A CHARACTERIZATION OF COMPLETE LATTICES

ANNE C. DAVIS

1. Introduction. A complete lattice $\mathfrak{A} = \langle A, \leq \rangle$ has the property that every increasing function on A to A has a fixpoint. Tarski raised the question whether the converse of this result also holds. In this note we shall show that the answer to this question is affirmative, thus establishing a criterion for completeness of a lattice in terms of fixpoints.

We shall use the notation of [6]. In addition, the formula $a \leq b$ will be used to express the fact that $a \leq b$ does not hold. By $\{a_{\xi}; \xi < \alpha\}$, where α is any (finite or transfinite) ordinal we shall denote the sequence whose consecutive terms are $a_0, a_1, \dots, a_{\xi}, \dots$ (with $\xi < \alpha$); the set of all terms of this sequence will be denoted by $\{a_{\xi}; \xi < \alpha\}$. The sequence $\{a_{\xi}; \xi < \alpha\}$ is, of course, called increasing, or strictly increasing, if $a_{\xi} \leq a_{\xi}$, or $a_{\xi} < a_{\xi}$, for any $\xi < \xi' < \alpha$; analogously we define decreasing and strictly decreasing sequences.

2. A lemma. We start with the following:

Lemma 1. If the lattice $\mathfrak{A} = \langle A, \leq \rangle$ is incomplete, then there exist two sequences $\langle b_{\xi}; \xi < \beta \rangle$ and $\langle c_{\eta}; \eta < \gamma \rangle$ such that

- (i) $b_{\xi} < c_{\eta}$ for every $\xi < \beta$ and every $\eta < \gamma$,
- (ii) $\langle b_{\xi}; \xi < \beta \rangle$ is strictly increasing and $\langle c_{\eta}; \eta < \gamma \rangle$ is strictly decreasing,
- (iii) there is no element $a \in A$ which is both an upper bound of $\{b_{\xi}; \xi < \beta\}$ and a lower bound of $\{c_{\eta}; \eta < \gamma\}$.

¹See [6] (where further historical references can also be found).

²This result was found in 1950 and outlined in [2].

³ A related, though weaker, property of incomplete lattices is mentioned implicitly in [1, p.53, Exercise 4].

Received June 29, 1953. The present note was prepared while the author was working on a research project in the foundations of mathematics sponsored by the Office of Ordnance Research, U.S. Army.

Pacific J. Math. 5 (1955), 311-319