NOTE ON THE MULTIPLICATION FORMULAS FOR THE JACOBI ELLIPTIC FUNCTIONS

L. Carlitz

1. Introduction. For t an odd integer it is well known [4, vol. 2, p. 197] that

$$
\begin{equation*}
\text { sn } t x=\frac{s n x \cdot G_{1}^{(t)}(z)}{G_{0}^{(t)}(z)} \quad\left(z=s n^{2} x\right) \tag{1.1}
\end{equation*}
$$

where

$$
G_{0}^{(t)}=1+a_{01} z+a_{02} z^{2}+\cdots+a_{0 t^{\prime}} z^{t^{\prime}}
$$

$$
\begin{equation*}
G_{1}^{(t)}=t+a_{11} z+a_{12} z^{2}+\cdots+a_{1 t^{\prime}} z^{t^{\prime}} \quad\left(t^{\prime}=\left(t^{2}-1\right) / 2\right) \tag{1.2}
\end{equation*}
$$

and the $a_{i j}$ are polynomials in $u=k^{2}$ with rational integral coefficients. If we define

$$
\beta_{m}(t)=\beta_{m}(t, u)
$$

by means of

$$
\begin{equation*}
\frac{s n t x}{t \operatorname{sn} x}=\sum_{m=0}^{\infty} \beta_{2 m}(t) \frac{x^{2 m}}{(2 m)!} \quad\left(\beta_{2 m+1}(t)=0\right), \tag{1.3}
\end{equation*}
$$

it follows from (1.1) and (1.2) that $t \beta_{2 m}(t)$ is a polynomial in u with integral coefficients for all m and all odd t. We shall show that

$$
\begin{equation*}
\beta_{2 m}(t)=H_{m}(t)-\sum_{\substack{p-1|2 m \\ p| t}} \frac{1}{p} A_{p}^{2 m /(p-1)}(u), \tag{1.4}
\end{equation*}
$$

where $H_{m}(t)=H_{m}(t, u)$ denotes a polynomial in u with integral coefficients,
Received August 8, 1953.
Pacific J. Math. 5 (1955), 169-176

