SEQUENCES IN GROUPS WITH DISTINCT PARTIAL PRODUCTS

BASIL GORDON

1. In an investigation concerning a certain type of Latin square, the following problem arose:

Can the elements of a finite group G be arranged in a sequence a_1, a_2, \dots, a_n so that the partial products $a_1, a_1a_2, \dots, a_1a_2 \dots a_n$ are all distinct?

In the present paper a complete solution will be given for the case of Abelian groups, and the application to Latin squares will be indicated. Let us introduce the term *sequenceable group* to denote groups whose elements can be arranged in a sequence with the property described above. The main result is then contained in the following theorem.

THEOREM 1. A finite Abelian group G is sequenceable if and only if G is the direct product of two groups A and B, where A is cyclic of order 2^{k} (k > 0), and B is of odd order.

Proof (i). To see the necessity of the condition, suppose that G is sequenceable, and let a_1, a_2, \dots, a_n be an ordering of the elements of G with $a_1, a_1a_2, \dots, a_1a_2 \dots a_n$ all distinct. The notation $b_i = a_1a_2 \dots a_i$ will be used throughout the remainder of the paper. It is immediately seen that $a_1 = b_1 = e$, the identity element of G; for if $a_i = e$ for some i > 1, then $b_{i-1} = b_i$, contrary to assumption. Hence $b_n \neq e$, i.e., the product of all the elements of G is not the identity. It is well known (cf [2]) that this implies that G has the form $A \times B$ with A cyclic of order $2^k(k > 0)$ and B of odd order.

(ii) To prove sufficiency of the condition, suppose that $G = A \times B$, with A and B as above. We then show that G is sequenceable by constructing an ordering a_1, a_2, \dots, a_n of its elements with distinct partial products. From the general theory of Abelian groups, it is known that G has a basis of the form c_0, c_1, \dots, c_m , where c_0 is of order 2^k , and where the orders $\delta_1, \delta_2, \dots, \delta_m$ of c_1, c_2, \dots, c_m are odd positive integers each of which divides the next, i.e., $\delta_i | \delta_{i+1}$ for 0 < i < m. If j is any positive integer, then there exist unique integers j_0, j_1, \dots, j_m such that

(1)
$$j \equiv j_0 \pmod{\delta_1 \, \delta_2 \cdots \delta_m}$$

 $j_0 = j_1 + j_2 \delta_1 + j_3 \delta_1 \delta_2 + \cdots + j_m \delta_1 \cdots \delta_{m-1}$
 $0 \leq j_1 < \delta_1$

Received January 3, 1961.