THE INVARIANCE OF SYMMETRIC FUNCTIONS OF SINGULAR VALUES

Marvin Marcus and Henryk Minc

Let $M_{m, n}$ denote the vector space of all $m \times n$ matrices over the complex numbers. A general problem that has been considered in many forms is the following: suppose \mathfrak{N} is a subset (usually subspace) of $M_{m, n}$ and let f be a scalar valued function defined on \mathfrak{A}. Determine the structure of the set \mathfrak{U}_{f} of all linear transformations T that satisfy

$$
\begin{equation*}
f(T(A))=f(A) \text { for all } A \in \mathfrak{A} . \tag{1}
\end{equation*}
$$

The most interesting choices for f are the classical invariants such as rank $[3,4,7]$ determinant $[1,2,3,5,10]$ and more general symmetric functions of the characteristic roots $[6,8]$. In case \mathfrak{A} is the set of n-square real skew-symmetric matrices $(m=n)$ and $f(A)$ is the Hilbert norm of A then Morita [9] proved the following interesting result: \mathfrak{N}_{5} consists of transformations T of the form

$$
\begin{aligned}
& T(A)=U^{\prime} A U \text { for } n \neq 4, \\
& T(A)=U^{\prime} A U \text { or } T(A)=U^{\prime} A^{+} U \text { for } n=4
\end{aligned}
$$

where U is a fixed real orthogonal matrix and A^{+}is the matrix obtained from A by interchanging its $(1,4)$ and $(2,3)$ elements.

Recall that the Hilbert norm of A is just the largest singular value of A (i.e., the largest characteristic root of the nonnegative Hermitian square root of $A^{*} A$).

In the present paper we determine \mathfrak{A}_{f} when \mathfrak{A} is all of $M_{m, n}$ and f is some particular elementary symmetric function of the squares of the singular values. We first introduce a bit of notation to make this statement precise. If $A \in M_{n, n}$ then $\lambda(A)=\left(\lambda_{1}(A), \cdots, \lambda_{n}(A)\right)$ will denote the n-tuple of characteristic roots of A in some order. The r th elementary symmetric function of the numbers $\lambda(A)$ will be denoted by $E_{r}[\lambda(A)]$; this is, of course, the same as the sum of all r-square principal subdeterminants of A. We also denote by $\rho(A)$ the rank of A.

Theorem. A linear transformation T of the space $M_{m, n}$ leaves invariant the rth elementary symmetric function of the squares of the singular values of each $A \in M_{m, n}$, for some fixed $r, 1<r \leqq n$, if and only if there exist unitary matrices U and V in $M_{m, m}$ and $M_{n, n}$ respectively such that

Received January 16, 1961. The work of the first author was supported in part by the the Office of Naval Research.

