SEQUENCES IN GROUPS WITH DISTINCT
 PARTIAL PRODUCTS

Basil Gordon

1. In an investigation concerning a certain type of Latin square, the following problem arose:

Can the elements of a finite group G be arranged in a sequence $a_{1}, a_{2}, \cdots, a_{n}$ so that the partial products $a_{1}, a_{1} a_{2}, \cdots, a_{1} a_{2} \cdots a_{n}$ are all distinct?

In the present paper a complete solution will be given for the case of Abelian groups, and the application to Latin squares will be indicated. Let us introduce the term sequenceable group to denote groups whose elements can be arranged in a sequence with the property described above. The main result is then contained in the following theorem.

Theorem 1. A finite Abelian group G is sequenceable if and only if G is the direct product of two groups A and B, where A is cyclic of order $2^{k}(k>0)$, and B is of odd order.

Proof (i). To see the necessity of the condition, suppose that G is sequenceable, and let $a_{1}, a_{2}, \cdots, a_{n}$ be an ordering of the elements of G with $a_{1}, a_{1} a_{2}, \cdots, a_{1} a_{2} \cdots a_{n}$ all distinct. The notation $b_{i}=a_{1} a_{2} \cdots a_{i}$ will be used throughout the remainder of the paper. It is immediately seen that $a_{1}=b_{1}=e$, the identity element of G; for if $a_{i}=e$ for some $i>1$, then $b_{i-1}=b_{i}$, contrary to assumption. Hence $b_{n} \neq e$, i.e., the product of all the elements of G is not the identity. It is well known (cf [2]) that this implies that G has the form $A \times B$ with A cyclic of order $2^{k}(k>0)$ and B of odd order.
(ii) To prove sufficiency of the condition, suppose that $G=A \times B$, with A and B as above. We then show that G is sequenceable by constructing an ordering $a_{1}, a_{2}, \cdots, a_{n}$ of its elements with distinct partial products. From the general theory of Abelian groups, it is known that G has a basis of the form $c_{0}, c_{1}, \cdots, c_{m}$, where c_{0} is of order 2^{k}, and where the orders $\delta_{1}, \delta_{2}, \cdots, \delta_{m}$ of $c_{1}, c_{2}, \cdots, c_{m}$ are odd positive integers each of which divides the next, i.e., $\delta_{i} \mid \delta_{i+1}$ for $0<i<m$. If j is any positive integer, then there exist unique integers $j_{0}, j_{1}, \cdots, j_{m}$ such that

$$
\begin{align*}
j & \equiv j_{0}\left(\bmod \delta_{1} \delta_{2} \cdots \delta_{m}\right) \tag{1}\\
j_{0} & =j_{1}+j_{2} \delta_{1}+j_{3} \delta_{1} \delta_{2}+\cdots+j_{m} \delta_{1} \cdots \delta_{m-1} \\
& 0 \leqq j_{1}<\delta_{1}
\end{align*}
$$

[^0]
[^0]: Received January 3, 1961.

