LÓWER BOUNDS FOR HIGHER EIGENVALUES BY FINITE DIFFERENCE METHODS

H. F. WEINBERGER

1. Introduction. This paper gives lower bounds for all the eigenvalues of an arbitrary second order self-adjoint elliptic differential operator on a bounded domain R with zero boundary conditions in terms of the eigenvalues of an associated finite difference problem. When R is sufficiently smooth, the lower bounds converge to the eigenvalues themselves as the mesh size approaches zero. A certain class of self-abjoint systems of elliptic differential equations containing no mixed derivatives is also treated.

Upper bounds for the eigenvalues of a differential operator can always be found by the Rayleigh-Ritz method. That is, one puts piecewise differentiable functions vanishing on the boundary into the Poincaré inequality [14]. It was pointed out by Courant [2] that in the case of second order operators one can reduce the problem of upper bounds to a finite difference eigenvalue problem by using piecewise linear functions (see § 6).

Lower bounds are more difficult to find. The only known method giving arbitrarily close lower bounds for the eigenvalues is that of A. Weinstein [20], which is usually quite difficult to apply. It was shown by G. E. Forsythe [5, 6, 7] that if the eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots$ of the two-dimensional problem

$$(1.1) \qquad \qquad \Delta u + \lambda u = 0 \quad \text{in } R$$

with u=0 on the boundary are approximated by the eigenvalues $\lambda_1^{(h)} \leq \lambda_2^{(h)} \leq \cdots$ of a certain finite difference problem on a mesh of size h, then there exist constants $\gamma_1^{(1)} \gamma_1^{(2)} \cdots$ such that

(1.2)
$$\lambda_k^{(h)} \leq \lambda_k - \gamma^{(k)} h^2 + o(h^2) .$$

The $\gamma^{(k)}$ cannot be computed, but are positive for convex R. However, the $o(h^2)$ term is completely unknown, so that this asymptotic formula cannot be used to bound λ_k below.

It was shown independently by J. Hersch [8] and the author [18, 19] that if λ_1 is the lowest eigenvalue of (1.1) and if $\lambda_1^{(h)}$ is the lowest eigenvalue of a finite difference problem on a mesh that is slightly arger than R, then $\lambda_1^{(h)}$ and, in fact, a quantity slightly larger than $\lambda_1^{(h)}$ are lower bounds for λ_1 .

Received September 17, 1957. Sponsored by the United States Army under Contract No. DA-11-022-ORD-2059.