THE INVARIANCE OF SYMMETRIC FUNCTIONS OF SINGULAR VALUES

MARVIN MARCUS AND HENRYK MINC

Let $M_{m,n}$ denote the vector space of all $m \times n$ matrices over the complex numbers. A general problem that has been considered in many forms is the following: suppose \mathfrak{A} is a subset (usually subspace) of $M_{m,n}$ and let f be a scalar valued function defined on \mathfrak{A} . Determine the structure of the set \mathfrak{A}_{f} of all linear transformations T that satisfy

(1)
$$f(T(A)) = f(A) \text{ for all } A \in \mathfrak{A}$$
.

The most interesting choices for f are the classical invariants such as rank [3, 4, 7] determinant [1, 2, 3, 5, 10] and more general symmetric functions of the characteristic roots [6, 8]. In case \mathfrak{A} is the set of *n*-square real skew-symmetric matrices (m = n) and f(A) is the Hilbert norm of A then Morita [9] proved the following interesting result: \mathfrak{A}_f consists of transformations T of the form

$$T(A) = U'AU$$
 for $n \neq 4$,
 $T(A) = U'AU$ or $T(A) = U'A^+U$ for $n = 4$

where U is a fixed real orthogonal matrix and A^+ is the matrix obtained from A by interchanging its (1, 4) and (2, 3) elements.

Recall that the Hilbert norm of A is just the largest singular value of A (i.e., the largest characteristic root of the nonnegative Hermitian square root of A^*A).

In the present paper we determine \mathfrak{A}_f when \mathfrak{A} is all of $M_{m,n}$ and f is some particular elementary symmetric function of the squares of the singular values. We first introduce a bit of notation to make this statement precise. If $A \in M_{n,n}$ then $\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$ will denote the *n*-tuple of characteristic roots of A in some order. The *r*th elementary symmetric function of the numbers $\lambda(A)$ will be denoted by $E_r[\lambda(A)]$; this is, of course, the same as the sum of all *r*-square principal subdeterminants of A. We also denote by $\rho(A)$ the rank of A.

THEOREM. A linear transformation T of the space $M_{m.n}$ leaves invariant the rth elementary symmetric function of the squares of the singular values of each $A \in M_{m.n}$, for some fixed r, $1 < r \leq n$, if and only if there exist unitary matrices U and V in $M_{m.m}$ and $M_{n.n}$ respectively such that

Received January 16, 1961. The work of the first author was supported in part by the the Office of Naval Research.