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The Law of Quadratic Reciprocity in the rational integers states:
If p, q are two distinct odd primes, then q is a square (modp) if and
only if ( — l){p-1)l2p is a square (modg).

One of the classical generalizations of the law of reciprocity is of
the following type. Let r be a fixed positive integer, φ(r) denotes the
number of positive integers <£ r which are relatively prime to r; p, q
are two distinct primes and p == 1 (mod r). Then can we find rational
integers aλ(p)f a2(p), , ah{p) determined by p, such that q is an r th
power (modp) if and only if ajjή, •• ,α/i(;p) satisfy certain conditions
(mod q).

The Law of Quadratic Reciprocity states that for r = 2, we may
take aλ{p) = (-l)(2J~1)/2p.

Jacobi and Gauss solved this problem for r = 3 and r = 4, respective-
ly. Mrs. E. Lehmer gave another solution recently [2].

In this paper I would like to develop the theory when r is a prime
and q = 1 (modr). I then show that q is an r th power (modp) if and
only if a certain linear combination of aλ{p), , αr-i(p) is an r th power
(mod q). a1(p)f , αΓ_x(p) are determined by solving several simultaneous
Diophantine equations. This determination appears mildly formidable
and to make the actual numerical computations would certainly be so
for a large r. (See Theorem B below.) Also given is a criterion for
when r is an r th power (mod p) in terms of a linear combination of
Gi(p), * >αr-i(p) (modr2). (See Theorem A below.)

It is possible by the methods developed in this paper to eliminate
the conditions that r is a prime and q = 1 (mod r). This would com-
plicate the paper a great deal, and the cases given clearly indicate the
underlying theory.

Consider the following Diophantine equations in the rational integers:
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where Xl f c ) denotes the sum over all j l f , j k + 1 — 1, 2, , r — 1, with

t h e condition jx+ + j k — kjk+1 = i (mod r ) .
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