INVOLUTIONS ON LOCALLY COMPACT RINGS

Paul Civin

By a proper involution ${ }^{*}$ on a ring R we mean a mapping $x \rightarrow x^{*}$ defined on R with the following properties:
(i) $(x+y)^{*}=x^{*}+y^{*}$,
(ii) $(x y)^{*}=y^{*} x^{*}$,
(iii) $\left(x^{*}\right)^{*}=x$ and
(iv) $x x^{*}=0$ if and only if $x=0$. If (iv) is not assumed, the mapping is simply termed an involution. If F is a field with an involution \# and R is an algebra over F, we say that an involution on R is an algebra involution if in addition to (i)-(iv) above the following holds:
(v) $(\alpha x)^{*}=\alpha^{\sharp} x^{*}$ for all $x \in R$ and $\alpha \in F$.

We are concerned principally with involutions on two types of locally compact semi-simple rings, namely those which are compact or connected. The main result is that involutions on such rings are automatically continuous. As a byproduct we determine the form of any proper involution on a total matric ring R over a division ring. If in addition R is topological and the division ring admits only continuous involutions, then we note that R has only continuous involutions.

Lemma Let D be a division ring with center Z. Let R be a total matric ring over D. Any ring involution * on R induces an involution \# on Z, and * is an algebra involution on R with respect to the involution \# on Z.

Direct calculation shows that the center of R consists of the totality of elements of the form αI where $\alpha \in Z$ and I is the identity of R. Suppose x is in the center of R and $y \in R$, then $x^{*} y=\left(y^{*} x\right)^{*}=\left(x y^{*}\right)^{*}=$ $y x^{*}$, so x^{*} is in the center of R. Since $I^{*}=I$ is immediate, it follows that for any $\alpha \in Z$, there is a $\beta \in Z$ such that $(\alpha I)^{*}=\beta I$. Denote β by α^{*}. It is clear that \# is an involution on Z. Moreover, if $\alpha \in Z$ and $x \in R,(\alpha x)^{*}=[(\alpha I) x]^{*}=x^{*} \alpha^{\sharp} I=\alpha^{\sharp} x$, so ${ }^{*}$ is an algebra involution on R with respect to the involution \# on Z.

Theorem 2. Let R be a total matric ring over D, where D is a division ring with center Z. Let ${ }^{*}$ be a proper ring involution on R, and let \# be the induced involution on Z. Then there exist a set of matrix units $\left\{g_{i j}\right\}$ in R such that $g_{i i}^{*}=g_{i i}$ and a set of non-zero elements γ_{i} of Z such that $\gamma_{i}^{*}=\gamma_{i}$ such that the involution ${ }^{*}$ has the following form: If $x=\sum \alpha_{i j} e_{i j}$, with $\alpha_{i j} \in D$, then $x^{*}=\sum \gamma_{j}^{-1} \alpha_{i j} \gamma_{i} e_{j i}$.

[^0]
[^0]: Received August 31, 1959, and in revised form January 28, 1960. This research was supported in part by the National Science Foundation, under grant NSF-G5865.

