{i j}\right|=0 \tag{2.1}
\end{equation*}
$$

Received May 13, 1952.
Pacific J. Math. 3 (1953), 461-466

