SIMPLE QUADRATURES IN THE COMPLEX PLANE

Philip J. Davis

Given a class S of functions that are Riemann integrable

 on $[0,1]$. A quadrature formula $\int_{0}^{1} f(x) d x=\sum_{i=1}^{\infty} a_{i} f\left(x_{2}\right)$ is called a simple quadrature for S if the x_{i} are distinct and if both the a_{i} and the x_{i} are fixed and independent of the particular function of S selected. It is known that if S is too large, for example if $S=C[0,1]$, a simple quadrature cannot exist. On the other hand, if S is sufficiently restricted, for example the class of all polynomials, then simple quadratures exist.The present paper investigates further the existence of simple quadratures. It is proved among other things that if S is the class of analytic functions that are regular in the closure of an ellipse with foci at ± 1, a simple quadrature exists for the weighted integral $\int_{-1}^{+1}\left(1-x^{2}\right)^{1 / 2} f(x) d x$ provided we allow the abscissas x_{2} to take on complex values.

1. Simple Quadratures. In [3], the author studied the following question. Suppose that there has been given a fairly extensive class S of real functions that are Riemann integrable on [0, 1]. Does there exist a quadrature formula of the form

$$
\begin{equation*}
\int_{0}^{1} f(x) d x=\sum_{i=1}^{\infty} a_{i} f\left(x_{i}\right) \tag{1}
\end{equation*}
$$

which is valid for all functions of the class S ? The abscissas x_{i} are assumed distinct, and both the weights a_{i} and the abscissas x_{i} are fixed and independent of the particular function of S selected. A quadrature of the form (1) was called a simple quadrature to contrast it with quadratures of the form

$$
\begin{equation*}
\int_{0}^{1} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i n} f\left(x_{i n}\right) \tag{2}
\end{equation*}
$$

which allow more freedom than (1) and have accordingly been more frequently investigated. See, e.g., Szegö [9], Chap. 15.

In [3], we found, broadly speaking, that if S is fairly small, simple quadratures exist, while if S has too many functions in it, simple quadratures do not exist. Thus, for instance, there exists a simple quadratures for the class of all polynomials (of unkounded degree), while there cannot exist a simple quadrature for the class of continuous functions. See also Davis [7], Chap. 14, where this question is treated in the framework of weak* convergence.

[^0]
[^0]: Received April 25, 1964. This work was supported by the Office of Naval Research Contract Nonr 562 (36).

