ON SUMS OF SERIES OF COMPLEX NUMBERS

Haim Hanani

1. Introduction. We recall certain facts about the convergence of series.
1.1. Let $\sum_{i=1}^{\infty} a_{i}$ be a series of real numbers, $a_{i} \longrightarrow 0$. Then it is obvious that a sequence of signs $\epsilon_{i}= \pm 1 \quad(i=1,2, \cdots)$ may be chosen so that $\sum_{i=1}^{\infty} \epsilon_{i} a_{i}$ is convergent. It is, furthermore, well known that all the possible sums so obtained form a perfect set, and if $\sum_{i=1}^{\infty}\left|a_{i}\right|=\propto$ then any preassigned sum may be obtained.
1.2. The first statement remains true also for complex numbers. Aryeh Dvoretzky and the author [2] proved that if $\sum_{i=1}^{\infty} c_{i}$ is a series of complex numbers with $c_{i} \longrightarrow 0$, then a sequence of $\operatorname{signs} \epsilon_{i}= \pm 1 \quad(i=1,2, \ldots)$ may be chosen so that $\sum_{i=1}^{\infty} \epsilon_{i} c_{i}$ converges and

$$
\left|\sum_{i=1}^{n} \epsilon_{i} c_{i}\right| \leq \sqrt{3} \cdot \max \left|c_{i}\right| \quad(n=1,2, \cdots)
$$

1.3. The object of the present paper is to determine the sets of points which may be sums of the series $\sum_{i=1}^{\infty} \epsilon_{i} c_{i}$ when suitable sequences ϵ_{i} are chosen.
2. Notation and definitions. In this paper the following notations and definitions will be used.

2.l. Notation.

$c=a+i b$ denotes a term of a (finite or infinite) series of complex numbers, a being its real and $i b$ its imaginary part;
$C=A+i B$ also denotes a complex number;
$\gamma=\alpha+i \beta$ denotes a direction in the plane of complex numbers, and also a unit vector in the same direction;
$\left(C, C^{\prime}\right) \quad$ is the scalar product of the vectors C and C^{\prime}; that is $\left(C, C^{\prime}\right)=$ $A A^{\prime}+B B^{\prime}$;

