A NOTE ON HAUSDORFF'S SUMMATION METHODS

J. P. Brannen

If $\left\{a_{n}\right\}$ is a moment sequence and (Δa) is the difference matrix having base sequence $\left\{a_{n}\right\}$, then (Δa) is symmetric about the main diagonal if and only if the function $\alpha(x)$ such that $a_{n}=\int_{0}^{1} x^{n} d \alpha(x), n=0,1,2, \cdots$, is symmetric in the sense that $\alpha(x)+\alpha(1+x)=\alpha(1)+\alpha(0)$ except for at most countably many x in $[0,1]$. This property is related to the "fixed points" of the matrix H, where $H a H$ is the Hausdorff matrix determined by the moment sequence $\left\{a_{n}\right\}$.

In each of the papers [2], [3] and [5], there is reference to difference matrices of the form

$$
(\Delta d)=\left[\begin{array}{cccc}
\Delta^{0} d_{0} & \Delta^{0} d_{1} & \Delta^{0} d_{2} & \\
\Delta^{1} d_{0} & \Delta^{1} d_{1} & \Delta^{1} d_{2} & \vdots \\
\Delta^{2} d_{0} & \Delta^{2} d_{1} & \Delta^{2} d_{2} & \\
& \cdots & &
\end{array}\right]
$$

where $\left\{d_{n}\right\}$ is a moment sequence, $\Delta^{0} d_{n}=d_{n}, n=0,1,2, \cdots$ and $\Delta^{m} d_{n}=$ $\Delta^{m-1} d_{n}-\Delta^{m-1} d_{n+1}$, for $n=0,1,2, \cdots$ and $m=1,2,3, \cdots$. In [2], Garabedian and Wall discussed the importance of (Δd) having the property of being symmetric about the main diagonal, i.e. $\Delta^{m} d_{n}=\Delta^{n} d_{m}$. They also showed that if $\left\{d_{n}\right\}$ is a totally monotone sequence, then (Δd) is symmetric about the main diagonal if and only if the function $f(x)$ which generates $\left\{d_{n}\right\}$ has a certain type continued fraction expansion.

In this paper, the symmetry of (Δd) is investigated with the restriction of total monotonicity removed and a collection of necessary and sufficient conditions are given, Theorem 3, for moment sequences in general. A relation is established between the symmetry of (Δd) and the "fixed points" of the difference matrix

$$
H=\left[\begin{array}{ccc}
\binom{0}{0} & & \tag{1}\\
\binom{1}{0} & -\binom{1}{1} & \\
\binom{2}{0} & -\binom{2}{1} & \binom{2}{2} \\
& \cdots &
\end{array}\right]
$$

[^0]
[^0]: Received March 15, 1964. This work was performed under the auspices of the United States Atomic Energy Commission.

