THE SPHERICAL CURVATURE OF A HYPERSURFACE IN EUCLIDEAN SPACE

T. K. Pan

1. Introduction. Let V_n be a hypersurface immersed in a Euclidean space S_{n+1} . Let P be a point of V_n corresponding to the point P' of the hyperspherical representation G_n of V_n . Let V denote the extension of a region ϕ of V_n , and V' the extension of the corresponding hyperspherical region ϕ' of G_n . If the region around P tends to zero, the ratio V'/V tends to a limit Γ , which is called the spherical curvature of V_n at P [1, pp. 258-261]. It is found that $\Gamma = |\Omega/g|$, where $g = |g_{ij}|$ and $\Omega = |\Omega_{ij}|$ are respectively the determinants of the coefficients of the first and the second fundamental forms of V_n . In this note, some properties of the spherical curvature are studied, and new interpretations of the Gaussian curvature are derived.

The notation of Eisenhart [2] will be used for the most part.

2. Some properties. Let a real and analytic hypersurface V_n be defined by

$$y^{\alpha} = y^{\alpha}(x^{1}, \dots, x^{n})$$
 ($\alpha = 1, \dots, n+1$),

referred to a Cartesian coordinate system y^{α} in a Euclidean space S_{n+1} . Let a vector-field v in V_n be defined by

$$v^{a} = p^{i} \partial \gamma^{a} / \partial x^{i} \qquad (i = 1, \cdots, n),$$

where the v^{α} are real and analytic functions of the x^{i} . Let C be a curve of V_{n} . The normal curvature vector of v with respect to C at P is defined as the normal component of the derived vector of the vector-field v along C at P [3]. Let κ denote a nonzero extreme value of the magnitudes of the normal curvature vectors of v with respect to all curves of V_{n} at P. Then κ , which is called a principal curvature of v at P, is defined by

(2.1)
$$|\Psi_{ij} - \kappa^2 g_{ij}| = 0,$$

Received May 13, 1952.

Pacific J. Math. 3 (1953), 461-466