ON THE NUMBER OF SOLUTIONS OF $u^{k}+D \equiv w^{2}(\bmod p)$

Emma Lehmer

Introduction. The number $N_{k}(D)$ of solutions (u, w) of the congruence

$$
\begin{equation*}
u^{k}+D \equiv w^{2}(\bmod p) \tag{1}
\end{equation*}
$$

can be expressed in terms of the Gaussian cyclotomic numbers (i, j) of order $\operatorname{LCM}(k, 2)$ as has been done by Vandiver [7], or in terms of the character sums introduced by Jacobsthal [4] and studied in special cases by von Schrutka [6], Chowla [1], and Whiteman [8]. In the special cases $k=3,4,5,6$, and 8 , the answer can be expressed in terms of certain quadratic partitions of p, but unless D is a k th power residue there remained an ambiguity in sign, which we will be able to eliminate in some cases in the present paper. Theorems 2 and 4 were first conjectured from the numerical evidence provided by the SWAC and later proved by the use of cyclotomy. They improve Jacobsthal's results for all p for which 2 is not a quartic residue. Similarly Theorem 6 improves von Schrutka's and Chowla's results for those p 's which do not have 2 for a cubic residue. Only in case $k=2$ and in the cases where k is oddly even and D is a $(k / 2)$ th but not a k th power residue is $N_{k}(D)$ a function of p alone and is in fact $p-1$. This result appears in Theorem 1. In case $k=4$, Vandiver [7a] gives an unambiguous solution, which requires the determination of a primitive root.

1. Character sums. It is clear that the number of solutions $N_{k}(D)$ of (1) can be written

$$
N_{k}(D)=\sum_{u=0}^{p-1}\left[1+\left(\frac{u^{k}+D}{p}\right)\right]=p+\sum_{u=0}^{p-1}\left(\frac{u^{k}+D}{p}\right),
$$

or

$$
\begin{equation*}
N_{k}(D)=p+\left(\frac{D}{p}\right)+\psi_{k}(D), \tag{2}
\end{equation*}
$$

Received July 10, 1953.
Pacific J. Math. 5 (1955), 103-118

