FACTORIZATION OF POLYNOMIALS OVER FINITE FIELDS

Richard G. Swan

Dickson [1, Ch. V, Th. 38] has given an interesting necessary condition for a polynomial over a finite field of odd characteristic to be irreducible. In Theorem 1 below, I will give a generalization of this result which can also be applied to fields of characteristic 2 . It also applies to reducible polynomials and gives the number of irreducible factors mod 2.

Applying the theorem to the polynomial $x^{p}-1$ gives a simple proof of the quadratic reciprocity theorem. Since there is some interest in trinomial equations over finite fields, e.g. [2], [4], I will also apply the theorem to trinomials and so determine the parity of the number of irreducible factors.

1. The discriminant. If $f(x)$ is a polynomial over a field F, the discriminant of $f(x)$ is defined to be $D(f)=\delta(f)^{2}$ with

$$
\delta(f)=\prod_{i<j}\left(a_{i}-\alpha_{j}\right)
$$

where $\alpha_{1}, \cdots, \alpha_{n}$ are the roots of $f(x)$ (counted with multiplicity) in some extension field of F. Clearly $D(f)=0$ if f has any repeated root. Since $D(f)$ is a symmetric function in the roots of $f, D(f) \in F$.

An alternative formula for $D(f)$ which is sometimes useful may be obtained as follows:

$$
D(f)=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}=(-1)^{n(n-1) / 2} \prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right)=(-1)^{n(n-1) / 2} \prod_{i} f^{\prime}\left(\alpha_{i}\right)
$$

where n is the degree of $f(x)$ and $f^{\prime}(x)$ the derivative of $f(x)$. In $\S 4$, I will give still another way to calculate $D(f)$.

If $f(x)$ is monic with integral coefficients in some \mathfrak{p}-adic or algebraic number field, all α_{i} are integral and so $D(f)$ is integral. Consider the expression

$$
\delta_{1}=\prod_{i<j}\left(\alpha_{i}+\alpha_{j}\right) .
$$

This is integral and lies in F, being a symmetric function of the roots. Clearly $\delta(f)=\delta_{1}+2 \delta_{2}$ where δ_{2} is integral. Thus $D(f)=\delta(f)^{2} \equiv \delta_{1}^{2} \bmod$ 4, so $D(f)$ is congruent to a square in $F \bmod 4$. This is a special case of a well-known theorem of Stickelberger [3, Ch. 10, Sec. 3].

Received November 15, 1961. The author is an Alfred P. Sloan Fellow.
Added in Proof. I have recently discovered that Theorem 1 of this paper is due to L. Stickelberger, Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper, Verh. 1 Internat. Math. Kongresses, Zurich 1897, Leipzig 1898, 182-193. A simplified proof, essentially the same as mine, was given by K. Dalen, On a theorem of Stickelberger, Math. Scand. 3 (1955), 124-126.

The applications of the theorem, however, seem to be new.

