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1. Preliminaries. In the regular case the classical method of
obtaining eigenvalues and eigenfunctions of the equation

® y'@+ - q@ly =0 [=-L]
x
under Sturmian boundary conditions involves the use of asymptotic
expansions. For the singular cases of (1) when the range of x is infinite
or semi-infinite instead of finite, Titchmarsh [6] has shown that such
asymptotic solutions are also necessary in obtaining spectral and expansion
theorems by the method of complex variables. The objective of this
paper is to generalize for a particular case these types of results to the
following pair of equations
u'(z) — [Ma(@) + b(x)]v(x) =0,
V(%) + [Ne(x) + d(@)]u(z) =0 .
Interest in this system arises from a consideration of the Dirac relativistic
wave equations for a particle in a central field. The equations (2)
correspond in this case to the radial wave equations. Conte and Sangren
[2] and the authors [3] have shown that most of the results of Titchmarsh
can be generalized for (2) over the interval (0 < x < o), under the
restriction a(x) = ¢(x) = 1. Also, the spectral properties of (2) for a(x) =
c(x) = 1 over the infinite interval (— oo, ) have been investigated [4].
In this paper a discussion of the system (2) for a(x) = 2%, ¢(x) = ¢~ *
over the interval (0, ) is presented. It is assumed throughout, that
k is a nonzero integer.

Let ¢(x, N) = [g.(x, N), (2, N)] and 0(x, N) = [0.(x, N), 0.(x, \)] be two
solutions of system (2) over the interval ¢ <« < b, where a > 0 and
b < o, such that ¢,(I, ») =1, 61, 7) = 0, 6,({, ) = 0, 6,(I, ) = 1, where
a =1 =b. It can be shown that the Wronskian W.,[¢, 0] = $.0, — $,0,
is independent of x so that since Wiy(¢, 6] =1, #(x, \) and 6(x, \) are
linearly independent. For the singular case it can be shown that for
complex values of A the system (2) has a solution (x, N) = [y, 4] =
O(x, N) + m(N)s(x, N). A limit circle case is determined separately at each
of the end points, 0 and oo, by the conditions that all functions ¢|+ |
+ al+y,|* are integrable, that is, belong to the class L(0,1) or L(I, o).
In the limit point case, at either end, there exist only one m(\) and
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