LENGTH AND AREA OF A CONVEX CURVE UNDER AFFINE TRANSFORMATION

John W. Green

1. Introduction. We consider in the plane the class of all convex curves into which a given convex curve can be affinely transformed, and seek the minimum of L^{2} / A, where L denotes perimeter and A the area. This amounts to finding the minimum length for a fixed area, or, what is the same thing, to finding the minimum length under area-preserving affine transformations. In $\S 2$ are found necessary conditions on the supporting function that a given curve yield the minimum of L^{2} / A, and in $\S 3$ these are shown to be sufficient. In $\S 4$ is derived a property of the minimizing curves; namely that if they are sufficiently smooth, they have at least six vertices. In $\S 5$ is derived an integral representation of the supporting function of a convex curve, and another lemma to be used in §6. In 6 we study the problem of finding the maximum, over all convex curves, of the minimum over affine transformations of L^{2} / A; in other words, we seek that curve of given area, which when affinely transformed so as to minimize its length, gives the greatest length. We show that the extreme curve is a polygon of not more than five sides, but fail to show what is extremely likely, that the solution is a triangle.

For general facts about convex figures and their supporting functions which are used, see [3].
2. Necessary conditions. Consider a convex curve K and its area-preserving affine transforms. Since rigid motions can be ignored, any transformation in which we are interested can be written in the form

$$
T:\left\{\begin{array}{l}
x=e^{\lambda} x^{\prime} \tag{1}\\
y=\mu x^{\prime}+e^{-\lambda} y^{\prime}
\end{array}\right.
$$

The length $L(\lambda, \mu)$ of the transformed curve $K(\lambda, \mu)$ is a continuous function of λ and μ, and tends to ∞ as $\left(\lambda^{2}+\mu^{2}\right)^{1 / 2}$ becomes large. Thus $L(\lambda, \mu)$ has a minimum value, which we take for the moment to be at $\lambda=\mu=0$.

